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Problemas de Programação Inteira

Considere o Problema de Programação Linear (PPL)

max{cT x : Ax ≤ b, x ≥ 0},

onde A ∈ Rm×n, c ∈ Rn, b ∈ Rn.

1 Se algumas (não todas) variáveis de decisão devem assumir
valores inteiros, temos o Problema de Programação Inteira Mista:

(MIP) max{cT x + hT y : Ax + Gy ≤ b, x ≥ 0, y inteiro},

2 Se todas as variáveis de decisão devem assumir valores inteiros,
temos o Programa Inteiro:

(IP) max{cT x : Ax ≤ b, x ≥ 0, x inteiro},

3 Se todas as variáveis de decisão devem assumir valores 0 ou 1,
temos o Programa Binário:

(BIP) max{cT x : Ax ≤ b, x ∈ {0, 1}n}.
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Problemas de Otimização Combinatória

Dados:

Conjunto base N = {1, 2, ...., n}.
Pesos {cj : j ∈ N} associados aos elementos do conjunto base.
Uma faḿılia F de subconjuntos de N (uma regra construtiva) que
define quais subconjuntos de N são válidos.

O Problema de Otimização Combinatória definido sobre F é:

(COP) min

∑
j∈S

cj : S ∈ F

 .

1 Muitas vezes, o mesmo problema de otimização pode ser
formulado como um COP, MIP ou como um IP.

2 A forma como o problema é formulado (IP, MIP, ou como um
COP) sugere o tipo de algoritmo que será empregado para
resolvê-lo.
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Formulando IPs e MIPs

Qualidade de uma formulação

A qualidade da formulação empregada para se representar um
problema de otimização em variáveis inteiras é de extrema
importância para possam ser resolvidos. A definição de qualidade de
uma formulação será apresentada em breve. Essencialmente, depende
dos limites duais que é capaz de fornecer...
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Formulando IPs e MIPs

O processo de formular ou modelar envolve as etapas:

Escolher variáveis de decisão, indentificando quais são cont́ınuas,
discretas, binárias.

Representar o conjunto de restrições e função objetivo por meio
de funções lineares, no caso de IPs ou MIPs.

Observações:

Eventualmente, o modelo pode não ser linear. Neste caso temos
um NLIP (Problelma de Programação Inteira Não Linear).
Alguma técnica de linearização pode ser empregada ou, parte-se
para resolver o NLIP (tema não coberto neste curso).

O processo deve ser conduzido tendo-se em mente qual método
de resolução é mais adequado para o tipo de formulação obtido.

Possivelmente, haverá uma etapa posterior à modelagem inicial,
dedicada a fortalecer a formulação (melhorando a sua qualidade,
seus limites...).
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Alguns Problemas de Programação Inteira

1 Problema do Caminho Mais Curto.

2 Problema da Mochila {0− 1}
3 Problema de Localização de Facilidades.

4 Problema de Cobertura de Conjuntos.

5 Problema do Caixeiro Viajante.

6 Problema de Sequenciamento de Tarefas.
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O Problema da Mochila {0− 1}

Uma empresa dispõe de um orçamento de b unidades monetárias que
serão empregadas para selecionar alguns de n projetos de investimento
dispońıveis. Para que o projeto j seja selecionado, é necessário realizar
um investimento de aj unidades monetárias. Neste caso, o projeto
oferece um retorno de cj unidades monetárias.

Objetivo: encontrar uma carteira de projetos que maximize o retorno
e que não exceda o orçamento.
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Formulando o Problema da Mochila {0− 1}

Variáveis de decisão binárias: xj : j = 1, . . . , n.
A variável xj assume valor 1 caso o projeto j seja escolhido, 0
caso contrário.

Restrições:

O orçamento não deve ser excedido:
n∑

j=1

ajxj ≤ b,

Natureza bivalente das variáveis: xj ∈ {0, 1}, j = 1, . . . , n

Função Objetivo: máximo retorno. max
n∑

j=1

cjxj .
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Problema da Mochila 0− 1: Formulação de Programação Inteira

max


n∑

j=1

cjxj : x ∈ P ∩ Bn

 ,

onde a região poliédrica P é definida por:

n∑
j=1

ajxj ≤ b.

0 ≤ xj ≤ 1 j = 1, . . . , n
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Problema da Mochila 0− 1 como um Problema de Otimização
Combinatória

Conjunto base: N = {1, . . . , n}
Pesos {cj : j ∈ N} associados aos elementos do conjunto base.

Faḿılia de subconjuntos F (definem as mochilas, que são
sistemas independentes)

F = {S ⊆ N :
∑
j∈S

aj ≤ b}

(COP) max

∑
j∈S

cj : S ∈ F


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O Problema do Caixeiro Viajante (TSP), versão assimétrica.

Um vendedor deve visitar um conjunto N = {1, . . . , n} de clientes. O
custo de deslocamento incorrido ao sair do cliente i ∈ N diretamente
para o cliente j ∈ N \ {i} é cij . Estes custos podem ser assimétricos,
isto é, cij 6= cji .

Objetivo: Definir uma rota ou uma sequência de clientes a serem
visitados, de ḿınimo custo de deslocamento. Cada cliente deve ser
visitado exatamente uma vez na rota.
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Formulando o TSP como um Programa Inteiro

Grafo direcionado

D = (N,A): O conjunto de vértices N representa os clientes. A,
o conjunto de arcos, representa as conexões orientadas diretas
entre eles.

D pode ser completo ou esparso.

δ+(S) = {(i , j) ∈ A : i ∈ S , j 6∈ S}
δ−(S) = {(i , j) ∈ A : i 6∈ S , j ∈ S}
δ+(i), δ−(i) : conjunto de arcos que partem e chegam de/em
i ∈ N, respectivamente.
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Formulando o TSP como um Programa Inteiro

Variáveis de decisão binárias: xij : (i , j) ∈ A, assumindo valor 1
caso o cliente j seja visitado imediatamente após o cliente i (o
arco (i , j) é percorrido), 0, caso contrário.
Restrições:

Restrições de grau (de/para):∑
(j,i)∈δ−(i)

xji = 1, i ∈ N

∑
(i,j)∈δ+(i)

xij = 1, i ∈ N

Conexidade da solução (evitar sub-ciclos):∑
(i,j)∈δ+(S)

xij ≥ 1, S ⊂ N,S 6= ∅,

Natureza binária das variáveis: xij ∈ {0, 1} : (i , j) ∈ A.

Função Objetivo: min
∑

(i ,j)∈A

cijxij
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TSP: Formulação não compacta

min

 ∑
(i ,j)∈A

xijcij : x ∈ Px ∩ B|A|


onde Px é definido por ∑
(j ,i)∈δ−(i)

xji = 1, i ∈ N

∑
(i ,j)∈δ+(i)

xij = 1, i ∈ N

∑
(i ,j)∈δ+(S)

xij ≥ 1,∀S ⊂ N, S 6= ∅

xij ≥ 0, (i , j) ∈ A

compacta = requer número polinomial (em |A|, |N|) de restrições e
variáveis.
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TSP: Formulação alternativa, compacta

1 Emprega outras restrições que proibem sub-rotas (rotas
envolvendo menos que de |N| vértices).

2 A formulação emprega as variáveis {xij : (i , j) ∈ A} definidas
anteriormente e um novo conjunto de variáveis inteiras,

{ti ∈ {0, 1, . . . , |N| − 1} : i ∈ N}.

3 A variável ti indica a ordem de visita do cliente i ∈ N, a partir de
um ponto de partida (um vértice de N) que pode ser
arbitrariamente escolhido. Vamos designar o ponto de partida
como r ∈ N, de forma que tr = 0.
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(Re)Modelando as restrições de conexidade

1 Devemos garantir que se o vértice j 6= r é visitado imediatamente
após o vértice i (e neste caso, xij = 1), então vale:

tj ≥ ti + 1.

Caso contrário, isto é, se xij = 0 e portanto j não é visitado
imediatamente após i , esta restrição não deve ser imposta.

2 Para escrever as restrições que modelam este par de situações,
vamos lembrar que ti ∈ {0, 1, . . . , |N| − 1}.

3 Vamos empregar uma disjunção para representar este fato:

tj ≥ ti + 1− (1− xij)|N|, para todo (i , j) ∈ A, j 6= r

4 Observe que quando xij = 0, a restrição acima é trivialmente
satisfeita. Por outro lado, quando xij = 1, obtemos exatamente o
que desejávamos.
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TSP: Formulação Matemática Compacta (Miller, Tucker e Zemlin
(1960))

min

 ∑
(i ,j)∈A

xijcij : (x , t) ∈ Pxt ∩ (B|A| × Z|N|)


onde Pxt é definido por ∑

(j ,i)∈δ−(i)

xji = 1, i ∈ N

∑
(i ,j)∈δ+(i)

xij = 1, i ∈ N

tj ≥ ti + 1− (1− xij)|N|, para todo (i , j) ∈ A, j 6= r

xij ≥ 0, (i , j) ∈ A

tr = 0, ti ∈ [1, |N| − 1], i ∈ N \ {r}
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Comparando formulações de Programação Inteira

1 Qualidade dos limites duais associados à formulação. Devemos
verificar qual formulação fornece limites duais mais fortes, isto é,
que para qualquer vetor de custos sempre fornece o valor ótimo
da relaxação cont́ınua pelo menos tão elevado quanto as demais.

2 O esforço computacional necessário para avaliar estes limites
também é um aspecto importante.

3 No caso das formulações discutidas para o TSP:

Formulações Px ,Pxt são definidas em espaços diferentes de
variáveis, com um conjunto comun, x .

Para mostrar que Px é melhor que Pxt devemos mostrar que
Px ⊆ Projx(Pxt), onde Projx(Pxt) denota a projeção de Pxt no
espaço x e que existe (x̂ , t̂) ∈ Pxt : x̂ 6∈ Px .
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Comparando formulações para o Uncapacitated Lot Sizing (ULS)

O problema consiste em definir um plano de produção de ḿınimo
custo, para um único produto, em um peŕıodo de tempo de n
peŕıodos. Além do estoque inicial do produto, s0, os seguintes dados
são conhecidos:

ft ≥ 0: custo fixo incorrido caso haja produção no peŕıodo t,

pt ≥ 0: custo unitário de produção em t,

ht ≥ 0: custo unitário de estoque em t,

dt : demanda a ser satisfeita em t.
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Comparando formulações - ULS

Variáveis de decisão:
xt ≥ 0: quantidade produzida em t,
st ≥ 0: quantidade de estoque ao final de t,
yt ∈ {0, 1}, assumindo valor 1 se a produção em t for permitida,
0, c.c.

Dois aspectos são importantes na modelagem:
Garantir o balanço de fluxo em cada instante de tempo t.
Garantir que o custo fixo seja incorrido em t se houver produção
xt > 0. Isto é, xt > 0→ yt = 1.

Vamos assumir que um limite superior M (por exemplo
M =

∑n
t=1 dt , se sn = 0) na quantidade a ser produzida em cada

peŕıdo de tempo t seja conhecido.
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ULS - Modelo 1: O(n) restrições e variáveis.

min

{
n∑

t=1

ptxt +
n∑

t=1

htst +
n∑

t=1

ftyt : (x , s, y) ∈ P1 ∩ (Rn × Rn+1 × Bn)

}

onde P1 é a região poliédrica:

st−1 + xt = dt + st , t = 1, . . . , n,

xt ≤ Myt , t = 1, . . . , n,

s0 = 0,

st , xt ≥ 0,

0 ≤ yt ≤ 1, t = 1, . . . , n.
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ULS - Modelo 1, Reescrevendo a função objetivo

Observe que st = s0 +
t∑

i=1

xi −
t∑

i=1

di , t ≥ 1

Vamos assumir s0 = 0 e re-escrever a função objetivo:

n∑
t=1

ptxt +
n∑

t=1

htst +
n∑

t=1

ftyt =

n∑
t=1

ptxt +
n∑

t=1

ht

(
t∑

i=1

xi −
t∑

i=1

di

)
+

n∑
t=1

ftyt =

n∑
t=1

(
pt +

n∑
i=t

hi

)
xt −

n∑
t=1

ht

t∑
i=1

di +
n∑

t=1

ftyt =

n∑
t=1

ctxt +
n∑

t=1

ftyt − K ,

onde K =
n∑

t=1

ht

t∑
i=1

di e ct = pt +
n∑

i=t

hi .
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ULS - modelo 2: O(n2) variáveis e restrições

Variáveis de decisão empregadas:
{wit ≥ 0, i = 1, . . . , n, t = i , . . . , n}. wit é a quantidade produzida
no peŕıodo i para atender a demanda do peŕıodo t.
{yt ∈ {0, 1}, t = 1, . . . , n}: definida anteriormente.

Novas restrições:

t∑
i=1

wit = dt , t = 1, . . . , n,

wit ≤ dtyi , i = 1, . . . , n, t = i , . . . , n

wit ≥ 0, i = 1, . . . , n, t = i , . . . , n

yt ∈ {0, 1} t = 1, . . . , n

Função Objetivo:

min
n∑

i=1

n∑
t=i

ciwit +
n∑

t=1

ftyt
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ULS - Comparando os modelos

1 Considere a seguinte solução fracionária:
xt = dt , yt = dt

M , t = 1, . . . , n.

2 Observe que ela satisfaz as restrições que definem P1:

st−1 + xt = dt + st ⇒ st = 0, t = 1, . . . , n

xt ≤ Myt ⇒ dt ≤ M
dt
M
, t = 1, . . . , n

xt ≥ 0, 0 ≤ yt ≤ 1, t = 1, . . . , n

3 Porém, não satisfaz as restrições que definem a formulação P2:

wii = di ,wit = 0, i = 1, . . . , n, t > i

wit ≤ dtyi , i = 1, . . . , n, i ≤ t ⇒

quando i = t temos: di = wii ≤ diyi ,= di

(
di
M

)
< di
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Resolvendo um IP ou COP

Como provamos que o problema

z = {max cT x : x ∈ X ⊆ Zn}

foi resolvido ? Resolver o problema consiste em:

1 Obter uma solução viável x∗ ∈ X e

2 Garantir que cT x ≤ cT x∗ para qualquer x ∈ X .

Precisamos encontrar:

Uma solução viável x∗ que (no caso de max) fornece um limite
inferior válido para o valor ótimo: z ≥ z = cT x∗;

Um limite superior válido z , denominado limite dual: z ≤ z .

Se estes limites coincidirem, z = z , provamos que x∗ resolve o
problema.
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Estrutura geral de um algoritmo exato para resolver um IP/MIP

Gerar uma sequência não crescente (idealmente decrescente) de
limites superiores {zk} válidos

Gerar uma sequência não decrescente (idealmente crescente) de
limites inferiores {zk}
Quando zk = zk para algum k , o algoritmo pára, com um
certificado de otimalidade para a melhor solução viável obtida.

Se o critério de parada é: zk = zk , para algum k , a solução
encontrada é ótima, e o algoritmo é exato.

Se o critério de parada é: zk−zk
zk
≤ ε, a solução é dita ε-ótima.

Trata-se de um algoritmo com garantia de distância.

Prof. Alexandre Cunha (DCC/UFMG) Otimização Inteira: Formulações e Relaxações 27 / 49



Alguns componentes de um algoritmo exato para um IP/MIP:

Algum procedimento para obter soluções viáveis, por exemplo,
Heuŕısticas.

Algum procedimento para obter limites duais. Um dos principais
mecanismos é via Relaxações.
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Construindo relaxações para obter limites duais

A idéia central consiste em substituir o problema original, geralmente
dif́ıcil de ser resolvido, por um problema mais fácil, cuja função
objetivo ótima é não menor que z (caso maximização).

Como definir este problema relaxado:

1 Ampliando o conjunto de soluções viáveis, de forma que se
otimiza sobre um conjunto maior.

2 Substituindo a função objetivo por outra que assuma um valor
não menor que a original em qualquer solução no doḿınio do
problema original.

Prof. Alexandre Cunha (DCC/UFMG) Otimização Inteira: Formulações e Relaxações 29 / 49



Relaxação

Definição

Dizemos que um problema de otimização (RP)

zR = max {f (x) : x ∈ T ⊆ Rn}

é uma relaxação para o (IP)

z = max {cT x : x ∈ X ⊆ Rn}

se as duas condições seguintes são satisfeitas:

1 X ⊆ T (o conjunto de soluções viáveis do problema relaxado
contém o conjunto de soluções original).

2 f (x) ≥ cT x para qualquer x ∈ X .
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Limites duais

Proposição

Se RP é uma relaxação para IP, então zR ≥ z

Demonstração

Seja x∗ a solução de IP.

Por um lado, como x∗ ∈ X e X ⊆ T temos que x∗ ∈ T .

Por outro, temos que cT x∗ ≤ f (x∗).

Pela otimalidade de zR , temos então que
zR ≥ f (x∗) ≥ cT x∗ = z .
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Algumas relaxações

1 Relaxação de Programação Linear.

2 Relaxações Combinatórias.

3 Relaxação Lagrangeana.
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Relaxações

Definição - Relaxação de Programação Linear

Dado o IP
z = {max cT x : x ∈ P ∩ Zn}

e a formulação
P = {x ∈ Rn : Ax ≤ b},

a Relaxação de Programação Linear associada ao IP corresponde
ao Programa Linear

zLP = {max cT x : x ∈ P}.

A função objetivo de RP é não menor que a de IP, para qualquer
solução viável do IP.

P ∩ Zn ⊆ P: o doḿınio de RP contém o doḿınio de IP.

Logo z ≤ zLP .
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Relaxação Linear

Exemplo

Dado o IP:
z = max 4x1 −x2

7x1 −2x2 ≤ 14
x2 ≤ 3

2x1 −2x2 ≤ 3
x ∈ Z2

+

O vetor (2, 1)T é uma solução viável, logo z ≥ 7.

Para a relaxação linear, temos zLP = 59
7 , obtida para

x = ( 20
7 , 3)T .

Como os coeficientes da função objetivo do IP são inteiros temos:

z ≤ b59

7
c = 8.
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Relaxação Linear e a qualidade da formulação

A qualidade dos limites duais determina a qualidade da formulação

Dadas duas formulações P1,P2 para o

(IP) z = {max cT x : x ∈ X ⊆ Zn},

tais que P1 é uma formulação melhor que P2, isto é: P1 ⊂ P2.

Se zLPi = {max cT x : x ∈ Pi} para i = 1, 2 denota o valor das
respectivas relaxações lineares, então zLP1 ≤ zLP2 para todo c ∈ Rn.
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Relaxações: Existência de Soluções

Proposicao:

Se RP é inviável, então o IP é inviável.

Demonstração:

Seja X = ∅ o conjunto de soluções do problema relaxado (RP) e T o
conjunto de soluções do problema original (IP). Como RP é uma
relaxação temos que T ⊆ X = ∅, logo T = ∅.
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Relaxações: Prova de Otimalidade

Proposicao:

Se a solução x para o problema relaxado RP é viável para (IP) e se
f (x) = cT x , então x resolve IP.

Demonstração:

Como x é uma solução viável, z ≥ cT x . Por outro lado, f (x) fornece
um limite superior válido para z . Como por hipótese f (x) = cT x ,
temos z ≤ f (x) = cT x ≥ z e então z = f (x).
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Prova de otimalidade

Exemplo

Uma solução ótima da Relaxação Linear do IP

z = max 7x1 + 4x2 + 5x3 + 2x4

3x1 + 3x2 + 4x3 + 2x4 ≤ 6
x ∈ B4

é dada por x = (1, 1, 0, 0)t ∈ B4.

Como x satisfaz o requisito de integralidade, x resolve o IP.
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Relaxações Combinatórias

Definição

Sempre que o problema relaxado for um problema de otimização
combinatória, a relaxação associada é dita combinatória.

Exemplos:

Caixeiro Viajante Assimétrico: Problema de Atribuição.

Problema da Mochila: Problema da Mochila em Coeficientes
Inteiros.
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Caixeiro Viajante Assimétrico

Entrada: Digrado D = (N,A), custos associados aos arcos
{cij : (i , j) ∈ A}.

min

 ∑
(i ,j)∈A

xijcij : x ∈ Px ∩ B|A|


onde Px é definido por ∑
(j ,i)∈δ−(i)

xji = 1, i ∈ N

∑
(i ,j)∈δ+(i)

xij = 1, i ∈ N

∑
(i ,j)∈δ+(S)

xij ≥ 1,∀S ⊂ N, S 6= ∅

xij ≥ 0, (i , j) ∈ A
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Relaxação de Atribuição

zatrib = min

 ∑
(i ,j)∈A

xijcij : x ∈ Patrib ∩ B|A|


onde Patrib é dada por: ∑
(j ,i)∈δ−(i)

xji = 1, i ∈ N

∑
(i ,j)∈δ+(i)

xij = 1, i ∈ N

xij ≥ 0, (i , j) ∈ A

Observe que:

Px ⊂ Patrib (isto vale para qualquer formulação P para o TSP).

z ≥ zatrib.
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O Problema da Mochila com coeficientes quaisquer

Proposição

Uma relaxação do conjunto X = {x ∈ Zn
+ :

n∑
j=1

ajxj ≤ b} é dada pelo

conjunto X ′ = {x ∈ Zn
+ :

n∑
j=1

bajcxj ≤ bbc}.

Prova
n∑

j=1

bajcxj ≤
n∑

j=1

ajxj ≤ b

Como os vetores de incidência x ∈ X são inteiros, temos que∑n
j=1bajcxj deve ser necessariamente uma quantidade inteira. Logo∑n
j=1bajcxj ≤ bbc. Ou seja: x ∈ X → x ∈ X ′.
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Relaxação Lagrangeana

Vamos considerar o IP

z = {max cT x : Ax ≤ b, x ∈ S ⊆ Zn}.

Podemos relaxar um conjunto de restrições, por exemplo
{Ax ≤ b} e resolver a relaxação

zR = {max cT x : x ∈ S ⊆ Zn}.

Claramente z ≤ zR .

Na Relaxação Lagrangeana, não apenas relaxamos um conjunto
de restrições que dificultam a solução de um IP. Também
associamos a cada restrição i relaxada um multiplidador de
Lagrange ui e somamos o produto da folga (bi − aTi x) da
restrição pelo multiplicador na função objetivo da relaxação.
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Relaxação Lagrangeana

Proposição

Seja (PLAG)

z(u) = max {cT x + uT (b − Ax) : x ∈ S}.

Então z(u) ≥ z , ∀u ≥ 0.

Demonstração

Seja x a solução ótima do IP.

Como x resolve o IP, x ∈ S é uma solução viável para (PLAG).

Como u ≥ 0 e Ax ≤ b temos que z = cT x ≤ cT x + u(b − Ax).

Por outro lado, pela otimalidade de z(u) temos que
z(u) ≥ cT x + u(b − Ax).

Logo z = cT x ≤ cT x + u(b − Ax) ≤ z(u).
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Dualidade em Programação Linear

Considere o par de problemas

(P) { max cT x : Ax ≤ b, x ∈ Rn
+}

(D) { min uTb : uTA ≥ cT , u ∈ Rm
+}

Sabemos que cT x ≤ uTb para quaisquer vetores
{x ∈ Rn

+ : Ax ≤ b} e {u ∈ Rm
+ : uTA ≥ c}.

Em particular, se x e u resolvem P e D, respectivamente, temos
que cT x = uTb (Dualidade forte).
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Dualidade - Caso geral

Definição

Os problemas
(P) z = { max c(x) : x ∈ X}

(D) w = { min w(u) : u ∈ U}

formam um par primal-dual fraco se c(x) ≤ w(u) para quaisquer
x ∈ X , u ∈ U. Se, além disto z = w então (P) e (D) formam um par
primal-dual forte.

Vantagem da dualidade sobre a relaxação

A relaxação só fornece um limite superior válido se resolvida na
otimalidade. Por outro lado, qualquer solução viável de D fornece um
limite superior válido para P.
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Dualidade - Programação Inteira

Proposição

Os problemas (P) z = {max cT x : Ax ≤ b, x ∈ Zn
+} e (D)

wLP = {min uTb : uTA ≥ cT , u ∈ Rm
+} formam um par primal-dual

fraco.

Demonstração

Considere (RLP) zLP = {max cT x : Ax ≤ b, x ∈ Rn
+}.

Claramente z ≤ zLP .

Como (RLP) e (D) formam um par primal-dual, temos que
zLP ≤ wLP .

Logo z ≤ zLP ≤ wLP .
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Um exemplo de Dualidade Fraca em Programação Inteira

Emparelhamento ou matching

Dado um grafo G = (V ,E ) um emparelhamento (matching) consiste
em um conjunto de arestas M ⊆ E tal que não existem duas arestas
em M que possuem a mesma extremidade.

Cobertura de arestas por vértices

Dado um grafo G = (V ,E ) uma cobertura das arestas de E por
vértices é um conjunto R ⊂ V tal que toda aresta de E possui uma
extremidade em R.
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Emparelhamento máximo e cobertura ḿınima formam par primal-dual

Proposição

Os problemas (P) {max M⊆E |M| : Mé um emparelhamento de E} e
(D) {min C⊆V |C | : Cé uma cobertura de arestas por vértices}
formam um par primal-dual fraco.

Prova

Definimos A ∈ Bn×m (n = |V |,m = |E |) tal que aj ,e = 1 se
j ∈ V é extremidade de e ∈ E (0, caso contrário) e escrevemos

(P) e (D) como zmatch =
{

max
∑m

j=1 xj : Ax ≤ 1, x ∈ Zm
+

}
e

zcov =
{

min
∑n

i=1 yi : yTA ≥ 1, y ∈ Zn
+

}
.

Sejam zPLmatch e zPLcov os valores ótimos das respectivas relaxações
lineares.

Então: zPLcov ≤ zcov e zmatch ≤ zPLmatch. Como zLPmatch ≤ zLPcov , temos
zmatch ≤ zLPmatch ≤ zLPcov ≤ zcov .

Prof. Alexandre Cunha (DCC/UFMG) Otimização Inteira: Formulações e Relaxações 49 / 49


