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3 V. Chvátal. Linear Programming. Freeman, 1983. [Caps. 2 e 4].

Prof. Alexandre Cunha (DCC/UFMG) Método Simplex 2 / 65



Ideias centrais do método

1 Se um PPL possui uma solução ótima, então existe uma solução
ótima que é básica viável para o poliedro que define a região de
viabilidade do PPL.

2 Iniciando em uma solução básica viável, move-se para uma
solução básica vizinha aprimorante (menor custo, no caso de
minimização, maior lucro, no caso de maximização). Esta
operação é chamada de pivoteamento.

3 Devidamente excluindo a possibilidade de ciclagem como
consequência da degeneração, o processo se repete por um
número finito de vezes até que uma de duas condições seja
satisfeita:

Encontra-se uma direção (raio extremo) que permita melhorar
indefinidamente a função objetivo, caracterizando um PPL
ilimitado
Nenhuma solução básica vizinha é aprimorante. Logo, a
otimalidade da solução básica atual é demonstrada.
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Exemplo - Vanderbei p. 11

PPL

max 5x1 +4x2 +3x3

2x1 +3x2 +x3 ≤5

4x1 +1x2 +2x3 ≤11

3x1 +4x2 +2x3 ≤8

x1, x2, x3 ≥0

PPL no formato padrão

max 5x1 +4x2 +3x3

2x1 +3x2 +x3 +x4 =5

4x1 +1x2 +2x3 +x5 =11

3x1 +4x2 +2x3 +x6 =8

xi ≥ 0 i =1, . . . , 6
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Exemplo - Vanderbei p. 11

Solução (básica viável) inicial, corresp. ao dicionário {x4, x5, x6}
“Zerando”os valores de x1, x2, x3, mantendo no máximo m = 3
entradas não nulas para as demais variáveis (folgas).

max v =0 +5x1 + 4x2 +3x3

x4 =5 −2x1 − 3x2 −x3

x5 =11 −4x1 − 1x2 −2x3

x6 =8 −3x1 − 4x2 −2x3

Observe que pela primeira linha do quadro acima, obtemos uma
informação importante:

v ≥ 0, pois x1, x2, x3 ≥ 0.

É posśıvel melhorar esta solução ? Haveria vantagem em
aumentar x1, por exemplo, mantendo x2 = x3 = 0 ?

O que limitaria o crescimento de x1 ao manter x2 = x3 = 0 ?
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Exemplo - Vanderbei p. 11

Solução (básica viável) inicial

“Zerando”os valores de x1, x2, x3, mantendo no máximo m = 3
entradas não nulas para as demais variáveis (folgas).

max v =0 +5x1 + 4x2 +3x3

x4 =5 −2x1 − 3x2 −x3

x5 =11 −4x1 − 1x2 −2x3

x6 =8 −3x1 − 4x2 −2x3

Passo 1 (otimalidade): identificação da variável independente
(não básica) que deve ser tornar dependente (básica): x1.

Passo 2 (teste da razão): diante do crescimento de x1 e da
manutenção das demais variáveis independentes no ńıvel zero,
qual a variável dependente que mais limita x1 crescer ? x4.

Passo 3 (pivoteamento): x1 entra no dicionário, x4 sai. O
sistema é reescrito.
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Exemplo - Vanderbei p. 11

Após a operação de pivoteamento: dicionário para {x1, x5, x6}

max v =12.5 −2.5x4 − 3.5x2 +0.5x3

x1 =2.5 −0.5x4 − 1.5x2 −0.5x3

x5 =1 +2x4 + 5x2

x6 =0.5 +1.5x4 + 0.5x2 −0.5x3

Incrementar x3 mantendo as demais variáveis independentes (não
básicas) no ńıvel atual (x4 = x2 = 0) é atrativo.

Crescimento de x3 é limitado pelo decrescimento de x1, x6.

Teste da razão: a variável dependente x6 se tornará
independente, pois é a mais restritiva ao crescimento de x3.
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Exemplo - Vanderbei p. 11

Após a operação de pivoteamento: dicionário para {x1, x5, x3}

max v =13 −x4 − 3x2 −x6

x1 =2 −2x4 − 2x2 +x6

x5 =1 +2x4 + 5x2

x3 =1 +3x4 + x2 −2x6

Passo 1 (teste de otimalidade):

A primeira linha, em conjunto com a não negatividade das
variáveis, informa:

v ≤ v + x4 + 3x2 + x6 = 13→ v ≤ 13.

Para x1 = 2, x5 = 1, x3 = 1 e x2 = x4 = x6 = 0, v = 13.
Logo, provamos a otimalidade da solução atual.
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Formalização do Algoritmo

O Problema a ser resolvido

min cT x

s.t.: Ax = b

x ≥ 0

A ∈ Rm×n, b ∈ Rm

a j-ésima coluna de A é designada por Aj

a i-ésima linha de A é designada por ai .

Observação: minimizar cT x equivale a maximizar −cT x .
As funções objetivo são simétricas e o conjunto de otimizadores, caso
existam, é o mesmo.
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Uma idéia muito comum nos algoritmos de otimização

1 Dada uma solução viável, procure uma solução viável mais barata
nas vizinhanças da solução atual.

2 Esta procura de soluções viáveis normalmente é feita tentando
movimentar sobre uma direção viável aprimorante.

3 Se uma direção aprimorante não existe, a solução corrente é um
ótimo local para o problema (não necessáriamente global).

4 O PPL é um problema de otimização convexa e todo ótimo local
é global.

5 O Método Simplex, ilustrado no exemplo, explora exatamente
esta idéia.
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Direção viável

Seja x um ponto em um poliedro P. Um vetor d ∈ Rn é dito ser uma
direção viável em x , se existir um escalar positivo θ para o qual
(x + θd) ∈ P.
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Obtendo uma direção viável conveniente

1 Vamos considerar a possibilidade de mover a partir de x para
uma solução básica vizinha (adjacente).

2 Por definição, uma solução básica adjacente a x deve
compartilhar n − 1 restrições justas, cujos vetores ai são
linearmente independentes.

3 Como as restrições aTi x = bi , ∀i = 1, . . .m (Ax = b) precisam ser
satisfeitas em qualquer solução viável, escolhemos uma direção d
que permite alterar uma única variável não básica, mantendo as
demais no ńıvel atual.

4 Logo, para obter uma solução básica adjacente a x precisamos
nos movimentar ao longo de uma direção viável que permita que
apenas uma componente não básica de x torne-se básica.
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Dedução algébrica da direção: d = (dB , dN)T

A direção definida abaixo é denominada j-ésima direção básica

1 A base (e o dicionário) é definida pelo ı́ndice das variáveis
básicas: {B(1), . . . ,B(m)}.

2 dN : componentes não básicas (i 6∈ {B(1), . . . ,B(m)})
Vamos designar por j o ı́ndice da coluna não básica liberado para
se tornar básica.
dj = 1 para uma única variável não básica.
di = 0 para todas as demais variáveis não básicas, i 6= j .

3 dB : componentes básicas (i ∈ {B(1), . . . ,B(m)})
Uma vez que A(x + θd) ∈ P para algum θ > 0, temos que
Ax + θAd = b e então Ad = 0.
Então: 0 = Ad =

∑n
i=1 Aidi =

∑m
i=1 AB(i)di + Aj = Aj + BdB .

Portanto dB = −B−1Aj uma vez que B admite inversa.
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Garantia das restrições de não negatividade

Temos que nos preocupar exclusivamente com a variação das variáveis
básicas, pois apenas uma variável não básica, xj , será acrescida.

Quando xj cresce, temos que garantir que xB + θdB ≥ 0. Dois casos
precisam ser considerados:

xB é não degenerada.
Então xB > 0 e então existe um θ > 0 suficientemente pequeno
que garante a viabilidade para xB + θdB .

xB é degenerada. Logo, existe xB(i) = 0 para algum
i ∈ {B(1), . . . ,B(m)}.
Neste caso, se dB(i) < 0, qualquer movimento no sentido de dB
faz com que a restrição xB(i) ≥ 0 seja violada. Assim sendo, a
direção d neste caso não é viável, e consequentemente θ = 0.

Prof. Alexandre Cunha (DCC/UFMG) Método Simplex 14 / 65



Efeito do deslocamento ao longo da direção básica d na função
objetivo

Variação da função objetivo:
∑n

i=1
∂f
∂xi

di =
∑n

i=1 cidi .

Uma vez que dj = 1, di = 0 para i não básica i 6= j e
dB = −B−1Aj :∑n

i=1 cidi = cj − cTB B−1Aj , onde cTB = (cB(1), . . . , cB(m)).

A parcela cj é a taxa unitária de variação por permitir j aumentar.
A parcela −cTB B−1Aj é a compensação das mudanças nas
variáveis básicas, ao garantir A(x + θd) = b.

Definição: Custo reduzido de Programação Linear

Seja x uma solução básica, B a base associada a x e cB o vetor de
custos das variáveis básicas. Para todo j = 1, . . . , n, definimos o custo
reduzido c j da variável xj como:

c j = cj − cTB B−1Aj

Prof. Alexandre Cunha (DCC/UFMG) Método Simplex 15 / 65



Exemplo: custo reduzido para variável não básica

min c1x1 + c2x2 + c3x3 + c4x4

x1 + x2 + x3 + x4 = 2

2x1 + 3x3 + 4x4 = 2

x ≥ 0

Base escolhida B = [A1 A2].

Fixando x3 = x4 = 0 e resolvendo o sistema BxB = b,
xB = (x1, x2)T = (1, 1)T .

Assumindo que d seja a direção básica associada à variável não
básica x3, temos:

dB = (d1, d2)T = −B−1A3 = −
[

0 1/2
1 −1/2

] [
1
3

]
=

[
−3

2
1
2

]
.

c3 = c3 − 3c1/2 + c2/2
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Custo reduzido para as variáveis básicas

Aplicando a definição para a variável básica xB(i), para algum
i ∈ {1, . . . ,m}, associada à i−ésima coluna de B:

cB(i) = cB(i) − cTB B−1AB(i) = cB(i) − cTB ei ,

onde ei é um vetor m dimensional com todas as entradas nulas,
exceto a i-ésima entrada que é 1.

Logo, cB(i) = cB(i) − cTB ei = cB(i) − cB(i) = 0
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Critério de Otimalidade

Teorema

Considere uma solução básica x associada a uma base B. Assuma que
c seja o correspondente vetor de custos reduzidos.

1 Se c ≥ 0, então x é uma solução ótima.

2 Se x é ótima e não degenerada, então c ≥ 0.

Obs: O resultado é intuitivo, dada nossa interpretação de custos
reduzidos como a taxa de variação da função objetivo como função do
deslocamento ao longo de uma direção.
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Demonstração

Prova: (1)

Vamos assumir c ≥ 0 e que y denote uma solução viável
qualquer para o problema, com a qual obtemos uma direção
viável d = y − x (d é viável por convexidade).

Viabilidade de x , y : Ax = Ay = b e portanto Ad = 0.

Então 0 = Ad = BdB +
∑

i∈N Aidi (N é o conj. dos ı́ndices das
variáveis não básicas em x).

Logo dB = −
∑

i∈N B−1Aidi

E então
cTd = cTB dB+

∑
i∈N cidi =

∑
i∈N(ci−cTB B−1Ai )di =

∑
i∈N c idi .

Para qualquer i ∈ N, xi = 0. Logo, di = yi − xi ≥ 0 e
cTd =

∑
i∈N c idi ≥ 0
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Demonstração

(2): por contradição

Suponha que x seja uma solução básica viável ótima, não
degenerada e que exista j : c j < 0.

Então j necessariamente deve ser ı́ndice de uma variável não
básica, uma vez que c i = 0, ∀i ∈ {B(1), . . . ,B(m)}.

Considere a j− ésima direção básica, d .
Esta direção é necessariamente viável dado que x é não
degenerada. Ou seja, existe θ > 0 tal que x + θd é uma solução
viável.

Assim temos:

cT (x+θd) = cT x+θcTd = cT x+θ
∑
j∈N

c idi = cT x+θc j < cT x ,

contrariando a otimalidade de x .
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Observações

1 Uma solução ótima x pode ser tal que o custo reduzido de
alguma variável não básica é negativo. Ainda não dispomos do
certificado de otimalidade, que virá quando a base certa,
associada à mesma solução básica viável ótima, for escolhida.

2 De acordo com o teorema para decidir se uma solução básica
viável não degenerada x é ótima, precisamos verificar os custos
reduzidos de suas n −m componentes não básicas.

3 No caso de uma solução básica degenerada, um teste igualmente
simples não é dispońıvel.
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Bases ótimas

Definição

Uma base B é ótima se as duas condições seguintes são satisfeitas:

1 B−1b ≥ 0

2 cT = cT − cTB B−1A ≥ 0.

Observe que, diante desta definição:

1 Se uma base ótima B é encontrada, a solução básica associada é
viável, satisfaz as condições de otimalidade dadas pelo Teorema
anterior (independentemente de ser degenerada ou não) e
portanto é ótima.

2 Por outro lado, uma solução básica viável ótima degenerada não
necessariamente possui custos reduzidos não negativos, pois mais
de uma base podem ser associadas à mesma solução básica
degenerada. Mediante troca de bases, o mesmo ponto no espaço
é representado por outra base, ótima.
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Hipótese preliminar para o desenvolvimento do método

Sobre a degeneração de P

De ińıcio, vamos assumir a hipótese de que todos as soluções básicas
de P = {x ∈ Rn : Ax = b, x ≥ 0} são não degeneradas. Em seguida
relaxaremos esta hipótese.
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Desenvolvimento do Método

1 Partimos de x = (xB , xn), solução básica viável inicial não
degenerada, associada à base B = [AB(1), . . . ,AB(m)],
xN = 0, xB = B−1b > 0.

2 Teste de otimalidade: Se c j ≥ 0 : ∀j 6∈ {B(1), . . . ,B(m)}, x é
uma solução básica ótima e resolve o PPL.

3 Caso contrário, existe j 6∈ {B(1), . . . ,B(m)} : c j < 0, x não é
ótima.

4 A j−ésima direção básica d = (dB , dN)T : dB = −B−1Aj , dj = 1
e dk = 0,∀k 6∈ {j ,B(1), . . . ,B(m)} é uma direção viável
aprimorante.

5 Ao longo de θd , θ > 0, a componente xj torna-se positiva, as
componentes não básicas xk : k 6= j permanecem em 0 e as
variáveis básicas variam em −θB−1Aj .

6 Teste da razão: θ deve ser tão grande quanto posśıvel.
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Teste da razão

x(θ) = x + θd , θ ≥ 0

Máximo deslocamento ao longo de d :

θ∗ = max{θ ≥ 0 : (x + θd) ∈ P}.

Como Ad = 0, Ax(θ) = b, apenas as restrições xB ≥ 0 precisam
ser verificadas:

1 Se d ≥ 0, x(θ) ≥ 0 para qualquer θ ≥ 0. Logo, θ∗ =∞, o PPL é
ilimitado, d é um raio extremo de P : cTd < 0.

2 Caso contrário, existe i ∈ {1, . . . ,m} : dB(i) < 0.
Para todo i tal que dB(i) < 0, devemos garantir que

xB(i) + θdB(i) ≥ 0. Logo, θ ≤ − xB(i)

dB(i)
.

Então θ∗ = min{− xB(i)

dB(i)
: i = 1, . . . ,m, dB(i) < 0}

Observe que θ∗ > 0 uma vez que xB > 0.
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O novo ponto obtido

Assumindo que θ∗ é finito, y = x(θ∗) = x + θ∗d .

yj = xj + θ∗ = − xB(l)

dB(l)
> 0,

onde B(l) ∈ {B(1), . . . ,B(m)} denota o ı́ndice da variável básica
que definiu θ∗.

yB(i) ≥ 0 para todo i = 1, . . . ,m.

Em particular, para B(l) temos:

yB(l) = xB(l) + θdB(l) = xB(l) −
xB(l)

dB(l)
dB(l) = 0

o que sugere que a coluna Aj substitua a coluna AB(l) na base,
uma vez que houve uma troca das restrições de não negatividade
que ficaram justas.
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Formalizando a independência linear das novas colunas básicas

Teorema

Considere os m ı́ndices {B(1), . . . ,B(l − 1), j ,B(l + 1), . . . ,B(m)} e
a correspondente matriz

B = [AB(1), . . . ,AB(l−1),Aj ,AB(l+1), . . . ,AB(m)]

de colunas de A. Veja que B difere da base B associada à solução
básica viável x apenas pela l−ésima coluna: AB(l) foi substitúıda por
Aj . Então:

1 As colunas AB(i) : i 6= l e Aj são linearmente independentes e,

assim, B é uma matriz básica.

2 O vetor y = x + θ∗d é a solução básica associada a B.
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Demonstração

(1): por contradição

Vamos supor que os vetores AB(i) sejam l.d. Então, existem
coeficientes λ1, . . . , λm, não todos nulos, tais que∑m

i=1 λiAB(i) = 0. Multiplicando por B−1 temos∑m
i=1 λiB

−1AB(i) = 0 e os vetores B−1AB(i) também são l.d.
Vamos mostrar que este não é o caso.

Observe que B−1B = I . Logo B−1AB(i) = ei , i 6= l (ei denota o
vetor de zeros, exceto pela i-ésima entrada, que é 1). Todos os
vetores ei = B−1AB(i) : i 6= l são l.i. e possuem um 0 na
l−ésima entrada.

Por outro lado B−1AB(l) = B−1Aj = −dB .

Por definição, dB(l) < 0. Logo B−1Aj e {B−1AB(i) : i 6= l} são
l.i..

Logo, B é uma base.
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Demonstração

(2):

Temos que y ≥ 0,Ay = b.

Além disto yi = 0, ∀i 6∈ {B(1), . . . ,B(m)}.
Acabamos de mostrar que AB(1), . . . ,AB(m) são l.i..

Portanto, segue que y = (yB , yN) é uma solução básica viável
associada a B, yB é solução única para Bz = b e yN = 0.
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Exemplo - continuação

min c1x1 + c2x2 + c3x3 + c4x4

x1 + x2 + x3 + x4 = 2

2x1 + 3x3 + 4x4 = 2

x ≥ 0

Considerando a solução básica x = (1, 1, 0, 0),
c3 = −3c1 + c2

2 + c3.

Se cT = (2, 0, 0, 0)T temos que c3 = −3. A correspondente
direção básica é (−3

2 ,
1
2 , 1, 0).

Considerando pontos da forma x + θd , θ > 0, θ∗ = − x1
d1

= 2
3 .

O novo ponto obtivo é y = x + 2
3d = (0, 4

3 ,
2
3 , 0).

As colunas associadas às novas variáveis básicas, x2, x3, são l.i..
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Observações

1 Uma vez que θ∗ > 0, y é uma solução básica distinta de x .

2 Uma vez que d é uma direção de redução de custos e então
cT y < cT x .

3 Em parte, cumprimos nosso propósito inicial de mover para uma
solução básica adjacente, de menor custo.

4 Vamos enunciar uma iteração t́ıpica do Método Simplex,
definindo um vetor uT = (u1, . . . , um)T , de forma que
u = −dB = B−1Aj , onde Aj é a coluna que entra na base. Ou
seja, ui = −dB(i) : i = 1, . . . ,m.
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Método Simplex: Iteração T́ıpica

1 Inicie a iteração com as colunas básicas B(1), . . . ,B(m) e a
solução básica viável associada x . Seja N o conjunto dos ı́ndices
das variáveis não básicas.

2 Calcule os custos reduzidos c j = cj − cTB B−1Aj , ∀j ∈ N. Se
c ≥ 0, páre, a solução x é ótima. Caso contrário, escolha
j ∈ N : c j < 0.

3 Calcule u = B−1Aj . Se u ≤ 0, temos que θ∗ =∞ e o custo
ótimo é −∞. Páre, o problema é ilimitado.

4 Se alguma componente de u é positiva, faça
θ∗ = mini∈{1,...,m}:ui>0

xB(i)

ui
.

Seja l tal que θ∗ =
xB(l)

ul
.

5 Forme uma nova base substituindo AB(l) por Aj . Denote por y a
nova solução básica viável. Então yj = θ∗ e
yB(i) = xB(i) − θ∗ui , i = 1, . . . ,m, i 6= l .
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O Método Simplex converge na ausência de degeneração

Teorema

Assuma que o conjunto de soluções viáveis do PL é não vazio e que
toda solução básica é não degenerada. Então, o Método Simplex
termina após um número finito de iterações. Ao final, temos duas
possibilidades:

1 Dispomos de uma base ótima B e a correspondente solução
básica ótima.

2 Encontramos um vetor d : Ad = 0, d ≥ 0 e cTd < 0. Portanto o
PPL é ilimitado e o custo ótimo é −∞.
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Demonstração

Se o algoritmo termina no Passo 2, as condições de otimalidade
propostas previamente foram satisfeitas e B é uma base ótima.

Se o algoritmo termina no Passo 3, x é uma solução básica
viável, c j < 0 e a direção básica associada a xj , d , é um raio
extremo satisfazendo Ad = 0, d ≥ 0, cTd = c j < 0, de forma
que x + θd ∈ P para qualquer θ > 0 e o custo pode ser tão
negativo quando desejemos.

A cada iteração, θ∗ > 0 e cTd < 0, o custo diminui e não
podemos então visitar uma solução básica mais de uma vez.

Como o número de soluções básicas é finito, o algoritmo então
termina.

Prof. Alexandre Cunha (DCC/UFMG) Método Simplex 34 / 65



Método Simplex para problemas degenerados

1 Se a solução básica corrente x for degenerada, θ∗ pode ser nulo,
caso xB(l) = 0 e dB(l) < 0. Neste caso, a nova solução obtida y é

idêntica a x . Ainda assim, podemos definir uma nova matriz B
com a entrada da coluna Aj e a sáıda de AB(l) de forma que B
será uma base.

2 Mesmo se θ∗ > 0, pode acontecer de mais de uma variável básica
se tornar zero no novo ponto x + θ∗d . Uma vez que apenas uma
destas variáveis básicas sairá da base para a entrada de xj (e de
Aj na nova base), a nova solução encontrada y = x + θ∗d será
degenerada.
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Efeito da degeneração

As mudanças de base associadas à mesma solução básica podem,
em alguns casos, não ser inúteis, levando a descobrir uma direção
básica de redução de custo.

Por outro lado, uma sequência de mudanças de base associadas
ao mesmo ponto x pode levar à repetição das colunas associadas
à representação da base, ocasionando a ciclagem.

Para problemas altamente estruturados (fluxo em redes, etc) a
possibilidade não é remota.

A ciclagem pode ser evitada através do uso de regras adequadas
de quais variáveis entrarão e/ou sairão da base.
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Ilustração dos dois casos em uma solução degenerada.
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O Método Simplex pode não terminar ? Sim, caso ocorra ciclagem.

Exemplo a seguir (Chvátal, p. 30)

1 PPL na forma de maximização

2 Regra pivoteamento determińıstica empregada:

Entrada na base: variável com custo reduzido mais positivo.

Em caso de empate no teste da razão: sai da base a variável com
menor ı́ndice.
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O Método Simplex pode não terminar ?

Dicionário 1, B = {5, 6, 7}, entra x1, sai x5

x5 = − 0.5x1 + 5.5x2 + 2.5x3 − 9x4

x6 = − 0.5x1 + 1.5x2 + 0.5x3 − x4

x7 = 1 − x1

z = + 10x1 − 57x2 − 9x3 − 24x4

Dicionário 2, B = {1, 6, 7}, entra x2, sai x6

x1 = + 11x2 + 5x3 − 18x4 − 2x5

x6 = − 4x2 − 2x3 + 8x4 + x5

x7 = 1 − 11x2 − 5x3 + 18x4 + 2x5

z = + 53x2 + 41x3 − 204x4 − 20x5
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O Método Simplex pode não terminar ?

Dicionário 3, B = {1, 2, 7}, entra x3, sai x1

x2 = − 0.5x3 + 2x4 + 0.25x5 − 0.25x6

x1 = − 0.5x3 + 4x4 + 0.75x5 − 2.75x6

x7 = 1 + 0.5x3 − 4x4 − 0.75x5 − 13.25x6

z = + 14.5x3 − 98x4 − 6.75x5 − 13.25x6

Dicionário 4, B = {2, 3, 7}, entra x4, sai x2

x3 = + 8x4 + 1.5x5 − 5.5x6 − 2x1

x2 = − 2x4 − 0.5x5 + 2.5x6 + x1

x7 = 1 − x1

z = + 18x4 + 15x5 − 93x6 − 29x1
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O Método Simplex pode não terminar ?

Dicionário 5, B = {3, 4, 7}, entra x5, sai x3

x4 = − 0.25x5 + 1.25x6 + 0.5x1 − 0.5x2

x3 = − 0.5x5 + 4.5x6 + 2x1 − 4x2

x7 = 1 − x1

z = + 10.5x5 − 70.5x6 − 20x1 − 9x2

Dicionário 6, B = {4, 5, 7}, entra x6, sai x4

x5 = + 9x6 + 4x1 − 8x2 − 2x3

x4 = − x6 − 0.5x1 + 1.5x2 + 0.5x3

x7 = 1 − x1

z = + 24x6 + 22x1 − 93x2 − 21x3
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O Método Simplex pode não terminar ? Sim, caso cicle.

Este dicionário é idêntico ao inicial.

Dicionário 7, B = {5, 6, 7}, entra x1, sai x5

x6 = − 0.5x1 + 1.5x2 + 0.5x3 − x4

x5 = − 0.5x1 + 5.5x2 + 2.5x3 − 9x4

x7 = 1 − x1

z = + 10x1 − 57x2 − 9x3 − 24x4
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Possibilidades para implementar o pivoteamento

Até o momento, não particularizamos regra alguma para escolher as
regras de pivoteamento, isto é, escolher qual variável entra e sai da
base. Em particular, na descrição que apresentamos do Método
Simplex, temos flexibilidade quanto à escolha de:

1 Qual coluna não básica com custo reduzido atrativo deve ser
eleita para entrar na base;

2 Diante de mais de uma variável que definam θ∗, qual escolher
para deixar a base.
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Algumas prováveis candidatas a regras de pivotemento:

Escolher para entrar na base, a coluna não básica Aj que possui o
custo reduzido c j mais negativo (min).

Escoher para entrar na base, a coluna não básica Aj que promova
o maior decréscimo na função objetivo, isto é θ∗c j . Esta regra
pode acelerar a queda da função objetivo, mais paga-se maior
preço computacional, para se avaliar o θ∗ associado a entrada de
cada coluna que possua c j < 0. A experiência computacional
existente sugere que o tempo global de cpu não decresce com a
adoção desta estratégia.

Mesmo a primeira estratégia acima pode ser muito cara para
problemas de larga escala (requer que todas as colunas tenham
seus custos reduzidos avaliados). Assim sendo, uma regra simples
consiste na regra de escolher a coluna com custo reduzido
negativo, de menor ı́ndice.
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Implementações do Simplex

1 Os vetores B−1Aj são de fundamental importância para se obter:

Custos reduzidos (c j = cj − cTB B−1Aj)
A direção de busca d (BdB = −Aj)
O valor de θ∗, pelo teste da razão (depende de dB)

2 A forma como esta informação é calculada e quais informações
são preservadas de iteração para iteração diferenciam as
implementações do método.
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Implementação Inocente

1 Nenhuma informação adicional será transportada de iteração
para iteração no método.

2 Em cada iteração t́ıpica, conhecemos os ı́ndices B(1), . . . ,B(m)
das variáveis básicas.

3 Montamos a matriz B e resolvemos o sistema linear pTB = cTB .

4 O custo reduzido para uma coluna j é calculado via
c j = cj − pTAj .

5 Dependendo da regra de pivoteamento adotado, podemos evitar
calcular todos os custos reduzidos.

6 Uma vez que escolhemos a coluna Aj para entrar na base,
resolvemos Bu = Aj (dB = −u).

7 A partir de então, podemos calcular θ∗ e definir qual variável
sairá da base.
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Implementação inocente - complexidade computacional

Resolver os sistemas lineares (pTB = cTB e Bu = Aj): O(m3).
Dependendo da estrutura da matriz B, este custo pode ser
reduzido sensivelmente (exemplo: Problemas de Fluxo em Redes)

Cálculo do custo reduzido para todas as colunas: O(mn)

Custo total por iteração: O(nm + m3).

Veremos como fazer a iteração a um custo de O(m2 + mn)
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Simplex Revisado

Boa parte do custo computacional por iteração é relacionado à
resolução de dois sistemas lineares.

Neste método, a matriz B−1 é explicitamente mantida em cada
iteração e os vetores cTB B−1 e B−1Aj são calculados via
multiplicação matricial, ao custo de O(m2).

Para ser eficiente, o método requer um esquema bastante
eficiente de atualização da inversa da base B−1 (que custe menos
de O(m3), caso contrário não haveria ganho) quando
implementarmos uma operação de pivoteamento.
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Simplex Revisado

Base no ińıcio da iteração:

B = [AB(1), . . . ,AB(m)]

Base ao final da iteração:

B = [AB(1), . . . ,AB(l−1),Aj ,AB(l+1), . . . ,AB(m)]

Todas, exceto uma coluna de B e B, são compartilhadas.

Em função disto, é razoável esperar que B−1 contenha

informação que possa ser usada na determinação de B
−1

.
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Como aproveitar informações de B−1 para avaliar B
−1

Definição

Dada uma matriz, não necessariamente quadrada, a operação de
adicionar um múltiplo de uma linha à mesma linha ou a outra linha da
matriz é chamada de operação linha elementar (não muda as
informações dos sistemas lineares representados pela matriz).

Exemplo

Digamos que queiramos multiplicar a terceira linha da matriz C
abaixo por 2 para somar à primeira linha da matriz. Isto equivale a
multiplicar C pela matriz Q dada abaixo.

C =

 1 2
3 4
5 6

Q =

 1 0 2
0 1 0
0 0 1

QC =

 11 14
3 4
5 6


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Generalizando este exemplo

Multiplicar a j−ésima linha de uma matriz por β e adicionar este
produto à i−ésima linha da matriz, equivale a pré mutiplicar a
matriz por Q = I + Dij , onde Dij é uma matriz de zeros, exceto
em sua entrada na i−ésima linha e j−ésima coluna que é β.

Observe que a matriz Q possui determinante 1 e então admite
inversa.

Suponha que queiramos fazer uma sequência de K operações
linha elementares, cada qual correspondendo à pré-multiplicação
por uma matriz Qk correspondente. Esta sequência de operações
consiste em pré multiplicar a matriz de entrada por:
QKQK−1 . . .Q2Q1.
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Aplicando esta idéia no Método Simplex

Uma vez que B−1B = I , temos que B−1AB(i) = ei .

Usando esta observação temos B−1B =


1 u1

. . .
...
ul
...

. . .

um 1


Para transformar B−1B na identidade:

Para cada i 6= l , adicionamos o produto da l− ésima linha (linha
pivot) por −ui

ul
e somamos à i− ésima linha (ul 6= 0, logo a

operação substitui ui por 0 na i−ésima linha).
Dividimos a l− ésima linha por ul .

Seja Q a matriz que representa o produto destas m operações.

Então QB−1B = I → B
−1

= QB−1.
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Método Simplex Revisado

Manutenção expĺıcita da inversa da base

Vamos adicionar o seguinte passo ao final da iteração t́ıpica do
Método Simplex:

Forme a matriz m × (m + 1) dada por: [B−1 | u].
Reproduza em B−1 as operações linha elementares necessárias
para transformar u em el .

As primeiras m colunas da matriz resultante fornece B
−1

.

Observe que recalcular a inversa da base agora custa O(m2).

Desta forma, a primeira inversão da base custa O(m3). As
demais atualizações da base ocorrem ao custo de O(m2). O
custo por iteração foi reduzido para O(nm + m2), se todos os
custos reduzidos forem calculados.
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Exemplo

Vamos considerar l = 3 (a terceira coluna de B será alterada
para compor B) e

B−1 =

 1 2 3
−2 3 1

4 −3 −2

 u =

 −4
2
2



Então temos: Q =

 1 0 2
0 1 −1
0 0 1

2

 e

B
−1

=

 9 −4 −1
−6 6 3

2 −1.5 −1


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Regras anti-ciclagem

Regra lexicográfica. É adequada à implementação da versão que
emprega todas as variáveis expĺıcitas no quadro Simplex ou no
Simplex Revisado, mantendo-se a inversa da base expĺıcita. Eem
algumas implementações bastante sofisticadas do Simplex
Revisado, isto é abolido, e o uso da regra lexicográfica não é tão
simples.

Regra de Bland: muito simples de ser implementada.
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Regra de Bland

Pivoteamento de Bland

1 Encontre o menor ı́ndice j para o qual o custo reduzido c j é
negativo para entrar na base.

2 Casa haja empate entre as variáveis básicas xi que se anulam
primeiro com o incremento da variável xj , escolha aquela com o
menor ı́ndice i para sair da base.
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Regra de Bland

Observações:

Esta regra não nos obriga a calcular todos os custos reduzidos.

É compatv́el com a implementação do Simplex Revisado, na qual
os custos reduzidos são calculados na ordem natural das variáveis.

Provou-se não haver ciclagem com esta regra de pivotemento.
Assim, o Método Simplex converge após um número finito de
mudanças de base.
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Encontrando uma base inicial viável

Assumimos dispor de uma solução inicial básica viável. Não
descrevemos ainda como obter esta solução.

Em alguns casos, encontrar esta solução é trivial. Exemplo:
P ′ = {x ∈ Rn

+ : Ax ≤ b} e o vetor b ≥ 0. Neste caso,
introduzindo as variáveis de folga temos
P = {(x , s) ∈ (Rn

+,Rm
+) : Ax + Is = b} e o vetor

(x , s)T = (0, b)T é uma solução básica viável.

De um modo geral, encontrar esta solução não é tão trivial,
requerendo a solução de um PPL auxiliar (Simplex Fase 1).
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Construção de um problema auxiliar

PPL Original

min cT x

Ax = b

x ≥ 0

Assumimos sem perda de generalidade que b ≥ 0 (caso contrário,
multiplicamos alguma linha do sistema linear por −1)
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Construção de um problema auxiliar - Fase 1

Problema Auxiliar (PA)

min
m∑
i=1

yi

Ax + y = b

x ≥ 0

y ≥ 0

Introduzimos as variáveis artificiais y ∈ Rm
+.

Uma solução básica inicial para o Prob. Auxiliar é dada por
(x , y) = (0, b).

Resolvemos PA. Se a função objetivo ótima for 0 sabemos que há
solução viável para o problem original. Caso contrário, o
problema original é inviável.

Como obter a solução básica inicial para o problema original ?
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Obtendo uma solução viável inicial a partir de PA

Para iniciar o Método Simplex, necessitamos de uma solução básica
inicial e a matriz básica associada. Vamos assumir que no ótimo de
PA tenhamos

∑m
j=1 yj = 0 (prob. original é viável).

Analisando a solução do PA:

1 Se ao final da resolução de PA as colunas básicas na solução
ótima forem exclusivamente as variáveis x , basta tomarmos esta
solução como uma sol. básica viável inicial (e as correspondentes
colunas compondo a base) para iniciar o problema original.

2 Se existirem variáveis yj básicas (necessariamente degeneradas)
na solução ótima de PA, devemos fazer operações de
pivoteamento forçado para removê-las da base.
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Eliminando as variáveis y para fora da base

Vamos supor (como de costume) que posto(A) = m.

Vamos assumir que k < m colunas de A aparecem na base ótima
de PA. Os ı́ndices das variáveis básicas associadas a estas colunas
são B(1), . . . ,B(k)

Vale observar que as colunas AB(1), . . . ,AB(k) são linearmente
independentes, uma vez que estão na base.

Como a matriz A ∈ Rm×n possui posto m, suas colunas geram o
Rm. Logo, é posśıvel escolher outras m − k colunas de A, que
sejam linearmente independentes a AB(1), . . . ,AB(k).

Vamos identificar estas colunas, eliminando as colunas associadas
a y da base.
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Eliminando as variáveis artificiais

Vamos supor que a l−ésima variável básica (l > k) seja artificial.
Dentre as variáveis xj : j 6∈ {B(1), . . . ,B(k)}, procuramos uma
coluna j (e variável xj) tal que a l−ésima entrada do vetor
B−1Aj seja distinto de 0.

Aj é l.i. com AB(1), . . . ,AB(k).

Então fazemos um pivoteamento forçado, no qual trazemos a
coluna Aj para a base e eliminados a coluna da variável artificial
da base.

Repetimos o processo enquanto houver colunas básicas
associadas a variáveis artificiais.
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Complexidade computacional do método simplex

A complexidade do método Simplex depende:

1 da complexidade computacional em cada iteração (O(nm), por
exemplo, no caso do Simplex Revisado)

2 do número de iterações, ou operações de pivoteamento.

Observação experimental média: ao longo dos anos observou-se
que o método normalmente executa O(m) operações de
pivoteamento na média.

Pior caso: Para todas as regras de pivoteamento conhecidas até
o momento, há exemplos de problemas não degenerados nos
quais o método percorre todos os vértices do poliedro até
encontrar a solução ótima. O primeiro resultado patológico deste
tipo deve-se a Klee e Minty (1972).
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Existe regra de pivoteamento imune a esta patologia ?

Questão em aberto

Para várias regras populares de pivoteamento, há exemplos de
PPLs e solução básica inicial que fazem o método percorrer
todos os vértices.

Entretanto, estes exemplos não excluem a possibilidade de existir
uma regra de pivotemento que não apresente o comportamento
de pior caso exponencial.

Esta é uma das questões mais importantes em Teoria de
Programação Linear, ainda em aberto.

Então atenção: não se conhece uma regra de pivoteamento
imune a esta patologia. Isto não significa que se provou que
qualquer implementação do Método Simplex será exponencial.

O Problema de Programação Linear é polinomialmente solúvel
(Algoritmo do Elipsóide).
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