
Deep Learning for NLP



_ Este curso (Aprendizado Profundo para Processamento de Linguagem Natural (NLP)) explora as técnicas mais 
avançadas para processar e compreender a linguagem humana usando redes neurais profundas. Os alunos irão 
adquirir conhecimento prático e teórico sobre como aplicar modelos de aprendizado profundo a uma gama de 
tarefas de NLP, desde classificação de texto até tradução automática e geração de linguagem natural.

● Este curso oferece uma imersão completa no mundo do Aprendizado Profundo aplicado ao Processamento de 
Linguagem Natural. Os alunos sairão do curso com habilidades práticas para aplicar modelos avançados de 
aprendizado profundo em uma variedade de cenários de NLP, além de um entendimento sólido das tendências 
e desafios atuais nesse campo dinâmico.

O curso
Módulos, avaliação e projeto
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_ Nosso curso está dividido em 10 módulos, a saber:

1. Introdução ao Aprendizado Profundo e NLP (Habernal)
2. Representação de Texto e Modelos de Linguagem (Habernal)
3. Modelos Seq2Seq de Classificação de Texto (CNN, RNNs) (Stanford + StatQuest)
4. Atenção em Modelos Seq2Seq e Processamento de sequências com entradas longas (StatQuest)
5. Arquiteturas Transformer (StatQuest)
6. Pré-Treinamento e LLMs (Stanford)
7. Reinforcement Learning from Human Feddback (Stanford)
8. Modelos de Linguagem → Modelos de Mundo (Stanford)

O curso
Módulos, avaliação e projeto

3



_ Teremos as seguintes avaliações:

● Duas provas: 20 pontos cada
● Dois trabalhos práticos: 10 pontos cada
● Projeto de tema livre: 40 pontos

O curso
Módulos, avaliação e projeto
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_ Sobre o projeto:

● Atividade que começou … agora!
● O tema é livre:
○ A escolha apropriada faz parte do projeto em si
○ Um tema apropriado deve levar em conta aspectos como sofisticação, relevância e potencial de resultados
○ O professor pode te orientar

● Não há entregáveis intermediários:
○ Apenas a entrega final, que ocorrerá próximo ao encerramento da disciplina
○ A entrega final compreende:
■ Um notebook com a implementação → reprodutibilidade
■ Um vídeo no Youtube mostrando sua capacidade de explicar e sintetizar o que foi feito, em cerca de 5 

minutos

O curso
Módulos, avaliação e projeto
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_ Basics
● Residual Connections
● Layer Normalization
● Batch Normalization
● Dropout
● Sigmoid, ReLU, GELU, Softmax
● MLPs, Convolutions

Deep Learning
Review
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_ Basics

_ Losses
● Entropy
● Cross Entropy
● KL Divergence
● l2 Regularization

Deep Learning
Review
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_ Basics

_ Losses

_ Optimizers
● Stochastic Gradient Descent
● Adam
● AdamW
● Learning Rate Schedules

Deep Learning
Review
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_ Basics

_ Losses

_ Optimizers

_ Datasets
● Glue and Superglue
● Squad
● Librespeech
● HuggingFace Datasets

Deep Learning
Review

9



_ Perceptrons
● A perceptron is a fundamental concept in machine learning. It consists of inputs, weights, a summation 

function, an activation function, and an output.
○ Inputs:
■ Inputs represent features or signals that the perceptron processes → x₁, x₂, ..., xₙ.

○ Weights:
■ Each input is associated with a weight → w₁, w₂, ..., wₙ.
■ Weights determine the importance of each input in the computation.

○ Summation Function:
■ The weighted sum of inputs and weights is calculated → (x₁ * w₁) + (x₂ * w₂) + ... + (xₙ * wₙ).

○ Activation Function:
■ The sum is passed through an activation function → non-linearity and determines whether the perceptron 

should "fire" or not.

Deep Learning
Basics
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_ Perceptrons
● A perceptron is a fundamental concept in machine learning. It consists of inputs, weights, a summation 

function, an activation function, and an output.
○ Output:
■ The output of the activation function serves as the perceptron's final output.

○ Learning
■ Perceptrons can be trained using algorithms like the Perceptron Learning Rule.
● They adjust weights to better classify or predict data based on provided training examples.

Deep Learning
Basics
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_ Multilayer Perceptrons (MLPs)
● MLPs are usually weight matrices Wi, activations     and input x composed together

Deep Learning
Basics
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_ Softmax
● Converts outputs into a probability distribution

○ Frequently used for classifying k outputs

Deep Learning
Basics
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The softmax vector:
1. sums to one
2. nonnegative values



_ Residual Connections
● Some neural network building blocks are useful irrespective of the problem setting, including residual 

connections
○ Let layer l be fl and its input be xl
■ Usual layer outputs are a(l) = fl(xl)

○ With residuals, a(l) = fl(xl) + xl

○ Residual connections appear to aid optimization

Deep Learning
Basics
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_ Layer Normalization (1/2)
● Layer normalization reduces the chance of the feedforward signal’s magnitude from blowing up or decaying
○ First assume a(l) is in RH is a vector representing the values of layer l
○ Layer Norm will first standardize a(l) by making it have 0 mean and a standard deviation of 1

Deep Learning
Basics
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_ Layer Normalization (2/2)
● Then Layer Normalizaton takes the standardized a(l) and applies an affine transformation with a learned scale 

and shift vectors

● Layer Normalization can be thought of as a method that aids optimization

Deep Learning
Basics
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_ Batch Normalization (1/2)
● Batch normalization also reduces the chance of the feedforward signal’s magnitude from blowing up or 

decaying
○ Batch Normalization is like Layer Normalization, except its mean and sigma are aggregated across examples 

in the batch, not activations

Deep Learning
Basics
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_ Batch Normalization (2/2)
● Batch Normalization usually works well with sizable batch sizes greater than one, making it harder to use than 

Layer Normalization with very large models due to memory constraints
○ Both Layer and Batch Normalization make it easier to use larger learning rates
■ Researchers use Batch Normalization and Layer Normalization, but Layer Normalization is more common in 

recent architectures such as Transformers.

Deep Learning
Basics
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_ Dropout
● Dropout randomly sets some activations to zero during

training (often not during test time)
○ Assume b is a random Bernoulli mask vector
○ Then dropout elementwise multiplies the activations by b
■ Dropout encourages redundant feature detectors

Deep Learning
Basics

19



_ Sigmoid function

● If a feature is detected, then a neuron fires; a step function emulates firing, but is not differentiable
○ The sigmoid is differentiable and is a smooth approximation to a step function
■ The sigmoid function can be likened to a neuron firing probability

○ Sigmoids are used in LSTMs and as the output of probabilistic binary classifiers

Deep Learning
Basics
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_ ReLU function

● ReLU stands for “Rectified Linear Unit”
○ Although not smooth, the ReLU is differentiable almost everywhere:
■ Can be interpreted as gating inputs based on their sign:
● If x is positive, let it through, otherwise, filter it

Deep Learning
Basics
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_ GELU function

● GELU stands for “Gaussian Error Linear Unit”
○ GELU activations are designed to approximate the Gaussian Cumulative Distribution Function (CDF), which 

has the property of being smooth and continuous.
■ Gaussian distributions are commonly observed in natural data and processes, making GELU activations 

well-suited for a wide range of real-world tasks.

Deep Learning
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_ Convolutions

● Since many useful data features may be local, we can move a sliding feature detector (“kernel”) across an input 
to help detect such features
○ Often used in hidden layers, convolutions use few parameters by repeatedly re-applying kernels across the 

whole input

Deep Learning
Basics
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_ Minimum Description Length Principle (MDL)
● Imagine we want to encode sequences of As, Bs, and Cs
○ We can give higher probability events shorter descriptions, so that the coding 

scheme is more efficient
■ If we encoded A with 11 and C with 1, more probable events would require 

longer descriptions
● Notice the description length of symbol S in {A, B, C}  is -log2 P(S)

● In Machine Learning, we often implicitly select the model that has the shortest 
description length (shortest encoding) of the data
○ With MDL, one can view learning as data compression

Deep Learning
Losses
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_ Minimum Description Length Principle (MDL)
● It is a fundamental concept in machine learning that provides a criterion for selecting models based on their 

ability to represent data using concise descriptions.
○ The principle is rooted in the idea that simpler explanations are often preferable, as they can capture the 

underlying patterns in the data without overfitting.
■ In essence, the MDL principle suggests that the best model is the one that achieves a balance between 

accurately describing the data and minimizing the complexity of the model itself.

Deep Learning
Losses
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_ Minimum Description Length Principle (MDL)
● Imagine you have a dataset and different models that can potentially explain the patterns in that data.
○ Each model has a certain complexity associated with it, which includes the number of parameters, rules, or 

components that the model uses.
○ According to the MDL principle, the best model is the one that produces the shortest description length for 

both the data and the model itself.
■ This balance between accurately describing the data and minimizing the model's complexity helps avoid 

overfitting and ensures that the model doesn't capture noise in the data
● Overall, the MDL principle provides a framework for selecting models that are both effective in 

explaining data and simple enough to avoid overfitting. It encourages a balance between accuracy and 
complexity, promoting more interpretable and generalizable models.

Deep Learning
Losses
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_ Entropy
● If the ith symbol has probability pi and its encoding size is -log pi the expected code length is the entropy:

● Following the MDL, we can select models that minimize the entropy
○ Researchers often use the entropy as a loss for generative models
■ Entropy can also be thought of as measure of a random variable’s randomness or uncertainty 

Deep Learning
Losses
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_ Cross-Entropy
● The cross entropy measures the difference between two distributions

● The cross-entropy measures the average number of bits needed to encode events that occur following 
distribution p, if a coding scheme is used that is optimal for the probability distribution q
○ This is a loss for classifiers, which encode the conditional distribution Y | X

Deep Learning
Losses
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_ KL Divergence
● The Kullback-Leibler Divergence measures the difference between two distributions

● If we encode messages with an optimal coding scheme for distribution q, but the true distribution is actually p, 
then each message requires, on average, an additional                bits to be encoded compared to the optimal 
encoding.

Deep Learning
Losses
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_ l2 Regularization
● Penalizes model complexity by adding the model parameter norm to the loss 

function
○ Regularization strength scaled by  
○ A probabilistic interpretation is this incorporates a Gaussian prior over the 

parameters; the prior has mean 0 and variance inversely proportional to  
● Can be interpreted as penalizing the bits required to encode the parameters 

(bigger norm → more bits)

Deep Learning
Losses
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_ Stochastic Gradient Descent (SGD)
● To optimize the parameters     using loss function     , iteratively move in the direction of steepest descent with 

step size

● Neural network optimizers are based around SGD but rarely use this exact formulation
○ Consequently networks are optimized with a local search method so models learn from many small 

incremental changes, not radical sudden changes nor hand-chosen parameters

Deep Learning
Optimizers
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_ SGD + Momentum
● To reduce gradient estimation noise during optimization, researchers often use momentum, which is equivalent 

to moving in the direction of an (exponential) moving average of the gradient

● Gradients farther in the past have exponentially less weight, so old gradients die out and so that the optimizer 
can quickly adapt

Deep Learning
Optimizers
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_ Adam
● Basic idea is to combine momentum and a second moment adjustment

Deep Learning
Optimizers
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small number to prevent division by zero

each dimension is divided by its magnitude

first moment estimate (momentum-like)

second moment estimate (roughly squared length)

early on m and v values will be small, and this 
correction “blows them up” a bit for small k

Good default settings:



_ Learning Rate Schedules
● Learning rates are not always constant: often they decay following a schedule

Deep Learning
Optimizers
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The Linear Decay schedule decays the 
learning rate a constant amount each 
iteration

The Cosine Annealing schedule decays the 
learning rate proportional to a cosine 
function (from 0 to π)



_ Common datasets:

● SST-2 and IMDb
○ NLP datasets for binary sentiment analysis of movie reviews
■ SST-2 contains pithy professional expert movie reviews, and IMDb contains full-length lay movie reviews

Once again Mr. Costner has 
dragged out a movie for far 
longer than necessary. Aside 
from the terrific sea rescue 
sequences, of which there 
are very few I just did not 
care about any of the 
characters….

This is meticulously made, 
with every decision working 
to craft the stylistic, iconic 
film many of us hold so dear.

SST-2 Example IMDb Example

NLP
Datasets
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_ Question Answering and Reading Comprehension:
● SQuAD (Stanford Question Answering Dataset)
● MS MARCO
● RACE (ReAding Comprehension from Examinations)
● NewsQA
● HotpotQA
● Natural Questions (NQ)

NLP
Datasets
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_ Machine Translation:
● WMT (Workshop on Machine Translation) Datasets
● IWSLT (International Workshop on Spoken Language Translation) Datasets

NLP
Datasets
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_ Text Classification:
● Reuters-21578: A dataset of news articles categorized into multiple classes.
● 20 Newsgroups: A dataset containing newsgroup documents categorized into 20 different topics.
● AG News
● Yelp Reviews
● Amazon Reviews
● Hate Speech and Offensive Language (HateEval)

NLP
Datasets
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_ Named Entity Recognition (NER):
● CoNLL-2003: A dataset for NER with data from various sources like news articles.
● OntoNotes: A dataset with named entity annotations across multiple genres and domains.

NLP
Datasets
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_ Semantic Textual Similarity:
● STS-B (Semantic Textual Similarity Benchmark): A dataset for measuring the similarity between sentences.
● ParaNMT-50M (Paraphrase Dataset)

NLP
Datasets
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_ Language Generation:
● Wikipedia Text: Text from Wikipedia articles used for various generation tasks.
● ROCStories: A dataset for story generation tasks.
● Common Crawl
● WebText

NLP
Datasets
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_ Dialogue and Language Understanding:
● ATIS (Airline Travel Information System): A dataset for spoken language understanding in the airline domain.
● MultiWOZ: A dataset for dialogue and natural language understanding in the task-oriented dialogue domain.
● DailyDialog
● Persona-Chat

NLP
Datasets
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_ Summarization:
● CNN/DailyMail
● XSum (eXtreme Summarization)

NLP
Datasets
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_ Language Understanding and Semantics:
● ROCStories
● ANLI (Adversarial NLI)
● BoolQ (Boolean Questions)

NLP
Datasets
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_ Other Specialized Datasets:
● The Harry Potter Dataset
● COCO (Common Objects in Context)
● WordNet

NLP
Datasets
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_ GLUE and SuperGLUE
● These benchmarks aggregate NLP model performance over several tasks (e.g., sentiment analysis, natural 

language inference, etc.)
○ SuperGLUE is harder than GLUE, but state-of-the-art models have exceeded human-level performance
○ These benchmarks are used to show how well a pretrained NLP model performs across several downstream 

NLP tasks

NLP
Datasets
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_ How to evaluate performance?
● Text classification
● Text generation
● Caveats of NLP benchmarking

NLP
Evaluation/Metrics
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_ How to evaluate performance?
● Train/Dev/Test data splits
○ Training and Test data
○ Development (Validation) set used for optimizing hyper-parameters

NLP
Evaluation/Metrics
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_ How to evaluate performance?
● Cross-Validation
○ K-fold cross-validation
■ partitions the data into K chunks
● K − 1 of which form the training set
● The last chunk serves as the validation set

NLP
Evaluation/Metrics
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_ Evaluation of Text Classification
● Confusion matrix (binary case)
○ Two classes: Positive and Negative

NLP
Evaluation/Metrics
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_ Evaluation of Text Classification
● Accuracy of classifier f on test set T:

○ 37 + 48 + 33 + 168 = 286 → Test set size |T| = 286 AccT (f) = 1/286 x (37 + 168) = 0.7186

NLP
Evaluation/Metrics
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_ Evaluation of Text Classification
● Precision, recall, F-1 score

○ Precision (for class positive) = TP / (TP + FP)
○ Recall (for class positive) = TP / (TP + FN)
○ F-1 score (for class positive) = 2PR / (P + R)

NLP
Evaluation/Metrics
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_ Evaluation of Text Classification
● Confusion matrix – multi-class
○ We can unambiguously compute Precision and Recall for 

each class
■ How to get the F-1 score for the complete test set 

across classes?
● Macro-averaging (average of F-1 scores), or 

micro-averaging

NLP
Evaluation/Metrics
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_ Evaluation of Text Generation
● BLEU (Bilingual Evaluation Understudy)
○ Among the first and most popular metrics proposed for automatic evaluation of MT systems
■ Precision-based metric that computes the n-gram overlap between the reference and the hypothesis
■ In particular, BLEU is the ratio of the number of overlapping n-grams to the total number of n-grams in 

the hypothesis.  
○ Corpus-level metric
■ i.e., BLEU gives a score over the entire corpus (as opposed to scoring individual sentences)

○ Major drawbacks of BLEU:
■ it does not take recall into account
■ it only allows exact n-gram matching

NLP
Evaluation/Metrics
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_ Evaluation of Text Generation
● ROUGE (Recall-Oriented Understudy for Gisting Evaluation)
○ ROUGE metric includes a set of variants: ROUGE-N, ROUGE-L, ROUGE-W, and ROUGE-S
■ ROUGE-N is similar to BLEU in counting the n-gram matches between the hypothesis and reference
● however, it is a recall-based measure unlike BLEU which is precision-based

■ ROUGE-L measures the longest common subsequence (LCS) between a pair of sentences

NLP
Evaluation/Metrics
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_ Caveats of NLP Benchmarks
● The ‘gold’ data paradigm might not always fit
○ The assumption of a ground truth makes sense when humans highly agree on the answer
■ “Does this image contain a bird?”
■ “Is ‘learn’ a verb?”
■ “What is the capital of Italy?”

○ This assumption often does not make sense, especially when language is involved
■ Questions determining a word sense
■ “Is this comment toxic?”

○ Human label variation impacts all steps of the traditional ML pipeline, and is an opportunity, not a problem

NLP
Evaluation/Metrics

58



_ Caveats of NLP Benchmarks
● Human annotators are biased
○ Datasets are often constructed using a small number of annotators, and humans are biased
■ Concerns about data diversity, especially when workers freely generate sentences
■ Models do not generalize well to examples from annotators that did not contribute to the training set

NLP
Evaluation/Metrics
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_ In summary:
● Vast amount of tasks and datasets
○ Data quality matters
○ Understanding the data, annotators, task matters too

● Deep familiarity with common evaluation metrics is essential
○ Getting better scores is just a beginning of the story
○ Evaluating generation is an art

NLP
Evaluation/Metrics
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_ Ambiguity and variability of human language

● Highly ambiguous
○ Example:
■ Compare “I ate pizza with friends” to “I ate pizza with olives”

● Highly variable
○ Example:
■ The core message of “I ate pizza with friends” can be expressed as “friends and I shared some pizza”

● Humans are great users of language, very poor at formally understanding and describing rules that govern 
language

NLP
The challenges
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_ Supervised machine learning to save us …

● The best known set of methods for dealing with language data
○ Supervised machine learning algorithms

● Machine Learning attempts to infer patterns and regularities from a set of pre-annotated input–output pairs
○ Machine Learning excels at problem domains where:
■ a good set of rules is very hard to define …
■ but annotating the expected output for a given input is relatively simple.

NLP
The challenges
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_ Language is very challenging

● Natural language exhibits properties that make it very challenging for Machine Learning
○ Discrete
○ Compositional
○ Sparse

NLP
The challenges
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_ Language is symbolic and discrete

● Basic elements of written language: characters
○ Characters form words that denote objects, concepts, events, actions, and ideas

● Characters and words are discrete symbols
○ Words such as “hamburger” or “pizza” each evoke in us a certain mental representations
■ But they are distinct symbols, whose meaning is external to them, to be interpreted in our heads
■ No inherent relation between “hamburger” and “pizza” can be inferred from the symbols or letters 

themselves

NLP
The challenges
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_ Characters and words are discrete symbols

● Compare that to concepts such as color (in machine vision), or acoustic signals — these concepts are continuous
○ Colorful image to gray-scale image using a simple mathematical operation
○ We can to compare two different colors based on inherent properties such as hue and intensity

● This cannot be easily done with words
○ There is no simple operation to move from the word “red” to the word “pink” without using a large lookup table 

or a dictionary

NLP
The challenges
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_ Language is compositional

● Letters → words → phrases → sentences → documents
○ The meaning of a phrase can be larger than the meaning of the individual words, and follows a set of intricate 

rules
● To interpret a text, we need to work beyond the level of letters and words, and look at long sequences of words 

such as sentences, or even complete documents
○ Memory and context are essential

NLP
The challenges
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_ Data sparseness

● Combinations of words to form meanings → ∞
○ We could never enumerate all possible valid sentences

● No clear way of generalizing from one sentence to another, or defining the similarity between sentences, that does 
not depend on their meaning which is unobserved to us
○ Challenging when learning from examples
○ Even with a huge example set we are very likely to observe events that never occurred in the example set and 

that are very different

NLP
The challenges
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_ Supervised classification setup

● We often restrict ourselves to search over specific families of functions
○ e.g., the space of all linear functions with din inputs and dout outputs

● By restricting to a specific hypothesis class, we are injecting the learner with inductive bias
○ A set of assumptions about the form of the desired solution

Machine Learning in NLP
Simple algorithms
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_ High-dimensional linear functions

● Vector x is the input, matrix W and vector b are the parameters
○ Typically denoted Θ = W, b

→ Goal of learning

○ Set the values of the parameters W and b such that the function behaves as intended on a collection of input 
values x1:k = x1, . . . , xk and the corresponding desired outputs y1:k = y1, . . . , yk

Machine Learning in NLP
Simple algorithms
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_ Binary classification

● Our input is in the form of a natural language text
● Our labels are two categories
○ e.g., positive and negative

● Let’s start with the labels
○ Very easy: Just arbitrarily map the categories into 0 and 1 (e.g., negative = 0, positive = 1)

Machine Learning in NLP
Simple algorithms
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_ How to transform text into a fixed-size vector of real numbers

● What is our setup:
○ f(x) : Rd → R
○ f(x) = x · w + b

● What we need:
○ x ∈ R

● What we have:
○ “One of my favorite movies ever,The Shawshank Redemption is a modern day classic as it tells the story of two 

inmates who become friends and find solace over the years in which this movie takes place.Based on a Stephen 
King novel, …”

Machine Learning in NLP
Simple algorithms
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_ What is a “word”?

● A matter of debate among linguists, answer is not always clear
○ Very simplistic definition:
■ words are sequences of letters separated by whitespace
■ But: dog, dog?, dog., and dog) would be different words
● Better: words separated by whitespace or punctuation

○ A process called tokenization splits text into tokens based on whitespace and punctuation
■ English: the job of the tokenizer is quite simple
■ Hebrew, Arabic: sometimes without whitespace
■ Chinese: no whitespaces at all

Machine Learning in NLP
Simple algorithms
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_ Tokens

● Symbols cat and Cat have the same meaning, but are they the same word?
○ Something like New York, is it two words, or one?

● We distinguish between words and tokens
○ We refer to the output of a tokenizer as a token, and to the meaning-bearing units as words

● Keep in mind:
○ We use the term word very loosely, and take it to be interchangeable with token.

Machine Learning in NLP
Simple algorithms
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_ Vocabulary

● We build a fix-sized static vocabulary
○ e.g., by tokenizing training data
○ Typical sizes:
■ 20,000 – 100,000 words
■ Each word has a unique fixed index:
● V = (a1 abandon2 . . . cat852 . . . zone2999 zoo3000)

Machine Learning in NLP
Simple algorithms
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_ Averaged Bag of Words

● D[i] 
○ word in doc D at position i
○ xD[i]

■ one-hot vector

Example: a cat sat → a, cat, sat

● V =  (a1 abandon2 . . . cat852 . . . zone2999 zoo3000)
○ a = xD[1] =  (11 02 03 . . . 02999 03000)
○ cat = xD[2] =  (01 . . . 1852 . . . 02999 03000)
○ sat = xD[3] =  (01 . . . 12179 . . . 02999 03000)
■ x = (0.331 02 . . . 0851 0.33852 0853 . . . 0.332179 . . . 03000)

Machine Learning in NLP
Simple algorithms
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_ Out-of-vocabulary (UNK) tokens

● Words in a language are very unevenly distributed (Zipf’s law)
○ There is always a large ‘tail’ of rare words
○ When building the vocabulary, use the most frequent words, all others represented by an unknown token (UNK 

or OOV)
■ Example: most common 3,000 words and UNK
● V = (a1 abandon2 . . . cat852 . . . zone2999 zoo3000 UNK3001) 

Machine Learning in NLP
Simple algorithms
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_ Subword units: Byte-pair encoding

1. The words in the corpus are split into characters (marking original spaces with a special space character) — this 
is the initial vocabulary V

2. The most frequent pair of characters is merged and added to V

3. Repeat 2 for a fixed given number of times 

4. Each of these steps increases V by one, beyond the original inventory of single characters

● When done over large corpora with multiple languages and writing systems, BPE prevents OOV!

Machine Learning in NLP
Simple algorithms
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_ Example

t h i s _ f a t _ c a t _ w i t h _ t h e _ h a t _ i s _ i n _ t h e _ c a v e _ o f _ t h e _ t h i n _ b a t

● Most frequent: t h (6 times), merge into a single token th

th i s _ f a t _ c a t _ w i th _ th e _ h a t _ i s _ i n _ th e _ c a v e _ o f _ th e _ th i n _ b a t

● Most frequent: a t (4 times), merge into a single token

th i s _ f at _ c at _ w i th _ th e _ h at _ i s _ i n _ th e _ c a v e _ o f _ th e _ th i n _ b at 

Machine Learning in NLP
Simple algorithms
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_ Example

th i s _ f at _ c at _ w i th _ th e _ h at _ i s _ i n _ th e _ c a v e _ o f _ th e _ th i n _ b at

● Most frequent: th e (3 times), merge into a single token

th i s _ f at _ c at _ w i th _ the _ h at _ i s _ i n _ the _ c a v e _ o f _ the _ th i n _ b at

● V = {t, h, i, s, _, f, a, c, w, e, n, v, o, f, b, th, at, the}

Machine Learning in NLP
Simple algorithms
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_ Log linear models

● We have this linear function:
○ f(x) : Rdin → R
○ f(x) = xw+b = x1w1+. . .+xdinwdin+b
■ f(x) has unbounded range (−∞, +∞)

○ Non-linear mapping to [0, 1]
■ Each example’s label is y ∈ {0, 1}

Machine Learning in NLP
Simple algorithms
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_ Linear function through sigmoid — log-linear model

● Green circles are trainable parameters
● Gray circles are constant inputs

Machine Learning in NLP
Simple algorithms
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_ Decision rule of log-linear model

● Prediction = 1 if ŷ > 0.5
● Prediction = 0 otherwise

Natural interpretation:

● Conditional probability of prediction = 1 given the input x

Machine Learning in NLP
Simple algorithms
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_ Binary Text Classification

● Finding the best model parameters
○ The loss function
■ Quantifies the loss suffered when predicting ŷ while the true label is y for a single example.
● L(ŷ, y) : R2 → R

■ Given a labeled training set (x1:n, y1:n), a per-instance loss function L and a parameterized function f(x; Θ) we 
define the corpus-wide loss with respect to the parameters Θ as the average loss over all training examples:
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_ Training as optimization

● The training examples are fixed, and the values of the parameters determine the loss
○ The goal of the training algorithm is to set the values of the parameters Θ‚ such that the value of L is minimized
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_ Training as optimization

● Binary cross-entropy loss (logistic loss)
○ Llogistic = −y log ŷ − (1 − y) log(1 − ŷ)
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_ Logistic regression

● Green circles are trainable parameters
● Gray circles are constant inputs

How can we minimize this function?
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_ Stochastic Gradient Descent

1: function SGD(f(x; Θ), (x1, . . . , xn), (y1, . . . , yn), L)

2: while stopping criteria not met do

3: Sample a training example xi, yi

4: Compute the loss L(f(xi ; Θ), yi)

5: ĝ ← gradient of L(f(xi ; Θ), yi) wrt. Θ

6: Θ ← Θ − ηĝ 

7: return Θ
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_ Minibatch Stochastic Gradient Descent

1: function mbSGD(f(x; Θ), (x1, . . . , xn), (y1, . . . , yn), L)

2: while stopping criteria not met do

3: Sample m examples {(x1, y1), . . .(xm, ym)}

4: ĝ ← 0

5: for i = 1 to m do

6: Compute the loss L(f(xi ; Θ), yi)

7: ĝ ← ĝ + gradient of 1/m L(f(xi ; Θ), yi) wrt. Θ

8: Θ ← Θ − ηĝ

9: return Θ
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_ Properties of Minibatch Stochastic Gradient Descent

● The minibatch size can vary in size from m = 1 to m = n
○ Higher values provide better estimates of the corpus-wide gradients
○ Smaller values allow more updates and in turn faster convergence
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_ Log-linear multi-class classification

● So far we mapped our gold label y ∈ {0, 1}
○ What if we classify into distinct categorical classes?
■ Categorical: There is no ‘ordering’
● Example: Classify the language of a document into 6 languages (En, Fr, De, It, Es, Other)

● Possible solution: Six weight vectors and biases
○ Consider for each language l ∈ {En, Fr, De, It, Es,Other}
■ Weight vector wl (e.g., wFr)
■ Bias bl (e.g., bFr)
● We can predict the language resulting in the highest score
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_ Another solution

● We can re-arrange the w ∈ Rdin vectors into columns of a matrix W ∈ Rdin×6 and b ∈ R6 , to get f(x) = xW + b
○ Project the input x to an output y
■ ŷ = f(x) = xW + b
■ Pick the element of ŷ with the highest value prediction = ŷ = argmaxi ŷ[i]

● What is ŷ?
○ Index of 1 in the one-hot:
■ For example, if ŷ = 3, then the document is in German De =  (0 0 1 0 0 0)
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_ A representation of the input document

● Vector x is a document representation
○ Bag of words
■ For example (din = |V| dimensions, sparse)
■ Vector ŷ is more compact (only 6 dimensions)
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_ A representation of the input document

● Vector x is a document representation
○ Bag of words
■ For example (din = |V| dimensions, sparse)
■ Vector ŷ is more compact (only 6 dimensions)

● Representations are central to deep learning
○ One could argue that the main power of deep-learning is the ability to learn good representations
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_ Turning output vector into probabilities of classes

● Softmax
○ Applied element-wise, for each output value x[i]
○ Softmax can be smoothed with a ‘temperature’ T
■  High temperature → uniform distribution
■ Low temperature → ‘spiky’ distribution, all mass on the largest element
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_ Loss function for softmax

● Categorical cross-entropy loss (aka. negative log likelihood)
○ Vector representing the gold-standard categorical distribution over the labels
■ y = (y[1] , y[2] , . . . , y[K])

○ Output of softmax
■ ŷ = (ŷ[1] , ŷ[2] , . . . , ŷ[K])
● That is, ŷ[i] = Pr(y=i|x)

○ Cross-entropy loss
■ Lcross-entropy(ŷ, y) = − ∑k=1 y[k] log (ŷ[k])
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_ Transformations and non-linearities

● Green circles are trainable parameters
● Gray circles are constant inputs
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_ Transformations and non-linearities

● Non-linear function g
○ Rectified linear unit (ReLU) activation
■ a função de ativação ReLU e outras não-linearidades desempenham um papel crucial, permitindo que as 

redes profundas capturem relações complexas e não lineares nos dados e superem as limitações dos 
modelos lineares.

f(x) = g (xW1 + b1) W2 + b2
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_ ‘Classical’ Language models

● Assign a probability to sentences in a language
○ Example:
■ “What is the probability of seeing the sentence the lazy dog barked loudly?”

● Assigns a probability for the likelihood of given word (or a sequence of words) to follow a sequence of words
○ Example:
■ “What is the probability of seeing the word barked after the seeing sequence the lazy dog?
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_ Language models formally

● Sequence of words w1:n = w1w2w3 . . . wn estimate:
○ Pr(w1:n) = Pr(w1, w2, . . . , wn)

● We factorize the joint probability into a product
○ One factorization is very useful: left-to-right
■ Pr(w1:n) = Pr(w1| <s>) Pr(w2| <s>, w1) Pr(w3 |<s> w1 w2) … Pr(wn| <s> w1 w2 w3 … wn-1)
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_ Simplifications in ‘classical’ language models

● Despite factorization:
○ The last term of Pr(w1:n) = Pr(w1| <s>) Pr(w2| <s>, w1) Pr(w3 |<s> w1 w2) … Pr(wn| <s> w1 w2 w3 … wn-1) still depends 

on all previous words of the sentence
● k-th order markov-assumption
○ The next word depends only on the last k words
■ Pr(wi |w1:i−1) ≈ Pr(wi |wi−k:i−1)
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_ Estimating probabilities in ‘classical’ language models

● Maximum Likelihood Estimation (aka. counting and dividing)

○ What if the denominator goes to 0?
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_ Evaluating language models: Perplexity

● Trained LM tells us probability of ‘sentence’ s: Pr(s)
○ Let’s have n sentences in a test corpus, each of them has a uniform probability of appearing: 1/n
○ Then the cross-entropy of our model is:

● Perplexity of LM:
○ 2cross-entropy
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_ Shortcomings of n-gram language models

● Long-range dependencies
○ To capture a dependency between the next word and the word 10 positions in the past, we need to see a 

relevant 11-gram in the text
● Lack of generalization across contexts
○ Having observed black car and blue car does not influence our estimates of the event red car if we haven’t 

see it before
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_ Neural Language Models

● Let’s build a neural network
○ Input:
■ a k-gram of words w1:k

○ Desired output:
■ a probability distribution over the vocabulary V for the next word wk+1
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_ Embedding layer

● If the input are symbolic categorical features
○ e.g., words from a closed vocabulary

● it is common to associate each possible feature value
○ i.e., each word in the vocabulary with a d-dimensional vector for some d

● These vectors are also parameters of the model, and are trained jointly with the other parameters
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_ Embedding layer: Lookup operation

● The mapping from a symbolic feature value such as word-number-48 to d-dimensional vectors is performed by 
an embedding layer (a lookup layer)
○ The parameters in an embedding layer are a matrix W|V|×d , each row corresponds to a different word in the 

vocabulary
● The lookup operation is then indexing v(w)
○ e.g., v(w) = v48 = E[48,:]
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_ Example network concatenating 3 words as embeddings (dw = 50)

● Each word ∈ R|V| (one hot), E ∈ R|V|×50, each lookup output ∈ R50, concat output x ∈ R150
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_ Neural Language Models

● Let’s build a neural network
○ Input:
■ a k-gram of words w1:k

○ Desired output:
■ a probability distribution over the vocabulary V for the next word wk+1

○ Each input word wk is associated with an embedding vector v(w) ∈ Rdw (dw — word embedding 
dimensionality)

○ Input vector x is a concatenation of k words
■ x = [v(w1); v(w2); . . . ; v(wk)
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_ Neural Language Models

● MLP with one (or more) hidden layers
○ v(w) = Ew,:
○ x = [v(w1); v(w2); . . . ; v(wk)]
○ h = g(xW1 + b1 )
○ ŷ = Pr(Wi | w1:k) = softmax(hW2 + b2 )

● Output dimension:
○ ŷ ∈ R|V|
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_ Neural Language Models

● Training neural LMs
○ Where to get training examples?
■ Training examples are simply word k-grams from an unlabeled corpus
● Identities of the first k − 1 words are used as features
● The last word is used as the target label for the classification

○ The model is trained using cross-entropy loss
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_ Generating text with language models

● We can generate (“sample”) random sentences from the model according to their probability
1. Predict a probability distribution over the vocabulary conditioned on the start symbol <s>
2. Draw a random word (the first word) according to the predicted distribution
3. Predict a probability distribution over the vocabulary conditioned on the start symbol and the first word
4. Draw a random word (the second word) according to the predicted distribution
5. Repeat until generated end-of-sentence symbol (or <EOS>)
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_ Learned word representations as a by-product

● Each row of E learns a word representation
● Each column of W2 learns a word representation
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_ Word embeddings as pre-trained word representation

● Option A:
○ We can initialize the embeddings matrix E randomly and learn during our supervised task

● Option B:
○ Use pre-trained word embeddings from task for which we have a lot of data
■ Use self-supervised learning (create labeled data ‘for free’ using the next word prediction objective)
■ Learned word embedding matrix plugged into our supervised task

● Desired word embeddings properties: ‘Similar’ words have similar embeddings vectors
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_ Neural language model, context = 3 preceding words
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_ Simplify notation: Lookup v, Linear layers including parameters
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_ Softmax for actually predicting distribution over V
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_ Major drawbacks of one-hot encoding of words

● Large, sparse representations
● No ‘semantic’ similarity, all words are equally ‘similar’
○ The distributional hypothesis states that words are similar if they appear in similar contexts
■ Intuitively, when we encounter a sentence with an unknown word such as the word wampinuk
● “Marco saw a hairy little wampinuk crouching behind a tree”

■ We infer the meaning of the word based on the context in which it occurs
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_ Neural language model’s goal:

● Predict probability distribution over V for the next word conditioned on the previous words
○ Side product:
■ Can learn useful word embeddings
● What if we don’t need probability distribution but just want to learn word embeddings?
○ We can relax our Markov assumption of ‘look at k previous words only’
○ We can get rid of the costly normalization in softmax
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_ Simplification 1:

● No need of a Markov property
○ For example, instead of modeling Pr(w3|w1, w2, – ), we model Pr(w2|w1, – , w3)

Language Models
Word embeddings

11
9



_ Simplification 2:

● Give up the costly softmax probability distribution
○ Instead of predicting probability distribution, we just want to predict some score of context and target word
■ What could such a score be?
● Prefer words in their true contexts (high score)
● Penalize words in their ‘untrue’ contexts (low score)

● Instead of predicting probability distribution for the target word, we create an artificial binary task by randomly 
shuffling the target word w
○ y = 1, if it is a positive context
○ y = 0, otherwise
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_ word2vec

● word2vec simplifies the neural LM by removing the hidden layer
○ So turning it into a log-linear model!
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_ word2vec:

● How to model the context?
○ Continuous bag of words (CBOW) c = summation of the context vectors
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_ word2vec: Learning useful word embeddings

● Train the network to distinguish ‘good’ word-context pairs from ‘bad’ ones

○ Create a set D+ of correct word-context pairs and set D¯ of incorrect word-context pairs

○ The goal of the algorithm is to estimate the probability Pr(D = 1|w, c) that the word-context pair w, c comes 
from the correct set D+ 

■ This should be high (1) for for pairs from D+ and low (0) for pairs from D¯
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_ Maximize the log-likelihood of the data D+ ∪ D¯

○ In word2vec Skip-Gram, for each correct word/context, sample k negative pairs into D¯ , so D¯ is k-times larger 
than D+ 
■ k is a hyper-parameter
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_ FastText embedding

● Popular word embedding models ignore the morphology of words, by assigning a distinct vector to each word
○ Limitation, especially for languages with large vocabularies and many rare words
■ Model each word as a bag of character n-grams
■ Each character n-gram has its own embedding
■ Word is represented as a sum of n-gram embeddings

○ Example:
■ Extract all the character n-grams for 3 ≤ n ≤ 6
● eating → Gw = {<ea, eat, ati, tin, ing, ng>, <eat, eati, atin, ing>, <eati, eatin, ating, ting>, <eatin, eating, ating>}
○ v(eating) = summation of the vectors of all n-grams
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_ Advantages of word2vec

● Pre-trained embeddings:
○ ‘Semantic’ input to any neural network instead of one-hot word encoding
○ Instance of transfer learning
■ pre-trained (self-trained) on an auxiliary task, plugged into a more complex model as pre-trained weights 
● Example: Represent a document as an average of its words’ embeddings (average bag-of-words through 

embeddings) for text classification
○ Semantic similarity, short document similarity, query expansion
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_ Finding word analogies with word2vec

● ‘Germany to Berlin is France to ?’
○ Solved by v(Berlin) − v(Germany) + v(France)
■ outputs vector x which is closest to Paris in the embeddings space (the closest row in E)

● Find the queen
○ v(king) − v(man) + v(woman) ≈ v(queen)
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_ Limitations of word2vec

● Definition of similarity
○ Completely operational: words are similar if used in similar contexts

● Antonyms
○ Words opposite of each other (buy—sell, hot—cold) tend to appear in similar contexts
■ Things that can be hot can also be cold, things that are bought are often sold
■ Models might tend to judge antonyms as very similar to each other
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_ Limitations of word2vec

● Biases
○ Distributional methods reflect the usage patterns in the corpora on which they are based
■ The corpora reflect human biases in the real world (cultural or otherwise)

● Polysemy, context independent representation
○ Some words have obvious multiple senses
■ A bank may refer to a financial institution or to the side of a river
■ A star may an abstract shape, a celebrity, an astronomical entity
● Using a single vector for all forms is problematic
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_ Intrinsic evaluation

● Objective:
○ Prepare data for modeling language
○ Learn a word2vec language model
○ Evaluate the model

First Assignment
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_ Intrinsic evaluation

● Code:
○ gensym (there are other implementations)

● Corpus:
○ https://mattmahoney.net/dc/text8.zip (there are other corpora)

● Pre-processing:
○ Punctuation, lower case, etc.

● Choices:
○ training sizes, window sizes, CBOW vs Skip-Gram etc.

● Evaluation:
○ Analogies using https://github.com/nicholas-leonard/word2vec/blob/master/questions-words.txt
■ input three words, pick the returned word, compute the distance to the correct word
■ Repeat and average.
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_ Help:

● Fórum de dúvidas: Guilherme Oliveira
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_ How to compare two sentences (or small documents)

● How can we capture when sentences/documents say the same thing using completely different words
○ WMD: a novel distance function between documents
■ The minimum amount of distance that the word embeddings of one document need to “travel” to reach 

the embeddings of the other document
● The cost of traveling from word i to word j is:
○ c(i, j) = |xi - xj|

2
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_ Document distance

● Uses “travel cost” between two words to create a distance between two sentences/documents
○ We compute the cost of transforming each word i in document A in each word j in document B 

■ The minimum cumulative distance that all words in one document need to travel to exactly match the 
other document.
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_ Document distance

● Uses “travel cost” between two words to create a distance between two sentences/documents
○ We compute the cost of transforming each word i in document A in each word j in document B 

Words → Sentences
Word Mover Distance
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_ Computational complexity

● Best average time complexity: O(p3 log p), where p is the vocabulary size
○ For datasets with large vocabularies and/or large number of documents, solving the WMD optimal 

transportation problem becomes phroibitive
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_ Main ConvNet idea:

● What if we compute vectors for every possible word subsequence of a certain length?
○ Example: “tentative deal reached to keep government open”
■ computes vectors for:
● tentative deal reached, deal reached to, reached to keep, to keep government, keep government open
● Regardless of whether phrase is grammatical

■ Ok, not very linguistically or cognitively plausible
● Then group them afterwards

Words → Sentences
ConvNets
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_ What is convolution?

● Convolution is classically used to extract features from images
○ 2D example
■ Yellow color and red numbers show filter (=kernel) weights
■ Green shows input
■ Pink shows output
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_ Text is 1D!

● Apply a filter (or kernel) of size 3
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_ 1D convolution:

● Padding
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_ 3 channel 1D convolution with padding = 1
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_ conv1d, padded with max pooling over time
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_ conv1d, padded with ave pooling over time
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_ Training a ConvNet is a supervised task

● Therefore, it requires a supervised loss function
○ The loss function depends on the downstream application
■ Sentence classification, POS tagging, NER, Paraphrase detection, Translation etc.

○ Filters are weights!
■ Backpropagation updates filters in order to decrease the error
■ Dropout is essential
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_ When we look at stock prices, they tend to change over time
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_ When we look at stock prices, they tend to change over time

● For example the price for this stock went up for 4 days, before going down
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_ When we look at stock prices, they tend to change over time

● Also, the longer the company has been traded on the stock market, the more data we will have for it
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_ When we look at stock prices, they tend to change over time

● Also, the longer the company has been traded on the stock market, the more data we will have for it
○ So, we need a neural network that works with different amounts of data.
■ That is, how much data to remember?
■ This is very different from typical neural networks.
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_ When we look at stock prices, they tend to change over time

● Recurrent neural networks
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_ Feedback loops

● Plus, weights, biases and activation functions
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_ Feedback loops
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_ Feedback loops
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_ Feedback loops
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_ Feedback loops
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_ Feedback loops
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_ Feedback loops
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_ How to use recurrent neural networks?

● Yesterday and today prices to predict tomorrow
○ Low = 0, Medium = 0.5, High = 1
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_ Feedback loops
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_ Feedback loops
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_ Feedback loops
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_ Unrolling

Memory
Recurrent Nets

16
3



_ Unrolling
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_ Unrolling
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_ Unrolling
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_ Unrolling many times

Memory
Recurrent Nets

16
7



_ Gradient Vanishing/Explosion

● Weights greater or smaller than 1
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_ We have two memories:

● Short memory:
○ Recent events are important

● Long memory:
○ Events that occurred longer ago must be memorized at some extent

● … but, typical RNNs have only one memory.

LSTM
long-Short Term Memory
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_ We have two memories:

● How much of short memory should be incorporated?
● … and how much of long memory should be discarded?
○ Weights are learned to control these memories.
■ Backpropagation!
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_ We have two memories:

● The LSTM cell is complex!
○ Each cell has three components
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_ Two activation functions

● Sigmoid
○ Output between 0 and 1

● Tahn
○ Output between -1 and 1
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_ Example
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_ Example
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_ Sequences that need to be transformed in other sequences

● Translate one language to other
● Translate audio into text
● Sequence of amino acids to 3D structures

These problems are called sequence-to-sequence, or seq2seq

● We can solve these problems with an architecture called encoder-decoder

Encoder-Decoder
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_ Challenges

● The size of the input sequence may be shorter/larger than the size of the output sequence
○ Let’s go → Vamos
■ The encoder-decoder must be able to handle variable input and variable output lengths.
■ LSTMs are good for dealing with variable input lengths.

Encoder-Decoder
Seq2Seq Models

18
1



_ LSTMs

● Remember: the input is a word embedding (one-hot encoding + fixed embedding layer)
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_ LSTMs

● Remember: the input is a word embedding (one-hot encoding + fixed embedding layer)
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_ Encoder: one layer
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_ Encoder: one layer

● But we can have more than one cell
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_ Encoder: we can add more layers
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_ Encoder: we can add more layers

● And we have the encoder
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_ Encoder: we can add more layers

● And we have the encoder
○ We call the last long and short-term memories as context vectors
■ These vectors will initialize the memories in the decoder
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_ Decoder

Encoder-Decoder
Seq2Seq Models

18
9



_ Decoder
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_ Decoder
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_ Decoder

● Fully-connected + Softmax
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_ Decoder

● Fully-connected + Softmax
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_ Decoder

● Fully-connected + Softmax
○ Weights → backpropagation
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_ Decoder

● Fully-connected + Softmax
○ Weights → backpropagation
■ During training, instead of using the predicted token as the next word, we always use the correct one. 
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_ The problem with long sentences

● Seq2Seq models work very well for very short sentences.
○ But their performance decreases drastically with long sentences.
○ Why this happens?
■ On a typical Seq2Seq model, the LSTM cell compresses the entire input sequence into a single context 

vector.
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_ The problem with long sentences

● For longer input sentences, even with LSTMs, words that are input earlier are likely to be forgotten.
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_ The problem with long sentences

● In this case, if we forget the first word, then the sentences would have completely opposite meanings.
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_ Remember the motivation for LSTMs.

● Typical recurrent neural networks have problems with long-term 
memory because they run both long and short-term memories 
through a same vector.
○ LSTMs, on the other hand, solve this problem by providing 

separate paths for long and short-term memories.
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_ Remember the motivation for LSTMs.

● Even with separate memories, if we have a long input sentence, then booths paths have to carry a lot of 
information.
○ This means that a word at the start of a long sentence, can still get lost.
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_ The intuition behind attention in neural networks.

● Add direct paths from the encoder to the decoder.
○ One per input word, so that each step of the decoder can directly access input words.
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_ Encoder-Decoder with Attention

● We have an embedding layer
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_ Encoder-Decoder with Attention

● We have an embedding layer
● And we add a LSTM cell
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_ Encoder-Decoder with Attention

● We have an embedding layer
● And we add a LSTM cell
○ Then we start the LSTM memories in the encoder with 0’s
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_ Encoder-Decoder with Attention

● We have an embedding layer
● And we add a LSTM cell
○ Then we start the LSTM memories in the encoder with 0’s

● Now, we add more context (more LSTM cells)
○ And we plug 1 in the embedding layer for the words in the sentence
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_ Encoder-Decoder with Attention

● We have an embedding layer
● And we add a LSTM cell
○ Then we start the LSTM memories in the encoder with 0’s

● Now, we add more context (more LSTM cells)
○ And we plug 1 in the embedding layer for the words in the sentence
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_ Encoder-Decoder with Attention

● Attention does not change the encoder
○ But, each step in the decoder must have direct access to the inputs.
■ How attention connects the decoder to each input in the encoder?
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_ Encoder-Decoder with Attention

● There are many forms of implementing 
Attention, and this is only one of them.
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_ Encoder-Decoder with Attention

● Let’s talk about the decoder.
○ Put 1 on the EOS symbol (EOS can be used as SOS also)
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_ Encoder-Decoder with Attention

● The first thing is to determine how similar 
the inputs from the encoder LSTMs are ate 
each step to the outputs from the decoder 
LSTMs.
○ In other words, we need a similarity 

score between the LSTM inputs 
(short-term memories) and each step in 
the decoder.

Attention
Seq2Seq Models with Attention

21
0



_ Encoder-Decoder with Attention

● There many ways to calculate the similarity between vectors.
○ Different attention mechanisms amploy different similarity measures.
■ We will assume the cosine similarity
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_ Encoder-Decoder with Attention

● Let’s calculate the similarity between the 
input from the first step in the encoder 
(“let’s”) and the first output of the decoder 
(<EOS>).
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_ Encoder-Decoder with Attention

● Now we just plug the numbers into the equation for cosine similarity
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_ Encoder-Decoder with Attention

● The result is -0.39
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_ Encoder-Decoder with Attention

● A more common way to calculate the similarity for Attention 
is just calculate the numerator.
○ The dot product.
■ We do not need to scale the magnitude between -1 

and 1.
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_ Encoder-Decoder with Attention

● A more common way to calculate the similarity for 
Attention is just calculate the numerator.
○ The dot product.
■ We do not need to scale the magnitude between 

-1 and 1.
● Large positive numbers mean vectors are more 

similar than small positive numbers.
● Large negative numbers mean vectors are 

more completely backwards than small 
negative numbers.
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_ Encoder-Decoder with Attention

● Other advantage
○ Dot product is easier to implement in a network.
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_ Encoder-Decoder with Attention

● Other advantage
○ Dot product is easier to implement in a network.
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_ Encoder-Decoder with Attention

● Likewise, we can compute the similarity score 
between the second input of the encoder (“go”) 
with the first output of the decoder (“<EOS>”).
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_ Encoder-Decoder with Attention

● Now we have similarity scores for both input 
words (“let’s” and “go”) …
○ … relative to the output (“<EOS>”) in the 

decoder.
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_ Encoder-Decoder with Attention

● How can we use these similarity scores?
○ Intuitively, the similarity score reveals how 

each pair of words are related to each other.
■ That is, we want “go” to have more 

influence on the first words that comes 
out of the decoder.
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_ Encoder-Decoder with Attention

● Softmax gives us how much to use from each 
word.
○ “Let’s” accounts for 0.4,
○ “go” accounts for 0.6,

Attention
Seq2Seq Models with Attention

22
2



_ Encoder-Decoder with Attention

● Lastly, we add the scaled values together.
○ These sums, which combine the separate 

encodings for both input words, relative to the 
output word, are the Attention values for 
“<EOS>”.
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_ Encoder-Decoder with Attention

● Now, all we need to determine the first output 
word is to plug the Attention values into a fully 
connected layers.
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_ Encoder-Decoder with Attention

● Now, all we need to determine the first output 
word is to plug the Attention values into a fully 
connected layers.
○ and also to plug the encodings for “<EOS>” 

into the same fully connected layer.
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_ Encoder-Decoder with Attention

● The same forward calculations! and softmax!
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_ Encoder-Decoder with Attention

● The same thing is done for the second output 
word (“vamos” is the most likely one)
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_ There are issues with typical seq2seq NLP models

● One of the hardest is that the encoding step is done sequentially, and this is a serious limitation.
○ Parallelism is important because we want to produce models with as much data as we can.
■ RNNs work in a step-by-step way.
● They are inherently sequential, and the internal hidden state is updated at each step.

■ Attention mechanisms are typically computed sequentially for each element in the output sequence, 
making it a step-by-step process.

○ Transformers allow for more parallel processing due to their self-attention mechanism, which enables the 
model to attend to all positions in the input sequence simultaneously.
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_ With parallelism we may train models using much more data.

● Thus, in practice, we do not use pre-trained word 
embeddings in Transformers.
○ Instead, we produce word embeddings as we train the 

Transformer.
■ We have a embedding layer in which each token is 

linked to a number of activation functions.
● The number of activation functions depends on the 

embedding dimension.
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_ With parallelism we may train models using much more data.

● Thus, in practice, we do not use pre-trained word 
embeddings in Transformers.
○ Instead, we produce word embeddings as we train the 

Transformer.
■ We have a embedding layer in which each token is 

linked to a number of activation functions.
● The number of activation functions depends on the 

embedding dimension.
● Weights multiply the input for each token.
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_ With parallelism we may train models using much more data.

● Thus, in practice, we do not use pre-trained word 
embeddings in Transformers.
○ Instead, we produce word embeddings as we train the 

Transformer.
■ We have a embedding layer in which each token is 

linked to a number of activation functions.
● The number of activation functions depends on the 

embedding dimension.
● Weights multiply the input for each token.
○ The same weights are used no matter the token 

being processed.
○ Updated via backpropagation.
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linked to a number of activation functions.
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_ With parallelism we may train models using much more data.

● Thus, in practice, we do not use pre-trained word 
embeddings in Transformers.
○ Instead, we produce word embeddings as we train the 

Transformer.
■ We have a embedding layer in which each token is 

linked to a number of activation functions.
● The number of activation functions depends on the 

embedding dimension.
● Weights multiply the input for each token.
○ The same weights are used no matter the token 

being processed.
○ Updated via backpropagation.
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_ Now, how to represent word order?

● The ordering of the words in the sentence is crucial for its meaning.
○ We may have two sentences with the exact same words, but with completely different meanings.
■ How to take order into account without hurting parallelism?
● Positional encoding
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_ This is the technique Transformers use to keep track of word order.

● Instead of coding the ordering using the architecture …
○ … Transformers encode the ordering directly in the data (i.e., representation)
■ Positional encoding is crucial to parallelism.
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_ This is the technique Transformers use to keep track of word order.

● Instead of coding the ordering using the architecture …
○ … Transformers encode the ordering directly in the data (i.e., representation)
■ Positional encoding is crucial to parallelism.
● example from StatQuast
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_ This is the technique Transformers use to keep track of word order.

● Instead of coding the ordering using the architecture …
○ … Transformers encode the ordering directly in the data (i.e., representation)
■ Positional encoding is crucial to parallelism.
● example from StatQuast

Transformers
Positional encoding

23
7



_ This is the technique Transformers use to keep track of word order.

● Instead of coding the ordering using the architecture …
○ … Transformers encode the ordering directly in the data (i.e., representation)
■ Positional encoding is crucial to parallelism.
● example from StatQuast
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_ This is the technique Transformers use to keep track of word order.
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_ This is the technique Transformers use to keep track of word order.

● Because sine and cosine are repetitive, it is possible that two words might get the same position (y-axis values).
○ But, with larger vocabularies and embeddings, these repeated values can be simply neglected.
■ And we have unique sequence of positional values for each token.
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_ This is the technique Transformers use to keep track of word order.

● Now, all we need is to sum the position values to the embedding values.
○ “Squatch eats pizza”
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_ This is the technique Transformers use to keep track of word order.

● Now, all we need is to sum the position values to the embedding values.
○ “Pizza eats Squatch”
■ Positional encoding allows Transformer to keep track of word order.

Transformers
Positional encoding

24
2



_ Back to the translation example.
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_ Back to the translation example.
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_ How the Transformer keeps track of the relationship among words?

● Language is ambiguous
○ There is cohereference, linkage etc.
■ Ex: “The pizza came out of the oven and it tasted good!”
● The word “it” refers to pizza or oven?
○ Does oven taste good?
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_ How the Transformer keeps track of the relationship among words?

● Self Attention is a mechanism to correctly associate the word “it” to the word “pizza”.
○ How similar is each word to all other words in the sentence, including itself.
■ Once the similarities are calculated, they are used to determine how the Transformer encodes each word.
● The word “it” is more commonly associate with “pizza” than with “oven”. Similarity between “it” and 

“pizza” is greater.
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_ How the Transformer keeps track of the relationship among words?

● We start by creating the Query Values
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_ How the Transformer keeps track of the relationship among words?

● We start by creating the Query Values
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_ How the Transformer keeps track of the relationship among words?

● We start by creating the Query Values and Key Values
○ Similarity == dot product
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_ How the Transformer keeps track of the relationship among words?

● We start by creating the Query Values and Key Values
○ Similarity == dot product
■ We want “let’s” to have more influence than

the word “go”
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_ How the Transformer keeps track of the relationship among words?

● We start by creating the Query Values and Key Values
○ Similarity == dot product
■ We want “let’s” to have more influence than

the word “go”, and we do this using Softmax
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_ How the Transformer keeps track of the relationship among words?

● We start by creating the Query Values and Key Values
○ Similarity == dot product
■ We want “let’s” to have more influence than

the word “go”, and we do this using Softmax
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_ How the Transformer keeps track of the relationship among words?

● In order to scale each word we create a third component, which is 
called Values
○ Each word has its Values which will be scaled according to the 

influence of each word.
■ In the figure, we have the self-attention values for “Let’s”



Transformers
Self Attention

25
4

_ How the Transformer keeps track of the relationship among words?

● The same process is done for all other input words.
○ But the good news is that we do not have to recalculate the Keys 

and Values.
■ All is needed is to create a Query for the other words.
● In the figure we have self-attention values for the          

word “go”.
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_ How the Transformer keeps track of the relationship among words?

● The weights that we used to calculate the self-attention queries are 
the exact same for all input words.
○ No matter how many words are in the input.

● Likewise, the weights used to calculate self-attention keys and 
values are the same for each input word.

● Important!
○ Note that we can calculate the Queries, Values and Keys          

for each word at the same time.
■ We do not have to calculate them for the first word first,  

before moving to the second word.
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_ How the Transformer keeps track of the relationship among words?

● Why do we need these two other values, since we already have 
word embeddings + positional encoding?
○ Context!
■ Self Attention values for each input word contains input     

from all other words.
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_ How the Transformer keeps track of the relationship among words?

● We can use multiple self attention cells.
○ This is called multi-head attention.
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_ How the Transformer keeps track of the relationship among words?

● There is one last thing to do.
○ We take the positional encoded values and them to the 

self-attention values.
■ These bypasses are called residual connections.
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_ The encoder may have any input size

● Modern Transformers process very large inputs.
○ Each input word is processed in parallel.



Transformers
Encoder

26
0

_ Parts the Transformer uses to encode the input.

○ Encode words into numbers
○ Encode the position of the words
○ encode the relationships among the words
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_ The decoder also starts with learning word embedding

● The weights are different from the embedding layer of the encoder
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_ The decoder also starts with learning word embeddings

● The weights are different from the embedding layer of the encoder
○ It starts with the symbol <EOS>
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_ The decoder also starts with learning word embeddings

● The weights are different from the embedding layer of the encoder
○ It starts with the symbol <EOS>
■ Positional encoding.
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_ The same process is done for each output word.

● Self-Attention!
○ Keep track of how output words relate to each other.
■ Note: we start with only one word, and the number of          

output words increases as they are being decoded.
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_ The same process is done for each output word.

● So far we talked about how input words related to each other, and 
how output words related to each other.
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_ The same process is done for each output word.

● So far we talked about how input words related to each other, and 
how output words related to each other.
○ But, how input words relate to output words?
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_ Keep track of the significant words in the input.
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_ Keep track of the significant words in the input.
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_ Keep track of the significant words in the input.

● Similarly with Self-Attention, we create new values to represent   
the Query for the <EOS> token in the decoder. 
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_ Keep track of the significant words in the input.

● Similarly with Self-Attention, we create new values to represent   
the Query for the <EOS> token in the decoder. 
○ Then we create Keys for each word in the encoder.
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_ Keep track of the significant words in the input.

● Similarly with Self-Attention, we create new values to represent   
the Query for the <EOS> token in the decoder. 
○ Then we create Keys for each word in the encoder.
■ And we calculate similarities between the <EOS> token        

and each word in the encoder.
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_ Keep track of the significant words in the input.

● Similarly with Self-Attention, we create new values to represent    
the Query for the <EOS> token in the decoder. 
○ Then we create Keys for each word in the encoder.
■ And we calculate similarities between the <EOS> token        

and each word in the encoder.
● Use 100% of “Let’s” and 0% of “go”
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_ Keep track of the significant words in the input.

● Similarly with Self-Attention, we create new values to represent    
the Query for the <EOS> token in the decoder. 
○ Then we create Keys for each word in the encoder.
■ And we calculate similarities between the <EOS> token        

and each word in the encoder.
● Use 100% of “Let’s” and 0% of “go”
● And now we calculate Values for each input word.
○ Scale values by the Softmax percentage
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_ Keep track of the significant words in the input.

● Similarly with Self-Attention, we create new values to represent    
the Query for the <EOS> token in the decoder. 
○ Then we create Keys for each word in the encoder.
■ And we calculate similarities between the <EOS> token        

and each word in the encoder.
● Use 100% of “Let’s” and 0% of “go”
● And now we calculate Values for each input word.
○ Scale values by the Softmax percentage
○ And finally add the scaled values together to get the 

Encoder-Decoder Attention values.
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_ Keep track of the significant words in the input.

● The weights of encoder-decoder attention are different from the 
weights of self-attention
○ However, the encoder-decoder attention weights are the same 

for each word.
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_ Keep track of the significant words in the input.

● The weights of encoder-decoder attention are different from the 
weights of self-attention
○ However, the encoder-decoder attention weights are the same 

for each word.
■ Finally, we can stack encoder-decoder attention.
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_ Keep track of the significant words in the input.

● The weights of encoder-decoder attention are different from the 
weights of self-attention
○ However, the encoder-decoder attention weights are the same 

for each word.
■ And we add another set of residual connections.
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_ Fully connected layer

● The encoder-decoder attention values are given as input to a fully 
connected layer.
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_ Fully connected layer

● The encoder-decoder attention values are given as input to a fully 
connected layer.
○ And a Softmax layer to select the most probable word.
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_ It will stop only when <EOS> is the selected token.

● Now, the “vamos” token is selected.
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_ It will stop only when <EOS> is the selected token.

● Now, the “vamos” token is selected.
○ And the same process is repeated.
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_ It will stop only when <EOS> is the selected token.

● Now, the “vamos” token is selected.
○ And the same process is repeated.
■ And the <EOS> token is selected.
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_ What can we learn from reconstructing the input?

● “I put ___ fork down on the table.”
● “The woman walked across the street, checking for traffic over ___ shoulder.”
● “I went to the ocean to see the fish, turtles, seals, and _____.”
● “Overall, the value I got from the two hours watching it was the sum total of the popcorn and the drink. The movie 

was ___.”
● “Iroh went into the kitchen to make some tea. Standing next to Iroh, Zuko pondered his destiny. Zuko left the ____. ”
● “I was thinking about the sequence that goes 1, 1, 2, 3, 5, 8, 13, 21, ____”
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_ Pretrained word embeddings (Past NLP)

● Start with pretrained word embeddings (no context!)
○ Learn how to incorporate context in an LSTM or Transformer 

while training on the task.
● Possible problems:
○ The training data we have for our downstream task must be 

sufficient to teach all contextual aspects of language
○ Most of the parameters in our network are randomly initialized!



Pretraining → LLMs
It is all about context!

28
5

_ In modern NLP:

● All (or almost all) parameters in NLP networks are initialized via 
pretraining.
○ This has been exceptionally effective at building strong:
■ Representations of language
■ Parameter initializations for strong NLP models
● The model has learned how to represent entire sentences 

through pretraining



Pretraining → LLMs
It is all about context!

28
6

_ Recall the language modeling task:

● Model the probability distribution over words given their past 
contexts.
○ There’s lots of data for this!
○ Pretraining through language modeling:
■ Train a neural network to perform language modeling on a 

large amount of text
■ Save the network parameters
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_ Pretraining/Finetune paradigm:

● Pretraining can improve NLP applications by serving as parameter initialization.
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_ Types of Pretraining:

● Encoders
○ Gets bidirectional context, and can condition on future!

● Encoder-Decoders
○ One part is bidirectional, but the other is unidirectional

● Decoders
○ Cannot condition on future
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_ Pretraining encoders

● Encoders get bidirectional context, so they cannot do language 
modeling!
○ Solution: replace some fraction of words in the input with a special 

[MASK] token, and predict these words.
■ This is called Masked Language Model
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_ Pretraining encoders

● BERT (Bidirectional Encoder Representations from Transformers)
○ Replace input word with [MASK] 80% of the time
○ Replace input word with a random token 10% of the time
○ Leave input word unchanged 10% of the time (but still predict it!)
■ Why? Does not let the model get complacent and not build strong 

representations of non-masked words
■ No masks are seen at fine-tuning time
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_ Pretraining encoders

● BERT (Bidirectional Encoder Representations from Transformers)
○ Two models were released:
■ BERT-base with 12 layers, 768-dim hidden states, 12 attention heads, 110 million params
■ BERT-large with 24 layers, 1024-dim hidden states, 16 attention heads, 340 million params

○ Trained on:
■ BooksCorpus (800 million words)
■ English Wikipedia (2,500 million words)

○ Pretrained with 64 TPU chips for a total of 4 days
■ TPUs are special tensor operation acceleration hardware
■ Finetuning is practical and common on a single GPU
● “Pretrain once, finetune many times.”
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_ Pretraining encoders

● BERT (Bidirectional Encoder Representations from Transformers)
○ BERT was massively popular
■ Finetuning BERT led to new state-ofthe-art results on a broad range of tasks
● QQP: Quora Question Pairs (detect paraphrase questions)
● QNLI: natural language inference over question answering data
● SST-2: sentiment analysis
● CoLA: corpus of linguistic acceptability (detect whether sentences are grammatical.)
● STS-B: semantic textual similarity
● MRPC: microsoft paraphrase corpus
● RTE: a small natural language inference corpus
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_ Pretraining encoders

● Limitations of pretrained encoders
○ If your task involves generating sentences, consider using a pretrained decoders
■ BERT and other pretrained encoders do not naturally lead to nice autoregressive (1-word-at-a-time) generation 

methods.
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_ Full Finetuning vs. Parameter-Efficient Finetuning

● Limitations of pretrained encoders
○ Finetuning every parameter in a pretrained model works well, but is memory-intensive
■ Lightweight finetuning methods adapt pretrained models in a constrained way.
● Leads to less overfitting and/or more efficient finetuning and inference.
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_ Pretrained encoder-decoder

● For encoder-decoders, we could do something like language 
modeling.
○ But, where a prefix of every input is provided to the encoder and 

is not predicted.
■ The encoder portion benefits from bidirectional context; the 

decoder portion is used to train the whole model through 
language modeling.
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_ Pretrained encoder-decoder

● The most popular model within this category is T5.
○ Replace different-length spans from the input with unique 

placeholders, and decode out the spans that were removed!
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_ Pretrained decoders

● It is natural to pretrain decoders as language models and then use 
them as text generators
○ This is helpful in tasks where the output is a sentence with a 

vocabulary like that at pretraining time
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_ Pretrained decoders

● Generative Pretrained Transformer (GPT)
○ 2018’s GPT was a big success in pretraining a decoder
■ Transformer decoder with 12 layers, 117M parameters
■ 768-dimensional hidden states, 3072-dimensional feed-forward hidden layers
■ Trained on:
● BooksCorpus: over 7000 unique books
● Contains long spans of contiguous text, for learning long-distance dependencies
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_ Pretrained decoders

● Generative Pretrained Transformer (GPT)
○ How do we format inputs to our decoder for finetuning tasks?
■ Natural Language Inference
● Label pairs of sentences as entailing/contradictory/neutral
○ Premise: The man is in the doorway
○ Hypothesis: The person is near the door
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_ Pretrained decoders

● Generative Pretrained Transformer (GPT2)
○ We mentioned how pretrained decoders can be used in their capacities as language models
■ GPT-2, a larger version (1.5B) of GPT trained on more data, was shown to produce relatively convincing 

samples of natural language.
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_ Pretrained decoders

● Generative Pretrained Transformer (GPT3)
○ The largest T5 model had 11 billion parameters
■ GPT-3 has 175 billion parameters
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_ Zero shot in-context learning

● One key emergent ability in GPT-2 is zero-shot learning:
○ The ability to do many tasks with no examples, and no gradient updates, by simply …
■ … providing the model with instructions or descriptions of the task and letting it generate responses 

based on its pre-existing knowledge.
○ You can get interesting zero-shot behavior if you are creative enough with how you specify your task!
■ Prompt engineering
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_ Few-shot in-context learning

● Specify a task (prompt) by simply prepending examples of the task before your example
○ Also called in-context learning
■ No gradient updates are performed
■ No finetuning is performed
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_ Traditional finetuning
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_ Few-shot in-context learning
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_ Few-shot in-context learning



LLMs
Continual Learning

30
8

_ Few-shot in-context learning
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_ Limits of prompting

● Some tasks seem too hard for even large LMs to learn through prompting alone.
○ Especially tasks involving richer, multi-step reasoning.
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_ Limits of prompting

● Some tasks seem too hard for even large LMs to learn 
through prompting alone.
○ Especially tasks involving richer, multi-step 

reasoning.



LLMs
Continual Learning

31
1

_ Zero-shot chain-of-thought prompting

● Just add “Let’s think step-by-step”
○ Asking a model for reasoning.
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_ Retrieval Augmented Generation (Grounding)

● Combine LLMs with external knowledge retrieval
○ Injects additional context into the prompt
■ The extended prompt contains the initial context and the retrieved information

○ Even if the LLM is outdated, it is still able to problem correct answers!
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_ Retrieval Augmented Generation (Grounding)

● Combine LLMs with external knowledge retrieval
○ The less we need finetuning
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_ Retrieval Augmented Generation (Grounding)

● Combine LLMs with external knowledge retrieval
○ The less we need finetuning
■ Essential element in LLM stack!
● Without RAG, a lot of LLM adoption would 

just not exist.
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_ Reinforcement Learning with Human Feedback

● General idea:
○ Instead of producing a single output, produce many.
○ Select the one that best fits human preferences.

● Policy is learned with reinforcement learning
○ Reward is given by human feedback (but, human judgments are noisy and miscalibrated!)
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○ Select the one that best fits human preferences.
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_ Reinforcement Learning with Human Feedback

● General idea:
○ Instead of producing a single output, produce many.
○ Select the one that best fits human preferences.

● Policy is learned with reinforcement learning
○ Reward is given by human feedback (but, human judgments are noisy and miscalibrated!)
■ A reward model (RM) is learned from thousands of human feedbacks.
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_ Reinforcement Learning with Human Feedback

● Given:
○ A pre-trained LLM
○ A reward model RM

● Produce many outputs
○ The reward model is used to update the 

policy using PPO algorithm.


