

0O curso

Modulos, avaliacao e projeto

_ Este curso (Aprendizado Profundo para Processamento de Linguagem Natural (NLP)) explora as técnicas mais

avancadas para processar e compreender a linguagem humana usando redes neurais profundas. Os alunos irao
adquirir conhecimento pratico e teorico sobre como aplicar modelos de aprendizado profundo a uma gama de

tarefas de NLP, desde classificacao de texto até traducao automatica e geracao de linguagem natural.

e [Este curso oferece uma imersao completa no mundo do Aprendizado Profundo aplicado ao Processamento de
Linguagem Natural. Os alunos sairao do curso com habilidades praticas para aplicar modelos avancados de
aprendizado profundo em uma variedade de cenarios de NLP, alem de um entendimento solido das tendencias

e desafios atuais nesse campo dinamico.

0O curso

Modulos, avaliacao e projeto

_ Nosso curso esta dividido em 10 modulos, a saber:

O N O kB WD -

Introducao ao Aprendizado Profundo e NLP (Habernal)

Representacao de Texto e Modelos de Linguagem (Habernal)

Modelos Seq2Seq de Classificacao de Texto (CNN, RNNs) (Stanford + StatQuest)

Atencao em Modelos Seq2Seq e Processamento de sequéncias com entradas longas (StatQuest)
Arquiteturas Transformer (StatQuest)

Pré-Treinamento e LLMs (Stanford)

Reinforcement Learning from Human Feddback (Stanford)

Modelos de Linguagem - Modelos de Mundo (Stanford)

0O curso

Modulos, avaliacao e projeto

_Teremos as seguintes avaliacoes:

e Duas provas: 20 pontos cada
e Dois trabalhos praticos: 10 pontos cada
e Projeto de tema livre: 40 pontos

0O curso

Modulos, avaliacao e projeto

_Sobre o projeto:

e Atividade que comecou ... agoral!
e O tema e livre:
o A escolha apropriada faz parte do projeto em si
o Um tema apropriado deve levar em conta aspectos como sofisticacao, relevancia e potencial de resultados
o O professor pode te orientar
e Nao ha entregaveis intermediarios:
o Apenas a entrega final, que ocorrera proximo ao encerramento da disciplina
o A entrega final compreende:
m Um notebook com a implementacao - reprodutibilidade
m Um video no Youtube mostrando sua capacidade de explicar e sintetizar o que foi feito, em cerca de 5
MINUtos

Deep Learning

Review

Basics

Residual Connections

Layer Normalization

Batch Normalization

Dropout

Sigmoid, RelLU, GELU, Softmax
MLPs, Convolutions

Deep Learning

Review

_ Basics

Losses

Entropy

Cross Entropy
KL Divergence

[2 Regularization

Deep Learning

Review

_ Basics
_ Losses

Optimizers

Stochastic Gradient Descent
Adam
AdamW

Learning Rate Schedules

Deep Learning

Review

_ Basics
_ Losses
_ Optimizers

Datasets

Glue and Superglue
Squad

Librespeech

HuggingFace Datasets | ™

Deep Learning

Basics

_ Perceptrons
e A perceptron is a fundamental concept in machine learning. It consists of inputs, weights, a summation
function, an activation function, and an output.
o |nputs:
m Inputs represent features or signals that the perceptron processes = X4, Xy, ..., X[J.
o Weights:
m Fach inputis assoclated with a weight > w,, w,, ..., wi.
m Weights determine the importance of each input in the computation.
o Summation Function:
m The weighted sum of inputs and weights is calculated - (X; * wy) + (X, *w,) + ... + (XO * w[).
o Activation Function:
m The sum is passed through an activation function = non-linearity and determines whether the perceptron
should "fire" or not.

Deep Learning

Basics

_ Perceptrons
e A perceptron is a fundamental concept in machine learning. It consists of inputs, weights, a summation
function, an activation function, and an output.
o QOutput:
m The output of the activation function serves as the perceptron's final output.
o Learning
m Perceptrons can be trained using algorithms like the Perceptron Learning Rule.
e They adjust weights to better classify or predict data based on provided training examples.

Inputs Weights Net input Activation
function function

@— output

Deep Learning

Basics

_ Multilayer Perceptrons (MLPs)
e MLPs are usually weight matrices W, activations® and input x composed together

Hidden Layer

Input Layer

Wop(Wix)

Deep Learning

Basics

_ Softmax
e Converts outputs into a probability distribution

The softmax vector:

1. sums to one SOftmaX) Rk — (O, 1)k

2. nonnegative values
o €

softmax;(x1.29,...,Tr) =
(o2, m) = 5

o Frequently used for classifying k outputs

Deep Learning

Basics

_Residual Connections

e Some neural network building blocks are useful irrespective of the problem setting, including residual
connections
o Let layer I be f, and its input be x,

m Usual layer outputs are al = f(x) Ll L
o With residuals, a = f(x) + x,
o Residual connections appear to aid optimization [fl } L fl }

{fl+1}) [flﬂ}
¥

Deep Learning

Basics

_ Layer Normalization (1/2)

e layer normalization reduces the chance of the feedforward signal's magnitude from blowing up or decaying
o First assume a® is in R" is a vector representing the values of layer I
o Layer Norm will first standardize a® by making it have 0 mean and a standard deviation of 1

H

H
1
,u(l) = = Z agl) () _ %Z(&g) —)2
P \

1=1

Deep Learning

Basics

_ Layer Normalization (2/2)

e Then Layer Normalizaton takes the standardized a’ and applies an affine transformation with a learned scale
and shift vectors 7, 8 € RY

learned parameters, does not depend on a(l)

/\
[)
—

not learned parameters, depends on a(”

e layer Normalization can be thought of as a method that aids optimization

Deep Learning

Basics

_ Batch Normalization (1/2)

e Batch normalization also reduces the chance of the feedforward signal’'s magnitude from blowing up or
decaying
o Batch Normalization is like Layer Normalization, except i1ts mean and sigma are aggregated across examples
In the batch, not activations

Batch Norm Layer Norm

H, W

[S S S LS

[S LSS S
N/L S S S S S

H, W

AV

[S S S S S

AV

Deep Learning

Basics

_ Batch Normalization (2/2)

e Batch Normalization usually works well with sizable batch sizes greater than one, making it harder to use than
Layer Normalization with very large models due to memory constraints
o Both Layer and Batch Normalization make it easier to use larger learning rates
m Researchers use Batch Normalization and Layer Normalization, but Layer Normalization is more common In
recent architectures such as Transformers.

1 B
DL LN S S
i \ 25

Deep Learning

Basics

_ Dropout
e Dropout randomly sets some activations to zero during
training (often not during test time)
o Assume b is a random Bernoulli mask vector
o Then dropout elementwise multiplies the activations by b
m Dropout encourages redundant feature detectors

&I‘.
/\

{

N

\ \

v
e
V
B
“\3

X
3
I}v;

fA
I\

[/

)
/

/A
Y
ka3
\'@\t,’,
Led
03:%“/'
“\ q

0

4

y

X/

N
4

Y/
\
</

A
XS
\)
e
%
7

V>

AY
%

(a) Standard Neural Net

b e {0,1} b; ~ Bernoulli(p)

I = 1 ©b/(1 = p)

rop

S o Activation Function Visualization

me— Ste.p Function (1(x > 0))

Deep Learning s — Sigmoid (1))

Basics

_ Sigmoid function

o(z) = —

- — —05 T I 1 E T 1 1
1 +e -3 -2 -1 0 1 2 3

e |f a feature Is detected, then a neuron fires; a step function emulates firing, but is not differentiable
o The sigmoid Is differentiable and i1s a smooth approximation to a step function
m The sigmoid function can be likened to a neuron firing probability
o Sigmolds are used in LSTMs and as the output of probabilistic binary classifiers

RelLU (x-1(x>0))
2.0 i

Deep Learning

Basics

~ RelU function

ReLU(x) = max{0, x} —0.5 1 . | .

e RelU stands for “Rectified Linear Unit”
o Although not smooth, the RelU is differentiable almost everywhere: ReLU'(x) = 1(z > 0)
m Can be interpreted as gating inputs based on their sign:
e |f X Is positive, let it through, otherwise, filter it

2.0

GELU (x - ®d(x))

Deep Learning

Basics

~ GELU function

GELU(z) =z - ®(z)

B(x) = P(X <), X ~ N(0,1) T

e GELU stands for “Gaussian Error Linear Unit”
o GELU activations are designed to approximate the Gaussian Cumulative Distribution Function (CDF), which
has the property of being smooth and continuous.
m Gaussian distributions are commonly observed in natural data and processes, making GELU activations
well-suited for a wide range of real-world tasks.

Deep Learning

Basics

> Activation Function Visualization

—— RelU (x-1(x>0))
== GELU (x - ®(X))
——Sigmoid ((1 +e™*)"1)

1.5 -

Deep Learning

Basics

_ Convolutions

3x0 +3x1 +2%x2+0x2+0x2+0x3 +1x1+ 2x2

/

e Since many useful data features may be local, we can move a sliding feature detector (“kernel”) across an input
to help detect such features

o Often used in hidden layers, convolutions use few parameters by repeatedly re-applying kernels across the
whole input

Deep Learning

Losses

_ Minimum Description Length Principle (MDL) O(A) = 50%

e Imagine we want to encode sequences of As, Bs, and Cs P(B) = 25%
o We can give higher probability events shorter descriptions, so that the coding D(C) = 25%

scheme Is more efficient
m If we encoded A with 11 and C with 1, more probable events would require

longer descriptions

e Notice the description length of symbol S in {A, B, C} is -log, P(S) A—0

B— 10

e |In Machine Learning, we often implicitly select the model that has the shortest C—-11

description length (shortest encoding) of the data
o With MDL, one can view learning as data compression

Deep Learning

Losses

_ Minimum Description Length Principle (MDL)

e |tIsafundamental conceptin machine learning that provides a criterion for selecting models based on their
ability to represent data using concise descriptions.
o The principle I1s rooted In the idea that simpler explanations are often preferable, as they can capture the
underlying patterns in the data without overfitting.
m In essence, the MDL principle suggests that the best model is the one that achieves a balance between
accurately describing the data and minimizing the complexity of the model itself.

Deep Learning

Losses

_ Minimum Description Length Principle (MDL)
e Imagine you have a dataset and different models that can potentially explain the patterns in that data.
o Each model has a certain complexity associated with it, which includes the number of parameters, rules, or

components that the mode
o According to the MDL princ

L USes.

nle, the best model Is the one that produces the shortest description length for

both the data and the model itself.
m This balance between accurately describing the data and minimizing the model's complexity helps avoid
overfitting and ensures that the model doesn't capture noise in the data
e Overall, the MDL principle provides a framework for selecting models that are both effective In
explaining data and simple enough to avoid overfitting. It encourages a balance between accuracy and

complexity, promoting

more interpretable and generalizable models.

Deep Learning

Losses

_ Entropy
e If the i'" symbol has probability p.and its encoding size is -log p, the expected code length is the entropy:

k
H(p) = Ex~p|—logp(X)] = =) pilogp;
1=1

e Following the MDL, we can select models that minimize the entropy
o Researchers often use the entropy as a loss for generative models
m Entropy can also be thought of as measure of a random variable’'s randomness or uncertainty

Deep Learning

Losses

_ Cross-Entropy
e The cross entropy measures the difference between two distributions

k
H(p;q) = Ex~pllogq(X)] = —) p;logg;
1=1

e The cross-entropy measures the average number of bits needed to encode events that occur following
distribution p, If a coding scheme Is used that is optimal for the probability distribution g
o This is a loss for classifiers, which encode the conditional distribution Y | X

Deep Learning

Losses

_ KL Divergence
e The Kullback-Leibler Divergence measures the difference between two distributions

KL|pllq] = sz log

e |f we encode messages with an optimal coding scheme for distribution @, but the true distribution is actually p,
then each message requires, on average, an additional KL|p||q] bits to be encoded compared to the optimal
encoding.

Deep Learning

Losses

_ L, Regularization

e Penalizes model complexity by adding the model parameter norm to the loss
function

o Regularization strength scaled by)\
o A probabilistic interpretation is this incorporates a Gaussian prior over the
parameters; the prior has mean 0 and variance inversely proportional to \

e Can be Interpreted as penalizing the bits required to encode the parameters
(bigger norm - more bits)

—— Model

’ J\ ; ——
A
\\?&\ \/ﬂ

—— Model
True function
e Samples

Deep Learning

Optimizers

_ Stochastic Gradient Descent (SGD)
e To optimize the parameters { using loss fu nctionﬁ, iteratively move In the direction of steepest descent with

step size (X
9k+1 — Qk — CMV[,(Qk)

e Neural network optimizers are based around SGD but rarely use this exact formulation
o Consequently networks are optimized with a local search method so models learn from many small

Incremental changes, not radical sudden changes nor hand-chosen parameters

Deep Learning

imlzers

Opt

-8.00

m=-8.00 b

15

370.77

Error

11 e

2.0

-1.9 -1.0 -0.5 0.0 0.5 1.0 1.5

-2.0

Deep Learning

Optimizers

_ SGD + Momentum
e To reduce gradient estimation noise during optimization, researchers often use momentum, which i1s equivalent
to moving in the direction of an (exponential) moving average of the gradient

gr = VL(Ok) + 11g5—1
Ok+1 = O — @gk\

1 is a fixed
constant

e Gradients farther in the past have exponentially less weight, so old gradients die out and so that the optimizer
can quickly adapt

gr = VoLl(0r) + ' VoLl(Op_1) + pn*VoL(0y_o)

Deep Learning

Optimizers

_ Adam
e Basic idea Is to combine momentum and a second moment adjustment

mp = (1 — 51>V9£<0k) + 61mk—1 first moment estimate (momentum-like)
U = (1 _ 52)<V9£(0k>)2 4 Bkaz : second moment estimate (roughly squared length)

my = () U():O

s me R VUl early on m and v values will be small, and this
k — V1 = : “« ” .
1 — 6]16 k | _ 6k correction “blows them up” a bit for small k
2
Good default settings:
mk —8
Ops1 =0k — a=0.001e=10"" /=09 f2=0.999

\small number to prevent division by zero
\each dimension is divided by its magnitude

Deep Learning

Optimizers

_ Learning Rate Schedules
e |[earning rates are not always constant: often they decay following a schedule

The Linear Decay schedule decays the The Cosine Annealing schedule decays the
learning rate a constant amount each learning rate proportional to a cosine
iteration function (from 0 to m)

(7
(tj = Qinitial © | 1 — (i = Qiinitial - 0.5+ |1+ cos | 7 -
max_steps max_steps

Learning Learning
Rate Rate

NLP

Datasets

~ Common datasets:

e SST-2 and IMDb

o NLP datasets for binary sentiment analysis of movie reviews
m SST-2 contains pithy professional expert movie reviews, and IMDb contains full-length lay movie reviews

SST-2 Example IMDb Example
This Is meticulously made, Once again Mr. Costner has
with every decision working dragged out a movie for far
to craft the stylistic, iconic longer than necessary. Aside
film many of us hold so dear. ~ from the terrific sea rescue
sequences, of which there
@ are very few | just did not

. care about any of the
characters.... @

Negative

NLP

Datasets

_ Question Answering and Reading Comprehension:
SQUAD (Stanford Question Answering Dataset)

MS MARCO

RACE (ReAding Comprehension from Examinations)
NewsQA

HotpotQA

Natural Questions (NQ)

NLP

Datasets

~ Machine Translation:

e WMT (Workshop on Machine Translation) Datasets
e |WSLT (International Workshop on Spoken Language Translation) Datasets

NLP

Datasets

Text Classification:

Reuters-21578: A dataset of news articles categorized into multiple classes.

20 Newsgroups: A dataset containing newsgroup documents categorized into 20 different topics.
AG News

Yelp Reviews

Amazon Reviews

Hate Speech and Offensive Language (HateEval)

NLP

Datasets

_ Named Entity Recognition (NER):
e CONLL-2003: A dataset for NER with data from various sources like news articles.
e OntoNotes: A dataset with named entity annotations across multiple genres and domains.

NLP

Datasets

_ Semantic Textual Similarity:

e STS-B (Semantic Textual Similarity Benchmark): A dataset for measuring the similarity between sentences.
e ParaNMT-50M (Paraphrase Dataset)

NLP

Datasets

Language Generation:

Wikipedia Text: Text from Wikipedia articles used for various generation tasks.
ROCStories: A dataset for story generation tasks.

Common Crawl

WebText

NLP

Datasets

Dialogue and Language Understanding:

ATIS (Airline Travel Information System): A dataset for spoken language understanding in the airline domain.
MultiWOZ: A dataset for dialogue and natural language understanding in the task-oriented dialogue domain.
DailyDialog

Persona-Chat

NLP

Datasets

~ Summarization:
e CNN/DailyMail
e XSum (eXtreme Summarization)

NLP

Datasets

_ Language Understanding and Semantics:
e ROCStories

e ANLI (Adversarial NLI)

e BoolQ (Boolean Questions)

NLP

Datasets

_ Other Specialized Datasets:

e The Harry Potter Dataset

e COCO (Common Objects in Context)
e WordNet

NLP

Datasets

_ GLUE and SuperGLUE "3 +1SuperGLUE

e These benchmarks aggregate NLP model performance over several tasks (e.g.,, sentiment analysis, natural
language inference, etc.)
o SuperGLUE I1s harder than GLUE, but state-of-the-art models have exceeded human-level performance
o These benchmarks are used to show how well a pretrained NLP model performs across several downstream
NLP tasks

NLP

Evaluation/Metrics

How to evaluate performance?

Text classification
Text generation
Caveats of NLP benchmarking

NLP

Evaluation/Metrics

How to evaluate performance?

e Train/Dev/Test data splits
o Training and Test data
o Development (Validation) set used for optimizing hyper-parameters

Train

Validation

Test

NLP

Evaluation/Metrics

_ How to evaluate performance?

e Cross-Validation
o K-fold cross-validation
m partitions the data into K chunks
e K- 1of which form the training set
e The last chunk serves as the validation set

FOId 1 Fold 2 Fold 3

Train Train Train

ramn raimn rain

rain raim est

est rain

est rain Train

ol |]t |]t]] =
“
&
-

Fold 4
rain
est
rain
rain

Train

Fold 5

est

ramn
rain

rain

NLP

Evaluation/Metrics

_ Evaluation of Text Classification

e Confusion matrix (binary case)
o Two classes: Positive and Negative

Confusion matrix

| Pred. Negative Pred. Positive

Act. Negative | True negative (TN) False positive (FP)
Act. Positive | False negative (FN) True positive (TP)

NLP

Evaluation/Metrics

_ Evaluation of Text Classification
e Accuracy of classifier fon test setT:

| T
o 1 s
Acer(f) = > I(f(x), w)
=]

Example (Disease detection)

| Pred. Negative Pred. Positive

Act. Negative 168 33
Act. Positive 48 37

o 37+ 48 + 33+ 168 =286 - Test set size |T| = 286 ACC. (f) = 1/286 x (37 + 168) = 0.7186

NLP

Evaluation/Metrics

_ Evaluation of Text Classification
e Precision, recall, F-1 score

Confusion matrix

| Pred. Negative Pred. Positive

Act. Negative | True negative (TN) False positive (FP)
Act. Positive | False negative (FN) True positive (TP)

o Precision (for class positive) =TP / (TP + FP)
o Recall (for class positive) = TP / (TP + FN)
o F-1score (for class positive) =2PR / (P + R)

NLP

Evaluation/Metrics

~ Evaluation of Text Classification

e Confusion matrix — multi-class
o We can unambiguously compute Precision and Recall for

each class
m How to get the F-1 score for the complete test set
across classes?
e Macro-averaging (average of F-1 scores), or
micro-averaging

Tay
?3 W g o 2T -
B S 8§ & & 5 °©
prediction. & & = = O o

true class:

money-fx 9 0 10 O O O
trade 1 1.:90 0 1- @0
Interest 13 0 0 0 0 0
wheat 0 & =X 34 [
corn 1 0 2 13 26 5
grain B 0 2 ¥ 5 10

NLP

Evaluation/Metrics

Fvaluation of Text Generation

e BLEU (Bilingual Evaluation Understudy)

o Among the first and most popular metrics proposed for automatic evaluation of MT systems
m Precision-based metric that computes the n-gram overlap between the reference and the hypothesis
m In particular, BLEU Is the ratio of the number of overlapping n-grams to the total number of n-grams in

the hypothesis.

o Corpus-level metric
m i.e, BLEU gives a score over the entire corpus (as opposed to scoring individual sentences)

o Major drawbacks of BLEU:
m It does not take recall into account
m It only allows exact n-gram matching

NLP

Evaluation/Metrics

~ Evaluation of Text Generation

e ROUGE (Recall-Oriented Understudy for Gisting Evaluation)
o ROUGE metric includes a set of variants: ROUGE-N, ROUGE-L, ROUGE-W, and ROUGE-S
m ROUGE-N Is similar to BLEU in counting the n-gram matches between the hypothesis and reference
e however, It IS a recall-based measure unlike BLEU which Is precision-based
m ROUGE-L measures the longest common subsequence (LCS) between a pair of sentences

NLP

Evaluation/Metrics

Caveats of NLP Benchmarks

e The ‘gold’ data paradigm might not always fit

o The assumption of a ground truth makes sense when humans highly agree on the answer
m Does this image contain a bird?”
m Is‘learn’ a verb?”
m What Is the capital of Italy?”

o This assumption often does not make sense, especially when language Is involved
m Questions determining a word sense
m |s this comment toxic?”

o Human label variation impacts all steps of the traditional ML pipeline, and is an opportunity, not a problem

NLP

Evaluation/Metrics

~ Caveats of NLP Benchmarks

e Human annotators are biased
o Datasets are often constructed using a small number of annotators, and humans are biased
m Concerns about data diversity, especially when workers freely generate sentences
m Models do not generalize well to examples from annotators that did not contribute to the training set

NLP

Evaluation/Metrics

_Insummary:

e Vast amount of tasks and datasets
o Data quality matters
o Understanding the data, annotators, task matters too
e Deep familiarity with common evaluation metrics is essential
o Getting better scores Is just a beginning of the story
o Evaluating generation Is an art

NLP

The challenges

_Ambiguity and variability of human language

e Highly ambiguous
o Example:
m Compare “I ate pizza with friends” to “l ate pizza with olives”
e Highly variable
o Example:
m The core message of “l ate pizza with friends” can be expressed as “friends and | shared some pizza”
e Humans are great users of language, very poor at formally understanding and describing rules that govern

language

NLP

The challenges

_Supervised machine learning to save us ...

e The best known set of methods for dealing with language data
o Supervised machine learning algorithms

e Machine Learning attempts to infer patterns and regularities from a set of pre-annotated input-output pairs
o Machine Learning excels at problem domains where:

m a good set of rules Is very hard to define ...
m Dbut annotating the expected output for a given input iIs relatively simple.

NLP

The challenges

_Language is very challenging

e Natural language exhibits properties that make i1t very challenging for Machine Learning
o Discrete
o Compositional
o Sparse

NLP

The challenges

_Language 1s symbolic and discrete

e Basic elements of written language: characters
o Characters form words that denote objects, concepts, events, actions, and i1deas
e Characters and words are discrete symbols
o Words such as “hamburger” or “pizza” each evoke in us a certain mental representations
m But they are distinct symbols, whose meaning is external to them, to be interpreted in our heads
m NO Inherent relation between “hamburger” and “pizza” can be inferred from the symbols or letters

themselves

NLP

The challenges

_ Characters and words are discrete symbols

e Compare that to concepts such as color (in machine vision), or acoustic signals — these concepts are continuous
o Colorful image to gray-scale image using a simple mathematical operation
o We can to compare two different colors based on inherent properties such as hue and intensity

e This cannot be easily done with words
o There Is no simple operation to move from the word “red” to the word “pink” without using a large lookup table

or a dictionary

NLP

The challenges

_ Language I1s compositional

e |etters - words - phrases - sentences - documents
o The meaning of a phrase can be larger than the meaning of the individual words, and follows a set of intricate

rules
e TO Interpret a text, we need to work beyond the level of letters and words, and look at long sequences of words
such as sentences, or even complete documents
o Memory and context are essential

NLP

The challenges

_ Data sparseness

e Combinations of words to form meanings - oo
o We could never enumerate all possible valid sentences
e No clear way of generalizing from one sentence to another, or defining the similarity between sentences, that does
not depend on their meaning which I1s unobserved to us
o Challenging when learning from examples
o Even with a huge example set we are very likely to observe events that never occurred in the example set and

that are very different

Machine Learning in NLP
Simple algorithms

_Supervised classification setup

e \We often restrict ourselves to search over specific families of functions
o e.g,the space of all linear functions with d. inputs and d__ outputs

e By restricting to a specific hypothesis class, we are injecting the learner with inductive bias
o A set of assumptions about the form of the desired solution

Machine Learning in NLP
Simple algorithms

_High-dimensional linear functions

e Vector x iIs the input, matrix W and vector b are the parameters
o Typically denoted @ =W, b

-~ Goal of learning

o Set the values of the parameters W and b such that the function behaves as intended on a collection of input
values x_, = X, ..., X, and the corresponding desired outputs ¥... =¥, ..., ¥,

Machine Learning in NLP
Simple algorithms

_ Binary classification

e Our inputisin the form of a natural language text
e Our labels are two categories
o e.g., positive and negative
e |et's start with the labels
o Very easy: Just arbitrarily map the categories into 0 and 1 (e.g., negative = 0, positive = 1)

Machine Learning in NLP
Simple algorithms

__How to transform text into a fixed-size vector of real numbers

e \What Is our setup:
o f(x):RY >R
o f(x)=x-w+Db
e \What we need:
o X &E R
e \What we have:
o “One of my favorite movies ever,The Shawshank Redemption is a modern day classic as it tells the story of two
Inmates who become friends and find solace over the years in which this movie takes place.Based on a Stephen
King novel, ...

Machine Learning in NLP
Simple algorithms

_What is a “word"?

e A matter of debate among linguists, answer 1s not always clear

o Very simplistic definition:
m words are sequences of letters separated by whitespace
m But: dog, dog?, dog,, and dog) would be different words

e Better: words separated by whitespace or punctuation

o A process called tokenization splits text into tokens based on whitespace and punctuation
m English: the job of the tokenizer Is quite simple
m Hebrew, Arabic: sometimes without whitespace
m Chinese: no whitespaces at all

Machine Learning in NLP
Simple algorithms

_Tokens

e Symbols cat and Cat have the same meaning, but are they the same word?

o Something like New York, I1s It two words, or one?
e We distinguish between words and tokens

o We refer to the output of a tokenizer as a token, and to the meaning-bearing units as words
e Keep In mind:

o We use the term word very loosely, and take it to be interchangeable with token.

Machine Learning in NLP
Simple algorithms

_Vocabulary

e We build a fix-sized static vocabulary
o e.g., by tokenizing training data
o Typical sizes:
m 20,000 - 100,000 words
m EFach word has a unique fixed index:

e V=(a, abandon,...cat,, ...zone,, z00,)

Machine Learning in NLP
Simple algorithms

_ Averaged Bag of Words b

® D[i] =1

o word in doc D at position |
o xPH
m one-hot vector

Example: a cat sat - a, cat, sat

e V= (a abandon, ... cat852 ...z0ne . 700,)
_ D[] _
O ada=XxX = (1 O O 02999 03000)
o cat = xP? = (01 352 - - - 03090 03000/
o sat = xPBl = (01 2179 O2999 O3ooo>

B X = (03 3,0,...0,.,033,.,0 .033,__....0

852 "853° 2179 3000)

Machine Learning in NLP
Simple algorithms

_ Out-of-vocabulary (UNK) tokens

e \Words in a language are very unevenly distributed (Zipf's law)
o There Is always a large ‘tail’ of rare words

o When building the vocabulary, use the most frequent words, all others represented by an unknown token (UNK

or O0V)
m Example: most common 3,000 words and UNK
e V=(a,abandon,...cat,, ... zone, ., 200, UNK,)

Machine Learning in NLP
Simple algorithms

_Subword units: Byte-pair encoding

1. The words in the corpus are split into characters (marking original spaces with a special space character) — this
IS the initial vocabulary V

2. The most frequent pair of characters Is merged and added to V
3. Repeat 2 for a fixed given number of times

4. Each of these steps increases V by one, beyond the original inventory of single characters

e \When done over large corpora with multiple languages and writing systems, BPE prevents OOV!

Machine Learning in NLP
Simple algorithms

_ Example

this_fat_cat_with_the_hat_is_in_the_cave_of_the_thin_bat
e Most frequent: t h (6 times), merge into a single token th
this_fat_cat_with_the_hat_i1s_in_the_cave_of_the_thin_bat

e Most frequent: a t (4 times), merge into a single token

this fat _cat with _the hat 1s I1n _the cave of the thin_ bat

Machine Learning in NLP
Simple algorithms

_ Example

this fat cat with the hat 1s In the cave of the thin bat
e Most frequent: th e (3 times), merge into a single token
this fat cat with the hat 1s I1n the cave of the thin bat

e V={this . facwenvo° fb th at the}

Machine Learning in NLP
Simple algorithms

_ Log linear models

e \We have this linear function:
o f(x):RI" > R
o f(x) = xw+b = x.w +. . Xy W +D

m f(x) has unbounded range (-0, +o0)

o Non-linear mapping to [0, 1])
m Fach example's label isy € {0, 1} V.0 [

() : '- 1 4 3.3 - | {
1() 3 () D 1()

Machine Learning in NLP
Simple algorithms

_ Linear function through sigmoid — log-linear model

e Green circles are trainable parameters

e Gray circles are constant inputs | P 1
y=o(j(z)) =

@— &
(&)

l «.‘:\'1)(; (& - w b))

Machine Learning in NLP
Simple algorithms

_Decision rule of log-linear model

e Prediction=1ify>0.5
e Prediction = 0 otherwise

Natural interpretation:

e Conditional probability of prediction = 1 given the input x

o(f(x)) = Pr(prediction = 1|z)

| —o(f(z)) = Pr(prediction = (|z)

Machine Learning in NLP
Simple algorithms

_ Binary Text Classification

e Finding the best model parameters
o The loss function
m Quantifies the loss suffered when predicting y while the true label is y for a single example.
e L(y,y):R> >R
m Given a labeled training set (xm, ym), a per-instance loss function L and a parameterized function f{x; ©) we
define the corpus-wide loss with respect to the parameters @ as the average loss over all training examples:

X | L
LIO)=— Z Lif(z:0). y.:)
1 708

Machine Learning in NLP
Simple algorithms

_Training as optimization

| | « | |
[-Hf-)] = — [", ,‘ (x;: O). ;)

e The training examples are fixed, and the values of the parameters determine the loss
o The goal of the training algorithm Is to set the values of the parameters @, such that the value of L 1Is minimized

O = aremin L(O) = aremin — Z Liflzi: O). y;)

- - L i

Machine Learning in NLP
Simple algorithms

_Training as optimization

e Binary cross-entropy loss (logistic loss)
L ogisic = Y log v-(1-y)log(1-y)

~—

-

| i

0O 01 02 03 04 05 06 0.7 0.8 9 1
hat(y)

Machine Learning in NLP
Simple algorithms

_ Logistic regression

e Green circles are trainable parameters
e Gray circles are constant inputs

A\

%7@

How can we minimize this function?

Machine Learning in NLP
Simple algorithms

_ Stochastic Gradient Descent

1: function SGD(flx; @), (x, ..., x), (y, ...,y) L)
2. while stopping criteria not met do

3 Sample a training example x., y-

4: Compute the loss L(f(x; ©), y)

5 g < gradient of L(f(x.; ©), y) wrt. ©

6 O« 0O-ng

/.

return @

Machine Learning in NLP
Simple algorithms

_ Minibatch Stochastic Gradient Descent

1: function mbSGD(flx; @), (x,...,x), (y,...,y) L)
2. while stopping criteria not met do

3 Sample m examples {(x,, y.),...(x_, y)}
4 g<o

5 fori1=1tomdo

6: Compute the loss L(f(x; ©), y)
7 g < g+ gradient of 1/m L(f(x.; ©),y) wrt. ©
8 O« 0O-ng

9

return @

Machine Learning in NLP
Simple algorithms

_ Properties of Minibatch Stochastic Gradient Descent

e The minibatch size can vary in size fromm=71tom =n
o Higher values provide better estimates of the corpus-wide gradients
o Smaller values allow more updates and in turn faster convergence

Machine Learning in NLP
Simple algorithms

_Log-linear multi-class classification

e So far we mapped our gold label y € {0, 1}
o What If we classify into distinct categorical classes?
m Categorical: There is no ‘ordering’
e Example: Classify the language of a document into 6 languages (En, Fr, De, It, Es, Other)
e Possible solution: Six weight vectors and biases
o Consider for each language | € {En, Fr, De, It, Es,Other}
m Weight vector w! (e.g., w™)
m Bias b'(eg, b™)
e \We can predict the language resulting in the highest score

y= fl(x) = ArgInax T-w + b

rF -::.?.r.'u.'

Machine Learning in NLP
Simple algorithms

_Another solution

e We can re-arrange the w € R4 vectors into columns of a matrix W € R¥™6 and b € R®, to get f{x) =xW + b
o Project the input x to an outputy
my="f(x)=xW+Db
m Pick the element of y with the highest value prediction =y = argmax. yli]

e Whatisy?
o Index of 11n the one-hot:
m For example, if y = 3, then the documentis in German De= (00100 0)

Machine Learning in NLP
Simple algorithms

_ A representation of the input document

e Vector x Is a document representation
o Bag of words
m For example (d. = |V| dimensions, sparse)

1N

m Vector y is more compact (only 6 dimensions)

| En Fr De It O

a 3 e ® @ 2
at | e ¢ @ o 5
00 @ © @ D ®

Machine Learning in NLP
Simple algorithms

_ A representation of the input document

e Vector x Is a document representation d| e e ® e o 2

o Bag of words at | e ¢ e o o 5
m For example (d. = |V| dimensions, sparse)

1N

m Vector y is more compact (only 6 dimensions)

e Representations are central to deep learning
o One could argue that the main power of deep-learning is the ability to learn good representations

Machine Learning in NLP
Simple algorithms

_Turning output vector into probabilities of classes

e Softmax B (.,4)
exb >

o Applied element-wise, for each output value x[i] softmax(za: T) = n -
o Softmax can be smoothed with a ‘temperature’ T | > i exp(=)
m High temperature = uniform distribution
m Low temperature = ‘spiky’ distribution, all mass on the largest element

=100 £ =01 1 =0.01

04 S . 1,

S ————————— . (. —ii— '
0.
0.2 05] 05
0.1
N L : 0 e I D!
1 2 3] 2 3

»

— — l" —— -
1 2 3 1 2 S

Machine Learning in NLP
Simple algorithms

_ Loss function for softmax

e Categorical cross-entropy loss (aka. negative log likelihood)
o Vector representing the gold-standard categorical distribution over the labels

Y= Vg Vg Vi)
o Output of softmax
5= Wy Vg0 Vi)

e That s, 37[,.] = Pr(y=ilx)
o Cross-entropy loss

Lcross—entropy(y’ y) - Zk:1 y[I<] log (g/[k])

Machine Learning in NLP
Simple algorithms

_Transformations and non-linearities

e Green circles are trainable parameters
e Gray circles are constant inputs

/

(D
T 6

g@

Machine Learning in NLP
Simple algorithms

_Transformations and non-linearities

e Non-linear function g
o Rectified linear unit (ReLU) activation
m a funcao de ativacao RelLU e outras nao-linearidades desempenham um papel crucial, permitindo que as
redes profundas capturem relacoes complexas e nao lineares nos dados e superem as limitacoes dos
modelos lineares.

f(x) = g (xW' + b") W? + b?

Language Models

Word embeddings

_ ‘Classical’ Language models

e Assign a probability to sentences in a language
o Example:
m What is the probability of seeing the sentence the lazy dog barked loudly?”

e Assigns a probability for the likelihood of given word (or a sequence of words) to follow a sequence of words
o Example:

m What is the probability of seeing the word barked after the seeing sequence the lazy dog?

Language Models

Word embeddings

_ Language models formally

e Sequence of wordsw, =www,...w_estimate:
0 Pr(vvm) = Priw, w,, ..., w)

e \We factorize the joint probability into a product
o One factorization is very useful: left-to-right

m Pr(w,) =Pr(w | <s>) Pr(w,| <s> w,) Prw, [<s>w w,) .. Pr(w [<s>w w,w,..w__)

Language Models

Word embeddings

_Simplifications in ‘classical’ language models

e Despite factorization:
o The last term of Pr(w._) = Pr(w,| <s>) Pr(w_ | <s> w.,) Pr(w, [<s>w w,) .. Pr(w_| <s>w. w_ w,..w__)still depends
on all previous words of the sentence
e k-th order markov-assumption
o The next word depends only on the last k words
m Pr(w. |W1:i_1) = Pr(w, [w_,.)

I-k:1-1

Language Models

Word embeddings

_ Estimating probabilities in ‘classical’ language models

e Maximum Likelihood Estimation (aka. counting and dividing)

-::n Ww;__ 4 Wy byl W Wi 1 1w |

1)°,'=_-_': ll." - (f'f”‘," ke g —1 :n —

| Wi} s ki) ¢ & & ws_1)

o What If the denominator goes to 07

Language Models

Word embeddings

_ Evaluating language models: Perplexity

e Trained LM tells us probability of ‘sentence’s: Pr(s)

o Let's have n sentences in a test corpus, each of them has a uniform probability of appearing: 1/n
o Then the cross-entropy of our model Is:

=1y S L Ve 1 iR
S l(l‘__'_" .) — —](_) (-) — N 1“: I) ol S; l
Z; n '(_I’l'l S;) n : “XPr{s;) n : Sl

'

e Perplexity of LM:

o)cross-entropy

Language Models

Word embeddings

_Shortcomings of n-gram language models

e Long-range dependencies
o To capture a dependency between the next word and the word 10 positions In the past, we need to see a
relevant 11-gram in the text
e Lack of generalization across contexts
o Having observed black car and blue car does not influence our estimates of the event red car If we haven't
see It before

Language Models

Word embeddings

_ Neural Language Models

e Let's build a neural network
o |Input:
m a k-gram of words w,
o Desired output:
m a probability distribution over the vocabulary V for the next word w, _

Language Models

Word embeddings

_Embedding layer

e |f the Input are symbolic categorical features
o e.g, words from a closed vocabulary

e |t IS common to associate each possible feature value
o l.e, each word in the vocabulary with a d-dimensional vector for some d

e These vectors are also parameters of the model, and are trained jointly with the other parameters

Language Models

Word embeddings

_Embedding layer: Lookup operation

e The mapping from a symbolic feature value such as word-number-48 to d-dimensional vectors I1s performed by
an embedding layer (a lookup layer)

o The parameters in an embedding layer are a matrix W'V¢ each row corresponds to a different word in the
vocabulary
e The lookup operation is then indexing v(w)
o e.g,v(w)=v48 = E[48,]

Language Models

Word embeddings

_ Example network concatenating 3 words as embeddings (d_ = 50)

e Fach word € RV (one hot), E € RV* each lookup output € R*°, concat output x € R™

- .
black @ “’ @
o S0 @ @

Language Models

Word embeddings

_ Neural Language Models

e |et's build a neural network

o |Input:
m a k-gram of words w,

o Desired output:
m a probability distribution over the vocabulary V for the next word w, _

o Each input word w, is associated with an embedding vector v(w) € R (dw — word embedding
dimensionality)

o Input vector x Is a concatenation of k words

m X= [V(W1); V(VV2); R V(Wk)

Language Models

Word embeddings

_ Neural Language Models

e MLP with one (or more) hidden layers
o v(w) = Ew;:

O
o h=gxW'+Db")
o y=Pr(W. | w,_)=softmax(hw + b*)

e QOutput dimension:
O S\/ = R|V|

Language Models

Word embeddings

_ Neural Language Models

e Training neural LMs
o Where to get training examples?
m Training examples are simply word k-grams from an unlabeled corpus
e |dentities of the first k - 1 words are used as features
e The last word Is used as the target label for the classification
o The model Is trained using cross-entropy loss

Language Models

Word embeddings

_ Generating text with language models

e \We can generate (“sample”) random sentences from the model according to their probability

A

Predict a probability distribution over the vocabulary conditioned on the start symbol <s>

Draw a random word (the first word) according to the predicted distribution

Predict a probability distribution over the vocabulary conditioned on the start symbol and the first word
Draw a random word (the second word) according to the predicted distribution

Repeat until generated end-of-sentence symbol (or <E0S>)

Language Models

Word embeddings

_ Learned word representations as a by-product

e Fach row of E learns a word representation
e Fach column of W? learns a word representation

Language Models

Word embeddings

_Word embeddings as pre-trained word representation

e Option A:
o We can initialize the embeddings matrix E randomly and learn during our supervised task
e Option B:
o Use pre-trained word embeddings from task for which we have a lot of data
m Use self-supervised learning (create labeled data ‘for free’ using the next word prediction objective)
m Learned word embedding matrix plugged into our supervised task
e Desired word embeddings properties: ‘Similar’ words have similar embeddings vectors

Language Models

Word embeddings

_ Neural language model, context = 3 preceding words

Language Models

Word embeddings

_Simplify notation: Lookup v, Linear layers including parameters

ithel———[7_

concat

.
, Lin(W"; b') = }+{Lin(W b*) [L]

Language Models

Word embeddings

_ Softmax for actually predicting distribution over V

Lin(W2 b*) |-+[softmax}—{ L]

ly = barkg/

Neural Language Models

Distributional hypothesis

_ Major drawbacks of one-hot encoding of words

e large, sparse representations
e NO ‘'semantic similarity, all words are equally ‘similar’
o The distributional hypothesis states that words are similar If they appear in similar contexts
m Intuitively, when we encounter a sentence with an unknown word such as the word wampinuk
e “Marco saw a hairy little wampinuk crouching behind a tree”
m We infer the meaning of the word based on the context in which it occurs

Neural Language Models
Word embeddings

_ Neural language model’s goal:

e Predict probability distribution over V for the next word conditioned on the previous words
o Side product:
m Can learn useful word embeddings
e \What If we don't need probability distribution but just want to learn word embeddings?
o We can relax our Markov assumption of ‘look at k previous words only’
o We can get rid of the costly normalization in softmax

Language Models

Word embeddings

_Simplification 1:

e NO need of a Markov property
o For example, instead of modeling Pr(w,|w,, w,, —), we model Pr(w, [w,, -, w.)

Language Models

Word embeddings

_ Simplification 2:

e Glve up the costly softmax probability distribution
o Instead of predicting probability distribution, we just want to predict some score of context and target word

m What could such a score be?
e Prefer words in their true contexts (high score)

e Penalize words in their ‘untrue’ contexts (low score)
e [nstead of predicting probability distribution for the target word, we create an artificial binary task by randomly

shuffling the target word w
o y=1 1fItisa positive context
o y =0, otherwise

Language Models

Word embeddings

the

model the context

[b [C ",-. K]

model the context| \@
| with \

a{I}\L some hidden layers

U

somehow combine

some hidden layers

~ [somehow combine

y =0

Language Models

Word embeddings

_word2vec

e word2vec simplifies the neural LM by removing the hidden layer

o So turning it into a log-linear model!

ther—

U

i

e

model the context

\ /

somehow combine

y=1

Language Models

Word embeddings

_word2vec:

e How to model the context?
o Continuous bag of words (CBOW) ¢ = summation of the context vectors

El—%Kr
Sum > [

somehow combine =

Language Models

Word embeddings

_word2vec: Learning useful word embeddings

e Train the network to distinguish ‘good’ word-context pairs from ‘bad’ ones

o Create a set D* of correct word-context pairs and set D of incorrect word-context pairs

o The goal of the algorithm is to estimate the probability Pr(D = 1]w, ¢) that the worc
from the correct set D*

m This should be high (1) for for pairs from D* and low (0) for pairs from D~

-context pair w, € comes

Language Models

Word embeddings

_ Maximize the log-likelihood of the data D* U D~

L(©:D,D)=) logPr(D=1|w,c)+) logPr(D=0|wc)

) N e “) .1_"..'. l' 1‘

o In word2vec Skip-Gram, for each correct word/context, sample k negative pairsinto D , so D is k-times larger
than D*
m R is ahyper-parameter

Language Models

Word embeddings

_ FastText embedding

e Popular word embedding models ignore the morphology of words, by assigning a distinct vector to each word
o Limitation, especially for languages with large vocabularies and many rare words
m Model each word as a bag of character n-grams
m EFach character n-gram has 1ts own embedding
m Word Is represented as a sum of n-gram embeddings
o Example:
m Extract all the character n-gramsfor3<n<6
e eating > G = {<eaq, eat, atj, tin, ing, ng>, <eat, eati, atin, ing>, <eati, eatin, ating, ting>, <eatin, eating, ating>}
o v(eating) = summation of the vectors of all n-grams

Language Models

Word embeddings

_ Advantages of word2vec

e Pre-trained embeddings:
o ‘Semantic’ input to any neural network instead of one-hot word encoding
o Instance of transfer learning
m pre-trained (self-trained) on an auxiliary task, plugged into a more complex model as pre-trained weights
e Example: Represent a document as an average of its words' embeddings (average bag-of-words through
embeddings) for text classification
o Semantic similarity, short document similarity, query expansion

Language Models

Word embeddings

_ Finding word analogies with word2vec

e ‘Germany to Berlin is France to 7
o Solved by v(Berlin) - v(Germany) + v(France)
m outputs vector x which is closest to Paris in the embeddings space (the closest row in E)
e Find the queen
o v(king) - v(man) + v(woman) = v(queen)

Language Models

Word embeddings

_ Limitations of word2vec

e Definition of similarity
o Completely operational: words are similar If used in similar contexts
e Antonyms
o Words opposite of each other (buy—sell, hot—cold) tend to appear in similar contexts
m Things that can be hot can also be cold, things that are bought are often sold
m Models might tend to judge antonyms as very similar to each other

Language Models

Word embeddings

_ Limitations of word2vec

e Biases
o Distributional methods reflect the usage patterns in the corpora on which they are based

m The corpora reflect human biases in the real world (cultural or otherwise)
e Polysemy, context independent representation

o Some words have obvious multiple senses
m A bank may refer to a financial institution or to the side of a river

m A star may an abstract shape, a celebrity, an astronomical entity
e Using a single vector for all forms Is problematic

First Assignment
Word embeddings

_Intrinsic evaluation

e ODbjective:
o Prepare data for modeling language
o Learn a word2vec language model
o Evaluate the model

First Assignment
Word embeddings

_Intrinsic evaluation

e (Code:
o gensym (there are other implementations)
e (Corpus:
o https://mattmahoney.net/dc/text8.zip (there are other corpora)
e Pre-processing:
o Punctuation, lower case, etc.
e Choices:
o training sizes, window sizes, CBOW vs Skip-Gram etc.
e Fvaluation:
o Analogies using https://github.com/nicholas-leonard/word2vec/blob/master/questions-words.txt
m Input three words, pick the returned word, compute the distance to the correct word
m Repeat and average.

https://mattmahoney.net/dc/text8.zip
https://github.com/nicholas-leonard/word2vec/blob/master/questions-words.txt

First Assignment
Word embeddings

Help:

e Forum de duvidas: Guilherme Oliveira

Words > Sentences

Word Mover Distance

_ How to compare two sentences (or small documents)

e How can we capture when sentences/documents say the same thing using completely different words
o WMD: a novel distance function between documents
m The minimum amount of distance that the word embeddings of one document need to “travel” to reach
the embeddings of the other document
e The cost of traveling from word i to word j is:
O C(i,j)= |Xi-xj|2

Words > Sentences

Word Mover Distance

_Document distance

e Uses “travel cost” between two words to create a distance between two sentences/documents
o We compute the cost of transforming each word i in document A in each word j in document B

r
min E Tyc(t, 7)
T >0 |
3,)=1

m The minimum cumulative distance that all words in one document need to travel to exactly match the
other document.

Words > Sentences

Word Mover Distance

_Document distance

e Uses “travel cost” between two words to create a distance between two sentences/documents
o We compute the cost of transforming each word i in document A in each word j in document B

min

T>0 4

Obamajspeaks|to the/ media|in|Illinois.

lj(ﬂ 045&4- OZAN + 020&4- 018&

D The President greets the press in Chicago.

1163 oagﬁwnf +044/+ ozaf

D> The bandjgave|a|concert|in Japan.

Words > Sentences

Word Mover Distance

Computational complexity

e Best average time complexity: O(p® log p), where p is the vocabulary size
o For datasets with large vocabularies and/or large number of documents, solving the WMD optimal
transportation problem becomes phroibitive

Words > Sentences

ConvNets

_Main ConvNet 1dea:

e \What If we compute vectors for every possible word subsequence of a certain length?
o Example: “tentative deal reached to keep government open”
m computes vectors for:
e tentative deal reached, deal reached to, reached to keep, to keep government, keep government open
e Regardless of whether phrase 1s grammatical
m Ok, not very linguistically or cognitively plausible
e Then group them afterwards

Words > Sentences

ConvNets

_What is convolution?

e Convolution is classically used to extract features from images
o 2D example
m Yellow color and red numbers show filter (=kernel) weights
m Green shows input
m Pink shows output

Convolved
Feature

Words > Sentences

ConvNets

_Text 15 1D!
e Apply a filter (or kernel) of size 3

—0:3
=03

0.1
0.2

0.4
—0.1

tentative 0.2
deal 0.5
reached =) 1 =008 =20 g
k3 =03 Uil 0
keep B2 | —0.3 04 0.2
e 0.1 0.2 -0.1 -0.1

m 04 -04 02 03

to

=11)
-0.5
=3.6
-0.2

0.3

Words > Sentences

ConvNets

_ 1D convolution:

e Padding

DR

00
0.1

0.2
=023
-0.3
=0.3

0.2
-0.4

=03
—0.3
-0.2
0.1
0.4
-0.1
0.2

0.4
0.1
0.4
0.1
0.2
=01
0.3

-0.6
=120
-0.5
=3.6
=2

0.3
=0.5

Words > Sentences

ConvNets

_3 channel 1D convolution with padding =1

0.2
0.5
reached -0.1
0.3
0.2
government NI
-0.4

00
0.1

0.2
=023
-0.3
=0.3

0.2
-0.4

=03
—0.3
-0.2
0.1
0.4
-0.1
0.2

0.4
0.1
0.4
0.1
0.2
=01
0.3

0.2
1.6
-0.1
0.3
0.1
0.6
=0.9

1.4
-1.0
0.8
0.3
1.2
0.9
0.1

Words > Sentences

ConvNets

_convld, padded with max pooling over time

© | 00 00/ 00 00 :
0.1

0.2 0.3 04
B o5 02 -03 -0.1
01 -03 -02 04
R 03 03 01 o1
I o2 03 04 02
01 02 -01 -0.1
R o2 04 02 03
9 | 00 00] 00

L,
e
1)

-0.6
-1.0
=05
=35
—{).2

0.3
=05

0.3

0.2
1.6
-0.1
0.3
0.1
0.6
=0.9

1.6

1.4
-1.0
0.8
0.3
1.2
0.9
0.1

1.4

Words > Sentences

ConvNets

_convld, padded with ave pooling over time

DR

00
0.1

0.2
=023
-0.3
=0.3

0.2
-0.4

=03
—0.3
-0.2
0.1
0.4
-0.1
0.2

0.4
0.1
0.4
0.1
0.2
=01
0.3

L,
e
1)

-0.6
-1.0
=05
=35
—{).2

0.3
=05

0.2
1.6
-0.1
0.3
0.1
0.6
=0.9

1.4
-1.0
0.8
0.3
1.2
0.9
0.1

-0.87 0.26 0.53

Words > Sentences

ConvNets

+ activation function

convolution * 1-max softmax function
- regularization
l + v POONNg in this layer
3 region sizes: (2,3,4) 2 feature |
Sentence matrix 2 filters for each region maps for 6 univariate 2 classes
7x5 size each vectors
totally 6 filters region size concatenated
together to form a
single feature
vector

d=5

like
this
movie

very [| ‘
much [

Words > Sentences

ConvNets

_Training a ConvNet Is a supervised task

e Therefore, It requires a supervised loss function
o The loss function depends on the downstream application
m Sentence classification, POS tagging, NER, Paraphrase detection, Translation etc.
o Filters are weights!
m Backpropagation updates filters in order to decrease the error
m Dropout Is essential

Memory

Recurrent Nets

_When we look at stock prices, they tend to change over time

High

Medium

Low
1 2 3 4
Day

Memory

Recurrent Nets

_When we look at stock prices, they tend to change over time

e For example the price for this stock went up for 4 days, before going down

High

Medium

Low
1 2 3 4 5

Day

Memory

Recurrent Nets

_When we look at stock prices, they tend to ¢

nange over time

e Also, the longer the company has been trac

High

Medium

Low

ed on the stock market, the more data we will have for It

Memory

Recurrent Nets

_When we look at stock prices, they tend to change over time

e Also, the longer the company has been traded on the stock market, the more data we will have for it
o So, we need a neural network that works with different amounts of data.
m Thatis, how much data to remember?
m This s very different from typical neural networks.

High

Medium

Low

1 2
Day

Memory

Recurrent Nets

_When we look at stock prices, they tend to change over time

e Recurrent neural networks

High
Medium

Low

Memory

Recurrent Nets

_ Feedback loops

e Plus, weights, biases and activation functions

Input W1 b1 W3 b- Output
x 1.8}—> sum|+ 0.0| x 1.1}—>{+ 0.0

l

Memory

Recurrent Nets

_ Feedback loops

Input W1
mx 1.8~ sum

L
-
s ®
L
-
. B
-
s "
»

1.0
0.5
0.0

b2

Output

+ 0.0

Memory

Recurrent Nets

_ Feedback loops

Input W1

8P sum

+ 0.0

Output
O=>10.75

Memory

Recurrent Nets

_ Feedback loops

Input W1
0,75 bx 1.8=>»sum
A
1.0 :
08 Y
0.0
1 2 3 4 5 6 7 8 9 10

+ 0.0

Memory

Recurrent Nets

_ Feedback loops

x1.8

> S LIIM

+ 0.0=>

Output

w3 b2
x 1.1+ 0.0
x -0.5 W2

Memory

Recurrent Nets

_ Feedback loops

x1.8

p—— SLIM

+ 0.0=>

b2

Output

+ 0.0

Memory

Recurrent Nets

_ Feedback loops

8~ sum

b2

Output

+ 0.0

+ 0.0

M

Memory

Recurrent Nets

_How to use recurrent neural networks?

e Yesterday and today prices to predict tomorrow
o Low =0, Medium = 0.5, High =1

High

Medium

IIIIIIIIII)
Low

Yesterday * Tomorrow Yesterday * Tomorrow Yesterday * Tomorrow Yesterday * Tomorrow

Today Today Today Today

Memory

Recurrent Nets

_ Feedback loops

Predicted
Input Value for Today

W+ b+ Y1 wis b
II]—" = PO -) PR °'°""I|

Memory

Recurrent Nets

_ Feedback loops

Input

W1

x1.8

= SUM

Ky

+ 0.0

Memory

Recurrent Nets

_ Feedback loops
;

0.5

(Today xw+) + (y1 xw2)
v

0
Yesterday *

Today

sl
.......
.......

Memory

Recurrent Nets

_Unrolling

Input

Output

Input

w1 b1 ws b2
[Fessemmitian] /| il

Memory

Recurrent Nets

_Unrolling

Input

Input

4| 2
[Hessanbos /rialoos]]

Memory

Recurrent Nets

_Unrolling

Yesterday

4

x1.8

LI

Today

W1

L F

x1.8

== SUIM

Output

+ 0.0

Memory

Recurrent Nets

_Unrolling

1

0.5

0
Yesterday *

Today

Yesterday "

Predicted Value
W3 b> for Tomorrow

[0 feissamioon] /| itisicaos| |

Memory

Recurrent Nets

_Unrolling many times

%, R Day Before
0.5 OO Yesterday W1

* Yesterday * Tomorrow

Day Before Today
Yesterday

Yesterday W1

Predicted Value
b for Tomorrow

coss]]

Memory

Recurrent Nets

_ Gradient Vanishing/Explosion

e Weights greater or smaller than 1

1 O 0O L

il

LSTM

long-Short Term Memory

_ We have two memories:

e Short memory:

o Recent events are important
e [ONg memaory:

o Events that occurred longer ago must be memorized at some extent
e .. but typical RNNs have only one memory.

LSTM

long-Short Term Memory

_ We have two memories: Long Ago

e How much of short memory should be incorporated?
e .. and how much of long memory should be discarded?
o Weights are learned to control these memories.
m Backpropagation!

»

Yesterday

LSTM

long-Short Term Memory

_ We have two memories:

e The LSTM cell is complex!
o Each cell has three components

LSTM

long-Short Term Memory

_Two activation functions

e Sigmoid

o Output between 0 and 1
e Tahn

o Output between -1 and 1

LSTM

long-Short Term Memory

Long-Term New Long-Term
Memory Memory

—E-—-) X 1.99 sum

% Long-Term
To Remember

Potential Short-
Term Memory

% Potential Memory Potential Long- % Potential Memory :
To Remember 0.97 Term Memory To Remember

LSTM

long-Short Term Memory

_ Example

High=1 High=1

Value Value

Low=0 Low=0

3
Day Day

LSTM

long-Short Term Memory

_ Example

High=1
Value

Low=0

Day

LSTM

long-Short Term Memory

Initial
Long Term Updated Long

Memory Term Memory

Initial

Short Short
Term Term

Memory Memory

LSTM

long-Short Term Memory

Updated Long
Term Memory

Updated
Short
Term

Memory

LSTM

long-Short Term Memory

Updated Long
Term Memory 'y

Updated
Short
Term

Memory

LSTM

long-Short Term Memory

Encoder-Decoder
Seq25eq Models

_Sequences that need to be transformed In other sequences

e Translate one language to other
e Translate audio into text
e Sequence of amino acids to 3D structures

These problems are called sequence-to-sequence, or seq2seq

e \We can solve these problems with an architecture called encoder-decoder

Encoder-Decoder
Seq25eq Models

_Challenges

e The size of the input sequence may be shorter/larger than the size of the output sequence
o Let's go » Vamos
m The encoder-decoder must be able to handle variable input and variable output lengths.
m LSTMs are good for dealing with variable input lengths.

Encoder-Decoder
Seq25eq Models

_ LSTMs

e Remember: the input is a word embedding (one-hot encoding + fixed embedding layer)

Initial Long Updated Long
Term Memory Term Memory

Updated Short
Term Memory

A
Input Value

Encoder-Decoder
Seq25eq Models

_LSTMs

e Remember: the input is a word embedding (one-hot encoding + fixed embedding layer)

Initial Long Updated Long Initial Long Updated Long
Term Memory Term Memory Term Memory Term Memory

Updated Short
Term Memory

Updat.ed Short
Term Memory

Input.\lalue lnput.Value Input.VaIue

Encoder-Decoder
Seq25eq Models

_Encoder: one layer

Encoder-Decoder
Seg2Seq Models

_Encoder: one layer

e But we can have more than one cell

Encoder-Decoder
Seg2Seq Models

_Encoder: we can add more layers

Encoder-Decoder
Seg2Seq Models

_Encoder: we can add more layers

e And we have the encoder Encoder

Layer 2
Layer 2

let’s go

Encoder-Decoder
Seg2Seq Models

_Encoder: we can add more layers

e And we have the encoder Encoder
o We call the last long and short-term memories as context vectors ..,
m [hese vectors will initialize the memories in the decoder

EN o~

. o - -

i N A 1A
1//0//o]/0 0!//0/[1]]0]

Encoder-Decoder
Seq25eq Models

_Decoder

Encoder
Layer 2

Encoder-Decoder
Seq25eq Models

_Decoder

Encoder

let’s go ir vamos y <EOS>

Encoder-Decoder

Seq25eq Models

Decoder

Encoder

ol[ol[1][o

11lollollo

go

let’s

Encoder-Decoder
Seq25eq Models

_Decoder

e Fully-connected + Softmax

Ewncoder

let’s go

Encoder-Decoder
Seq25eq Models

o] [1] (o] [e]

_Decoder SoftMax

e Fully-connected + Softmax

Encoder

Encoder-Decoder
Seq25eq Models

_ Decoder vamos <EOS>
_ [o] [1][o][e] [o][o][c]
e Fully-connected + Softmax SoftMax SoftMax

o Welghts - backpropagation

Encoder
Layer 2

Encoder-Decoder
Seq25eq Models

_Decoder

e Fully-connected + Softmax
o Welghts - backpropagation
m During training, instead of using the predicted token as the next word, we always use the correct one.

Attention

Seq2Seq Models with Attention

_The problem with long sentences

e Seq2Seq models work very well for very short sentences.
o But their performance decreases drastically with long sentences.
o Why this happens?
m On atypical Seg2Seq model, the LSTM cell compresses the entire input sequence into a single context

vector.
Encoder
T 7 T >
RTEn e TETES TR
A4 A4 4 b1

let's to -« <EOQS> let's to -« <EOS>

Attention

Seq2Seq Models with Attention

_The problem with long sentences

e For longer input sentences, even with LSTMs, words that are input earlier are likely to be forgotten.

Ewncoder

27 % 2

" the delicious Iboking and smelling pizza.

Az Az
eat

Don’t

Attention

Seq2Seq Models with Attention

The

e INt

oroblem with long sentences

N1S case, If we forget the first word, then the sentences would have completely opposite meanings.

2
42 2 7 Z "a 2 7
eat the delicious looking and smelling pizza.

Attention

Seq2Seq Models with Attention

Initial
Long Term Updated Long
_ Remember the motivation for LSTMs. Mer:nory . Mem:>ry

e Typical recurrent neural networks have problems with long-term
memory because they run both long and short-term memories
through a same vector.

o LSTMs, on the other hand, solve this problem by providing
separate paths for long and short-term memories.

Memory Memory

Attention

Seq2Seq Models with Attention

_Remember the motivation for LSTMs.

e Fven with separate memories, If we have a long input sentence, then booths paths have to carry a lot of
Information.
o This means that a word at the start of a long sentence, can still get lost.

Encoder

A/ /
delicious looking

Attention

Seq2Seq Models with Attention

_The intuition behind attention in neural networks.

e Add direct paths from the encoder to the decoder.
o One per input word, so that each step of the decoder can directly access input words.

delicious looking

Attention

Seq2Seq Models with Attention

_Encoder-Decoder with Attention

e We have an embedding layer

A |75

let's to go <EOS>

Attention

Seq2Seq Models with Attention

_Encoder-Decoder with Attention

e We have an embedding layer
e And we add a LSTM cell

let’'s to go <EOS>

Attention

Seq2Seq Models with Attention

_Encoder-Decoder with Attention

e We have an embedding layer
e And we add a LSTM cell
o Then we start the LSTM memories Iin the encoder with 0’s

let's to go <EOS>

Attention

Seq2Seq Models with Attention

_Encoder-Decoder with Attention

e We have an embedding layer
e And we add a LSTM cell
o Then we start the LSTM memories in the encoder with 0's
e Now, we add more context (more LSTM cells)
o And we plug 11n the embedding layer for the words in the sentence

Attention

Seq2Seq Models with Attention

_Encoder-Decoder with Attention

e We have an embedding layer
e And we add a LSTM cell
o Then we start the LSTM memories in the encoder with 0's
e Now, we add more context (more LSTM cells)
o And we plug 11n the embedding layer for the words in the sentence

Encoder e The encoder is done!

let’s go ir vamosy <EOS>

Attention

Seq2Seq Models with Attention

_Encoder-Decoder with Attention

e Attention does not change the encoder
o But, each step in the decoder must have direct access to the inputs.
m How attention connects the decoder to each input in the encoder?

let’s | go ir vamos y <EOS>

Attention

Seq2Seq Models with Attention

_Encoder-Decoder with Attention

-) &
e There are many forms of implementing !

Attention, and this 1s only one of them. | '
r~-SoftMax >y

' [AL]

sum sum

let’s go ir vamos y <EOS>

Attention

Seq2Seq Models with Attention

_Encoder-Decoder with Attention

e |et's talk about the decoder.
o Put1on the EOS symbol (EOS can be used as SOS also)

Encoder

Attention

Seq2Seq Models with Attention

_Encoder-Decoder with Attention

e The first thing Is to determine how similar
the inputs from the encoder LSTMs are ate
each step to the outputs from the decoder
LSTMS.

o |n other words, we need a similarity
score between the LSTM inputs

(short-term memories) and each step in
the decoder.

Ewncoder

« |Sim. Score
o

w | Sim. Score

Attention

Seq2Seq Models with Attention

_Encoder-Decoder with Attention

e There many ways to calculate the similarity between vectors.
o Different attention mechanisms amploy different similarity measures.
m We will assume the cosine similarity

Z’; 1 AzB l

V Zici A% 2icy B

Cosine Similarity =

Attention

Seq2Seq Models with Attention LSTMs

Cell #1 Cell #2

A = Encoder = Let's-» 076 0.75
B = Decoder = <EOS>-» 0.91 0.38

__Encoder-Decoder with Attention

e |et's calculate the similarity between the
Input from the first step in the encoder
(“let's”) and the first output of the decoder
(<EOS>).

« |Sim. Score
-

0.75|

Ewncoder

Attention

Seq2Seq Models with Attention

_Encoder-Decoder with Attention

e Now we just plug the numbers into the equation for cosine similarity

LSTMs

Cell #1 Cell #2

A = Encoder =Let's-» 076 075
B = Decoder = <EQOS>-» 0.91 0.38

S

> AB; (-0.76 x 0.91) + (0.75 x 0.38)

Cosine Similarity =

n n B .
\/ > A?\/ > B? J-0.762 + 0.752 / 0.912 + 0.382

Attention

Seq2Seq Models with Attention
LSTMs

Cell #1 Cell #2

_ Encoder-Decoder with Attention A = Encoder = Let's» 076 0.75
e The resultis-0.39 B = Decoder = <EOS>-» 0.91 0.38

« | Similarity| = -0.39
) <

A
0.75)
-0.76
oo]— I I————, cale

Encoder

|

[1][o][o] [0

Attention

Seq2Seq Models with Attention

LSTMs
_Encoder-Decoder with Attention
- Cell #1 Cell #2
e A more common way to calculate the similarity for Attention A = Encod | at’s -
is just calculate the numerator. = Encoder =Lets—» -076 0.75
o The dot product. B = Decoder = <EOS>-» 091 0.38

m We do not need to scale the magnitude between -1
and 1.

Attention

Seq2Seq Models with Attention

_Encoder-Decoder with Attention

e A more common way to calculate the similarity for
Attention Is just calculate the numerator.
o The dot product.
m We do not need to scale the magnitude between
-1 and 1.
e large positive numbers mean vectors are more
similar than small positive numbers.
e Large negative numbers mean vectors are
more completely backwards than small
negative numbers.

A = Encoder = Let’s

LSTMs

Cell #1 Cell #2

-0.76 0.75

B = Decoder = <EOS>-» 0.91 0.38

Dot Pmducé

= Z:;l A;B; =(-0.76 x 0.91) + (0.75 x 0.38) = -0.-41

Attention

Seq2Seq Models with Attention

LSTMs

_ Encoder-Decoder with Attention Coll #1 | Cell #2 Dot Zn AB
e e S . .
P U1

e Other advantage A = Encoder = Let's-» 076 0.75 EYOR i=1

o Dot product is easier to iImplement in a network. B = Decoder = <EOS>-» 091 0.38

Attention

Seq2Seq Models with Attention

_Encoder-Decoder with Attention

e Other advantage
o Dot product Is easier to implement in a network.

A = Encoder = Let’'s -»

LSTMs

Cell #1 Cell #2

-0.76

B = Decoder = <EQS>-» 0.91

Encoder

0

0.75|

-0.76

.....;J‘,

0.75
0.38

Dot _ A.B. = (-0.76 x 0.91
Product Z i =)
i=1 + (0.75 x 0.38) = -0.41

Attention

Seq2Seq Models with Attention

_Encoder-Decoder with Attention

e |ikewise, we can compute the similarity score L STMs
between the second input of the encoder (“go”) Dot =zn: A.B. =(0.01 x 0.91)
with the first output of the decoder (“<EQS>"). A=Encoder=go-» o001 -001 @ roauct i - + (-0.01 x 0.38) = 0.01

B = Decoder = <EQOS>-» 0.91 0.38

0.75|]| F—
Encoder -0.76 0.01|
03—+ D>
5 1,y LT T _L
0 =spapaay oy e —
A 1
1][0][o][o] ollol[1]]o

Attention

Seq2Seq Models with Attention

_Encoder-Decoder with Attention

e Now we have similarity scores for both input

words (“let’s” and “go”) ...
o ... relative to the output (“<EQS>") in the sum sum

decoder.

Attention

Seq2Seq Models with Attention

_Encoder-Decoder with Attention

e How can we use these similarity scores? r=-SoftMax =Y
o Intultively, the similarity score reveals how A
each palr of words are related to each other.
m Thatis, we want “go” to have more
influence on the first words that comes
out of the decoder.

sum sum

Attention

Seq2Seq Models with Attention

_Encoder-Decoder with Attention

e Softmax gives us how much to use from each
word.
o “Let's” accounts for 0.4,
o “go” accounts for 0.6,

Ewncoder

0.75

=D
0.4

X X

r-SoftMax Y

Foa1] A [oo1]

sum

sum

Attention

Seq2Seq Models with Attention

— D x|=E=+ T

:) x| X

__Encoder-Decoder with Attention 04 06
e |astly, we add the scaled values together. r~SoftMax >y

o These sums, which combine the separate A

encodings for both input words, relative to the

output word, are the Attention values for
U<EOS>".

sum sum

Attention

Seq2Seq Models with Attention

_Encoder-Decoder with Attention

e Now, all we need to determine the first output

. . . SR E=nEl
word Is to plug the Attention values into a fully ! Sy
connected layers. l o] [oe

r~-SoftMax -
[041]A-[001]
H sum sum
#——-———-i
0.75 -o.o1| — -
Encoder -0.76 0.01
u i 32 > I) ; 34 2 | e
ATEn v s |
. L
A (A A A
1//o//0]|0] o]l[o][1]]0] ol/[o][o][1

Attention

Seq2Seq Models with Attention

_Encoder-Decoder with Attention

e Now, all we need to determine the first output

. . . —— AL s
word Is to plug the Attention values into a fully ! 3 [X
connected layers. ‘ 0.4
o and also to plug the encodings for “<EQS>" Pe-Setintax-74
into the same fully connected layer. fuif Zu(:
i e 1
0.75 o.o1| >$ A >x [

Encoder -0.76 0.01 0.97](0:38

Attention

Seq2Seq Models with Attention

_Encoder-Decoder with Attention

e The same forward calculations! and softmax!

vamos

[o] (2] [o] [o]

SoftMax

r~-SoftMax -

[Foa1] A [oor]

sum sum

0.75

Encoder

let’s go <EOS>

Attention

Seq2Seq Models with Attention

_Encoder-Decoder with Attention

e The same thing is done for the second output =
word (“vamos” is the most likely one) | _

Decoder r=SoftMax -

[126] A [-o01]

sum

Encoder

Transformers

Parallelism

_There are 1ssues with typical seg2seq NLP models

e One of the hardest Is that the encoding step is done sequentially, and this is a serious limitation.
o Parallelism Is iImportant because we want to produce models with as much data as we can.
m RNNs work in a step-by-step way.
e They are inherently sequential, and the internal hidden state 1s updated at each step.
m Attention mechanisms are typically computed sequentially for each element in the output sequence,
making it a step-by-step process.
o Transformers allow for more parallel processing due to their self-attention mechanism, which enables the
model to attend to all positions in the input sequence simultaneously.

Transformers

Learning word representations

_With parallelism we may train models using much more data.
e Thus, In practice, we do not use pre-trained word _
embeddings in Transformers. / /
o Instead, we produce word embeddings as we train the
Transformer. —» sum —) Sum
m We have a embedding layer in which each token iIs ¢ ol T A

linked to a number of activation functions.
e The number of activation functions depends on the

embedding dimension. |

let’s to go <EOS>

Transformers

Learning word representations

_ With parallelism we may train models using much more data. ——

e Thus, In practice, we do not use pre-trained word
embeddings in Transformers.
o Instead, we produce word embeddings as we train the
Transformer.
m We have a embedding layer in which each token is
linked to a number of activation functions.
e The number of activation functions depends on the
embedding dimension.
e Weights multiply the input for each token.

let’s to go <EOS>

Transformers

Learning word representations

_With parallelism we may train models using much more data.

e Thus, In practice, we do not use pre-trained word 1.87
embeddings in Transformers.
o Instead, we produce word embeddings as we train the /i(
Transformer. > sum
m We have a embedding layer in which each token is x1.87

linked to a number of activation functions.

0.09

» sum

x 0.09

e The number of activation functions depends on the
embedding dimension. Iel,s
e Weights multiply the input for each token.
o The same weights are used no matter the token
being processed.
o Updated via backpropagation.

-0.78

sum

Transformers

Learning word representations

277 277 277 277
X
_With parallelism we may train models using much more data. / /{ / /
~—» Sum —» SUM ~—» Sum » sum
. . . | N A | AN A ‘ A A | A A
e Thus, In practice, we do not use pre-trained word x?77] |[x?72 «272] | [x772 272 | (772 x727) | [x 772
embeddings in Transformers com] | xom x?77] | [x 7?2 x227] | k772 x722| | x?722
o Instead, we produce word embeddings as we train the - =1
Transformer, L 1
let’s go

m We have a embedding layer in which each token iIs

linked to a number of activation functions.

e The number of activation functions depends on the
embedding dimension.

e Weights multiply the input for each token.
o The same weights are used no matter the token

being processed.

o Updated via backpropagation.

Transformers

Learning word representations

_With parallelism we may train models using much more data.

e Thus, In practice, we do not use pre-trained word
embeddings in Transformers.
o Instead, we produce word embeddings as we train the
Transformer.
m We have a embedding layer in which each token is
linked to a number of activation functions.
e The number of activation functions depends on the
embedding dimension.
e Weights multiply the input for each token.
o The same weights are used no matter the token
being processed.
o Updated via backpropagation.

277 277
A X
—) sum < » sum
A A [A A
x??2? | [x??? x?7?7? | [x???
x272] | k222 x222| | [x22?
e
1
let’s
1.87 0.09
—) sum < —) sum
A A A A
x1.87| ||x-0.78 x0.09| | [x0.27
| |
x -1.45| | x 2.21 x1.50| | x -0.64
[
1
let’s

?7? 7?77
—)sum" » sum
A A [AT A
x??? | [x??? x?2?| | [x?2?
x227] | x272 x222| | x2722
o I i
1
go
-0.78 0.27
— > sum- » sum
A A [T o
x1.87| ||x-0.78 x0.09| | [x0.27
x -1.45| | [x 2.21 x1.50] | [x-0.64

go

Transformers

Word ordering

_Now, how to represent word order?

e The ordering of the words In the sentence Is crucial for its meaning.
o We may have two sentences with the exact same words, but with completely different meanings.
m How to take order into account without hurting parallelism?
e Positional encoding

Transformers

Positional encoding

_This Is the technique Transformers use to keep track of word order.

e |nstead of coding the ordering using the architecture ...
o .. Transformers encode the ordering directly in the data (i.e., representation)
m Positional encoding Is crucial to parallelism.

Transformers

Positional encoding

_This Is the technique Transformers use to keep track of word order.

e |nstead of coding the ordering using the architecture ...
o .. Transformers encode the ordering directly in the data (i.e., representation)
m Positional encoding Is crucial to parallelism.
e example from StatQuast

0.2]]-0.1{11.2|]|-0.4 1.1]110.6](-1.3]]0.9 -0.211-0.9{10.9 |1 0.2

A A4 A A NA A A A A A A
1110110110 0111110110 0110111110
6‘60 @'{’@ ¢<\:"(b

Transformers

Positional encoding

_This Is the technique Transformers use to keep track of word order.

e |nstead of coding the ordering using the architecture ...
o .. Transformers encode the ordering directly in the data (i.e., representation)
m Positional encoding Is crucial to parallelism.
e example from StatQuast

7| | A A 7\ A A 7\ |4 A
111011040 0/11]10}|0 0//0//1/10
N & >

Transformers

Positional encoding

_Thisist

ne technique Transformers use to keep track of word order.

® |nsteac

o .. Transformers encode the ordering directly in the data (i.e., representation)
m Positional encoding is crucial to parallelism.

of coding the ordering using the architecture ...

Position

1
L 2nd

example from StatQuast Embedding |

s S S S A A A A A A A4 \|A4 o
b e b S
[1][0][o][0] o![1][ol]o o0!/[ol[1]/0 1
O x2 > B
xO 3 4V T T N
° ‘ Q 1st 2nd 3rd etc...

Word (Token) Position in Input

Transformers

Positional encoding

4th
. . . -1
_This Is the technique Transformers use to keep track of word order.
3
3rd
o
Embedding
Position ’
¢ 2nd
o]/ 11[0o][1] [09]/o4][0.1][-0.9] [-0.9] -0.9][-0.7][0.9 1
+ - -+ 4 + + - - -+ - - -
0.2][-0.1][1.2][-0.4] [1.1][0.6][-1.3][0.9] [-0.2][-0.9][0.9][0.2 1
Do | o | o | s | | e | A\A A A 1st
1/[0][0] (0] 0/[1][0] /0 o/[o][1][o0 -1
X x2 >
\;5‘0 & {2\"3’ 1st 2nd 3rd etc...

(O
© Word (Token) Position in Input

Transformers

Positional encoding

_This i1s the technigue Transformers use to keep track of wo

e Because sine and cosine are repetitive, 1t Is possible that
o But, with larger vocabularies and embeddings, these re
m And we have unique sequence of positional values for each token.

rd order.

'wo words might get the same position (y-axis values).

neated values can be simply neglected.

-0.9 -0.9
+ +
1.1110.61]]-1.3110.9 -0.211-0.9/10.9]10.2
A NAA A A A NAA A A~
0(111101]10 0 /0 110
Z >
@'& <\3’

Transformers

Positional encoding

_This Is the technique Transformers use to keep trac

e Now, all we need Is to sum the position values to t
o “Squatch eats pizza”

02]109]]11.2]]0.6 0.2]11.0](-1.2]]0.0

< of word order.

ne embedding values.

HIERIEEE -0.9//0.4 /0.1]|-0.9
+ + + + + + + +
0.2||-0.1][1.2]|-0.4] [1.1]]0.6][-1.3]]0.9
A | A | A A A A A A
1/l0][o]|0] [0][1][0][o]
O S
\;5‘0 &

Transformers

Positional encoding

_This Is the technique Transformers use to keep trac

e Now, all we need Is to sum the position values to t
o “Pizza eats Squatch”

< of word order.

ne embedding values.

m Positional encoding allows Transtormer to keep track of word order.

-0.2|[0.1](0.9][1.2] [0.2]]1.0]|[-1.2]]0.0| [-0.7][-1.0][0.5][0.5
0]/ 1[0} 1 -0.9//0.4/0.1//-0.9] [-0.9]//-0.9/|-0.7||0.9
+ + + + + + + + + + + +
-0.2|[-0.9//0.9]||0.2| [1.1]]0.6]|-1.3][0.9] [0.2][-0.1][1.2][-0.4
A | A 1A | A Dt | ek e A A | A A
ollol[1][0 ol[1]o}]o 1][o][ol]0]
> © 0
Q& & 0'5\0

Transformers

Positional encoding

_Back to the translation example.

1.87 0.09 -0.78 0.27
< - 3
7] I A A5
A« A -
1][0] [0] [0 0] 0] [1] [0

let’s go

Transformers

Positional encoding

_ Back to the translation example.

LIN

-0.78

0.4 N
e
+
0.27

1%

E]EI

-1.68

5

.

0.67

0.4 [NJ

-0.78

-+
0.27

)&

EEI

Transformers
Self Attention

_How the Transformer keeps track of the relationship among words?

e lLanguage IS ambiguous
o There Is cohereference, linkage etc.
m EX: “The pizza came out of the oven and It tasted good!”
e The word “It" refers to pizza or oven?
o Does oven taste good?

Transformers
Self Attention

_How the Transformer keeps track of the relationship among words?

e Self Attention Is @ mechanism to correctly associate the word “it” to the word “pizza”
o How similar 1s each word to all other words in the sentence, including itself.
m Once the similarities are calculated, they are used to determine how the Transformer encodes each word.
e The word “it" Is more commonly associate with “pizza” than with “oven”. Similarity between “it" and
‘pizza” Is greater.

dhe pizza came out of the oven and it tasted good!

Transformers
Self Attention

_How the Transformer keeps track of the relationship among words?

e We start by creating the Query Values

Transformers
Self Attention

Querj
How the Transformer keeps track of the relationship among words? -
- 10 !ﬂl
e We start by creating the Query Values ;\um sum 5
X 2
X -2. 8 -
H o 6
X 1

<« A\
/i A
0][0] /o]

let’s

Transformers
Self Attention

_How the Transformer keeps track of the relationship among words?

e \We start by creating the Query Values and Key Values
o Similarity == dot product

C] (2]

sum
\

1.4 |

-14x 0.9

SUIT\

- [(02] Ke
~

x 0.5

Qu,erv
[10] [87]
;wqmmgym
X24,
X -2.8~
x 0.6
x 1.1
1.87
1
YA o

x 0.9

x 0.5

Transformers
Self Attention

_How the Transformer keeps track of the relationship among words?

e \We start by creating the Query Values and Key Values

o Similarity == dot product
= We want “let’s” to have more influence than ‘g oo | .-_.AETA——L___ASW
o d —[55 Pl 4"
the word “go” >Ix -
= Key -02] Key
P sum sum sum sum
i /™ A \ A A /\ A AN A
X24|. 1x-1.4 Xx-14| — -
X -2.8- x 0.9 x 0.9 ‘ |
x 0.6 ’ x -1.7 x -1.7 oy
] it xos———__
1.87|(1.09 -1.68| |0.67
| — t =
@-»-ﬁ- H< /N @-»-l- + <\
A | A A 1A
1 o/'o!’c‘i'} 0][0][1] (0]

Transformers
Self Attention

_How the Transformer keeps track of the relationship among words?

e \We start by creating the Query Values and Key Values
o Similarity == dot product

, —> SoftMax «—
m We want “let's” to have more influence than o g P iy £
. == e ——T
the word “g0”, and we do this using Softmax 3 > |x = x
Key [-47 1.9] [-02] Kev
....... um......sum._: sum sum sum sum
: A A A A /N AN P
X24|_ Ix -1.4 X-14-| —| -
X -2.8|~ | x 0.9 x 0.9~
x 0.6 ‘____x-1.7 A 1T
x 1.1 1 x 0.5 xO.S—q |
1.87111.09 -1.68| |0.67
1 S 0 i
T B Fpow @A
A 1A A 17
V./ N ar ,./
1][o][o] /o] o][o][1] /0’

let’s go

Transformers
Self Attention

_How the Transformer keeps track of the relationship among words?

e \We start by creating the Query Values and Key Values

o Similarity == dot product ;’\’6’
7] ? ”n M -—’ Ot ax‘——- m
m We want “let’s” to have more influence than e | »\SE E
the word “g0” and we do this using Softmax J — NFR- s |~ g
Key (22 07] Key
;\um sum . ; sum sum sum sum
/] /\ / A \ A A /\ / NN
X 2.4| [x -1.4] | ot Al el
dn i | "11x 09 x 0.9~ l
x 0.6 1___x-1.7 | X -1.7 e
LA J x0.5 x 0.5 I I
1.87|11.09 -1.68| |0.67
S _— 1 =
@—}-ﬁ- <N @-»-i- <N
3i i N
#q |5 1 |9

Transformers
Self Attention

_How the Transformer keeps track of the relationship among words?

e |n order to scale each word we create a third component, which 1s
called Values

o Each word has its Values which will be scaled according to the P ”ﬂ%’lﬁ“ _ o == =
. o — ——y
influence of each word. Value[25] [z] 751 volue

N A N 7 . : sum sum
m [n the figure, we have the self-attention values for “Let's” <0302 [77]—> SoftMax<— [z L S
Querv |X1.5: x_1.707‘ '__ASETA ASl.ll'l‘lA 10‘
L >[’h)%] >é})%] |
- [1o] [37]: Ke-'j 1.9 1.9] [02 Ke-j
e R SUTD, .. | gum [um RUT). ... 2um.
x2.4| —|x-1.4]| x -1.4]-| —| - n
lx-ze— -11x 0.9 x09 |
x 0.6 x-1.7 x -1.7
x 1.1 x 0.5 x 0.5
1.37 1.09
S BN
A |~
1][o][o] 0

Transformers
Self Attention

_How the Transformer keeps track of the relationship among words?

e The same process Is done for all other input words.
o But the good news Is that we do not have to recalculate the Keys

and Values. ———=ph —>[2s
. : | » 2.1
m All Is needed Is to create a Query for the other words. Value[25] [2i i 55—) volue
, AR A 1.0 0.0 TN
e |n the figure we have self-attention values for the x-03-|x02 e _.,SJ,\N’.:“__ — i”/\uz
WOrd ugon. Querv X 1.5——x -1-0] :um§<—_ Asy‘rp?(__ ,ﬁj——-v—xk-to‘! Querv
| é“ [’h< T =] 5
-1.0 3.7 | Ke_v -4.7] [1.9 1.9] [-0.2 Ke'j [-3.7] [o.6
....... um.......gum_. | sum-sum sum - sum LSum . gum_
x24| | 1L |[x-1.4 x 14— — | |x -2.8]
x -2.8-| | | x 0.9 x 0.9/~ x24
x 0.6 x-1.7 x -1.7 f %11
x1.1 x 0.5 x 0. x 0.6
1.87] [.09 = |
B BN
)%
Are1 0116

Transformers
Self Attention

_How the Transformer keeps track of the relationship among words?

e The weights that we used to calculate the self-attention queries are
the exact same for all input words.
o No matter how many words are in the input.

e Likewise, the weights used to calculate self-attention keys and T A ex
values are the same for each input word.

0.2 A N
= Lx 0.3 .|!x-0.2
""""""""""""""""" X 1.5 =————{x -1.0 - s e ¥ Aanssenrsn
Querv : x 1.5 _x-1.0 Querv
0] [37] | Key[=7 [19] [02] Ke [37] [os
e |mportant! ST T J sumsum sumsum J Lgumsum.
o Note that we can calculate the Queries, Values and Keys <28 [e —l == | xos [y — *'2'1x2.4
~ . x 0.6 x-1.7 x-1.7 _ x 1.1
for each word at the same time. x1. x05 x05 1 x06
1.87|11.09 -1.68| |0.67
m \We do not have to calculate them for the first word first, T8 B Th@ @A
before moving to the second word. i |2 %{\/f
11{0/(0}]|0 0//0}|1]'0

let’s go

Transformers
Self Attention

_How the Transformer keeps track of the relationship among words?

e \Why do we need these two other values, since we already have
word embeddings + positional encoding?

o Context!
m Self Attention values for each input word contains input Y

from all other words. The pizia came out of the oven and it tasted good!

P>
Self-Attention | 2.5 | -2.1 2.5 |1-2.1
values : -
[Q v K] [Q v K]
L 1 L _4: 1
Word and ‘ ,
Position |1 87| [1.09 -1.68| |0.67
Encoded A - !
values @-» <N @-* <\
A A A |7
ol[o]/o o][o][1]/0

let’s go

Transformers
Self Attention

_How the Transformer keeps track of the relationship among words?

e \We can use multiple self attention cells.
o This is called multi-head attention.

Self-Attention [2.5 | 2.1
values '

Word and
Position

Encoded
values |

Transformers
Self Attention

_How the Transformer keeps track of the relationship among words?

e There Is one last thing to do.
o We take the positional encoded values and them to the
self-attention values.
m These bypasses are called residual connections.

Residual

Connection | 4.37 ||-1.01 0.82 ||-1.43
values A | A
—2H B —>H BH<
Self-Attention 56121

values 1

Word and ,
Position L_11.87|[1.09
Encoded

values @—» j\

Transformers

Encoder

_The encoder may have any input size

e Modern Transformers process very large inputs.
o Each input word I1s processed in parallel.

Encoder

Residual

Connection I 4.37 ||-1.01 I 0.82 -1.43'

values

Self-
Attention
values

Word and

Position

Encoded
values

A A o A |
>$ @ < >H H< R
2.5

2.1} 25| -2.1 i

let’s 0 go to

Transformers

Encoder

_ Parts the Transformer uses to encode the input.

o Encoc
o ENncoc

O encocC

e words into numbers
e the position of the words
e the relationships among the words

Residual

Connection | 4.37

values
_)
Self-Attention —

-1.01

~

+

«— %—Residual Connections— » _)

values

Word and

Position

Encoded

values

<—Self-Attention >
-1.68] [0.67}—
<—Positional Encoding-» ,_?_}-»i He N
A7
<4——Word Embedding——» - [ﬁ1 0

go

Transformers

Decoder

_The decoder also starts with learning word embedding

e The weights are different from the embedding layer of the encoder

—) sSum —) sum
A A A A
x -2.27 i x -0.77 x2.54| | [x-0.75
x0.04] | [x2.70 x1.97] |[x-1.34

ir vamos Vv <EOS>

Transformers

Decoder

_The decoder also starts with learning word embeddings

e The weights are different from the embedding layer of the encoder
o |t starts with the symbol <EOQS>

Encoder

Residual
Connection
values

Self-
Attention
values

Word and

Position

Encoded
values

sSum «

x2.70

sum

<EOS>

Transformers

Decoder

_The decoder also starts with learning word embeddings

e The weights are different from the embedding layer of the encoder
o |t starts with the symbol <EOQS>
m Positional encoding.

12.70||-0.34|
0.0] [1.0 J A 507 [1:0 <Al 370 [[0.34
H{00] (101N A{00] (101N 2.70)[0:34]

2.70| -1.34 2.70! -1.34
A S "

Transformers

Decoder

_The same process Is done for each output word.

e Self-Attention!
o Keep track of how output words relate to each other.
m Note: we start with only one word, and the number of
output words Increases as they are being decoded.

X =

<EOS>

Transformers

Decoder

_The same process Is done for each output word.

e So far we talked about how input words related to each other, and

how output words related to each other.

Residual

Connection | -0.1

-2.6

values A
Self- 'J’ >
-2.8

Attentio

€
-2.3

values .
Q Vv K]
Word and [‘_—‘}—_J

Position 270

-0.34

Encoded

values @—» HA]
A\ A

0110110

1

<EOS>

The pizia came out of the oven and it tasted good!
>

Transformers

Decoder

_The same process Is done for each output word.

e So far we talked about how input words related to each other, and
how output words related to each other.
o But, how Iinput words relate to output words?

Residual
Don’t eat the delicious looking and smelling pizza. Connection [2. 125
self- [7 g ~
o . . ; Attentiar.r -2.8|-2.3 '
Eat the delicious looking and smelling pizza. values |~ The pizza came out of the oven and it tasted good!
[Q v K] -
L 23 \
Word and

Position |__[370][[0.34
Encoded -

values@—» IN

A |A5
o][o][o

3
<EOS>

Transformers

Encoder-Decoder Attention

_ Keep track of the significant words in the input.
Encoder

Residual
Connection | 4.37 ||-1.01 | 0.82 |[-1.43}
values .

Self-
Attention
values

Word and

Position

Encoded
values

<EOS>

Transformers

Encoder-Decoder Attention

_ Keep track of the significant words in the input.

Residual
Connections

Self-
Attention

Position
Encoding @

Word
Embedding

let’s

Transformers

Encoder-Decoder Attention

_ Keep track of the significant words in the input.

e Similarly with Self-Attention, we create new values to represent

the Query for the <EOS> token in the decoder.

Residual

Connections

Self-
Attention

Word
Embedding

Position
Encoding @

let’s

Transformers

Encoder-Decoder Attention

_ Keep track of the significant words in the input.

e Similarly with Self-Attention, we create new values to represent

the Query for the <EOS> token in the decoder.
o Then we create Keys for each word in the encoder.

Kej 0.5 Kev

sum sum sum sum
¢ N W N TR
[x-o.3-—l~x-o.a [x-o.3——l~x-o.8
x-1.1— x0.3| [x-1.1—_x03
' !
Residual [237[-1.01 0.82 |[-1.43
Connections A , A
>H H<E —2H BH<
sei- |[q V k|l [l@ V K
Attention || | _i: " H | ’ J
- e ® e —
EOsion Y HeN Y HeN
Encoding B — b
A A
Word —/ // / //
Embedding K ke e M i B
1]lo||o] O ollof[1]/0

let’s go

Transformers

Encoder-Decoder Attention

_ Keep track of the significant words in the input.

e Similarly with Self-Attention, we create new values to represent
the Query for the <EOS> token in the decoder.
o Then we create Keys for each word in the encoder.

m And we calculate similarities between the <EOS> token
and each word In the encoder.

9.5
sum sum
A A A .
X - A
i Ekey
Kev -4.5 -0.5 Ke.j
sum sum sum sum
~ IS NN RNA
lx-os-—[x-08| |[x-03]—|{x-08
x-1.1——x03| [x-1.1—1x0.3
| 9
Residual [4357 1 .01 0.82][-1.43
Connections
il He —>ﬁ Al <—

Attseenht‘lon Q| \ll K|] Q _\{:5

Positi?n @_,* .*“!}.j @_" .*J\i

Encoding

Word
Embedding

_./‘/

//

1110

0

let’s

0

/i/

0 O

1]10

go

...

Transformers

Encoder-Decoder Attention

_ Keep track of the significant words in the input.

e Similarly with Self-Attention, we create new values to represent fgtM&
: 4.1
the Query for the <EOS> token In the decoder.
o Then we create Keys for each word in the encoder. '<—‘(*(‘ s | RO
m And we calculate similarities between the <EOS> token Key 45, 0.5 Key Los] [26]Query
sum sum sum sum Lsum osum e
. N A /N A N A /N A ASEA Y ASIPA
and each word In the encoder. | [x-0.3}—|{x-0.8 | [x-0.3]—|-{x 0.8 | [x0.3}—[{x-1.0
° USQ ,IOO% O_[: uLetrSn aﬂd O% O_I: “gO" x-1.1 ;x0.3 x-1.1 ;x0.3 X190 ;x-0.3
Residual [737][-1.01 0.82 | [-1.43 041][26
Connections — A , . A
—>H H< ——> B €< —>H H<
Self- Vv Vv v
Attention QL 5] [QL 4: JK [QL 5
mmmwa; ;:@tjpg ks Thm A
Encoding i - 1 e — | il ——
word 1210 7] |71 o |
S m 0 0 o][o][o] /1]
let’s <EOS>

Transformers

Encoder-Decoder Attention

_ Keep track of the significant words in the input.

e Similarly with Self-Attention, we create new values to represent
the Query for the <EOS> token in the decoder.
o Then we create Keys for each word in the encoder.
m And we calculate similarities between the <EOS> token
and each word In the encoder.
e Use 100% of “Let's” and 0% of “go”
e And now we calculate Values for each input word.
o Scale values by the Softmax percentage

| 1

%1 0 |€<SoftMax>
A

Value[60] [31

Residual

Connections

Self-
Attention

Position

sum sum

0.0

A
2.6 1.2

sum sum

Value

[x- 12~—l—4x -0.5| “x -1.2} /l\—x -0.5/

x 1.1} —1x 0.6]

4.37
=

]

101

Encoding @ +

Word
Embedding

(?/

x 1. 1____.1x06}

Transformers

Encoder-Decoder Attention

_ Keep track of the significant words in the input.

e Similarly with Self-Attention, we create new values to represent [|§1—-0<—80ffMaX> 0.0
the Query for the <EOS> token in the decoder. A
o Then we create Keys for each word in the encoder. ‘ |

X

A
i ﬁ t
m And we calculate similarities between the <EQS> token Value[60 I'E 2.6 1.2 | Value

and each word in the encoder. Tx 12-]{,(0.5 /ﬂx 1.2} 1. 0.5
e Use 100% of “Let's” and 0% of “go” x1al—xog [xt1—log
e And now we calculate Values for each input word. o Fosdl [257][-1.01 082 [-1.43

o Scale values by the Softmax percentage . P \/(* ’_’\/“’

o And finally add the scaled values together to get the Attention [Q 'f] [@_ 5]

Encoder-Decoder Attention values. S @ /\ @..‘ -
Word / /
Embedding

let’s

Transformers

Encoder-Decoder Attention

_ Keep track of the significant words in the input.

e The weights of encoder-decoder attention are different from the
welghts of self-attention
o However, the encoder-decoder attention weights are the same E o der. -
6.0]/3.1]

for each word. EREGLer Bugoder —
- Vs

=g
:}

Residual [4377[-1.01 0.82 |[-1.43
Connections _ A A

>H H< >H B
Self- I \/ l . \/
Attention Q| l K| Ql ! K,
Position N T:*
Encoding @ Ho j_.\.j @ &+ !}l

A | M A2

Word e, -
Embedding l.%?/?l - N e
1][o][o] /0’ ol[o][1] /0]

let’s go

Transformers

Encoder-Decoder Attention

_ Keep track of the significant words in the input.

e The weights of encoder-decoder attention are different from the
welghts of self-attention
o However, the encoder-decoder attention weights are the same
for each word.

| . Encoder Attention vV |
m Finally, we can stack encoder-decoder attention. — 11 K Q
] T
4 5

Encoder- 21l 0
Decoder 6.0 |13.1]

Residual

37 | |-1.01 0.82 ||-1.43 0.1 || -2.6
Connections A A A A A
> + + <
Self- I
Attention QL ’5]
Position LTy
<« _J/\J
Encoding @ | J},
Word
Embedding 1 o
I l

let’s <EOS>

Transformers

Encoder-Decoder Attention

_ Keep track of the significant words in the input.

e The weights of encoder-decoder attention are different from the
welghts of self-attention
o However, the encoder-decoder attention weights are the same
for each word.
m And we add another set of residual connections.

Residual 5.9 0.5
Connections
— > +H €<
Encoder- 601371
Decoder N S
Enco der Attention \/
[Q
ﬂ—ﬁ— &‘:,]
Residual [437[-1.01 0.82 |[-1.43 < -0.1][-2.6 F
Connections } A A A
) + €< —>H [H< > HL
Atf;:':‘;o.,i[@ Y)l |(e X l @ Y X I
Position : T3 "Blor PIr Y N A
Encoding@_’* T I HM @+ + j_.\.j
A7 i

-
/‘

Word -
Embedding |4 E/FZI |
1//0/({0}' 0

let’s

0.

Transformers

Inference

_ Fully connected layer

e The encoder-decoder attention values are given as input to a fully

connected layer.

+-0.6

Sum

TA

x -0.6|

|

+1.4

Sum
A A

|

x0.8|

|

+-2.5

Sum
)‘.\ A

x -0.1 [

x -0.9

+ 0.5
Sum

A A

Residual
Connections

Encoder-

Decoder
Attention

0l/lo0 ‘o 1]

<EOS>

Transformers

Inference

_ Fully connected layer

e The encoder-decoder attention values are given as input to a fully
connected layer.
o And a Softmax layer to select the most probable word.

EV\COd@.\‘ Encoder-
T - Decoder
_r —— | Attention
Residual [437][-1.01 0.82][-1.43 L i
Connections A ‘
—>H < —>F <
Attention || L 1 L d
- =) (e
osition | 4 A
Encoding@-""' HP @-"" HeAN
j /
Word —/ an ~/ _/
Embedding l% NS
1110/]0] 0] Of|Of|1] 0

let’s

E

Transformers

Inference

_ It will stop only when <EOS> Is the selected token.

e Now, the “vamos” token Is selected.

- >x) 4 . - »|-0.3 —
e x| € |
Value [:238 Iﬁ "
sum sum [0.0 3.7] Value
N N
N N 0.1 (\/) . sum sum
N N N A
lx'OAHl““'a 1.7]—> SoftMax «— G4~ tx-0.4* x1.3
x -1.1 x 0.7 Asum sum R —
: ; | . : x -1.1 x-0.7| Qu,erv
x| < x|< . : :
Key [12 0.1] Key [2.1] [o01] ¢
sum sum sum sum Lsum_sum
AN A /\ N N A AR A A
{x -0.4 x-04.| - - 1x -0.3
x -0.3 x -0.3 x 0.1
x 0.4 , x 0.4 x 0.4
x -0.7 x -0.7 ' x 0.4
2.70|[-0.34 -0.86|[2.37
T8 BN @»i ERVY
A A s
o]/o][o] |1 Ioi 1 iol 0

Transformers

Inference

_ It will stop only when <EOS> Is the selected token.

e Now, the “vamos” token Is selected. EVSE] 7 G |_£_|<>
o And the same process Is repeated. Sadans e

Encoder Encoder- | |
. Decoder B
L Attention
|]] T:} t\’ Q
Residual [437[-1.01 0.82] [-1.43 KL
Connections r ; A |
'—) RS —> < —> & i(—
Self- \/ I \/ \/
Attention QL + 5 Q| l K| QL _F ’J(]H
Position |E a o A ; T w I - 1Tl
Encoding BN I%] <N tZi—» <N
s A A/ A
Embedding T S 2
1][o][0] /o ol[o][1]/0] ol[o][o0] 1

let’s go <EOS> vamos

Transformers

Inference

_ It will stop only when <EOS> Is the selected token.

e Now, the “vamos” token Is selected.
o And the same process Is repeated.
m And the <EOS> token Is selected.

-5.1]15.7 ||-3.6]|-4.6

o] [1

vamos

SoftMax

5.9] |10.5

Encoder-

Encoder
Residual [4377[-1.01 0.82 | [-1.43
Connections A , A
—>H < —-) [<—
Self- v V
Attention QL ,J(QL ,J<

Position @_, 4_& @-» «&

Encoding

q |7

Word 2
Embedding 20

1

0

0/ 0

let’s

A |~

K]

0f|0

1110

go

Decoder

L Attention

<EOS>

][] [e][e][e][1]

SoftMax

ol[11[0]/0

Pretraining » LLMs

Tt 1s all about context!

_What can we learn from reconstructing the input?

e “| put___ fork down on the table’

e “The woman walked across the street, checking for traffic over ___ shoulder”

e ‘| went to the ocean to see the fish, turtles, seals,and ___ "

e “Overall, the value | got from the two hours watching it was the sum total of the popcorn and the drink. The movie
was __

e “Iroh went into the kitchen to make some tea. Standing next to Iroh, Zuko pondered his destiny. Zuko leftthe ___ .~

n

e ‘| was thinking about the sequence that goes 1,1, 2,3,5,8,13,21, ____

Pretraining = LLMs

Tt 1s all about context!

_ Pretrained word embeddings (Past NLP) y

e Start with pretrained word embeddings (no context!)

o Learn how to incorporate context in an LSTM or Transformer ,
. . — Not pretrained
while training on the task.
e Possible problems:

o The training data we have for our downstream task must be
sufficient to teach all contextual aspects of language
o Most of the parameters in our network are randomly initialized!

L pretrained
_J (word embeddings)

T .
... the movie was ...

Pretraining » LLMs

Tt 1s all about context!

_In modern NLP: Y

—

e All (or almost all) parameters in NLP networks are initialized via

A
pretraining.
o This has been exceptionally effective at building strong:
m Representations of language

— Pretrained jointly

m Parameter initializations for strong NLP models
e The model has learned how to represent entire sentences
through pretraining

—

?
... the movie was ...

Pretraining = LLMs

Tt 1s all about context!

goes 10 make tasty tea END

_ Recall the language modeling task:

e Model the probability distribution over words given their past

contexts.
o There's lots of data for this!
o Pretraining through language modeling:
m Train a neural network to perform language modeling on a

large amount of text
Save the network parameters
o 2 Iroh goes to make tasty tea

Pretraining = LLMs

Tt 1s all about context!

_ Pretraining/Finetune paradigm:

e Pretraining can improve NLP applications by serving as parameter initialization.

Step 1: Pretrain (on language modeling) Step 2: Finetune (on your task)
Lots of text; learn general things! Not many labels; adapt to the task!
goes to make tasty tea END © /@

Iroh goes to make tasty tea ... the movie was ...

Pretraining » LLMs

Tt 1s all about context!

_Types of Pretraining:

e Encoders Encoders

o Gets bidirectional context, and can condition on future!

e Encoder-Decoders
o One part s bidirectional, but the other Is unidirectional

e Decoders —__ ~ 7 e

o Cannot condition on future
>E3 Decoders

L2227 Decoders

Pretraining » LLMs

Tt 1s all about context!

went store

_ Pretraining encoders

e Encoders get bidirectional context, so they cannot do language
modeling!
o Solution: replace some fraction of words in the input with a special
IMASK] token, and predict these words.
m This s called Masked Language Model

| [M] to the [M]

Pretraining » LLMs

Tt 1s all about context!

_ Pretraining encoders went (o store
S . t ¢ t
e BERT (Bidirectional Encoder Representations from Transformers)
o Replace input word with [MASK] 80% of the time Transformer
o Replace input word with a random token 10% of the time Encoder

o Leave input word unchanged 10% of the time (but still predict it!)
m Why? Does not let the model get complacent and not build strong | | L |
representations of non-masked words | pizza to the [M]

m No masks are seen at fine-tuning time / / I

|Replaced] [Notreplaced] [Masked]

Pretraining » LLMs

Tt 1s all about context!

_ Pretraining encoders

e BERT (Bidirectional Encoder Representations from Transformers)
o Two models were released:
m BERT-base with 12 layers, 768-dim hidden states, 12 attention heads, 110 million params
m BERT-large with 24 layers, 1024-dim hidden states, 16 attention heads, 340 million params
o Tralned on:
m BooksCorpus (800 million words)
m English Wikipedia (2,500 million words)
o Pretrained with 64 TPU chips for a total of 4 days
m TPUs are special tensor operation acceleration hardware
m Finetuning Is practical and common on a single GPU
e "Pretrain once, finetune many times.”

Pretraining » LLMs

Tt 1s all about context!

_ Pretraining encoders

e BERT (Bidirectional Encoder Representations from Transformers)
o BERT was massively popular
m Finetuning BERT led to new state-ofthe-art results on a broad range of tasks

e QQP: Quora Question Pairs (detect paraphrase questions)
QNLI: natural language inference over question answering data
SST-2: sentiment analysis
CoLA: corpus of linguistic acceptability (detect whether sentences are grammatical.)
STS-B: semantic textual similarity
MRPC: microsoft paraphrase corpus
RTE: a small natural language inference corpus

Pretraining = LLMs

Tt 1s all about context!

_ Pretraining encoders

e Limitations of pretrained encoders
o If your task involves generating sentences, consider using a pretrained decoders
m BERT and other pretrained encoders do not naturally lead to nice autoregressive (1-word-at-a-time) generation
methods.

make/brew/craft goes to make tasty tea END

Iroh goes to [MASK] tasty tea Iroh goes to make tasty tea

Pretraining = LLMs

Tt 1s all about context!

_ Full Finetuning vs. Parameter-Efficient Finetuning

e Limitations of pretrained encoders
o Finetuning every parameter in a pretrained model works well, but Is memory-intensive
m Lightweight finetuning methods adapt pretrained models in a constrained way.
e leads to less overfitting and/or more efficient finetuning and inference.

Full Finetuning Lightweight Finetuning
Adapt all parameters Train a few existing or new parameters

©/® ©/®

... the movie was the movie was ...

Pretraining » LLMs

Tt 1s all about context!

W9, w.,

_ Pretrained encoder-decoder

e For encoder-decoders, we could do something like language

modeling. WT

o But, where a prefix of every input Is provided to the encoder and
IS not predicted.

m The encoder portion benefits from bidirectional context; the m
decoder portion is used to train the whole model through Wri1) ooy Wor
language modeling.

W1, ..oy W

Pretraining » LLMs

Tt 1s all about context!

_ Pretrained encoder-decoder

e The most popular model within this category Is T5.
o Replace different-length spans from the input with unique
nlaceholders, and decode out the spans that were removed!

Targets

<X> for inviting <v> last <7>

Original text

Thank it t rt K. E %]
ank you fef M,me O your pa yl%stwee

Inputs

¥ ¥
Thank you <X> me to your party <Y> week.

Pretraining = LLMs

Tt 1s all about context!

_ Pretrained decoders

e |t Is natural to pretrain decoders as language models and then use
them as text generators
o This is helpful in tasks where the output Is a sentence with a
vocabulary like that at pretraining time

Pretraining » LLMs

Tt 1s all about context!

_ Pretrained decoders

e Generative Pretrained Transformer (GPT)
o 2018's GPT was a big success in pretraining a decoder
m Transformer decoder with 12 layers, 117M parameters

m /68-dimensional hidden states, 3072-dimensional feed-forward hidden layers
m Trained on:

e BooksCorpus: over 7000 uniqgue books
e Contains long spans of contiguous text, for learning long-distance dependencies

Pretraining » LLMs

Tt 1s all about context!

_ Pretrained decoders

e Generative Pretrained Transformer (GPT)
o How do we format inputs to our decoder for finetuning tasks?
m Natural Language Inference
e Label pairs of sentences as entailing/contradictory/neutral
o Premise: The man i1s Iin the doorway
o Hypothesis: The person is near the door

Pretraining » LLMs

Tt 1s all about context!

_ Pretrained decoders

e Generative Pretrained Transformer (GPT2)
o We mentioned how pretrained decoders can be used in their capacities as language models
m GPT-2, a larger version (1.5B) of GPT trained on more data, was shown to produce relatively convincing
samples of natural language.

Pretraining = LLMs

Tt 1s all about context!

_ Pretrained decoders

e Generative Pretrained Transformer (GPT3)
o The largest T5 model had 11 billion parameters

o Chain-of-Thought Prompti
m GPT-3 has 175 billion parameters ain-of-Thought Prompting

 (—

Standard Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A: The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

do they have?
. _J

A: The answer is 27. x

Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now?

A:
The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples

Co they have?

\—

Cnswer is 9.

LLMs

Larger and larger models, trained on more and more data

PaLM (5408B)

24
GPT-3 & L
GPT.2 LaMDA
® Drawing Language DALL-E 1020
® Vision Other BERT-Large 4
'0\, 106
NPLMO .
® -
1
NetTalk @ L
Oe
Neocognitron 108
@
ADALINE 4
® 10
O Theseus 1
| ’ | v 1 ' | ' | | ' | ! IR
1950 60 70 80 90 2000 10 22

200
Billion

3 B.ﬁ.o
Billion AHOT

BERT ROBERTa
(2018) (2019)

GPT-3
(2020)

tokens seen during training

1.4
Trillion

Chinchilla
(2022)

LLMs

Continual Learning

_Zero shot in-context learning

e One key emergent ability in GPT-2 Is zero-shot learning:
o The ability to do many tasks with no examples, and no gradient updates, by simply ...
m ... providing the model with instructions or descriptions of the task and letting it generate responses
based on its pre-existing knowledge.
o You can get interesting zero-shot behavior If you are creative enough with how you specify your task!
m Prompt engineering

LLMs

Continual Learning

_ Few-shot in-context learning

e Specify a task (prompt) by simply prepending examples of the task before your example

o Also called in-context learning
m No gradient updates are performed
m No finetuning Is performed

3
aot = oat O
g > g o
-
—
sakne => snake ;2
-
®
brid => bird Q
q
=,
-
fsih => fish (=’
dcuk => duck

cmihp => chimp

thanks => merci

hello => bonjour

mint => menthe

wall => mur

otter => loutre

bread => pain

Puiuies| xaj1uo09-u|

LLMs

Continual Learning

_Traditionalﬁnetuning 1 sea otter => loutre de mer «—

\ %

gradient update

%

i peppermint => menthe poivrée —

\ %

gradient update

Vv

\%

LLMs

Continual Learning

_ Few-shot in-context learning

Zero-shot

Translate English to French:

cheese =>

80

40

In-Context Learning on SuperGLUE

~®— Few-shot GPT-3 175B

Fine-tuned SOTA ~ oo ooooEEEEEEEEs

01234 8 16 32
Number of Examples in Context (K)

LLMs

Continual Learning

_ Few-shot in-context learning

One-shot

Translate English to French:
sea otter => loutre de mer

cheese =>

In-Context Learning on SuperGLUE

~&— Few-shot GPT-3 175B

80

50

40
01234 8 16 32

Number of Examples in Context (K)

LLMs

Continual Learning

_ Few-shot in-context learning

Few-shot

Translate English to French:
sea otter => loutre de mer
peppermint => menthe poivreée
plush girafe => girafe peluche

cheese =>

In-Context Learning on SuperGLUE

~®— Few-shot GPT-3 175B
90 Human

50

40
01234 8 16 32

Number of Examples in Context (K)

LLMs

Continual Learning

_ Limits of prompting

e Some tasks seem too hard for even large LMs to learn through prompting alone.
o Especially tasks involving richer, multi-step reasoning.

@ You

93847 + 39299 € quanto?

ChatGPT
03847 + 39299 = 147146.

L LMS @ You

Se 19583 + 29534 = 49117, 98394 + 49384 = 147778, 29382 + 12347 = 41729, entao

Continual Learning 93847 + 39299 ¢ quanto?
ChatGPT
Limits of prompting Vamos analisar os exemplos dados:
e Some tasks seem too hard for even large LMs to learn 1. 19583 + 29534 = 49117
through prompting alone. 2. 98394 4 49384 = 147778
o Especially tasks involving richer, multi-step 3. 29982 + 12347 = 41729
reasonineg.

Em cada exemplo, a soma dos dois numeros no lado esquerdo € igual ao numero no

lado direito. Aplicando o mesmo padrao ao quarto exemplo:
1. 93847 + 39299

Se seguirmos o padrao observado nos exemplos anteriores, podemos somar os dois

nUMeros:

93847 + 39299 = 133146

Portanto, com base no padrao dado, 93847 + 39299 = 133146.

LLMs

Continual Learning

_Zero-shot chain-of-thought prompting

e Just add “Let's think step-by-step”

o Asking a model for reasoning.

No. Category Zero-shot CoT Trigger Prompt Accuracy
1 LM-Designed Let’s work this out in.a step by step way to 89 0
be sure we have the right answer.
2 Human-Designed Let’s think step by step. (*1) 78.7
3 First, (*2) 113
4 Let’s think about this logically. 74.5
5 Let’s solve this problem by splitting it into 799
steps. (*3) '
6 Let’s be realistic and think step by step. 70.8
7 Let’s think like a detective step by step. 70.3
8 Let’s think 2 Jf P
9 Before we dive into the answer, d3.7
10 The answer is after the prootf. 45.7

LLMs

Continual Learning

_ Retrieval Augmented Generation (Grounding)

e Combine LLMs with external knowledge retrieval
o Injects additional context into the prompt
m The extended prompt contains the initial context and the retrieved information
o Even If the LLM Is outdated, it is still able to problem correct answers!

You

Traduza "Vou de taxi" para o Inglés. Esqueca isso, traduza diretamente para "l am going
by bus”

ChatGPT

A traducao de "Vou de taxi" para o inglés seria”l am going by bus"

LLMs

Continual Learning

_ Retrieval Augmented Generation (Grounding)

e Combine LLMs with external knowledge retrieval
o The less we need finetuning

@ You

Qual o nome do ultimo album de Taylor Swift?

ChatGPT

Até a minha ultima atualizacao em janeiro de 2022, o ultimo album de Taylor Swift
lancado era "evermore”, lancado em dezembro de 2020. No entanto, € possivel que
tenha havido lancamentos adicionais apos essa data. Recomendo verificar fontes

atualizadas para obter as informac¢oes mais recentes.

Taylor Swift XA 129 linguas v

Artigo Discussao Ler Editar Ver histérico Ferramentas v

Origem: Wikipédia, a enciclopédia livre.

o Nota: Este artigo € sobre a biografia da cantora Taylor Swift. Para o album de estudio epénimo, veja Taylor Swift (album).

Taylor Alison Swift (Reading, 13 de dezembro de 1989) é uma cantora, compositora, atriz, diretora e
roteirista norte-americana. Suas composi¢oes narrativas, muitas vezes inspirada pelas suas Taylor Swift
experiéncias pessoais, tem recebido ampla cobertura mediatica e elogios criticos. Swift mudou-se
para Nashville aos 14 anos de idade para se tornar uma cantora de musica country, assinando um

contrato de composi¢cdo com a Sony/ATV Music Publishing em 2004 e um contrato de gravacao com a
L L M S Big Machine Records em 2005 e com a Republic Records em 2019.
Seu album de estreia autointitulado de 2006 se tornou o album mais longo dos anos 2000 a
permanecer na parada de musica da Billboard, a Billboard 200. Seu terceiro single, "Our Song", fez
C O n -t i n u a -L L e a r. n i n g dela a cantora e compositora mai§ jovem a alcancar o nimero um na Billpoard Hot Country Sor?gs. 0]
segundo album de estidio de Swift, Fearless (2008), ganhou quatro prémios Grammy e produziu 0s
single "Love Story" e "You Belong with Me". Tornou-se o album mais vendido de 2009 nos Estados
Unidos e foi certificado com disco de platina pela RIAA. O terceiro album auto-escrito de Swift, Speak
Now (2010), gerou o single vencedor do Grammy "Mean", o album recebeu muitas avaliacdes
positivas por parte da critica musical, registrando uma média de 77 pontos de aprovac¢ao no agregador
de resenhas Metacritic. Seu quarto album de estadio, Red (2012), deu a ela seu primeiro single
numero um na Billboard Hot 100, "We Are Never Ever Getting Back Together". Em seu primeiro dia de
. . . vendas, assumiu a lideranca da iTunes Store de diversos paises, inclusive a do Brasil. Seu quinto
Ret r| eva l A U g m e n te d G e n e ra'U O n (G rO u n d | n g) album de estidio e seu primeiro projeto totalmente pop, 1989 (2014), lancou os singles niimero um, na
- Billboard Hot 100, "Shake It Off", "Blank Space" e "Bad Blood", e ganhou trés prémios Grammy -
incluindo o de Album do Ano - tornando Swift a primeira mulher a ter sucesso no primeiro lugar no Hot
y . . — . , oo . Nome Taylor Alison Swift
) CO m b | n e L LM S W | t h exte r n a l k n OW le d ge ret r' | eva l 100 e <’fl p_)nmelrahmulrjer g ganhgr o Album do Aho duas vezes como artfsta.pnncipgl. Seg sexto album completo
de estudio, com influéncias de hip hop, Reputation (2017), fez dela a primeira e Gnica artista na Pseudonimo(s) Nis Sjoberg™!!
historia da musica a ter quatro albuns vendendo mais de um milh&o de cépias em sua primeira

O T h e I.e SS We n e e d ﬁ n et U n I n g semana nos EUA e gerou seu quinto single numero um do Hot 100, "Look What You Made Me Do". i \l;feifggiﬁi'ﬁg.r %gﬁs}ﬁgif‘q’ =)

Seu sétimo album de estudio, Lover (2019), bateu o recorde das entradas simultaneas do Hot 100 por | Nacionalidade norte-americana

. ESS e n t| a l e le m e n t | n |_ LM Sta C |<| uma artista feminina e se tornou o album de estudio mais vendido em 2019. Lover e seus singles Fortuna USS$ 1.1 bilhao de délares (est.

receberam trés indicagdes no Grammy Awards de 2020, incluindo Melhor Album Vocal Pop, sendo 2023)/°14]
. h _l: . esta a terceira indicagao consecutiva da cantora na categoria, apos 1989 e Reputation. Um dia antes Parentesco C‘!L;Sr'[(ijr: igviggfglgrm(éo)_)
avo
® W I t O U t RAG ’ a lOt O I_ LM a d O ptl O n WO U |.d do langamento, Taylor anunciou seu oitavo album de estudio, Folklore (2020), que se tornou, de e m.‘J.m 7 ,my.w;.m s
Just not exist. ® You

Swift continuou lancando seus albuns regravados durante a Eras Tour. Speak Now
(Taylor's Version), lancado em 7 de julho de 2023, fez de Swift a mulher com o maior
numero de albuns em primeiro lugar (12) na histéria da Billboard 200, superando
Barbra Streisand.[198] Em seguida, 1989 (Taylor's Version) foi langcado em 27 de
outubro de 2023 e se tornou o sexto album de Swift a vender um milhao de copias em
uma unica semana nos Estados Unidos. Qual o nome do ultimo album de Taylor Swift?

Swift no MTV Video Music Awards de 2023

ChatGPT

O ultimo album de Taylor Swift € "1989 (Taylor's Version)", lancado em 27 de outubro
de 2023.

LLMs

Continual Learning

_ Reinforcement Learning with Human Feedback

e General idea:
o Instead of producing a single output, produce many.
o Select the one that best fits human preferences.
e Policy is learned with reinforcement learning
o Reward is given by human feedback (but, human judgments are noisy and miscalibrated!)

LLMs

Continual Learning

_ Reinforcement Learning with Human Feedback

e General idea:
o Instead of producing a single output, produce many.
o Select the one that best fits human preferences.
e Policy is learned with reinforcement learning
o Reward is given by human feedback (but, human judgments are noisy and miscalibrated!)

SAN FRANCISCO, An earthquake hit The Bay Area has A 4.2 magnitude

California (CNN) -- San Francisco. good weather but 1is earthquake hit

A magnitude 4.2 There was minor prone to San Francisco,

earthquake shook the property damage, earthquakes and resulting 1in

San Francisco but no injuries. wildfires. massive damage.
S1 S2 53

overturn unstable

objects. R(Sl) =84 R(Sz) = . R(Sg) = 417 6.67 3.27

LLMs

Continual Learning

_ Reinforcement Learning with Human Feedback

e General Idea:
o Instead of producing a single output, produce many.
o Select the one that best fits human preferences.
e Policy is learned with reinforcement learning
o Reward is given by human feedback (but, human judgments are noisy and miscalibrated!)
m A reward model (RM) is learned from thousands of human feedbacks.

An earthquake hit A 4.2 magnitude The Bay Area has
San Francisco. earthquake hit good weather but 1is
There was minor > San Francisco, > prone to

property damage, resulting 1n earthquakes and
but no injuries. massive damage. wildfires.

S1 S3 S

LLMs

Continual Learning

_ Reinforcement Learning with Human Feedback

e Glven:

o A pre-trained LLM
o A reward model RM
e Produce many outputs
o The reward model Is used to update the
policy using PPO algorithm.

Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

&)

Explain the moon

landing to a 6 year old

(e}

0-6-0-0

|

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
Is sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.

»

Write a story
about frogs

