Downloaded 08/19/25 to 189.71.70.251 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

Mining Frequent
Itemsets in Evolving
Databases

A.A. Veloso*, W. Meira Jr.*, M.B. de Carvalho*,
B. Péssas*, S. Parthasarathy', M. Javeed Zaki

1 Introduction

The field of knowledge discovery and data mining (KDD), spurred by advances in
data collection technology, is concerned with the process of deriving interesting and
useful patterns from large datasets. The KDD process is computational and data-
intensive and is inherently interactive and iterative in nature. In fact, interactivity
is often the key to facilitating effective data understanding and knowledge discovery.
In such an environment, response time is crucial because lengthy time delay between
responses of consecutive user requests can disturb the flow of human perception
and formation of insight. The task of guaranteeing quick response times is more
complicated in dynamic datasets, where there is a constant influx of data. Changes
to the data can invalidate existing patterns or introduce new. Simply re-executing
algorithms from scratch when a database is updated can result in an explosion in
the computational and I/O resources required. What is needed is a way to process
the data incrementally and update the information that is gleaned while being
cognizant of the interactive requirements of the process. In this paper we present
such an approach for a key data mining task: association rule mining.

Discovery of association rules is an important problem in data mining. The
prototypical application is the analysis of sales or basket data [1, 2], but besides the
retail sales example, association rules have been shown to be useful in domains such
as decision support, telecommunications alarm diagnosis and prediction, university
enrollments, etc. The problem of mining association rules can be decomposed into
two subproblems. Conceptually, the goal of the first subproblem is to find all the co-
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occurring items (henceforth referred as itemsets) which are present in a significant
number of transactions; a number greater than a user-specified threshold value
called minimum support. Many efficient algorithms have been proposed to solve
this first subproblem[2, 5, 7] for static datasets. The goal of the second subproblem
is to generate implication (probabilistically determined) rules, based on the frequent
itemsets, with respect to another user-specified threshold; the minimum confidence.

Now consider the problem of computing association rules on an evolving
dataset, like those found in e-commerce or web-based domains. The datasets in
such domains tend to be very dynamic, i.e., constantly updated with fresh data.
Let us assume that at some point in time we have computed all the relevant asso-
ciation rules for such a database. Later, if the database is updated or if the user
decides to change the parameters of the rule generating program, the set of asso-
ciations previously computed is no longer valid (some of the rules may still hold,
but not all of them). A naive approach to compute the new set of association rules
would be to re-execute a traditional algorithm on the updated database or with the
new parameters. However, this process is not efficient since it is memoryless (i.e., it
ignores the already discovered knowledge), essentially duplicating part of the work
that have already been done.

To address this problem, several researchers [3, 4, 6, 9, 10, 16, 17] have pro-
posed incremental association mining algorithms. These algorithms re-use the pre-
viously mined information and try to combine this information with the fresh data
to efficiently re-compute the new set of association rules. In this paper we present
a novel technique that advances the state-of-the-art in incremental association rule
mining. Our algorithm, called zIGZAG!, like other approaches, uses previously dis-
covered knowledge to reduce the cost of updating the frequent itemsets. However,
it introduces some significant improvements over previous incremental mining algo-
rithms [3, 4, 6]. We highlight these improvements next.

Our approach maintains only the maximal frequent itemsets to incrementally
construct the lattice of frequent itemsets. The maximal frequent itemsets are up-
dated by a novel backtracking search, which is guided by the results of the previous
mining iteration, yielding a very efficient way for determining frequent itemsets.
The approach is also very efficient in supporting drill-down/drill-up interactions
based on modifying user parameters such as minimum support. Due to the ex-
ploratory nature of data mining this support for interactivity is crucial. Further,
our algorithm is extermely efficient regarding I/0.

The algorithm can also support windowed mining operations or short term
mining, wherein old transactions are discarded from the database and new ones
added, keeping the set of association rules coherent with respect to the most recent
data. Short-term mining is desirable for applications such as WEB mining, where
the user behavior may vary significantly across time and old access patterns may be
no longer relevant. This feature enables a high degree of interactivity, encouraging a
flexible exploration of the database through the use of a fixed-length time windows.

Another important feature of our approach is its ability to track and use stable
association patterns[12]. This feature is useful in two ways. First, users may be in-
terested in identifying such associations because of the stability property[12], which

1The name zigzag was inspired on the behavior of the algorithm, which searches the solution
space for maximal frequent itemsets on an upward fashion and then enumerates their subsets on
a downward fashion.
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is regarded to the discovery of reliable association rules. Second, these associations
can be used to speed up the incremental mining process at a small cost to accu-
racy. Variations of the popularity of the frequent itemsets are considered in order
to determine which subsets are to be updated as a result of data modifications. For
instance, the algorithm will update only those frequent itemsets whose variation in
popularity is above a pre-defined relaxation threshold. Note that if the popular-
ity of an itemset does not change much over time (a stable association), the rules
from its subsets will likely remain a fairly good approximation of the actual rules,
even in the presence of new data updates. This enables the algorithm to postpone
a full update operation for some maximal frequent itemsets, which increases the
algorithm efficiency significantly.

Extensive experiments are reported in this work comparing the performance
of ZIGZAG against ULI [16] running on real (from the E-Commerce domain) and
synthetic databases under different characteristics. We also evaluate the use of
Z1GZAG for short-term mining, and the impacts of relaxation.

2 Preliminaries and Related Work

Association Rules Let I = {I},I5,...,I,} be a set of m items and an itemset X is
a non-empty ordered set of items and, in particular, if it contains k items, it will be
denoted by k-itemset. A transaction T is a set of items, T C I uniquely identified
by tid and D is a database of transactions. The set of tids which contain a given
itemset, X, is called the tidlist of X and is denoted as Lp(X).

The support of X, denoted op(X), is the percentage of transactions in D that
contains X as subset, i.e., op(z) = ||[Lp(X)||/|D||. An itemset X is frequent if its
support is no less than a user-specified minimum support threshold (minsup).

A frequent itemset is mazimal if it is not a subset of any other frequent itemset.
The set of all maximal frequent itemsets is denoted as MFI. MFT is also referred to
as the positive border. The negative border, on the other hand, refers to the minimal
not frequent itemsets. The knowledge of MFT is sufficient to determine all sets that
are frequent, but not their exact supports. The exact frequency can, however, be
obtained by counting all the distinct subsets of maximal sets against the database.

An association rule is an implication of the form X = Y, where X C I, Y C
I'and X (| Y = 0. The support of the rule is given as op(X UY), i.e., the joint
probability of X and Y, while its confidence is given as op(X UY)/op(X), ie.,
the conditional probability of Y given X. A rule is confident if its confidence is
above a minconf threshold. Given the support of frequent sets it is straight-forward
to generate and test the rules that are confident. Thus, from now on, we will
concentrate on mining frequent itemsets in evolving databases.

Updating Frequent ltemsets Incremental mining of association rules was first
introduced in [4]. The central theme of incremental mining relies on the re-use of
previously mined computations to enhance the performance of future interactions.

Let sp be the support threshold used when mining D, and Lp be the corre-
sponding set of frequent itemsets. Let P be the information kept from the current
mining that will be used in the next updated operation. In our case, P consists of
all the single items (along with their tidlists) and all the frequent itemsets (along
with their support counts) in the original database D. Using as a starting point D,
a set of new transactions d* is added and a set of old transactions d~ is removed,
forming the new set of transactions A, i.e., A = (DUd") —d~. Since modification
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of an existing transaction may be handled as a deletion followed by a insertion we
will assume, without loss of generality, that there are no transaction modifications.

The problem of updating frequent itemsets is to find the set La, the frequent
itemsets in A, with respect to a minimum support sa and, more important, using
P and minimizing access to D, to enhance the algorithm performance.

An itemset X is frequent in A if its support is no less than sa. Notice that a
frequent itemset in D may not be frequent in A (defined as a declined itemset), on
the other hand, an itemset X not frequent in D, may become a frequent itemset in
A (defined as emerged itemset). If a frequent itemset in D remains frequent in A
it is called a retained itemset.

Backtracking Search Our incremental ZIGZAG algorithm is based on some ideas
from GENMAX [13], which is an algorithm that uses a backtrack search to enumer-
ate all the maximal frequent itemsets in a given database. We briefly review the
backtracking paradigm in the context of enumerating MFI in the original database
D. We will subsequently modify this procedure for incremental mining.

Backtracking algorithms are useful for many combinatorial problems where
the solution can be represented as a set I = {ig,%1,...}, where each i; is chosen
from a finite possible set, S;. Initially I is empty; it is extended one item at a time,
as the search space is traversed. The length of I is the same as the depth of the
corresponding node in the search tree.

Given a partial solution of length I, I; = {i¢, i1, ...,41_1}, the admissable values
for the next item i; comes from a subset C; C S; called the combine set. If y € S;—C,
then the nodes I; = {ig,%1,...,% — 1,y} will not be considered by the backtracking
algorithm. Since such subtrees have been pruned away from the original search
space, the determination of Cj is also called pruning.

At each iteration, the algorithm tries extending I; with every item z in the
combine set Cj. An extension is valid if the resulting itemset I;y is frequent and
is not a subset of any already known maximal frequent itemset. The next step is
to compute the new possible set of extensions, S;41, which consists only of items in
C; that follows z. The new combine set, Cjy1, consists of those items in S;y; that
produce a frequent itemset when used to extend I;41. Any item not in the combine
set refers to a pruned subtree. As presented, the backtrack search performs a depth-
first traversal of the search space. GENMAX also uses additional optimizations to
speed up the maximality checking and for fast frequency computations (see [13] for
additional details).

2.1 Previous Work

Recognizing the dynamic nature of databases, much effort has been devoted to the
problem of incrementally mining the frequent sets. Here we give an overview of the
methods proposed for solving this problem, and compare them to ZIGZAG.

The first incremental association mining algorithm, FUP, was presented by
Cheung et al [4], as an algorithm for maintaining association rules. During each
iteration FUP starts by mining d* and uses the results for guiding the update. In
subsequent work, FUP2 [9], the authors extended the above idea to handle both
deletions and updates. However, a major limitation of these algorithms is that they
may require O(k) database scans on A, where k is the size of the largest frequent
itemset. To decide whether an update is necessary and to minimize update costs
Lee and Cheung[10] proposed an extension to the above, called DELI, which uses
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statistical sampling methods to determine when to apply the updation process.
Our approach is different from the above in terms of the number of database scans
required (only one on the incremental database and only a partial scan on the
original database), in terms of support for selective updates (on only some of the
maximal frequent itemsets), and in terms of allowing users to modify the parameters
(like minimum support) while computing the update.

Ayan et al[3] present an algorithm called UWEP (Update With Early Pruning)
that employs a dynamic look-ahead strategy in updating the frequent itemsets in D
by detecting and removing those itemsets that will no longer remain frequent in A.
UWEP scans D at most once and A exactly once. In [17], two incremental algorithms
were presented — the Pairs approach stores the set of frequent 2-sequences, while
the Borders algorithm keeps track of the frequent set and the negative border. An
approach very similar to the Borders algorithm was also proposed in [6]. These
approaches may require only a single scan of the original data, but they still make
O(k) scans of the increment database. In contrast to the above, our algorithm makes
only one scan of the incremental database, and usually requires only a partial scan
of the original database (only those tid-lists that are needed). Like in FUP, these
approaches do not allow changes in the user parameters.

Although these incremental algorithms are better than re-executing a tradi-
tional algorithm (e.g., Apriori) from scratch on the updated database they all have
limitations when compared with z1IGZAG. The amount of information maintained in
the case of ZIGZAG is much smaller (since we incrementally maintain only maximal
itemsets). Many of the above approaches require several scans over the incremental
and original databases. Many of them do not support interactive operations (such
as modifying the minimum support etc.) as part of the process. Further, windowed
transactional operations (or short term mining operations), useful for domains like
WEB mining, are not supported by any of the incremental methods described above.

3 The ziGzAG Algorithm
In this section we describe our algorithm, ZIGZAG, which connects new techniques of
incremental mining, short-term mining and interactive mining for association rules.
ZIGZAG is inspired by the GENMAX algorithm. The main idea is to incre-
mentally compute the maximal frequent itemsets in A using previous knowledge
P. This avoids the generation and testing of many unnecessary candidates that
are usually examined in other approaches, i.e., the candidates that are counted and
subsequently turn out to be infrequent (the negative border, to be exact). Having
the new MFI is sufficient to know which sets are frequent; their exact support can
be obtained by examining d*, d~ and using previous knowledge P, or, where this
is not possible, by performing tidlist intersections over A. ZIGZAG has three main
steps: (1) recording novel transactions and discarding obsolete ones, (2) updating
the maximal frequent itemsets in the updated database, (3) updating the support
of the other frequent itemsets in the updated database. Determining association
rules, as mentioned, is relatively simple if we have the frequent itemsets along with
their supports. The first task is how to record the information associated with the
novel transactions, and how to “forget” the information associated with the obsolete
ones. Based on this information, we perform the second and third steps, that are
finding all frequent itemsets and updating their supports in the updated database.
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Figure 1. Updating Process

We illustrate the main operations of the algorithm execution in Figure 1. For
this example, the value of minimum support is 50%. The shaded itemsets are the
maximal frequent itemsets in each lattice. The top lattice is obtained by mining
the original database D with three transactions. Here ACTW is the sole maximal
frequent itemset. Rules with 100% confidence are shown on the right.

The bottom lattice shows what happens when an increment of three new
transactions is added to D. Here there is no decrement d—, so that A = DU d™.
With the same minsup, The first lattice shows ACTW as the updated lattice has
CTW and CDW as the two new maximal frequent itemsets. Notice that even
in this simple example, the update affected significantly the results, allowing us to
grasp important characteristics of the updating process. First, it is possible that
the set of maximal frequent itemsets changes completely as a consequence of the
update, with corresponding changes in the frequent itemsets. Second, there may be
completely novel items and itemsets that become frequent in the updated database.

The main goal of our algorithm is to reduce the number of candidate itemsets
that are examined on the updated database A to decide whether they are frequent
or not. As we will see later, by utilizing the stored information P, some itemsets
can be examined just over d* and d~ in order to discover their support, potentially
reducing the frequency computation costs. Further, as a very important character-
istic of the maximal-based search employed by our algorithm, it is not necessary to
explicitly examine every single frequent itemset, potentially reducing the number
of candidates examined for finding all frequent itemsets.

3.1 Recording and Discarding Transactions
The novel transactions are recorded by creating, for each item in A, its tidlist in d*,
so that at the end of the process we have the vertical increment database projection.
Similarly, we discard the obsolete transactions, by examining each item in A and
creating its tidlist in d—, forming the vertical decrement database projection.

The vertical projection of the updated database A also has to be updated
with the novel transactions. So for each item in A we augment its tidlist with the
transactions in d* and remove the tids in d~, that contain this item, i.e., for an
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item X, its updated tidlist is given as LA(X) = (Lp(X) U Lg+ (X)) — L4- (X).

This process may be performed on the fly, that is, whenever a transaction
is added to or removed from the database, it is recorded in or discarded from the
projections. Or, on the other hand one can perform block updates over a given
interval (i.e., a set of transaction additions and deletions).

This strategy has several advantages for sake of incremental and short-term
mining of association rules. First, by augmenting the tidlists, it is easy to determine
which information is not the current update operation, since the tidlists will be
always chronologically ordered. For the same reason it is also easy to determine
and discard the obsolete information, performing short-term mining. Second, it is
easy to identify emerging patterns and contrasts between the itemsets over mining
operations. Since dT reflects the most recent events, we can also verify the impact
of decisions like personalizations, in WEB mining applications, for instance.

3.2 Determining the Frequent Itemsets
After recording the novel transactions and discarding the obsolete ones, we have to
determine the frequent itemsets in the updated database A. The set of frequent
itemsets in A is composed by the union of the set of retained itemsets and the set of
emerged itemsets, and it can be solely determined by the maximal frequent itemsets
in A [13].

In this step, ZIGZAG employs a search for the maximal frequent itemsets in
A. An efficient maximal-based search must satisfy two main properties, as follows.
First, the ability to perform fast frequency computation. This property is associated
with the cost of processing a candidate itemset. To satisfy this property extant
approaches generally utilize compressed structures for representation of the tidlist,
like diffsets [13] or compressed bit vectors. Second, the ability to quickly remove
large branches of the search space from consideration. This property is associated
with the number of candidates generated in the search. The smaller the number of
candidates generated, the faster the search would be. These two abilities determine
the amount of work done in the search. As mentioned earlier, ZIGZAG employs
a backtracking search inspired by GENMAX, which utilizes a set of techniques to
enhance the frequency computation and the pruning effectiveness. However, better
results can be achieved by making use of the incremental approach, and we will
present how ZIGZAG achieves these properties in the next two sections.

Fast Frequency Computation Techniques While searching for the maximal fre-
quent itemsets, ZIGZAG continuously generates partial solutions, and as a new partial
solution arises, a new combine set must be computed to make possible to process
extensions of this partial solution. In order to generate new combine sets, some
frequency computations must be applied. To perform the frequency computation,
ZIGZAG is based on the associativity of itemsets, which is defined as follows.

Let X be a k-itemset of items X; ... Xy, where X; € I, £L(X) be its tidlist
and 6(X) =| L(X) | is the length of £(X) and thus the support count of X in a
given database. According to [7], any itemset can be obtained by joining its atoms
(individual items) and the support can be obtained by intersecting the tidlist of each
atom. Since we constructed the vertical projections of d™ and d~, and updated the
vertical projection of A, we have free access to the tidlists of each atom in dt, d~
and A, being able to compute the support of any itemset in dt, d~ and A.
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The main goal of this step is to maximize the number of itemsets that have
their frequency computed based just on dt and d—. These itemsets are called
retained itemsets, and their support counts in D are already stored in P. In order
to quickly discover if a given candidate is a retained itemset, we store the support
counts of the retained itemsets using a hash table.

Combine_Set([;+1, Si+1)

c=90
For each y € Si+1 do
’

y =Yy
If I111 U {y} is a retained itemset
then o(y') = op(lip1 U{y}) + 04+ (Tip1 U {y}) — 04- (D141 U {y})
Else, a(y') = oa(li+1 U {y})
If o(y') > minsup
then C = C U {y'}
return C
Algorithm 3.1: Optimized Generation of the Combine Set

We describe the routine where the frequency of an extension is tested in Al-
gorithm 3.1. The partial solution I;;1 is combined with each item y in the possible
set Spy1, generating an extension. If this extension is frequent then g’ is valid and
must be added to the new combine set.

In order to decide if a given extension is valid, we must check its support. To
perform a fast frequency computation, we first verify if the extension ;11 U{y} is a
retained itemset. If so, as mentioned, its frequency can be computed just over dt,
d~, and using P, thereby enhancing the frequency computation process.

Pruning Techniques Two general principles for efficient search using backtracking
are that: (1) It is more efficient to make the next choice of a branch to be the one
whose combine set has the fewest items. This usually minimizes the number of
candidates generated. (2) If we are able to remove a node as early as possible from
the backtracking search tree, we effectively prune many branches from consideration.

Reordering the elements in the current combine set to achieve these two goals
is a very effective mean of cutting down the search space. The basic heuristic
employed by GENMAX (and also in MAXMINER [14]) is to sort the combine set in
increasing order of support; it is likely to produce small combine sets in the next
level, since the items with lower support are less likely to produce frequent itemsets.

Guided by the previous mining results, ZIGZAG can continuously order the
elements in the combine sets generated in the subsequent levels of the search space,
since it has free access to estimations of the itemset supports that can be gener-
ated in the search, potentially capturing as early as possible some changes on the
dependencies between the partial solution and its combine set. This allows ZIGZAG
to get a better ordering of elements to produce smaller branches. In fact, z1GzAG
can use previous information to compute correlation measures, between a partial
solution and items in the combine set, instead of support. Correlation can be used
to generate statistical dependences for both the presence and absence of items (i.e.,

items of the combine set) in an itemset (i.e., a partial solution), and its value can
be computed by: —22L92) __ where o is a partial solution and  is an item in the
op(a)xop(z)

combine set. If one sorts the combine set in increasing order of correlation, one
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produces small combine sets at the next level, leading to a large degree of pruning.

The use of both optimizations does not affect the correctness of the algorithm,
since the reordering of the combine set just changes the order in which the maximal
frequent itemsets are generated. However, these optimizations drastically improve
the efficiency of the search, reducing the number of candidates generated, since
the next choice of a branch to explore in the backtracking search is likely to be
good approximation of the best choice while mining A. In summary, the main idea
behind the efficiency of the search employed by ZIGZAG stems from the fact that
it eliminates branches that are subsumed by an already mined maximal frequent
itemset, and it is very likely that the maximal frequent itemsets that are generated
earlier subsume a large number of candidate itemsets that would be generated if
the order in which these maximal patterns were generated was different.

All the discussed steps are now described in Algorithm 3.2.

Opt_Gen_Max(I;, Ci, 1)

For each z € C; do

Il+1 =IU {CU}

Siv1 ={y:y€eCandy > z}

If I1+1 U Si41 has a superset in MFI then return

Cl+1 = Combine_Set(Il_;,_l, Sl+1)

If Ci41 is empty
then If Ii+1 has no superset in MFI then MFI = MFI U I+

Else
Sort Ci4+1 based on the correlation between Ijy1 and each item of Ciy1
Opt_Gen_Maz(Ii+1, Ciy1, 1+ 1)

Algorithm 3.2: Optimized Search for Maximal Frequent Itemsets

3.3 Updating the Support of the Frequent Itemsets

Just determining the maximal frequent itemsets is not sufficient to generate all
association rules, since we do not have the support associated with each subset.
This is the main negative aspect of all the extant maximal-based approaches, since a
complete scan over the entire database is required in order to compute the frequency
of each subset. Considering that in a dynamic environment the entire database
generally is enormous, this step can be time consuming.

To avoid scanning the entire database for frequency computation of all subsets,
again ZIGZAG makes use of both maximal and incremental approaches, traversing
the frequent itemset lattice in a top-down fashion as follows. It breaks each maximal
frequent k-itemset into k subsets of size (k—1). If the frequent subset generated is a
a retained itemset, its frequency in A is computed just over d* and d~, by summing
its already known support count in D to its support count in d*, and subtracting
its support in d—. Otherwise, if the subset generated is an emerged itemset, its
frequency has to be computed over the entire updated database. The incremental
approach makes this top-down enumeration very efficient since we have the support
counts in D of a possibly large number of subsets generated (i.e., all the retained
itemsets), avoiding performing intersections over the entire database to determine
them. We just need to perform intersections over d~ and d*. This process iterates
generating smaller subsets and computing their frequencies until there are no more
subsets to be checked. We illustrate the entire process in Algorithm 3.3.
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Update_Subsets_Support(6)

For each subset 8 C 6 do
If o(B) was not updated yet then
If B is a retained itemset then o(B) = op(B) + o4+ (B) — a4- (B)
Flse, o(8) = 7 (8)
Update_Subsets_Support(B)

Algorithm 3.3: Support Update Process

Nevertheless, for some really dense databases, even this incremental updating
process becomes unfeasible, since the number of subsets can grow too large. In these
scenarios, one possible strategy is to relax the updating process, as follows: If the
popularity variation (i.e., support) of a given itemset is above a relazation threshold,
then it is necessary to update its subsets. On the other hand, if the popularity of the
itemset did not change much, we only adjust its popularity according to the same
relative variation observed in its superset, making its support a good approximation
of its real support in A. Later on, when sufficient change happens (i.e., exceeds the
relaxation threshold), the set, along with its subsets, will be updated with their
exact frequency.

All steps of ZIGZAG are presented in Algorithm 3.4.

ZigZag(S, D, d*, d~, minsup, minconf)

Scan P and recover the information collected in the previous mining.
Scan d¥ and d~. Create the incremental and decremental vertical projection.
Update the vertical projection of A.
F; = Frequent items in A.
Sort Fy in increasing order of support.
MFI =0
Opt_Gen_Maz(9, F1, 0)
For each 8 € MFI do
Update_Subsets_Support(6)
Generate the association rules with confidence > minconf

Algorithm 3.4: General Description of ZIGZAG

3.4 Discussion
The gains provided by ZIGZAG vary according to the differences between D and
A, which determine the number of retained, declined and emerged itemsets. Since
the retained itemsets enhances both the frequency computation and the pruning
effectiveness, the more the number of retained itemsets is, the better the efficiency
would be, and vice versa. At first, the number of declined itemsets does not affect
significantly the performance of the algorithm, since these itemsets are not processed
during the search, but they correspond to an unnecessary use of storage resources.
For instance, if the differences between D and A are not significant, it is
also very likely that the continuous ordering of the combine sets makes the search
much more efficient, since it may correct some “wrong” paths visited while mining
the original database D. On the other hand, if we observe a significant variation
between D and A, the performance of ZIGZAG is clearly bounded by the performance
of GENMAX. First because, like GENMAX, Z1GZAG will follow the same combine set
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ordering. Second because, like GENMAX, all the candidates generated by ZIGZAG in
order to find the maximal frequent itemsets will be checked over the entire database.

Finally, typical algorithms for updating the frequent itemsets in dynamic
databases make use of positive or negative borders [11] to perform the update while
reducing the number of candidates generated. However, these algorithms must up-
date the entire border across mining operations in order to give the correct results,
and depending on the size of the border employed and on the variations between D
and A, this update is likely to be even more costly than our incremental search for
maximal frequent itemsets. First because more candidates will be generated and
more itemsets will be checked over the entire database for being frequent. Second
because the declined itemsets must be also computed in order to decide if it is really
not frequent anymore, corresponding to unnecessary computation, since they do not
contribute to the set of frequent itemsets in the updated database.

4 Experimental Results
In this section we present the results of the performance evaluation of ZIGZAG using
several performance metrics and compare its performance against a state-of-the-art
incremental algorithm [16]. Both synthetic and actual datasets were used as inputs
in the experiments. The synthetic datasets were generated using the procedure
decribed in [2]. The synthetic dataset, called T25.110.D100K, comprises 100,000
transactions over 1,000 unique items, each transaction has 25 items on average,
and the size of the longest maximal frequent itemset is 12. We also evaluated the
performance of our approach using real data from actual applications. The real
dataset, VBook, was extracted from a 45-day log from an electronic bookstore and
comprises approximatelly 100,000 customer transactions. A transaction contains
the books examined, added to the shopping cart and/or bought by a customer dur-
ing a single visit to the bookstore. The second actual dataset is called Gazelle and
comes from click-stream data from a small dot-com company called Gazelle.com,
a legware and legcare retailer, which no longer exists. A portion of this dataset
was used in the KDD-Cup 2000 competition. It has 59,601 transactions over 498
items with an average transaction length of 2.5 and a standard deviation of 4.9. All
the datasets were divided into equal-sized non-overlapping partitions, which size is
equal to the smallest interval employed in the experiments (1,000 transactions).
We varied two parameters in our experiments: minimum support and update
interval. Thus, for each minimum support employed we performed multiple execu-
tions of the algorithm, where each execution employs a different update interval.
The experiments were run on a PC 750MHz processor with 1GB main memory.
The source code for ULI used in the experiments was kindly provided to us by its
authors. Timings in the figures are based on total wall clock time.

Incremental Mining Figure 2(a) shows the performance of ZIGZAG on the real
dataset Gazelle, for two different minimum supports and different update intervals.
Note that the vast majority of maximal frequent itemsets in this dataset are of
length 2, and they represent approximatelly 10% of all frequent itemsets.

We can observe that, in general, the shorter the update interval is, the smaller
the update execution time. Nevertheless, its higher update frequency may result in
higher overall costs. In fact, the best update interval also depends on the minimum
support employed and will vary as the database grows.
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Figure 3. a) Execution Time (left graphs), b) Itemsets Processed (right graphs)

We can also observe that, after a given number of transactions, the execution
time of processing increments tends to stabilize. This phenomenon is due to the
large number of retained itemsets and the small number of emerged ones, as can be
seen in Figure 2(b). This result means that a large number of operations have been
performed just over dt, explaining the constant execution time observed, since the
increment has a fixed size.

Supporting Interactive and Incremental Processing As discussed earlier, ZIGZAG
supports incremental processing hand-in-hand with interactive operations. We eval-
uate the performance of this here. In these experiments we use the real dataset,
VBook, and measure the time spent to find the maximal frequent itemsets. We
compare our algorithm against the base-line non-incremental version, GENMAX.
Note that, at any given iteration (after the first one) Z1IGZAG has information about
the data, and on a data update, if a large number of the frequent itemsets are
retained, then it can re-use this information effectively.

Figure 3(a) shows the time spent by each algorithm to discover the maximal
frequent itemsets. In the first iteration almost all candidates generated by ZIGZAG
are retained itemsets. Since there is no increment, the support of a retained item-
set is not modified, and ZIGZAG almost instantaneously re-discovers the updated
solution. In the following iterations, as the minimum support decreases, there may
be some emerged itemsets, and ZIGZAG will have to compute them over the entire
dataset. Even so, as we can see in the figure, there is a great improvement provided
by the retained itemsets, since we do not have to compute their frequency.

The improvement provided by ZIGZAG does not come just from the optimized
frequency computation. The dynamically adapting pruning strategies are also quite
effective. From Figure 3(b), we can see that almost always ZIGZAG processes a
smaller number of candidates (anywhere from 10-20% less) than GENMAX.
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We next consider the impact of data updates on the performance of these two
approaches. Figure 4(a) depicts the speed up achieved by by Z1GZAG over GENMAX
at different minimum support values for 1K increments. The speed up is higher for
smaller support values. The gains provided by ZIGZAG comes also from the pruning
technique utilized while searching for the maximal frequent itemsets. As seen before,
ZIGZAG evaluates far fewer candidates when compared to GENMAX, as shown in
Figure 4(b), for different update intervals. This result once again highlights the
importance of the pruning strategies in ZIGZAG.
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Figure 4. a) ZIGZAG speed up relatively to GENMAX, and b) Itemsets Processed

VBook VBook - Execution Time - minsup=0.1% VBook - Execution Time - minsup=0.5%
0.4 120 30

Al transactions ------- 10K Window 10K Window
0.35 10K Window ——— 20K Window - 20K Window -
20K Window -~ 100 50K Window 5 50K Window
0.3 | 50K Window -------

2
8

0.25
0.2 r

Precision Rate
Time (secs)
o
3
Time (secs)
&

0.15
0.1
0.05

s
&

8

f

° , SR , 4
0 25000 50000 75000 100000 125000 150000 0 40000 80000 120000 160000 0 40000 80000 120000 160000
Number of Recomendations Performed Transactions Transactions
Figure 5. a) Coherence with Recent Data, and b) Variyng Window Size
Gazelle — Stable Itemsets — 1K increment — minsup=0.1% Gazelle — Execution Time — 1K increment — minsup=0.1%
45 - 100 T
relaxation=1% relaxation=1%
40 g srelaxation=10% 1 axatign=10%

relaxation=20% B 90

so | ¥

70

Percentage
Percentage

15 1 60
10 g B
. i 50 |
5t ; ]
o = 40
o 10000 20000 30000 40000 50000 60000 o 10000 20000 30000 40000 50000 60000
Transactions Transactions

Figure 6. a) Stable Itemsets (left graph) and b) Ezxecution Time (right graph)

Effectiveness of Windowed Operations on Real Data To demonstrate the effec-
tiveness of short-term mining operations, we use a real example where the transac-
tions vary significant over the time. Our goal is to recommend books to customers
based on the VBook dataset. Here, the items selected by the customer, while per-
forming a transaction, form an itemset. For each possible recommendation (ordered
by support) we check its correlation with the appraised itemset, and recommend
the first item that exceeds a correlation threshold. For each recommendation per-
formed, we verify whether the customer really selects the book recommended. We
used three different window sizes for this experiment (10K,20K,50K). We compared
the recommendation precision using each size against the base case (no windowing
in effect). The precision is given by the rate of correct recommendations performed.
As we can see in Figure 5(a), the best window size varied as the dataset evolves.
However, after a certain number of transactions processed and recommendations
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performed, we observed that the best window size is the one with the smallest fixed
size employed. Furthermore, the precision reached when all transactions are rele-
vant is going down, while the precision obtained by the short-term mining operation
becomes constant.

The execution time also depends on the window size employed. As shown
in Figure 5(b), the smaller the window size the faster the execution time, because
for smaller windows there are less relevant transactions to be processed. Also the
execution time becomes constant as the dataset evolves.

Impact of Tracking Stable Associations In this experiment we evaluate the ability
of our algorithm to track stable associations and its use in approximately updating
the maximal frequent itemsets as a function of data updates. Figure 6 documents
these results for the Gazelle dataset. The Y axis of Figure 6(a) represents the per-
centage of frequent itemsets that remains stable as a result of this optimization for
various relaxation thresholds. Interestingly, for this dataset this percentage stabi-
lizes after a certain number of transactions (35,000 in this case) for all the relaxation
thresholds. The number of missing associations for the smallest threshold is under
3% for a relaxation threshold of 1%. The corresponding execution times under these
relaxation thresholds, compared to the execution times obtained whithout the relax-
ation, is also shown in Figure 6(b). Clearly, the higher the threshold value, the lower
the execution time. For the lowest threshold value (1%) the average improvement
in execution time is around 20%.
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Figure 8. a) Execution Time (left graphs), b) Itemsets Processed (right graphs)

Comparative Results In this section we present the comparison of ZIGZAG against
ULI using different values of minimum support and update interval. We employed
two different datasets, VBook and T25.I10.100K. ULI strives to reduce the I/O
requirements for updating the set of frequent itemsets by maintaining the previous
frequent itemsets and the negative border along with their support counts. The
whole database is scanned just once, but the incremental database must be scanned
as many times as the size of the longest frequent itemset.
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Figure 7(a) shows the comparative performance of ZIGZAG and ULI on the
dataset VBook. Note that the Y-axis represents a log scale of execution time to
process each fixed sized increment (10K,1K). During the first 10,000 transactions
this dataset generates a large number of maximal frequent itemsets, and ZIGZAG
has to perform a lot of operations to find them. As the dataset evolves, the num-
ber of changes to the set of maximal frequent itemsets decreases, and ZIGZAG has
significantly better performance than ULI(an order of magnitude), even for larger
update intervals. Further, we can observe that ZIGZAG provides higher gains for
smaller support values, since it is less costly to run ULI for larger support values.

Using a pure vertical database format to compute the frequent 2-itemsets,
71GZAG will perform O(n?) operations, in the worst case, where n is the number
of frequent items. On the other hand, the horizontal approach performs only O(n)
operations. The pure vertical approach is clearly not efficient, since the intermediate
results of these operations will not fit in memory for large databases. To overcome
this problem, ZIGZAG computes the set of frequent items and the 2-itemsets, using a
vertical-to-horizontal recovery method [13]. Figure 7(b) shows the peak of memory
usage of the two algorithms per update operation. As we can see, ZIGZAG uses less
memory than ULI for the same support threshold and update interval. As expected,
the smaller the support value employed, the more memory will be used to compute
the intermediate results. The updated interval also affects the memory utilization,
since the incremental projections will be larger. Finally, the size of the dataset is
also important, since the size of the tidlists used as intermediate results to compute
the emerged itemsets increases linearly with the dataset size.

We next evaluated both approaches on a synthetic dataset T25.110.D100K.
This dataset T25.10.D100K has a huge negative border for smaller support values.
Figure 8(a) shows the execution times of ZIGZAG and ULIL. ZIGZAG performs sig-
nificantly better than ULI for this type of database. As we can see, it clearly out
performs ULI by more than an order of magnitude. Further, ZIGZAG is able to handle
lower support values in dense datasets.

As an important characteristic of a maximal-based search, the number of
candidates processed is greatly reduced. Figure 8(b) shows the number of candidates
processed by each algorithm. This result validates the gains provided by the search
employed by ZIGZAG.

5 Summary
In this paper we presented ZIGZAG, a new algorithm for mining frequent itemsets
in evolving databases. Our approach maintains only the maximal itemsets to incre-
mentally construct the lattice of frequent itemsets. The maximal frequent itemsets
are updated by a backtracking search, which is guided by the results of the previous
mining iteration, yielding a very efficient way for determining frequent itemsets,
when compared with current alternatives. The approach is also very efficient in
supporting drill-down/drill-up interactions based on modifying user parameters.
ZIGZAG can support short-term mining, wherein old transactions may be dis-
carded from the database and new ones added, keeping the set of association rules
coherent with respect to the most recent data. Short-term mining is desirable for
applications such as WEB mining, where the user behavior may vary significantly
across time and old access patterns may be no longer relevant. Another important
feature of our approach is its ability to track and use stable association patterns.
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