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Abstract

The classification performance of an associative classifier is
strongly dependent on the statistic measure or metric that is
used to quantify the strength of the association between fea-
tures and classes (i.e., confidence, correlation etc.). Previ-
ous studies have shown that classifiers produced by different
metrics may provide conflicting predictions, and that the best
metric to use is data-dependent and rarely known while de-
signing the classifier. This uncertainty concerning the opti-
mal match between metrics and problems is a dilemma, and
prevents associative classifiers to achieve their maximal per-
formance. This dilemma is the focus of this paper.

A possible solution to this dilemma is to learn the
competence, expertise, or assertiveness of metrics. The
basic idea is that each metric has a specific sub-domain for
which it is most competent (i.e., it consistently produces
more accurate classifiers than the ones produced by other
metrics). Particularly, we investigate stacking-based meta-
learning methods, which use the training data to find the
domain of competence of each metric. The meta-classifier
describes the domains of competence (or areas of expertise)
of each metric, enabling a more sensible use of these metrics
so that competence-conscious classifiers can be produced
(i.e., a metric is only used to produce classifiers for test
instances that belong to its domain of competence). We
conducted a systematic evaluation, using different datasets
and evaluation measures, of classifiers produced by different
metrics. The result is that, while no metric is always superior
than all others, the selection of appropriate metrics according
to their competence/expertise (i.e., competence-conscious
associative classifiers) seems very effective, showing gains
that range from 7% to 26% when compared to the baselines
(SVMs and an existing ensemble method).

∗This research was sponsored by UOL (www.uol.com.br) through its
UOL Bolsa Pesquisa program (grant number 20080131200100), and par-
tially supported by CNPq, Capes, Finep, Fapemig, and by the projects 5S-
VQ (CNPq grant number 551013/2005-2), INCTWeb (CNPq grant number
573871/2008-6), and InfoWeb (CNPq grant number 550874/2007-0).

1 Introduction

There are countless paradigms and strategies for devising
a classifier. One of these strategies is to explore relation-
ships, dependencies and associations between features and
classes. Such associations are usually hidden in the training
examples, and when uncovered, they may reveal important
aspects concerning the underlying phenomenon that gener-
ated these examples. These aspects can be exploited for sake
of prediction. This strategy has led to a new family of clas-
sifiers which are often referred to as associative classifiers.
The models used by these classifiers are composed of rules
X −→ c, indicating an association between a set of features
X and a classc. Associative classification has shown to be
valuable in many applications, including document catego-
rization [20], Web ranking [21] etc.

Associations may be defined in many ways. Corre-
spondingly, there are many statistic measures or metrics that
express, in different perspectives, the strength of feature-
class associations (i.e., confidence, correlation etc.). Some
perspectives should be emphasized in some cases, but may
not be desired in others. Thus, as expected, the competence
of a metric is data-dependent, in the sense that some metrics
are well suited for some classification problems, but not for
others (that is, each metric has a particular domain for which
it is more competent). Competent metrics are rarely known
while devising the classifier, and this dilemma concerning
the best match between metrics and problems prevents the
full potential of associative classifiers.

Obviously, one possible solution to the metric dilemma
is to find the domain of competence (or areas of expertise)
for each metric, that is, subsets of examples for which a cer-
tain metric produces better classifiers than the others. Hav-
ing this information would enable the assignment of com-
petent associative classifiers to specific problems according
to their competence/expertise [8, 14]. Hopefully, classifi-
cation performance would be drastically boosted by taking
advantage of consciously assigning metrics to specific sub-
sets of instances (i.e., a domain of competence). This would
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be great, except that there are several metrics, and numer-
ous (unknown) characteristics affecting their corresponding
competence, and finding such an invariant domain of com-
petence for metrics seems to be practically unfeasible.

As an alternate approach to the metric dilemma, we pro-
pose to automatically extract the competence of each metric.
Taking as a starting point a set ofq accurate1 and diverse2

metrics (m1, m2, . . . , mq), a stacking-like3 meta-learning4

strategy [18, 22] is used to extract, from the training data,
information regarding the competence of each metric. This
information is then used to enhance the original training data.
Specifically, it is explicitly indicated the metrics that cor-
rectly classify each example in the training data (i.e., using
a cross-validation procedure). This additional information
is used to produce a meta-classifier which has the ability to
consciously decide the appropriate match between metrics
and examples (i.e., the meta-classifier is a function mapping
features to competent metrics). Then, for each test instance
t, the meta-classifier is used to decide which is the most com-
petent metric to be applied, according to their expertise. A
specific classifier,Ct

mi
, is finally produced, so thatmi is ex-

pected to be the most competent metric to classify instancet

(i.e., t belongs to the domain of competence of metricmi).
The classifiers that are produced following this strategy are
regarded ascompetence-consciousclassifiers. We propose
two competence-conscious classifiers, with the difference
between them residing in the way they perform the anal-
ysis of the domains of competence (or areas of expertise).
The first classifier performs a coarse-grained, class-centric
analysis, in which the domain of competence of a metric is
composed of classes for which it produces accurate classi-
fiers. The other classifier performs a fine-grained analysis,
in which the domain of competence of a metric is composed
of examples for which it produces accurate classifiers.

To evaluate the effectiveness of competence-conscious
associative classifiers, we performed a systematic set of ex-
periments using the UCI datasets, as well as more complex
datasets obtained from other real applications, such as doc-
ument categorization and Web spam detection. Our results
suggest that the more fine-grained the analysis of the do-
mains of competence, the more effective is the final classi-
fier. The results also show that the proposed competence-
conscious classifiers are able to outperform the baselines
(SVMs and existing ensemble methods), providing gains
ranging from 7% to 26%. The specific contributions of this
paper are:

1An accurate metric is one that produces a classifier that has an error rate
of better than random guessing.

2Two metrics are diverse if they produce classifiers that misclassify
different instances.

3Stacking is based on the idea that different classifiers provide different
but complementary explanations of the data.

4Literally, meta-learning means learning how to learn.

• We present a comprehensive study of the competence
of associative classifiers produced by different statistic
metrics. We show that no metric is consistently better
than the others for all problems. Further, we also
show that traditional metrics, such as confidence, are
just moderately competent for most of the problems
investigated.

• We propose approaches to the metric dilemma in the
context of associative classification, which are based on
learning the domain of competence of metrics.

• We propose competence-conscious classifiers, which
effectively combine classifiers produced by different
metrics (an ensemble) using their domains of compe-
tence. All constituent classifiers are produced using the
same rule set. The only difference between the base
classifiers is the way they interpret the rules (each clas-
sifier employes a different metric). Thus, in contrast
to other ensemble approaches, the cost of producing a
competence-conscious associative classifier is roughly
the same cost of producing a single associative classi-
fier.

• We present a deep evaluation of the proposed
competence-conscious classifiers, and we show (using
a set of complex datasets) that they are able to provide
expressive gains in classification performance.

The remaining of this paper is organized as follows.
In Section 2 we discuss related work. Then, in Section
3, we introduce our associative classification technique.
The metric dilemma, and competence-conscious associative
classifiers (i.e., the ensemble of classifiers produced by
different metrics), are presented in Section 4. In Section 5
we evaluate the proposed competence-conscious classifiers,
and compare them against state-of-the-art SVMs and other
existing ensemble techniques. Finally, in Section 6 we
conclude the paper.

2 Related Work

The ultimate goal of a classifier is to achieve the best possible
classification performance for the problem at hand. An
ensemble is a collection of classifiers whose predictions are
combined with the goal of achieving better performance
than the constituent classifiers. There is a body of evidence
suggesting that ensembles offer substantial advantages in
enough situations to be regarded as a major advance in
machine learning [9]. Also, there is a body of theory
explaining why ensembles work.

A variety of ensemble methods has already been pro-
posed. Well known methods include bagging [5], boost-
ing [15], and stacking [22]. In the following, we will fo-
cus our attention on stacking methods, since the techniques
proposed in this paper are mostly related to them. Stacking
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is based on the idea that different classifiers provide differ-
ent but complementary explanations of the data. Thus, the
predictions of these different (base) classifiers provide novel
information that can be used as meta-features to form a new
training data. Then, a meta-classifier is built using this new
training data, but instead of predicting the correct class for
a given test instance, the meta-classifier predictcs the base
classifier that is most likely to correctly predict the class for
such instance. The obvious advantage, in this case, is that
the errors of a base classifier can be counterattacked by the
hits of others.

In this paper we exploit staking based meta-learning ap-
proaches to address an important issue in associative classi-
fication: themetric dilemma. Several statistic metrics can be
used to estimatefeature-classassociations [11, 13, 17], but
the most competent one is rarely known in advance. Thus,
we propose to explore the diversity among classifiers that are
produced using different statistic metrics to maximize the
performance of the final classifier (which will be refereed
as a competence-conscious associative classifier). The met-
ric dilemma is challenging, and, as far as we know, this is
the first attempt to integrate classifiers produced by different
statistic metrics, in the context of associative classification.

The integration of classifiers using strategies related to
stacking was largely explored [2, 8, 10, 14, 19]. In [2], the
authors use a neural network to learn, from predefined meta-
features (e.g., maximum confidence, average confidence,
number of applicable rules etc.), how to weigh the rules us-
ing a single association metric (i.e., confidence). We believe
that the work of Ortega et. al [14] is the closest to ours. They
used a referee (which in our case is a meta-classifier) to in-
dicate the best classifier to be applied for each example. The
approach used to produce the referee (which is based on de-
cision trees) is different to the approach we used to produce
the meta-classifier.In our experiments we performed a di-
rect comparison between the competence-conscious classi-
fiers proposed in this paper and the ensemble approach pro-
posed in[14].

Self-delegation [8] is another strategy for combining the
predictions of different base classifiers, and thus it is also
related to our work. The idea is that each base classifier
chooses by itself which instances it can safely classify. This
choice is based on the confidence in its prediction. A base
classifier delegates the difficult or uncertain predictions to
other classifiers. Clearly, this strategy produces classifiers
which are exclusively defined in terms of the original fea-
tures (no meta-features are generated). This simplicity may
be desirable, but it may neglect important information as-
sociated with meta-features.We show this by performing
a direct comparison between self-delegating classifiers and
competence-conscious classifiers.

The advantages of the proposed techniques, when com-
pared against other ensemble techniques, are manifold. First,

the proposed techniques showed to be more accurate than
other ensemble techniques for most of the problems investi-
gated. Further, all base classifiersCm1

, Cm2
. . .Cmq

are pro-
duced on a single shot, that is, the same rule-set is used to
produce all base classifiers (i.e., the cost of generating sev-
eral base classifiers is roughly the same cost of generating
only one of them). In this case, the only difference between
the base classifiers resides in the metric that is used to in-
terpret and weigh feature-class associations. The only ad-
ditional overhead that is necessary to generate competence-
conscious classifiers, comes from the cost of enhancing the
training data to produce the meta-classifier.

3 Associative Classification

The classification problem is defined as follows. We have
an input dataset called thetraining data (denoted asD)
which consists of instances composed of a set ofl attribute-
values (a1, a2, . . . , al) along with a special variable called
theclass. The set of all possible attribute-values is denoted
asA, while the class variable draws its value from a discrete
set of classes (c1, c2, . . . , cn). The training data is used to
build a classifier that relates features (or attribute values) to
the class variable. Thetest instancesare a set of instances
for which only the features are known while the class value
is unknown. The classifier, which is a function fromA to
{c1, c2, . . . , cn}, is used to predict the class value for test
instances (i.e., the classifier is a function which maps a set of
features to one of the classes).

Associative classifiers exploit the fact that, frequently,
there are strong associations between features and classes.
Typically, such associations are expressed using rules of the
form X −→ ci, whereX ⊆ A andci is one of the classes.
These rules are usually hidden in the training data, and
when uncovered they can be combined in order to accurately
map features to classes (i.e., the classification function is
obtained by combining the information provided by these
rules). In the following we will denote asR an arbitrary
rule set extracted fromD. Similarly, we will denote asRci

an arbitrary rule set composed of rules of the formX −→ ci,
such thatRci

⊆ R.
Naturally, some rules inR represent stronger associa-

tions than others. A set of statistic metrics that quantify the
strength of the association betweenX and ci are used to
compare the rules. Associative classifiers usually learn the
classification function in two broad steps:

1. generate a rule set,R, fromD

2. estimate the likelihood of class membership for each
test instance, by combining the information provided
by rules inR

In this paper our focus is on an important challenge
associated with step 2: provide an accurate estimate of
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the likelihood of class membership. Specifically, given an
instancet, we want to estimate the likelihood̂p(ci|t) that t
belongs to classci. Only rulesX −→ {c1, c2 . . . cn} ∈ R,
such thatX ⊆ t are used to estimatêp(c1|t), . . . p̂(cn|t).
Such rules are said to matcht, and they form the rule setRt.

The likelihood of membership of an instancet is esti-
mated by combining rules inRt={Rt

c1
∪Rt

c2
∪ . . .∪Rt

cn
}.

A simple (yet effective) probabilistic strategy is to interpret
Rt as a poll, in which ruleX −→ ci ∈ Rt

ci
is a vote given by

X for classci. The weight of a voteX
m
−→ ci depends on the

strength of the association betweenX andci, which is given
by an association metricm. Weighted votes for classci are
summed and then averaged by the total number of votes for
this class, as expressed by functions(ci, t), shown in Equa-
tion 3.1 (wherem(r) is the metric value for ruler). As will
be discussed in the next section, there are situations in which
m(r) < 0, and thus a valuez (which is the lowest score, that
is, z=s(cj, t)|s(cj , t) ≤ s(ci, t)∀ci), is used to ensure that all
scores are greater than or equal to 0.

(3.1) s(ci, t) =

∑

r∈Rt
ci

m(r)

| Rt
ci

|
− z

The likelihood of membership oft to classci is ex-
pressed by the function̂p(ci|t), shown in Equation 3.2 (thus,
votes with high weights increase the likelihood of the corre-
sponding class being the correct one, while votes with low
weights reduce the likelihood of the corresponding class be-
ing the correct one). A higher value of̂p(ci|t) indicates a
higher likelihood oft to belong to classci. The class as-
sociated with the highest likelihood is finally predicted. As
will be shown in Section 5, association metrics play a fun-
damental role in estimating the likelihood of class member-
ship. However, the best-quality, most competent metric is
data-dependent, and rarely known while devising the classi-
fier5.

(3.2) p̂(ci|t) =
s(ci, t)

n
∑

j

s(cj , t)

4 The Metric Dilemma

Selecting an appropriate association metric is a major is-
sue while designing an associative classifier. Classifiers pro-
duced by different metrics often present different classifica-
tion performance. Depending on the characteristics of the
problem, some metrics may be more suitable than others.

5We denote asCmj
an associative classifier which appliesmj as the

association metric in Equation 3.1

That is, a sub-domain may present properties that make a
metric more suitable than others. This suggests that clas-
sifiers produced by a certain metric are only able to make
reliable predictions over a subset of the entire domain space,
which is the area of expertise, or domain of competence, of
such metric. In this section we exploit the training data to
learn the competence, or expertise of each metric. Then,
a specific metric is used to produce a classifier for sub-
problems that belong to its domain of competence.

4.1 Association Metrics Next we present several metrics
for measuring the strength of association between a set of
features (X ) and classes (c1, c2, . . . , cn). Some of these
metrics are popular ones in routine use [1, 17], while others
were recently used in the context of associative classification
[3]. These metrics interpret association using different
definitions. We believe that these definitions are sufficiently
different to indicate that the corresponding classifiers may
present some diversity.

• Confidence (m1) [1]: This metric measures the fraction
of instances inD containingX that belong toci. It is the
conditional probability ofci being the correct class of
instancet given thatX ⊆ t, as shown in Equation 4.3.
Its value ranges from 0 to 1.

(4.3) m1 = p(ci|X )

• Added Value (m2) [11]: This metric measures the
gain in accuracy obtained by using ruleX−→ci instead
of always predictingci, as shown in Equation 4.4.
Negative values indicate that always predictingci is
better than using the rule. Its value ranges from -1 to
1.

(4.4) m2 = p(ci|X ) − p(ci)

• Certainty (m3) [13]: This metric measures the increase
in accuracy between ruleX −→ ci and always predicting
ci, as shown in Equation 4.5. It assumes values smaller
than 1.

(4.5) m3 =
p(ci|X ) − p(ci)

p(ci)

• Yules’Q (m4) and Yules’Y (m5) [17]: These metrics are
based on odds value, as shown in Equations 4.6 and 4.7,
respectively. Their values range from -1 to 1. The value
1 implies perfect positive association betweenX and
ci, value 0 implies no association, and value -1 implies
perfect negative association.
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(4.6)

m4 =
p(X ∪ ci)p(X ∪ ci) − p(X ∪ ci)p(X ∪ ci)

p(X ∪ ci)p(X ∪ ci) + p(X ∪ ci)p(X ∪ ci)

(4.7)

m5 =

√

p(X ∪ ci)p(X ∪ ci) −
√

p(X ∪ ci)p(X ∪ ci)
√

p(X ∪ ci)p(X ∪ ci) +
√

p(X ∪ ci)p(X ∪ ci)

• Strength Score (m6) [3]: This metric measures the
correlation betweenX and ci, but it also takes into
account howX is correlated with the complement of
ci (i.e., ci), as shown in Equation 4.8. Its value ranges
from 0 to∞.

(4.8) m6 =
p(X|ci)p(ci|X )

p(X|ci)

• Support (m7) [1]: This metric measures the fraction of
instances inD covered by the ruleX −→ ci, as shown in
Equation 4.9. Its value ranges from 0 to 1.

(4.9) m7 = p(X ∪ ci)

• Weighted Relative Confidence (m8) [13]: This metric
trades off accuracy and generality, as shown in Equa-
tion 4.10. The first component is the accuracy gain that
is obtained by using ruleX −→ ci instead of always
predictingci. The second component incorporates gen-
erality.

(4.10) m8 = (p(ci|X ) − p(ci))p(X )

Although we focus our analysis only on these metrics,
the techniques to be introduced here are general and able
to exploit any number of metrics transparently. Next we
will discuss a simple approach to boost classification per-
formance by exploiting associative classifiers produced by
these metrics.

Self-Delegating Classifier (SDC)Equation 3.2 can be
used to estimate the reliability of a prediction, and this in-
formation can be used to select the most reliable prediction
from all involved classifiers. The process is illustrated in Al-
gorithm 1. For a given test instancet, the selected class is the
one which is associated with the highest likelihoodp̂(ci|t)
amongst all classifiersCt

m1
, Ct

m2
, . . . , Ct

mq
. The basic idea

is to use the most reliable prediction (among the predictions
performed by all classifiers) to select the class fort.

Although simple, SDC does not exploit the competence
of each metric. In fact, each base classifier simply decides
by itself the instances it will classify, not meaning that the
select instances belong to its domain of competence.

Algorithm 1 Classifier based on Self Delegation of Metrics.
Require: The training dataD, and a test instancet
Ensure: The class for instancet

1: Rt ⇐ rulesX −→ ci (with 1 ≤ i ≤ n) extracted fromD
such thatX ⊆ t

2: produce different classifiersCt
m1

, Ct
m2

, . . . , Ct
mq

, for in-
stancet, using rules inRt

3: return the class associated with the highest likelihood
of membership fort (i.e., Eq. 2), amongst all classifiers

4.2 Learning the Metric CompetenceThe optimal
match between metrics and problems is a valuable informa-
tion. In this section we present an approach to estimate such
matching. The proposed approach may be viewed as an ap-
plication of Wolpert’s stacked generalization [22]. From a
general point of view, stacking can be considered a meta-
learning method, as it refers to the induction of classifiers
over inputs that are, in turn, the predictions of other classi-
fiers induced from the training data.

Algorithm 2 Enhancing the Training Data with the Compe-
tence of each Metric.
Require: The original training dataD, and a cross-

validation parameterk
Ensure: The enhanced training dataDe

1: splitD into k partitions, so thatD={d1 ∪ d2 ∪ . . .∪ dk}
2: De ⇐ ∅
3: for eachpartitiondi do
4: for each instancet ∈ di do
5: m ⇐ ∅
6: Rt ⇐ rulesX −→ ci (with 1 ≤ i ≤ n) extracted

from {D-d} such thatX ⊆ t

7: produce different classifiers,Ct
m1

, Ct
m2

, . . . , Ct
mq

,
using rules inRt

8: for eachclassifierCt
mj

do
9: if Ct

mj
correctly predicts the class for tthen

10: m ⇐ m ∪ mj

11: end if
12: end for
13: De ⇐ De ∪ {t ∪ m}
14: end for
15: end for

The process starts by enhancing the original train-
ing data using the outputs of the base classifiers,Ct

m1
,

Ct
m2

. . .Ct
mq

. Algorithm 2 shows the basic steps involved
in the process. Initially, the enhanced training data,De is
empty. An examplet, along with the competence of each
metric with regard tot (i.e., which metric correctly predicted
the class fort), is inserted intoDe. The process continues un-
til all examples are processed. In the end, for each example
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Attribute-Values
Id Class a1 a2 . . . al

1 c1 1 3 . . . 6
2 c1 1 3 . . . 7
3 c1 2 4 . . . 6
4 c2 2 4 . . . 7
5 c2 2 5 . . . 8
6 c2 2 4 . . . 6
7 c3 1 3 . . . 9
8 c3 2 5 . . . 9
9 c3 2 4 . . . 8
10 c3 2 4 . . . 9

Table 1: Training Data,D.

Attribute-Values Competent Most Competent
Id Class a1 a2 . . . al Metric(s) (per instance) Metric(s) (per class)

1 c1 1 3 . . . 6 m2

2 c1 1 3 . . . 7 m1 m3 m1

3 c1 2 4 . . . 6 m1

4 c2 2 4 . . . 7 m1 m2

5 c2 2 5 . . . 8 m1 m2 m3 m1

6 c2 2 4 . . . 6 m1

7 c3 1 3 . . . 9 m2

8 c3 2 5 . . . 9 m2 m3 m2

9 c3 2 4 . . . 8 m1 m2 m3

10 c3 2 4 . . . 9 m2

Table 2: Enhanced Training Data,De.

t ∈ De we have a list of metrics that produced a competent
classifier fort, and this information enables learning the co-
mains of competence of each metric, as will be discussed in
the next section.

To illustrate this process, please consider the example
shown in Tables 1 and 2. Table 1 shows the original training
data,D. Using the process described in Algorithm 2, the
competence of each metric to each instance is appended to
D, resulting in the enhanced training data,De, which is
shown in Table 2. In this case, for a given examplet, metric
mi is shown if the corresponding classifierCt

mi
has correctly

classifiedt using the stacking procedure (i.e., metricmi is
competent with regard to examplet). The enhanced training
data,De, can be exploited in several ways. In particular, we
will useDe to produce competence-conscious classifiers, as
will be discussed next.

4.3 Competence-Conscious ClassifiersIn this section
we present strategies for exploitingDe in order to produce
competence-conscious classifiers. The challenge, in this
case, is to properly select a competent metric for a specific
problem. The competence-conscious classifiers to be pre-
sented differ in how they perform the analysis of the domains
of competence of metrics.

Class-Centric Competence-Conscious Classifier (C5)
The competence of a metric is often associated with certain
classes. Some metrics, for instance, produce classifiers
which show preference for more frequent classes, while
others produce classifiers which show preference for less
frequent ones. As an illustrative example, please consider
Table 2. Metricm1 is extremely competent for classifying
instances that belong to classesc1 and c2. On the other
hand, if we consider instances belonging toc3, metric m2

perfectly classifies all instances. This information (which
is shown in the last column of Table 2) may be used to
produce class-centric competence-conscious classifiers. The
process is depicted in Algorithm 3. It starts with a meta-

classifier,M, which learns the most competent metric for
a given class. Any classifier can be used to build the meta-
classifier. For simplicity we choose an associative classifier
that weights the votes given by rules using the confidence
metric. In this case, instead of generating rulesX −→ ci,
the meta-classifier generates rulesX −→ mi, which maps
features (i.e., in the second column of Table 2) to metrics
(i.e., in the fourth column of Table 2). Then, for each test
instancet, the meta-classifier indicates the most competent
metric,mj , that is then used to produce the final classifier,
Ct

mj
, which is finally used to predict the class for instancet.

Algorithm 3 Class-Centric Meta Classifier.
Require: The enhanced training dataDe (i.e.,

the 3rd and 5th columns of Table 2), and a test in-
stancet

Ensure: The most competent metric for instancet

1: for eachmetricmi do
2: Rt

mi
⇐ rulesX −→ mi extracted fromDe such that

X ⊆ t

3: Estimatep̂(mi|t), according to Equation 3.2 (using
confidence to weigh the votes)

4: end for
5: return metricmj such that̂p(mj |t) > p̂(mi|t)∀i 6= j

Instance-Centric Competence-Conscious Classifier
(IC4) Although the competence of some metrics are asso-
ciated with certain classes, specific instances may be better
classified using other metrics. In such cases, a more fine-
grained analysis of competence is desired. As an illustrative
example, please consider again Table 2. Although metric
m1 is the most competent one to classify instances belong-
ing to classc1, metricm2 is the only one which competently
classifies instance 1 (which belongs toc1). Again, a meta-
classifier,M, is used to explore such cases. The process
is depicted in algorithm 4. In this case, the meta-classifier
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learns the most competent metric by generating rules of the
formX −→ mi, which maps features (i.e., the second column
of Table 2) to metrics (i.e., in the third column of Table 2).
Then, for each test instancet, the meta-classifier indicates
the most competent metric,mj , which is used to produce the
final classifier,Ct

mj
.

The main advantage of C5 and IC4 is that, in practice,
multiple metrics produce competent classifiers for a partic-
ular instancet, but M needs to predict only one of them
(competent metrics are not mutually exclusive, and thus, in
practice, multiple metrics produce competent classifiers for
t). This redundancy in competence that exists when differ-
ent metrics are taken into account, may increase the chance
of selecting a competent metric.

Algorithm 4 Instance-Centric Meta Classifier.
Require: The enhanced training dataDe (i.e.,

the 3rd and 4th columns of Table 2), and a test in-
stancet

Ensure: The most competent metric for instancet

1: for eachmetricmi do
2: Rt

mi
⇐ rulesX −→ mi extracted fromDe such that

X ⊆ t

3: Estimatep̂(mi|t), according to Equation 3.2 (using
confidence to weigh the votes)

4: end for
5: return metricmj such that̂p(mj |t) > p̂(mi|t)∀i 6= j

Algorithm 5 Competence-Conscious Classifiers.
Require: The training dataD, the meta-classifierM, and a

test instancet
Ensure: The class for instancet

1: for eachclassci do
2: Rt

ci
⇐ rulesX −→ ci extracted fromD such that

X ⊆ t

3: end for
4: select the most competent classifier fort, Ct

mx
, usingM

5: Estimate p̂(ci|t) (with 1≤i≤n), according to Equa-
tion 3.2 (using metricmx to weigh the votes)

6: return classcj such that̂p(cj |t) > p̂(ci|t)∀i 6= j

Bounds for Competence-Conscious ClassifiersWe
derived lower and upper bounds for the classification per-
formance of the proposed competence-conscious associative
classifiers. The lower bound is the performance that is ob-
tained by randomly selecting a competent metric. Clearly,
this lower bound increases with the redundancy between
the base classifiers,Ct

m1
, . . . Ct

mq
(this redundancy exists be-

cause competent metrics are not mutually exclusive, and,
thus, for a particular instancet, multiple metrics can be com-

petent). The upper bound is the classification performance
that would be obtained by an oracle which always predicts
a competent metric (note that perfect performance is not al-
ways possible, since it may not exist a competent metric for
some instances). Clearly, this upper bound increases with the
accuracy and diversity associated with base classifiers.

5 Experimental Evaluation

In this section we will empirically analyze the proposed clas-
sifiers, SDC, C5, and IC4. In our experiments, we used
26 datasets from the UCI Machine Learning Repository [4]
and two datasets obtained from more complex applications.
These datasets cover a wide range of properties. We com-
pare the proposed classifiers against SVM [12] baselines6,
and against the ensemble approach proposed in [14], which
we call ER7 (standing for External Referee). For associative
classifiers, continuous attributes in the training data were dis-
cretized using the entropy-minimization method [7], and the
attribute-values in the test set were simply mapped to the cor-
responding intervals (in this way, the discretization process
did not use class information in the test set). Experiments
that compare classification performance report results for the
standard 10-fold cross-validation procedure. In all experi-
ments, parameterk for Algorithm 2 was set to 2 (i.e., each
training data,D, was splited in two disjoint partitions,d1 and
d2, in order to obtain the enhanced training data,De). Best
results, including statistical ties, are emphasized. A bold face
indicates that the corresponding result was found statistically
significant at the 95% confidence level when tested with the
two-tailed paired t-test. Experiments were run on 1.8 MHz
Intel processors 1GB RAM under Linux.

5.1 Document CategorizationThe first dataset was ex-
tracted from the first level of the ACM Computing Classifi-
cation System (http://portal.acm.org/dl.cfm/).
The dataset contains 6,682 documents labeled using the 8
first level categories of ACM, namely Hardware (C1), Com-
puter Systems Organization (C2), Software (C3), Computing
Methodologies (C4), Mathematics of Computing (C5), In-
formation Systems (C6), Theory of Computation (C7), Com-
puting Milieux (C8). Citations and words in title/abstract
compose the set of features. The dataset has a vocabulary of
9,840 unique words, and a total of 51,897 citations. Please,
refer to [20] for a detailed description of this dataset.

Using the rules extracted from this dataset, we can an-
alyze the relationship between the widely used confidence
metric (m1) with other metrics, as shown in Figure 1 (to ease
the observation of this relationship, we also include, in each

6Weused the LibSVM tool [6] in order to select appropriate parameters,
which are informed in each experiment.

7The ensemble is composed of the base classifiersCm1
, . . . , Cm8

, but
the best classifier for each test instance is selected using a decision tree
referee.
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Figure 1: Relationship between Confidence and other Metrics using the ACM Dataset.

Lower Upper
Cm1

Cm2
Cm3

Cm4
Cm5

Cm6
Cm7

Cm8
Bound SDC C5 IC4 Bound ER SVM

C1 0.809 0.846 0.826 0.834 0.834 0.848 0.183 0.628 0.715 0.813 0.809 0.821 0.893 0.801 0.729
C2 0.714 0.785 0.758 0.772 0.799 0.752 0.313 0.785 0.723 0.730 0.738 0.766 0.880 0.719 0.879
C3 0.912 0.851 0.888 0.871 0.864 0.748 0.960 0.880 0.870 0.876 0.884 0.918 0.983 0.874 0.661
C4 0.569 0.690 0.628 0.657 0.661 0.676 0.090 0.547 0.562 0.581 0.623 0.623 0.795 0.604 0.515
C5 0.548 0.624 0.593 0.675 0.680 0.670 0.010 0.329 0.563 0.568 0.625 0.648 0.751 0.613 0.907
C6 0.948 0.929 0.937 0.931 0.927 0.893 0.689 0.761 0.877 0.919 0.911 0.925 0.965 0.898 0.869
C7 0.922 0.893 0.897 0.890 0.887 0.889 0.507 0.687 0.837 0.906 0.895 0.902 0.922 0.876 0.672
C8 0.641 0.715 0.687 0.721 0.729 0.755 0.071 0.481 0.591 0.654 0.697 0.697 0.823 0.674 0.771

Total 0.843 0.847 0.850 0.852 0.855 0.810 0.566 0.735 0.798 0.848 0.858 0.881 0.925 0.811 0.827

Table 3: Classification Performance associated with each Category of the ACM Dataset.

graph, a thicker line which indicates the corresponding con-
fidence value). Each point in the graphs corresponds to a
rule, for which it is shown the values of some metrics (i.e.,
confidence in the x-axis and another metric in the y-axis).
Clearly, each metric has its particular behavior with vary-
ing values of confidence. We will use these relationships to
understand some of the results to be presented. For lower
values of confidence, Added Value (m2) has a preference for
less frequent classes, but, after a certain confidence value,
the preference is for more frequent classes. Certainty (m3)
always prefer less frequent classes, but linearly approaches
confidence as its value increases. Yules’Q (m4) and Yules’Y
(m5) have a similar behavior, showing preference for less

frequent classes and hardly penalizing associations with low
confidence values. Strength Score (m6) and Weighted Rel-
ative Confidence (m3) both prefer less frequent classes, but
Strength Score shows a non-proportional preference for as-
sociations with higher values of confidence. The relation-
ship between confidence and support (m7) is omitted, but,
by definition, support shows a preference for more frequent
classes. We will use these relationships to explain some of
the results reported in the following8.

8Due to lack of space, we only show the relationship between confidence
and other metrics using this dataset, however, similar behaviors were
observed in the other datasets.
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Table 3 shows the classification performance obtained
by different classifiers using the ACM dataset (for this ap-
plication, performance is computed through the traditional
accuracy). We will first analyze the performance associated
with each category, and then the final classification perfor-
mance, which is shown in the last line of the table. Classi-
fiers produced by confidence (Cm1

) and support (Cm7
) per-

formed very well in the most frequent categories (Software,
Inf. Systems and Theory of CS). On the other hand, instances
belonging to less frequent categories (Comp. Methodolo-
gies, Mathematics of CS, and CS Organization) were better
classified using Yules’Q (Cm4

) and Yules’Y (Cm5
). This is

expected, and is in agreement with the behaviors depicted in
Figure 1 (Yules’Y and Yules’Q show a preference for less
frequent categories). The best metric is the one that better
balances its performance over all categories. Although the
classifier produced by Yules’Y was not the best one for any
specific category of ACM, it was the best overall classifier
(amongst classifiers produced by other metrics in isolation).

SDC shows a performance that is similar to the per-
formance obtained by most of the base classifiers (the im-
provement, when it exists, is only marginal). Competence-
conscious classifiers C5 and IC4 showed the best perfor-
mances. IC4 outperformed all other classifiers, providing
gains of more than 7%, when compared against SVM9, and
gains of more than 8.5% when compared against ER. IC4 is
always far superior than the corresponding lower bound, but
it is also relatively far from the corresponding upper bound.

We also performed an analysis on how the different
metrics were used by C5 and IC4, as can be seen in Figure 2
(Left). C5 utilized only few metrics, speciallym2, m3 and
m7. Metric m4 was used to produce classifiers to only one
category, and metricsm5 and m8 were not used (this is
because these two metrics were not the most competent in
any category of ACM, and therefore are not considered by
C5). IC4, on the other hand, utilized all metrics, specially
m1, m2 andm3. Both C5 and IC4 make large utilization
of metricsm2 andm3. For C5, some areas of expertise can
be easily detected. Metricm2 is considered competent for
categories Hardware and CS Organization, while metricm3

is considered competent for category Information Systems.
For IC4, areas of expertise are finer grained, but with manual
inspection we detected thatm1 is considered competent for
category CS Organization, andm3 is considered competent
for category Milieux.

We finalize this first set of experiments by analyzing one
of the reasons of the good performance showed by IC4. Fig-
ure 2 (Right) shows the accuracy associated with scenarios
for which a different number of metrics are competent. The
frequency of occurrence of each scenario is also shown (note
that both accuracy and frequency values are shown in the y-

9Polynomial kernel of degree 6.

axis). As it can be seen, for more than 7% of the instances
no metric is competent, and, obviously, these instances were
misclassified (this means that the inclusion of other metrics
may improve classification performance in this dataset). As
expected, accuracy increases with the number of competent
metrics. For almost half of the instances all 8 metrics are
competent. In these scenarios, there is no risk of misclassifi-
cation, since a classifier produced by any metric will perform
a correct prediction. The accuracy associated with scenarios
where only 7 and only 6 of the metrics are competent, is also
extremely high (respectively, 99% and 96%). These three
scenarios (i.e., 8, only 7, and only 6 metrics are simultane-
ously competent) correspond to 86% of the instances, and
the average accuracy associated with these three scenarios is
almost 98% for IC4. Further, IC4 shows to be more robust
that C5, providing superior accuracy (relative to the accuracy
of C5) in scenarios where there are only few competent met-
rics.

5.2 Web Spam DetectionIn this application the objective
is to detect malicious actions aimed at the ranking functions
used by search engines. We used a dataset obtained from
the Web Spam Challenge (http://webspam.lip6.
fr/wiki/pmwiki.php). The dataset is very skewed
(only 6% of the examples are spam pages). Each example
is composed of direct features (i.e., number of pages in the
host, number of characters in the host name etc.) link-based
features (i.e., in-degree, out-degree, PageRank etc.) and
content-based features (i.e., number of words in the page,
average word length etc.).

Table 4 shows the classification performance obtained
by different classifiers (for this application, performance is
computed through accuracy, F1 measure10, and the area un-
der the curve).Cm1

andCm7
showed impressive performance

in terms of accuracy. This is expected, because the vast ma-
jority of examples are legitimate pages, and confidence and
support have preference for more frequent classes. On the
other hand,Cm1

andCm7
showed poor performance in terms

of F1 and AUC (i.e., no spam pages were detected). The
remaining base classifiers were able to detect some spam
pages, speciallyCm6

, which also shows impressive perfor-
mance in terms of accuracy. In terms of AUC,Cm2

and
Cm3

showed the best performance, amongst base classifiers.
Thus, different metrics show distinct performance depending
to the evaluation target (i.e., accuracy, F1 or AUC).

Now we evaluate C5 and IC4, which are the best per-
formers in terms of F1. Although IC4 showed to be far from
the optimal performance, it showed impressive gains when
compared against SVM11 and ER, in terms of F1 and AUC.

10F1 is a combination of precision (p) and recall (r) defined as their
harmonic mean2pr

p+r
11Linear kernel with parameter C set to 5.00.
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Figure 2: Left− Metric Utilization in the ACM Dataset. Right− Distribution of Competent Metrics in the ACM Dataset.

Lower Upper
Cm1

Cm2
Cm3

Cm4
Cm5

Cm6
Cm7

Cm8
Bound SDC C5 IC4 Bound ER SVM

Acc. 0.946 0.704 0.702 0.894 0.901 0.948 0.946 0.880 0.852 0.861 0.870 0.897 0.990 0.866 0.956
F1 0.486 0.522 0.522 0.584 0.589 0.592 0.486 0.587 0.588 0.594 0.609 0.624 0.947 0.586 0.504
AUC 0.500 0.756 0.756 0.607 0.606 0.562 0.500 0.629 0.662 0.730 0.718 0.789 0.908 0.725 0.512

Table 4: Classification Performance for Web Spam Detection.

5.3 UCI Datasets In the last set of experiments, we used
26 datasets obtained from the UCI Machine Learning Repos-
itory [4]. Table 5 shows the performance obtained by each
classifier using these datasets (for this application, perfor-
mance is computed through the traditional accuracy).Cm4

andCm5
showed poor performance in skewed datasets where

few classes are much more frequent than the others (i.e.,
anneal, lymph, auto, hypo). This is because Yules’Y and
Yules’Q have preference for less frequent classes (as shown
in Figure 1). For these skewed datasets,Cm7

(support)
showed its best performance, since the likelihood of predict-
ing most frequent classes is higher in such datasets (this is
expected, due to the definition of support). For most of the
datasets,Cm1

, Cm2
andCm3

are in close rivalry (Cm1
shows

a slightly better average performance, butCm3
shows better

performance more often).Cm6
(strength score) shows the

best average performance, amongst all base classifiers.
On average, C5 shows superior classification perfor-

mance than SDC. Also, the performance of C5 is, on average,
slightly superior than the performance obtained by SVM12

and ER baselines. Again, IC4 is the best performer, and for

12Linear kernels were used for datasets austra (C=1.50), breast(C=3.00),
cleve (C=3.00), crx (C=0.10), diabetes (C=1.00), german (C=1.00), heart
(C=5.00), hepatitis (C=0.10), horse (C=1.00), hypo (C=3.00), ionosphere
(C=0.50), led7 (C=0.50), pima (C=0.10), sick (C=5.00), sonar (C=5.00),
and tic-tac-toe (C=0.50). Polynomial kernels were used for datasets anneal
(degree=6), iris (degree=4), lymph (degree=5), vehicle (degree=6), wave-
form(degree=5), and wine(degree=5). RBF kernels were used for datasets
auto (γ=0.00003), glass(γ=0.0012), led7(γ=0.0012), and zoo(γ=0.0012).

some datasets it reaches a performance that is close to op-
timal (i.e., anneal, breast, hypo, iris, labor, sick, wave and
wine), suggesting that the more fine-grained the analysis of
competence, the more effectively the metrics are combined.
Interestingly, the performance of C5 approaches the perfor-
mance of IC4 for datasets containing more classes (i.e., glass,
led7, lymph, vehicle, and zoo), since in this case the compe-
tence analysis performed by C5 becomes finer grained.

Some datasets deserve special attention. IC4 showed
very good performance in the anneal dataset. Figure 3(left)
shows the frequency distribution of competent metrics for
this dataset. Almost 70% of the instances have more than five
competent metrics, and in such scenarios accuracy reaches
100%. The accuracy obtained in such scenarios guaran-
tees a final classification performance that is already superior
than the performance ofCm2

, Cm4
, Cm5

andCm8
. Similar

trends also happens in datasets austra, breast, cleve, german,
heart, hypo, iono, iris, sick and wine. In the auto dataset
IC4 showed poor performance, being worse than base classi-
fiersCm1

, Cm2
, Cm3

andCm6
. Figure 3(right) shows the fre-

quency/accuracy distribution of competent metrics for this
dataset. As can be seem, the accuracy associated with al-
most 40% of the instances falls below 58%, which are the
scenarios with less than 5 competent metrics. Also, we be-
lieve that, for such datasets, the meta-classifier was not able
to correctly distinguish the domains of competence. Similar
trend also happens for datasets hepati, tic-tac, and wave.

We finish our evaluation with simple linear models that
are used to assess the improvements provided by C5 and IC4,
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Figure 3: Distribution of Competent Metrics for IC4 in the anneal (left) , and auto (right) Datasets.

Cm1
Cm2

Cm3
Cm4

Cm5
Cm6

Cm7
Cm8

LB SDC C5 IC4 UB ER SVM

anneal 0.762 0.693 0.863 0.114 0.230 0.928 0.762 0.615 0.624 0.923 0.935 0.961 0.997 0.923 0.949
austra 0.857 0.850 0.850 0.857 0.850 0.855 0.830 0.860 0.855 0.872 0.869 0.878 0.923 0.848 0.857
auto 0.712 0.751 0.760 0.048 0.107 0.778 0.404 0.517 0.532 0.680 0.700 0.695 0.897 0.673 0.721
breast 0.941 0.971 0.971 0.969 0.969 0.969 0.929 0.968 0.951 0.955 0.966 0.972 0.984 0.972 0.972
cleve 0.841 0.831 0.831 0.834 0.834 0.818 0.838 0.828 0.835 0.840 0.836 0.848 0.901 0.840 0.834
crx 0.831 0.849 0.849 0.853 0.842 0.857 0.842 0.859 0.843 0.855 0.863 0.870 0.923 0.861 0.856
diabet 0.781 0.744 0.744 0.748 0.748 0.781 0.700 0.743 0.745 0.754 0.781 0.785 0.935 0.773 0.770
germa 0.700 0.693 0.693 0.691 0.693 0.747 0.700 0.726 0.721 0.723 0.738 0.748 0.952 0.738 0.712
glass 0.714 0.658 0.672 0.644 0.644 0.710 0.565 0.649 0.635 0.662 0.704 0.683 0.865 0.669 0.709
heart 0.818 0.840 0.840 0.825 0.829 0.833 0.829 0.833 0.826 0.834 0.844 0.859 0.900 0.851 0.838
hepati 0.800 0.774 0.780 0.838 0.832 0.845 0.793 0.851 0.793 0.804 0.832 0.839 0.987 0.820 0.813
horse 0.713 0.728 0.728 0.706 0.687 0.750 0.774 0.717 0.739 0.759 0.772 0.812 0.894 0.782 0.822
hypo 0.952 0.875 0.876 0.126 0.126 0.976 0.952 0.935 0.728 0.884 0.939 0.996 1.000 0.952 0.987
iono 0.900 0.894 0.891 0.877 0.868 0.925 0.692 0.843 0.857 0.898 0.914 0.944 0.983 0.920 0.917
iris 0.940 0.946 0.946 0.946 0.946 0.933 0.940 0.940 0.935 0.944 0.948 0.951 0.953 0.944 0.957
labor 1.000 0.947 0.929 0.754 0.894 0.947 0.631 0.929 0.965 0.971 1.000 0.993 1.000 0.978 0.782
led7 0.745 0.738 0.738 0.741 0.740 0.715 0.743 0.743 0.737 0.749 0.770 0.762 0.807 0.743 0.746
lymph 0.858 0.763 0.817 0.060 0.141 0.783 0.750 0.777 0.581 0.793 0.841 0.841 0.946 0.830 0.803
pima 0.733 0.744 0.744 0.748 0.748 0.781 0.691 0.743 0.742 0.754 0.767 0.798 0.940 0.771 0.770
sick 0.938 0.642 0.648 0.126 0.136 0.969 0.938 0.679 0.628 0.923 0.945 0.983 1.000 0.964 0.968
sonar 0.812 0.865 0.865 0.850 0.865 0.831 0.769 0.860 0.817 0.855 0.870 0.868 0.952 0.868 0.840
tic-tac 0.653 0.911 0.812 0.926 0.926 0.812 0.415 0.534 0.763 0.835 0.882 0.917 1.00 0.879 0.833
vehicle 0.655 0.666 0.666 0.669 0.653 0.702 0.534 0.618 0.655 0.668 0.725 0.737 0.762 0.701 0.726
wave 0.805 0.808 0.807 0.816 0.812 0.816 0.783 0.787 0.806 0.812 0.812 0.839 0.839 0.822 0.868
wine 0.913 0.932 0.932 0.820 0.831 1.000 0.685 0.747 0.831 0.883 1.000 0.992 1.000 0.943 0.979
zoo 0.845 0.851 0.871 0.861 0.782 0.910 0.712 0.693 0.822 0.899 0.935 0.947 0.970 0.952 0.931

Avg. 0.816 0.808 0.812 0.673 0.683 0.846 0.738 0.769 0.769 0.828 0.860 0.865 0.935 0.847 0.845

Table 5: Classification Performance of Classifiers in the UCI Datasets.

relative to the base classifiers (a similar evaluation approach
was used in [16]). Specifically, we are interested in modeling
the accuracy of competence-conscious classifiers using the
best results obtained by the base classifiers. Thus, we
assumed a linear relationship between the accuracy obtained
by the best base classifier and the accuracy obtained by either
C5 or IC4. We characterized this relation by using statistical
correlation coefficients (CC).

The associated regression lines were built using the 26
UCI datasets (i.e., each point corresponds to one of the 26
datasets). Regression lines for C5 and IC4 are shown in
Figure 4, and both have very high correlation coeficients
(which are shown between parenthesis). Further, their re-
gression gradients are higher than one, possibly indicating,
in the limit, competence-conscious associative classifiers are
indeed more accurate than the best base classifier.
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Accuracy of the Best Base Classifier

Acc(C5)=1.01*x+0.017 (CC=0.969)
Acc(IC4)=1.05*x−0.013 (CC=0.982)

Figure 4: Accuracy Model for Competence-Conscious Clas-
sifiers.

6 Conclusions

This paper focused on an important problem in associative
classification, themetric dilemma. We have shown that the
performance of associative classifiers are strongly dependent
on the metric that is used to quantify the strenght of the
association between features and classes. There is no perfect
metric, and no metric is consistently superior than all others,
in the sense that it can be safely used in isolation. In fact,
each metric has a particular domain of competence, or area
of expertise, for which it is able to produce the most accurate
classifier. We investigate meta-learning methods, which
use the training data to learn the domain of competence
of each metric. Finally, the competence of metrics are
exploited to decide which is the best metric to be applied
in each scenario, resulting in a combination or ensemble of
classifiers produced by different metrics, which maximizes
the performance of the final classifier, that we denoted as
competence-consciousassociative classifiers.

For effective metric combination, the corresponding
classifiers must cover different portions of the training data
(i.e., the metrics must show some diversity), and the training
data must have features that are able to distinguish those
portions of the training data. If these favorable conditions are
met, our method reaches full potential of the base classifiers
(i.e., the performance is close to the upper bound). On the
other hand, a performance penalty may result.

We proposed competence-conscious classifiers, where
the difference between them resides in how they perform
the analysis of the domains of competence. The coarse-
grained analysis, performed by the class-centric approach
(C5) provides lower gains when compared to the fine-grained
analysis, performed by the instance-centric approach (IC4),
which outperforms all the evaluated classifiers, including
a simple delegation approach (SDC), an existing ensemble
method (ER), and SVMs.
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