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Abstract— The great majority of genetic programming (GP)
algorithms that deal with the classification problem follow a
supervised approach, i.e., they consider that all fitness cases
available to evaluate their models are labeled. However, in
certain application domains, a lot of human effort is required
to label training data, and methods following a semi-supervised
approach might be more appropriate. This is because they
significantly reduce the time required for data labeling while
maintaining acceptable accuracy rates. This paper presents the
Active Learning GP (AGP), a semi-supervised GP, and instan-
tiates it for the data deduplication problem. AGP uses an active
learning approach in which a committee of multi-attribute
functions votes for classifying record pairs as duplicates or not.
When the committee majority voting is not enough to predict
the class of the data pairs, a user is called to solve the conflict.
The method was applied to three datasets and compared to two
other deduplication methods. Results show that AGP guarantees
the quality of the deduplication while reducing the number of
labeled examples needed.

I. INTRODUCTION

The great majority of genetic programming algorithms
that deal with the classification problem follow a super-
vised approach [1], i.e., they consider that all fitness cases
(examples) available to evaluate their models are labeled.
However, in certain applications, such as data deduplication,
spam detection, and text and protein classification, a lot
of human effort is required to label the training data [2].
In scenarios like the aforementioned, methods following a
semi-supervised approach might be more appropriate, as they
reduce significantly the time required for data labeling while
maintaining acceptable accuracy rates.

Semi-supervised methods work with a combination of
labeled and unlabeled data, and can be used both in the
contexts of classification and clustering [3]. Here we focus on
semi-supervised methods for classification. Many methods
following this approach have been previously proposed,
including self-training [4] and co-training [5]. Nonetheless,
we are not aware of any classification method based on
genetic programming following a semi-supervised approach,
although genetic semi-supervised clustering methods have
already been proposed [6].

Among the most prominent methods of semi-supervised
learning are those based on active learning [7]. While a
passive learner obtain all the data labels at once, an active
learner chooses for which examples it would like to see the
labels [8]. Hence, in active learning the learner does not work
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with a static training set. Instead, it actively selects from a
set of unlabeled data those instances that, when labeled by a
user, will bring the highest information gain. This approach
usually reduces the need for training data since the learner is
able to choose a few very informative instances when needed,
and effectively learn from them.

The concepts of active learning were previously incorpo-
rated to genetic programming (GP) algorithms [9] follow-
ing supervised approaches. Nevertheless, the role of active
learning in GP was a different one: to reduce the size of the
training set and, consequently, the time required to evaluate
GP solutions, improving GPs computational cost. Methods
such as (hierarchical) random and dynamic subset selection
[9], [10] showed that, in a supervised context, they can speed
up the time to evolve a model without affecting the models
performance.

In contrast with the methods previously mentioned, the
method proposed in this paper follows a semi-supervised
approach based on active learning to help reducing the cost
of labeling examples while evolving classification models
with genetic programming. The proposed active learning GP,
from now on referred as AGP, works with a committee
of individuals that decides which examples should be sent
to the user to label. It also implements a reinforcement
learning approach, which helps evaluating the confidence of
committee members in their classifications.

AGP was tailored to solve a challenging database problem:
data deduplication. The main goal of data deduplication is to
identify different records in a database referring to the same
real-world entity. This problem was chosen because, given
the size of the repositories involved (in the order of millions
of records), the process of labeling data can be extremely
expensive or even unpractical. Furthermore, in some cases it
is hard even for humans to decide if two records are replicas
or not in the absence of enough information.

Usually, methods for data deduplication work in three
distinct phases [11]: (1) generation of pairs of candidate
records for comparison, which can, in the worst case, mean
all possible pairs in the database, (2) calculation of some type
of similarity between each pair based on their attributes, (3)
classification of the pairs as replicas or not, depending on
the similarity value found or a model learnt from data.

In this paper, GP is used to explore the vast space of exist-
ing similarity functions between records fields (or attributes),
which can be created using many different combinations of
weighted single-attribute similarity functions. At the same
time that the method is capable of identifying the most
relevant evidence, maximizing performance and potentially
diminishing processing time, it also takes advantage of active



learning to reduce the user effort in labeling data records.
One of the main motivations to use GP for the deduplica-
tion task is the way it explores the large search space of
possible record-level similarity functions generated as the
combination of several single-attribute similarity functions
defined a priori [12] or not [13]. Moreover, in contrast with
methods such as decision trees, which incrementally select
one attribute at a time to compose a decision model, GPs
consider attribute interaction [12], [14].

AGP was tested in three datasets, the first containing
researchers’ personal data records, the second citation data
extracted from Citeseer, and the third information regarding
restaurants in the USA. They were compared with a super-
vised GP approach proposed in [12] and the semi-supervised
active learning approach proposed in [2]. The results showed
that AGP obtains better values of F-measure than the other
methods, while needing less rounds of active learning.
AGP also showed to be stable and consistent. The more the
number of active learning rounds, the better the results were.

The remainder of this paper is organized as follows. Sec-
tions II introduces the concepts of active learning and Sec-
tion III discusses related work. Section IV introduces AGP
and instantiates it for the data deduplication problem, and
Section V shows experimental results. Finally, Section VI
draws conclusions and describes future research directions.

II. ACTIVE LEARNING

Active learning (AL) [7] is a type of data sampling
technique where, instead of selecting a subset of random
examples to train a classifier, a subset of the most informative
examples are selected. The great challenge here is on how
to choose a criterion to select these examples. Bilenko [15]
identifies three types of active learning methods according to
their goals. The first, named uncertainty sampling, identifies
the examples the learner is less certain about its predictions.
The second, which is used in this work, and was named
query-by-committee, uses a committee of learners and the
disagreement between committee members as a measure of
training examples informativeness. The third selects exam-
ples which, when labeled, lead to the greatest reduction in
error by minimizing prediction variance.

In semi-supervised learning, where there is usually a large
set of unlabeled and only a small set of labeled examples,
active learning has been used to select from the set of unla-
beled examples the most informative ones. These examples
are then given to a user to label them and added to the set
of labeled training examples.

As previously mentioned, active learning has been used
with supervised learning with genetic programming but, to
the best of our knowledge, this is the first time it has been
combined with a semi-supervised learning approach. The
next section reviews some works that use AL in a supervised
context.

III. RELATED WORK

This section is divided into two main parts. The first
part reviews works of genetic programming in which active

learning was previously used to reduce the size of the training
set and, consequently, the time required to evaluate GP
solutions, improving GPs computational cost. The second
part describes a few methods for data deduplication, focusing
on GP-based and active learning methods.

Active learning was previously combined with GPs follow-
ing supervised approaches [9] and used as a data sampling
technique. The main difference between these active learning
algorithms is the way they select the examples which will
be part of a training set. [10], for instance, proposed the
historical (HSS) and the dynamic (DSS) subset selection
methods. HSS selects fitness cases that are not correctly
solved by the best individual of the population over a small
number of generations to be part of the subset sample in the
following generations. DSS, in contrast, associates a degree
of difficulty and an age to each fitness case, and assumes
that the GP should focus on fitness cases that are usually
misclassified, and that there is a benefit in looking at fitness
cases that were not used for many generations. The difficulty
of a fitness case increases when an individual is not able
to correctly classify it. Samples are selected according to
a rank of fitness cases, generated by a weighted function
of difficulty and age. [16] extended the DSS method to
take into account the topology of the fitness space, creating
relationships between fitness cases. The relation between two
fitness cases is strengthened if a single individual of the
population can solve both fitness cases. By exploring this
topology the methods selects dynamically smaller and more
suitable sample sets.

Many other variations of the DSS method were derived,
including the hierarchical DSS [9]. However, it is important
to emphasize that this paper has a completely different goal
when compared to the methods just described: while they aim
to reduce the time spent on fitness evaluations, the problem
addressed here is how to select instances to be labeled by
a semi-supervised GP algorithm. As the proposed method
is being instantiated in a data deduplication problem, it is
important to overview previous GP methods used for data
deduplication as well as methods that use active learning for
data deduplication.

In [12], de Carvalho et al. presented the first method based
on GP for the data deduplication task. In their work, GP is
used to find record-level similarity functions that combine
single-attribute similarity functions, aiming to improve the
identification of duplicate records and, at the same time,
avoiding errors. This method was latter generalized in [13].
While in [12] single-attribute similarity functions are selected
a priori by the user, in [12] the single-attribute functions are
also selected by the GP. The method proposed here represents
its individuals in the same way as in [12] and [13], but while
these methods follow a supervised approach, assuming that
all labels of fitness cases are known beforehand, the method
presented here knows only the labels of a few examples in
the training set, as detailed in Section IV.

Both [2] and [17], on the other hand, used active learning
together with semi-supervised approaches to reduce the num-



Fig. 1. Example of an AGP individual representing a multi-attribute
function

ber of pairs labeled during the training phase. The two pro-
posed systems, named Alias and Active Atlas, respectively,
obtain better results than the traditional approaches for data
deduplication, which are usually based on supervised [18]
or unsupervised [19] methods, while requiring minimal user
intervention.

Active Atlas was created to deal with data coming from
different Web sources. Experimental results show that the
active learning reduced the number of labeled trained data
in two orders of magnitude, without losing any quality in
the results. The system uses a committee of decision trees,
in which pairs that generate maximum disagreement are sent
to the user to label. Alias follows these same principles, but
was conceived as a pure data deduplication tool. The results
obtained by these methods encourage the development of
semi-supervised approaches, as the one presented here.

IV. ACTIVE LEARNING GP

As most of the traditional deduplication methods that use
learning for identifying replicas, AGP also works in three
phases: (1) Generates all possible pairs of candidate records
for comparison, exhaustively or through blocking techniques.
(2) Calculates a similarity metric between each pair based
on their attributes. In this phase, each attribute is manually
associated with a well-known distance metric according to
its type (i.e., numerical, short or long string). Details about
these metrics are given in Section V. (3) Uses the similarity
of each pair to learn how to deduplicate.

This section focuses on phase 3, where a semi-supervised
approach based on genetic programming and active and
reinforcement learning finds a committee (set) of multi-
attribute functions that classifies a pair as a duplicate or
not. Note that, although we focus on the data deduplication
problem, the method proposed here can be easily adapted to
any other application domain where labeling examples is an
important and expensive process. Next, Section IV-A shows
the individual representation used by AGP and Section IV-
B gives a general overview of the system, which is then
described in detail in Sections IV-C to IV-E.

A. Individual

In the problem of data deduplication, each individual
represents a similarity function between records. The trees
that represent the similarity functions are generated using the
four basic mathematical operators. The terminals are random

Algorithm 1: GP(pairs)
1 Let DB be the set of records to deduplicate;
2 Let sim be a record similarity function;

/* Preprocessing */
3 Generate a set of pairs P = p1 . . . pn from DB;
4 Compute sim(p) for each pair p ∈ P ;
5 R ← rank P according to sim(p) values ;
6 Let T be the top k pairs in R ;
7 Let B be the bottom k pairs in R ;
8 User labels each pair p ∈ T ∪ B with Lp ∈ {T, F} ;
9 Compute a weight WP for each p ∈ P ;

/* Evolution Process */
10 Gen0 ← Generate m functions ;
11 Evaluate(Gen0,T ∪ B);
12 Compute a weight Wf for each function f ∈ Gen0;
13 Com0 ← ∅;
14 for i = 0 to a predefined number of generations do
15 Comi ← top C functions in Geni;

/* Active Learning */
16 foreach pair p ∈ P do
17 Comi labels p with Lp ∈ {T, F, D} ;
18 if Lp = D then User labels p with L′

p ∈ {T, F}

/* Reinforcement */
19 Update WP for each p ∈ P ;
20 Geni+1 ← Crossover&Mutation(Geni − Comi);
21 Geni+1 ← Geni+1 ∪ Comi;
22 Evaluate(Geni+1, P );
23 Compute Wf for each function f ∈ Geni+1;

24 Comi ← top C functions in Geni;
25 foreach pair p ∈ P do
26 Comi labels p with Lp ∈ {T, F}

integers from 1 to 9, and the values of similarity between
each attribute present in the database.

Fig. 1 shows an example of a similarity function.
The expression can be extracted by the tree in an in-
fix manner. The tree in Fig. 1 represents the expres-
sion Reg Leven + (Reg tfidf/3) + Y ear IntM , where
Reg Leven, Reg tfidf , and Y ear Intm represent the sim-
ilarities between the register using the Leveinstein and tf-
idf measures, and the year using the IntMatch [2] measure,
respectively.

B. Process Overview

Alg. 1 summarizes the AGP method proposed here to
learn multi-attribute functions that classify pairs of records
as duplicates or not.

Initially, a Preprocessing step (Lines 3–9) generates
a set P of pairs of records from a database DB being
deduplicated. Typically, not all possible pairs from DB
are in P since some blocking strategy might be used for
pruning unlikely pairs. Next, a similarity function sim is
deployed for estimating the similarity between records in
each pair from P .

This is a simple function that deploys predefined similarity
functions for each attribute and sums the similarity values
obtained. A rank R is then built over pairs p in P according
to the values of sim(p). Finally, the algorithm takes T ⊂
P and B ⊂ P , which are respectively the top-k and the
bottom-k pairs in R, and asks a user to label pairs in T and
B as true (T) or false (F) pairs. The rationale behind this
approach is to show to the user some pairs that are certainly
duplicates (and hence are very similar, and are at the top
of the ranking) and others that are certainly not (and are at



the bottom of the ranking). We notice in our experiments
that T ∪ B corresponds to less than 1% of the pairs in the
dataset. The preprocessing step ends in Line 9, in which a
pair weight Wp is associated to each p ∈ P . This weight will
be used throughout the process to indicate the confidence
in the evaluation of a pair of records as duplicates or not,
where the evaluation can be done by a user or a committee of
functions, as detailed later in this section. Thus, based on the
user’s judgment, those pairs in T ∪B labeled with T receive
Wp = 1 and those labeled with F receive Wp = −1. These
values correspond to the maximum confidence for duplicates
and non-duplicates, respectively. All others pairs in P receive
Wp = 0. As the process goes on, these weights will move
towards one of the maximum values.

In Line 10, a set of individuals (record similarity func-
tions) is generated, which corresponds to the first generation
(Gen0) of the GP evolution. These functions undergo an
evaluation process using only the labeled examples in T ∪B,
i.e., they are used to classify them as duplicates or not
according to a pre-defined threshold set as a percentage of
the function maximum value (Line 12). Each individual in
the population is associated with a function weight Wf (Line
12), which is proportional to how correctly each function
evaluated the pairs in T ∪B. This weight plays an important
role in AGP since it is used as a fitness function.

Subsequent generations are evolved on the Loop 14–23. In
Line 15, a committee of functions is generate by taking the
C functions from the current generation (Geni) with highest
Wf . The role of the committee in our approach is to choose
which record pairs will be presented to the user to be labeled
at each AGP generation. At this point (Lines 16–18), the
committee is used to classify all examples in the dataset
(labeled or not), where a majority voting process decides
the pairs of labels (see Section IV-D for details on the active
learning phase). In the case of a disagreement (Lp = D) that
results from a tie, the user is called to classify the example.

This step is followed by a reinforcement learning phase,
implemented to exploit the relationships between the func-
tions and the pairs they correctly classify. First, pair weights
(Wp) are updated to reflect the evaluation performed in
Lines 16–18. For user-labeled pairs, weights are assigned
as explained before (Line 9). For pairs labeled by the
committee, weights are assigned based on the voting of the
functions in the committee, also considering the weights of
these functions (Wf ).

In Lines 20 and 21, a new generation of functions
(Geni+1) is created. While functions in the current com-
mittee are simply passed by elitism to this new generation
(Line 21), the remaining functions undergo crossover and
mutation operations (Line 20). As before, newly evolved
functions evaluate pairs in P (Line 22). This time, however,
function weights Wf are assigned based on how correctly
each function evaluated the whole set of pairs P , considering
the pair weights Wp. The reinforcement learning strategy we
use involves the computation of Wf and Wp and is detailed
in Section IV-E.

F1 F2 F3 F4 Committee User
P1 T F F F F -
P2 T T T F T -
P3 T T F F D T

Fig. 2. The voting process

The evolution process stops when a maximum number
of generations is reached. In this case, a new committee is
created (Line 24) for labeling all pairs (Lines 25 and 26).

Algorithm 2: EvaluateF(Generationi, Committei,
Pairs)

1 foreach f in Generationi but not in Committei do
2 foreach p in Pairs do
3 Mp ← label(f,p) ;
4 switch (Lp,Mp) do
5 case (+,+): Wf ← Wf + Wp;
6 case (−,+): Wf ← Wf −Wp;

C. Evaluation of the Functions

As previously explained, each individual in AGP repre-
sents a function used to classify the data pairs as duplicates
or not. The fitness of each function is defined by a weight
Wf and is a positive real number. The Wf of a function is
defined according to the weights Wp of each record pair
in the dataset. Recall that the values of the pair weights
vary according to the classifications they receive from the
committee. If the committee classifies a pair as duplicate
(non-duplicate), the weight value of the pair is updated to be
biased towards 1(-1).

In the first generation (Line 12, Alg.1), Wf is set according
to the value of the sum of the weights of the pairs (Wp)
correctly classified by the function as true, minus the sum of
the weights of the labeled true pairs classified by the function
as false. For this, labels assigned by the user to the pairs in
T ∪B are used as the ground truth.

From the second generation until the last, function weights
are computed similarly, with two differences: first, all pairs
are considered; then the ground truth is taken either from the
committee or from the user, when the committee disagrees
(Line 23, Alg.1). Note that the weights of the functions that
are members of the committee are not updated here, but
during the reinforcement learning phase. Alg. 2 illustrates the
process just described. As observed in lines 5-6, a function is
only rewarded or penalized when classifying examples that
are duplicates according to the user or the committee.

D. Committee Voting and Active Learning

The active learning process we deploy consists in using
the committee to select which examples should be sent to
the user to label. These examples are chosen according to
the results of a voting process.

The voting process is rather simple and based on the ma-
jority vote of the committee. Fig. 2 shows an example where
four functions are used to classify three pairs. Note that,
for pairs P1 and P2, the committee majority vote decides



the class of the example. Nevertheless, in P3 there is a tie
(disagreement) and the user is called to label the example.

An important parameter of the system is the number C of
members in the committee. In theory, the greater the number
of individuals in the committee, the more they will disagree.
This is true for the first generations, where the committees
are very naive and tend to disagree in a high number of
pairs. However, as the functions are evolved, the number
of disagreements decrease and, consequently, the number
of user interactions also decrease. Preliminary experiments
showed that C is usually a small number. In the experiments
reported here, for instance, the committee size was set to
20. However, to make sure the number of user interactions
remain small, the method also works with a parameter that
sets the maximum number of user interactions allowed per
generation.

Note that, during the voting process, we cannot guarantee
that all the functions that are in the committee are good
functions. Therefore, we want to associate a confidence to
the committee vote. By itself, the committee does not have
the authority to evaluate itself. Hence, the only way to do
that is to compare its votes using a definitive source, such as
the user labeled examples. In this way, votes of committee
members that agree with the user have more value than the
votes of those that only agree with the committee. Looking
at Fig. 2, for instance, we can see that when classifying P1
and P2, F2 and F4 agree with the committee, and have
the same confidence. However, when the user classifies P3,
only F2 agrees with him/her. Hence, its confidence should
be greater than the one in F4. This shows the importance of
the user in the learning process, and is considered during the
reinforcement learning phase, described in the next section.

E. Reinforcement Learning
The idea of reinforcement learning introduced here was

inspired on the HITS algorithm [20], used to calculate web-
pages relevance. In [20], a graph describes the relationships
between a set of relevant authoritative pages and a set of hub
pages. In the same way, here we describe the relationships
between the functions in the committee and the pairs they
correctly classify as duplicates.

Given the pair weights and the function weights, in the
reinforcement learning phase we assume that good functions
are those that identify duplicates (giving them more weight),
and that duplicates tend to be correctly identified by good
functions. Hence, after each voting process, the pair weights
are updated, followed by the function weights.

The pair weight update method takes into account the
result of the voting process. If in the previous voting a
pair was labeled by the user, its weight is set to -1 (if
non-duplicate) or 1 (if duplicate). Otherwise, it is updated
according to

Wp =

C∑
i=1

Wf (T )−
C∑

i=1

Wf (F )

where Wf (T) and Wf (F) are the function weights of the
committee members that classified the pairs as duplicates

TABLE I
FEATURES OF THE THREE DATASETS USED IN THE EXPERIMENTS

Pesqsint Alias Restaurant
Records 1000 254 864
Pairs 499,500 32,131 372,816
Duplicated Pairs 361 169 112
Attributes 6 6 5
Similarity Thresh. 0.7 0.5 0.8

or not, respectively. This value is normalized in the interval
[-1,1].

The function weight of the committee members, in con-
trast, is given by the sum of the weights of the pairs (wp) clas-
sified as true by the member minus the sum of the wp of the
pairs classified as false by the committee member but as true
by the final committee vote. When calculating the function
weights, if the pair being considered is labeled, its weight is
multiplied by a constant, which will reward or penalize the
member for correctly (or incorrectly) classifying the pair.

V. EXPERIMENTS

This section reports the experiments run to test AGP, and
is divided in four main parts. Section V-A describes the three
datasets used to test the system, and Section V-B explains
how the AGP parameters were chosen. Sections V-C and V-
D report the results obtained when comparing AGP with two
other methods previously proposed in the literature, the GP-
based method proposed in [12] (hereafter referred as GP) and
ALIAS [2] (see Section III for more details), respectively.

A. Datasets

Experiments were performed with three datasets usu-
ally used for assessing data deduplication methods, namely
Pesqsint, Alias, and Restaurant. Table I summarizes the main
characteristics of these datasets. Note that, for each field
in each dataset, we have to associate it with a similarity
measure, which is used to calculate the distance between
two pairs of records, determining if they are duplicates or
not. Also, for each dataset, we need a similarity threshold,
which decides if a pair is a duplicate or not according to the
similarity function found by the GP.

Pesqsint [12] is a synthetic dataset containing researchers’
personal data, and was created using the Data Set Generator
Program (DSGP) available in Febrl [21]. This dataset has six
fields, which were associated with the following similarity
measures: NYSIIS for given name, DMetaphone for sur-
names, Jaro-Winkler for addresses, character-wise field com-
parison with a maximum number of errors (different charac-
ters) tolerance for locality names, geographical distance for
postcodes, and age difference with error tolerance for age.

Alias [2] is a collection of scientific articles extracted from
Citeseer. Its six fields are associated with up to four different
similarity measures, as follows: String-abrev, Levenstein and
Jaccard for authors, Levenstein, Jaccard, SAME-TIT and tf-
idf for title, Intmatch for year, SAME-PAG and Keydiff for
page, n-gram and Jaro-Winkler for author-title, and n-gram,
Levenstein, Jaccard and tf-idf for record.



Finally, Restaurant [17] contains data about American
restaurants, including name, address, number, city and type.
The following similarity measures were associated with each
attribute: Jaro-Winkler and NAME-JWC with name, Soft tf-
idf and n-gram with address, Levenstein with city, Jaccard
with number, and n-gram with type. The definitions and
implementations of all these measures can be found in [12].

B. Genetic Programming Parameters

The results reported in this paper use parameter configu-
rations defined empirically during preliminary experiments.
The only parameter for which we show its variations are
shown is the number of generations. This is because the
number of user interactions per generation and how it reflects
on the accuracy of the system is crucial. Except for this
variation, we run both AGP and GP with 80 individuals,
and crossover and mutation rates of 0.98 and 0.02, respec-
tively. For AGP, two extra parameters were necessary: the
committee size and the maximum number of questions the
committee could ask the user per generation. The former was
set to 20 and the latter was set to 1 or 100, as explained next.

According to the number of questions the committee
could ask to the user, AGP can run in two different modes:
committee-driven and generation-driven. The committee-
driven mode is the one described in Section IV, where the
committee is allowed to ask the user as many question
as it finds necessary, as long as they do not exceed a
maximum limit of questions. This is the way AGP is run
when compared to the GP proposed in [12]. The generation-
driven mode, in contrast, restricts the number of questions
to one per generation. This restriction was imposed to allow
a proper comparison between AGP and ALIAS. The reason
for it is that, in the original version of ALIAS, the user is
allowed to label exactly one pair of examples per round of
active learning.

C. AGP versus GP

This section shows the results obtained when comparing
the AGP system run in the committee-driven mode with
the GP [12]. All the results reported from now on are
an average over 20 genetic programming runs and were
evaluated according to the quality of the deduplication (given
by the F-measure) as well as the number of labeled examples
the methods needed to find a good function. Recall that the
F-measure is the weighted harmonic mean of precision and
recall, and is given by

F−measure =
2× precision× recall

precision+ recall
.

Precision is given by the number of duplicated pairs correctly
identified divided by the number of pairs identified as dupli-
cates. Recall is given by the number of pairs identified as
duplicates over the total number of existing duplicated pairs.

Before we present our results, it is important to emphasize
that the GP obtained results are comparable to those obtained
by state of the art deduplication algorithms. However, recall
that GP follows a supervised approach, i.e. all the examples
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Fig. 3. Comparing the AGP with GP

used during the training process have to be labeled. AGP, in
contrast, depends on the user to provide this information.

In the preliminary experiments we run to compare AGP
with GP, we trained the GP with all the available training
data. Hence, for the dataset Pesqsint, for instance, all the
499,500 available pairs were used by GP to create a dedu-
plication function. In the case of AGP, it initially had access
to only two pairs previously labeled by the user. This number
of available pairs increased as the evolutionary process went
on and new pairs were labeled by the user during the active
learning process without any restrictions.

In these first experiments, both algorithms showed to be
competitive in terms of deduplication quality. However, an
analysis of the number of pairs labeled by the user during
the AGP learning showed that this number was much smaller
than the total number of labeled pairs available to GP. Taking
into account that labeling pairs is a very expensive procedure,
in a second experiment we reduced the number of pairs given
to GP, so that it could use a maximum number of 100 pairs
per generation (the same number of pairs an AGP user is
allowed to label). The motivation for it was to find out if
GP could also work with fewer examples while maintaining
the quality of the deduplication. The results obtained by the
AGP and GP regarding f-measure and the number of labeled
pairs are presented in Fig. 3 and Table II.

Fig. 3 shows the results of F-measure obtained by the best
committee evolved by AGP (average over 20 runs) and the
best individual evolved by GP when varying their number
of generations from 1 to 10 (being the initial population
considered as population 0). Note that usually GPs are
left to evolve for many generations. However, preliminary
experiments showed that, for the deduplication problem, both
GP and AGP find very good individuals or committees with
only few generations. According to a two-tailed paired t-test,
the results obtained by AGP are statistically better than the
results obtained by GP for Pesqsint and Restaurant with 99%
confidence, and equivalent to those obtained by GP for Alias.
Observe also that AGP finds a good solution to the problem
in less generations than GP for Pesqsint and Restaurant.

Table II shows the number of examples used by GP and



TABLE II
RESULTS OBTAINED WHEN COMPARING THE AGP WITH THE GP IN

TERMS OF NUMBER OF LABELED EXAMPLES

# of Labeled Examples
Generations GP PESQSINT Alias Restaurant

0 100 2 2 2
1 200 115.15 74 100.65
2 300 128.75 99.9 103.65
3 400 132.95 120.55 114.65
4 500 141.55 128.2 123.95
5 600 148.3 141.9 125.95
6 700 151.95 148.25 126.6
7 800 159.6 153.2 126.95
8 900 162.6 158.7 127.9
9 1000 166.5 162.25 128.25
10 1100 169.9 165.85 128.25

Committee Members
(REG TFIDF*3)+REG LEVEN AT NGRAM+REG LEVEN+REG LEVEN
(REG TFIDF/3)*PAG IGUAL REG NGRAM*ANO INTM
2-REG LEVEN+AT NGRAM REG LEVEN*ANO INTM
ANO INTM*(REG LEVEN+REG LEVEN) REG LEVEN*ANO INTM
ANO INTM*REG LEVEN REG LEVEN*ANO INTM
AT NGRAM*ANO INTM REG LEVEN+AT NGRAM
AT NGRAM+(REG TFIDF/3)+REG LEVEN REG LEVEN+REG LEVEN+REG TFIDF
AT NGRAM+REG LEVEN AT NGRAM+REG TFIDF
AT NGRAM+REG LEVEN REG TFIDF+AT NGRAM
AT NGRAM+REG LEVEN REG TFIDF+REG NGRAM

Fig. 4. AGP Committee Members

AGP for executions with different numbers of generations.
Note that, for GP, the number of available examples increases
by 100 at each generation. For the AGP, in contrast, two
examples are given in generation 0 and, from there on, a max-
imum number of 100 examples can be labeled per generation.
Observe, however, that from these 100 available examples,
the number of actually labeled ones will vary according to the
number of calls made to the user to untie a committee voting
process. Table II shows that, in the worst case scenario, AGP
labeled around 170 examples out of the 1100 permitted (100
examples × 11 generations) for the dataset Pesqsint. In this
same run, GP relied on the 1100 examples.

In sum, Table II shows that AGP will never need as
many labeled examples as the ones available for GP. The
experiments also showed that, as evolution goes on, a smaller
number of calls to the user is made and this number becomes
stable after a few generations.

From all the runs performed by AGP and GP, we selected
to report here the best committee found by AGP, as showed
in Fig. 4, and the best individual found by GP for the
dataset Alias. The AGP committee in Fig. 4 obtained an F-
measure of 0.973 and used only 211 labeled examples. The
best deduplication function found by GP, in contrast, was
REG LEV EN +REG JACC +AT NGRAM , with an
F-measure of 0.913 and 1100 labeled examples. While the
GP function uses three different attributes in the evolved
function, all together the 20 functions of the commit-
tee involve seven different attributes. Note that attribute
REG JACC, used by GP, does not appear in the AGP
committee. Also observe the current version of AGP allows
the committee to have one or more copies of a good
individual. This is equivalent to adding more weight to a
vote of a very good individual. However, further studies on
this matter are left for future work.

Finally, when we compare AGP and GP in terms of perfor-
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(a) Alias dataset
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(b) Restaurant dataset
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(c) Pesqsint dataset

Fig. 5. Comparing AGP and Alias with 100 active learning rounds

mance, we observe that AGP is slower than GP. The reason
for that is AGP uses all the unlabeled examples while evalu-
ating the evolved functions, while GP uses only the labeled
pairs (which, in our experiments, correspond to a maximum
of 10% of the total dataset). For this reason, GP runs for
the dataset Pesqsint in 0.125 seconds, while AGP runs in
56.26 seconds. However, this problem can be easily solved
by using some blocking technique to discard the pairs that
are certainly not duplicates, or adding a transductive learning
approach to the current method, as explained in Section VI.

D. AGP versus ALIAS

This section presents the results obtained when comparing
the proposed AGP with ALIAS. This comparison is
interesting as ALIAS uses an active learning procedure to
select the instances that will be labeled by the user, but
instead of using a genetic programming algorithm to learn
a multi-attribute function, it uses either a decision tree,
a Naive Bayes or an SVM algorithm. In the experiments
showed in this section, AGP is compared with ALIAS using



decision trees, once in [2] the authors showed this method
finds the best F-measure overall.

The experiments reported here followed the generation-
driven approach. This is because ALIAS works with the con-
cept of active learning round, where one pair is labeled per
round and the total number of learning rounds corresponds
to the total number of labeled pairs. Hence, each round of
active learning corresponds to a generation of AGP where
one labeled example was made available to the system. Fig. 5
shows the graphs for the three datasets of the number of
active learning rounds (x-axis) against the F-measure(y-axis).

The graphs show that, for the three datasets, the AGP curve
dominates the ALIAS curve. We can also observe that the
learning process of AGP is much faster than the learning
process of ALIAS, as the first solutions found by AGP are
much better than those found by ALIAS (apart from the first
ones found for the dataset Restaurant) and, as more rounds
are executed, the AGP curve becomes stable much faster
than the ALIAS curve. Although AGP has lower F-measure
than ALIAS in the first round for the dataset Restaurant,
the graph shows us that, after the first round, ALIAS loses
all its stability, improving or degrading its F-measure until
it reaches active learning round 45. At the end of the 100
active learning rounds, AGP obtains statistically significant
better results than those obtained by ALIAS according to a
paired t-test with 99% confidence.

For the Alias dataset, which was the one in which ALIAS
was originally tested, AGP best and worst F-measures are
96.8% and 36.6%, while for ALIAS they are 94.7% and
0%. More importantly, the AGP curve is more stable, with
the F-measure dropping in only few situations. The ALIAS
curve, in contrast, can drop significantly after new labeled
examples are added to the training set (as observed in
rounds 59 and 60).

VI. CONCLUSIONS AND FUTURE WORK

This paper introduced an active learning genetic pro-
gramming algorithm, named AGP, and instantiated it for
the task of record deduplication. The method follows a
semi-supervised approach and uses the principles of active
and reinforcement learning to evolve a committee of multi-
attribute functions. The system requires the assistance of an
user when the committee members do not reach a decision
of whether the record pair represents a duplicate or not. At
the end of the evolution process, the best committee is used
to identify replicas.

The proposed method was tested in three datasets and
compared to two other deduplication methods previously
proposed in the literature, namely the supervised genetic pro-
gramming method proposed in [12] and the semi-supervised
active learning method proposed in [2]. The results show
that the quality of the deduplication produced by AGP is as
high as the quality of the results obtained by the other two
methods. However, AGP needs less user intervention during
the training process and is stable and consistent.

As future work, we intend to add to AGP some transduc-
tive learning principles, so that examples classified by the

committee with a confidence higher than a threshold can be
automatically considered as ground truth and excluded from
the unlabeled training set. This modification would reduce
the runtime of AGP, as fewer examples would have to be
evaluated by the evolved functions at each generation. The
application of AGP to other classification problems in which
labeling data is expensive, such as text classification, will
also be studied.
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