
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/221535967

Efficient, Accurate and Privacy-Preserving Data Mining for Frequent Itemsets

in Distributed Databases

Conference Paper · January 2003

Source: DBLP

CITATIONS

37
READS

107

4 authors:

Adriano Veloso

Federal University of Minas Gerais

220 PUBLICATIONS   4,526 CITATIONS   

SEE PROFILE

Wagner Meira Jr.

Federal University of Minas Gerais

617 PUBLICATIONS   12,398 CITATIONS   

SEE PROFILE

Srinivasan Parthasarathy

Structural Engineering Research Centre

215 PUBLICATIONS   9,242 CITATIONS   

SEE PROFILE

Marcio Carvalho

Federal University of Minas Gerais

23 PUBLICATIONS   202 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Adriano Veloso on 29 November 2012.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/221535967_Efficient_Accurate_and_Privacy-Preserving_Data_Mining_for_Frequent_Itemsets_in_Distributed_Databases?enrichId=rgreq-3c4a001eb976c9c7fd0eac51ea4f15bb-XXX&enrichSource=Y292ZXJQYWdlOzIyMTUzNTk2NztBUzoxMDEyMTQyNTU1ODMyMzVAMTQwMTE0Mjc2OTE0NA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/221535967_Efficient_Accurate_and_Privacy-Preserving_Data_Mining_for_Frequent_Itemsets_in_Distributed_Databases?enrichId=rgreq-3c4a001eb976c9c7fd0eac51ea4f15bb-XXX&enrichSource=Y292ZXJQYWdlOzIyMTUzNTk2NztBUzoxMDEyMTQyNTU1ODMyMzVAMTQwMTE0Mjc2OTE0NA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-3c4a001eb976c9c7fd0eac51ea4f15bb-XXX&enrichSource=Y292ZXJQYWdlOzIyMTUzNTk2NztBUzoxMDEyMTQyNTU1ODMyMzVAMTQwMTE0Mjc2OTE0NA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Adriano-Veloso?enrichId=rgreq-3c4a001eb976c9c7fd0eac51ea4f15bb-XXX&enrichSource=Y292ZXJQYWdlOzIyMTUzNTk2NztBUzoxMDEyMTQyNTU1ODMyMzVAMTQwMTE0Mjc2OTE0NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Adriano-Veloso?enrichId=rgreq-3c4a001eb976c9c7fd0eac51ea4f15bb-XXX&enrichSource=Y292ZXJQYWdlOzIyMTUzNTk2NztBUzoxMDEyMTQyNTU1ODMyMzVAMTQwMTE0Mjc2OTE0NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Federal-University-of-Minas-Gerais?enrichId=rgreq-3c4a001eb976c9c7fd0eac51ea4f15bb-XXX&enrichSource=Y292ZXJQYWdlOzIyMTUzNTk2NztBUzoxMDEyMTQyNTU1ODMyMzVAMTQwMTE0Mjc2OTE0NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Adriano-Veloso?enrichId=rgreq-3c4a001eb976c9c7fd0eac51ea4f15bb-XXX&enrichSource=Y292ZXJQYWdlOzIyMTUzNTk2NztBUzoxMDEyMTQyNTU1ODMyMzVAMTQwMTE0Mjc2OTE0NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wagner-Meira-Jr?enrichId=rgreq-3c4a001eb976c9c7fd0eac51ea4f15bb-XXX&enrichSource=Y292ZXJQYWdlOzIyMTUzNTk2NztBUzoxMDEyMTQyNTU1ODMyMzVAMTQwMTE0Mjc2OTE0NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wagner-Meira-Jr?enrichId=rgreq-3c4a001eb976c9c7fd0eac51ea4f15bb-XXX&enrichSource=Y292ZXJQYWdlOzIyMTUzNTk2NztBUzoxMDEyMTQyNTU1ODMyMzVAMTQwMTE0Mjc2OTE0NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Federal-University-of-Minas-Gerais?enrichId=rgreq-3c4a001eb976c9c7fd0eac51ea4f15bb-XXX&enrichSource=Y292ZXJQYWdlOzIyMTUzNTk2NztBUzoxMDEyMTQyNTU1ODMyMzVAMTQwMTE0Mjc2OTE0NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wagner-Meira-Jr?enrichId=rgreq-3c4a001eb976c9c7fd0eac51ea4f15bb-XXX&enrichSource=Y292ZXJQYWdlOzIyMTUzNTk2NztBUzoxMDEyMTQyNTU1ODMyMzVAMTQwMTE0Mjc2OTE0NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Srinivasan-Parthasarathy-2?enrichId=rgreq-3c4a001eb976c9c7fd0eac51ea4f15bb-XXX&enrichSource=Y292ZXJQYWdlOzIyMTUzNTk2NztBUzoxMDEyMTQyNTU1ODMyMzVAMTQwMTE0Mjc2OTE0NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Srinivasan-Parthasarathy-2?enrichId=rgreq-3c4a001eb976c9c7fd0eac51ea4f15bb-XXX&enrichSource=Y292ZXJQYWdlOzIyMTUzNTk2NztBUzoxMDEyMTQyNTU1ODMyMzVAMTQwMTE0Mjc2OTE0NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Structural-Engineering-Research-Centre?enrichId=rgreq-3c4a001eb976c9c7fd0eac51ea4f15bb-XXX&enrichSource=Y292ZXJQYWdlOzIyMTUzNTk2NztBUzoxMDEyMTQyNTU1ODMyMzVAMTQwMTE0Mjc2OTE0NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Srinivasan-Parthasarathy-2?enrichId=rgreq-3c4a001eb976c9c7fd0eac51ea4f15bb-XXX&enrichSource=Y292ZXJQYWdlOzIyMTUzNTk2NztBUzoxMDEyMTQyNTU1ODMyMzVAMTQwMTE0Mjc2OTE0NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marcio-Carvalho-3?enrichId=rgreq-3c4a001eb976c9c7fd0eac51ea4f15bb-XXX&enrichSource=Y292ZXJQYWdlOzIyMTUzNTk2NztBUzoxMDEyMTQyNTU1ODMyMzVAMTQwMTE0Mjc2OTE0NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marcio-Carvalho-3?enrichId=rgreq-3c4a001eb976c9c7fd0eac51ea4f15bb-XXX&enrichSource=Y292ZXJQYWdlOzIyMTUzNTk2NztBUzoxMDEyMTQyNTU1ODMyMzVAMTQwMTE0Mjc2OTE0NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Federal-University-of-Minas-Gerais?enrichId=rgreq-3c4a001eb976c9c7fd0eac51ea4f15bb-XXX&enrichSource=Y292ZXJQYWdlOzIyMTUzNTk2NztBUzoxMDEyMTQyNTU1ODMyMzVAMTQwMTE0Mjc2OTE0NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marcio-Carvalho-3?enrichId=rgreq-3c4a001eb976c9c7fd0eac51ea4f15bb-XXX&enrichSource=Y292ZXJQYWdlOzIyMTUzNTk2NztBUzoxMDEyMTQyNTU1ODMyMzVAMTQwMTE0Mjc2OTE0NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Adriano-Veloso?enrichId=rgreq-3c4a001eb976c9c7fd0eac51ea4f15bb-XXX&enrichSource=Y292ZXJQYWdlOzIyMTUzNTk2NztBUzoxMDEyMTQyNTU1ODMyMzVAMTQwMTE0Mjc2OTE0NA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


Efficient, Accurate and Privacy-Preserving

Data Mining for Frequent Itemsets in

Distributed Databases

Adriano A. Veloso1;2 Wagner Meira Jr.1
Srinivasan Parthasarathy2 Márcio Bunte de Carvalho11Computer Science Department – Universidade Federal de Minas Gerais

Belo Horizonte – MG – Brazilfadrianov,meira,mlbcg@dcc.ufmg.br2Computer and Information Science Department The Ohio-State University –

Columbus – OH – USAsrini@cis.ohio-state.edu

Abstract

Mining distributed databases is emerging as a fundamental computational problem. A

common approach for mining distributed databases is to moveall of the data from each

database to a central site and a single model is built. This approach is accurate, but too

expensive in terms of time required. For this reason, several approaches were developed to

efficiently mine distributed databases, but they still ignore a key issue� privacy. Privacy

is the right of individuals or organizations to keep their own information secret. Privacy

concerns can prevent data movement� data may be distributed among several custodians,

none of which is allowed to transfer its data to another site.

In this paper we present an efficient approach for mining frequent itemsets in distributed

databases. Our approach is accurate and uses a privacy-preserving communication mech-

anism. The proposed approach is also efficient in terms of message passing overhead,

requiring only one round of communication during the miningoperation. We show that our

privacy-preserving distributed approach has superior performance when compared to the

application of a well-known mining algorithm in distributed databases.



1 Introduction

Although data mining has its roots in the traditional fields of machine learning and statistics, it

is the sheer volume of data that poses the most serious problem to its application. Many orga-

nizations already have warehouses that stores data amountsin the terabyte range, and mining

these warehouses requires both large memory and disk space,and high speed computing.

Traditional methods [2, 6, 11, 14] typically made the assumption that the data is centralized

and memory resident. This assumption is no longer tenable. Adirect application of tradi-

tional mining algorithms to distributed databases is not effective, because it requires a large

amount of communication overhead. Implementation of data mining ideas in high-performance

distributed computing environments is thus becoming crucial for ensuring system scalability.

However, distributed mining has implications far beyond just scaling up algorithms. This is

because sometimes the problem is not simply that the data is distributed, but that it must remain

distributed. The issues concerning modern organizations are not only the size of the data to be

mined, but also its distributed nature. Modern organizations may have their databases logically

and physically located at different (distant) places, or they may be willing to share their data

mining models, but not their data. In all these cases what is needed is a decentralized approach

to data mining.

In this paper we are interested in the problem of mining frequent itemsets in distributed

databases. Mining frequent itemsets is a fundamental and essential task in many data mining

applications. These applications include the discovery ofassociation rules, strong rules, corre-

lations, sequential rules, episodes, multi-dimensional patterns, and several other important dis-

covery tasks. We consider three important issues when mining frequent itemsets in distributed

databases: performance, accuracy, and limited access to possibly privacy sensitive data. Devel-

oping efficient techniques to mine distributed data is a challenging task since these issues are

typically contradictory. This is because data mining techniques require accurate input data for

their results to be meaningful, but performance and privacyconcerns may influence the input

data (i.e., sampling [10, 13], data perturbation [3, 5], cryptography [9], etc.).

Let us consider a real-life motivating example where performance, accuracy and privacy are

important issues. Credit card transactions is taking a large share of the payment systems world-

wide, and have led to a higher rate of stolen account numbers and subsequent losses by banks.

Each bank has a database which stores both legitimate and fraudulent credit card transactions,

so let us consider distributed data mining for credit card fraud detection. The objective is to

build a data mining model which will be used by automated fraud detector systems to prevent

fraudulent transactions. This data mining model must be very general and accurate, because a



mistake means great loss of money. In order to build accuratemodels of credit card fraud, a

data mining system must have access to information about thefraudulent patterns of all banks

(i.e., some types of fraud can have occurred only in one bank). The problem is that banks are

restricted by law (and also by competitive reasons) from sharing data about their customers

with other banks. However, they may share “black-box” models; that is, they can share knowl-

edge about fraudulent transactions, but not their data. Furthermore, there are millions of credit

card transactions processed each day, and the data mining system must be scalable and able to

compute the model of credit card fraud in a timely manner.

We present an efficient approach for mining frequent itemsets in horizontally-distributed

databases. Instead of sharing possibly privacy sensitive data to perform the distributed mining

task, we chose to share just a small portion of each local model, which are used to construct

the global model of frequent itemsets. This choice also makes our approach extremely efficient

in terms of communication overhead, enabling it to be used for mining even geographically

distributed databases. We also developed a communication mechanism to ensure privacy among

the sites involved in the mining operation. We prove that theglobal model generated by our

approach is totally accurate, we present bounds for the total amount of communication, and we

demonstrate the performance of our approach through a set ofexperiments under a variety of

conditions.

1.1 Frequent Itemset Mining

The frequent itemset mining task can be stated as follows: Let I be a set of distinct attributes,

also called items. LetD be a database of transactions, where each transaction has a unique

identifier (tid) and contains a set of items. A set of items is called anitemsetwhere for each

nonnegative integerk, an itemset with exactlyk items is called ak-itemset. Thetidsetof an

itemsetC corresponds to the set of all transaction identifiers (tids) where the itemsetC occurs.

The support countof C, is the number of transactions ofD in which it occurs as a subset.

Similarly, thesupportof C is the percentage of transactions ofD in which it occurs as a subset.

The itemsets that meet a user specifiedminimum supportare referred to asfrequentitemsets. A

frequent itemset ismaximalif it is not subset of any other frequent itemset.

The databaseD can be divided inton partitions,d1; d2; :::; dn. Each partitiondi is assigned

to a siteSi. We say thatD is horizontally distributed if its transactions are distributed among the

sites. In this case, letC:sup andC:supi be the respective support counts ofC in D anddi. We

will call C:sup theglobal support countof C, andC:supi the local support countof C in di.
For a given minimum supports, C is global frequentif C:sup � s� j D j; correspondingly,C
is local frequentatdi, if C:supi � s� j di j. The set of all maximal global frequent itemsets is



denoted as MFID, and the set of maximal local frequent itemsets atdi is denoted as MFIdi . The

task of mining frequent itemsets in distributed databases is to find all global frequent itemsets.

1.2 Related Work

A common approach for mining distributed databases is the centralized one, where all the data is

moved to a single central location and then mined. Another common approach is the local one,

where models are built locally in each site, and then moved toa common location where they

are combined. The later approach is the quickest but often the least accurate, while the former

approach is more accurate but generally quite expensive in terms of time required. In the search

for accurate and efficient solutions, several intermediateapproaches have been proposed [1, 4,

15]. In [1] three distributed mining approaches were proposed. The COUNT DISTRIBUTION

algorithm is a simple parallel implementation of APRIORI [2]. All sites generate the entire set of

candidates, and each site can thus independently get local support counts from its partition. At

each iteration the algorithm does a sum reduction operationto obtain the global support counts

by exchanging local support counts with all other sites. Since only the support counts are

exchanged among the sites, the communication overhead is reduced. However, it performs one

round of communication per iteration (note that synchronization is implicit in communication).

The DATA DISTRIBUTION algorithm generates disjoint candidate sets on each site. However,

to generate the global support counts, each site has to scan the entire database (its local partition

and all remote ones) in all iterations of the algorithm. Hence this approach suffers from high

communication overhead. The CANDIDATE DISTRIBUTION algorithm partitions the candidates

during each iteration, so that each site can generate disjoint candidates independently of the

other sites, but it still requires one round of communication per iteration. In [15] two distributed

algorithms were presented, PARECLAT and PARMAX ECLAT. Both algorithms are based on the

concept of equivalence classes. Each equivalence class corresponds to a sub-tree in the search

space for frequent itemsets, and they can be processed asynchronously on each site. PARECLAT

outperforms DATA , COUNT, and CANDIDATE DISTRIBUTION algorithms for more than one

order of magnitude. PARMAX ECLAT outperforms PARECLAT because it searches only the

maximal frequent itemsets, instead of all frequent itemsets.

These techniques are devised to scale up a given algorithm (i.e., APRIORI, ECLAT, etc.).

The data is distributed (or in some cases, replicated) amongdifferent sites and a data mining

algorithm is executed in parallel on each site. These approaches do not take into account the

possible distributed nature of the data. Some assume a high-speed network environment and

perform excessive communication operations. These approaches are not efficient when the

databases are really geographically distributed. They also assume that each site can have total



access to data from other sites, but this is not possible whenmining privacy-sensitive distributed

data. Performance and scalability are still important issues, but ignoring the distributed nature

of data can make distributed data mining vulnerable to misuse.

Our distributed mining approach does not assume a high-speed network environment, be-

cause it is efficient in terms of communication overhead, requiring only one round of message

passing and one reduction operation to aggregate final results. This low degree of communi-

cation enables our approach to possibly mine even physically (distant) distributed databases.

Furthermore, previous work in privacy-preserving data mining [3, 5, 9] has basically addressed

one issue: preserving privacy by distorting the data values. The idea is that the distorted data

does not reveal private information, and thus it is safe to use for mining. The data distortion

approach addresses a different problem from our work. The assumption with distortion is that

the values must be kept private from whoever is doing the mining operation. We instead as-

sume that each site is allowed to see its local data, but not the data from the other sites. In

return, we are able to get exact, rather than approximate results. In [7] the authors presented a

privacy-preserving distributed data mining approach thatis accurate, but it requires much more

communication than our approach (i.e., one round per iteration).

In the next section we describe the basic principles and definitions necessary to better under-

stand our approach, which is presented in Section 3. In Section 4 we present our experimental

results. Finally, in Section 5 we conclude our work.

2 Efficient Distributed Data Mining for Frequent Itemsets

In this section we present our approach for mining distributed databases. We start by describing

the basic algorithm in its serial version. Next we show how this algorithm can be efficiently

extended to mine distributed databases, and then we prove that the extended algorithm generates

an accurate global model of frequent itemsets. Finally, we show a simple privacy-preserving

communication mechanism, and present an upper bound for theamount of communication

necessary in the mining operation.

2.1 Efficiently Mining Frequent Itemsets in Centralized Databases

Almost all algorithms for mining frequent itemsets use the same procedure� first a set of

candidates is generated, next infrequent ones are pruned, and only the frequent ones are used

to generate the next set of candidates. Clearly, an important issue in this task is to reduce the

number of candidates generated. An interesting approach toreduce the number of candidates



is to first mine the MFID. Once the MFID is found, it is straightforward to obtain all frequent

itemsets (and their support counts) in a single database scan, without generating infrequent

(and unnecessary) candidates. This approach works becausethe downward closure property

(all subsets of a frequent itemset must be frequent). The number of candidates generated to find

the MFID is much smaller than the number of candidates generated to directly find all frequent

itemsets. Maximal frequent itemsets were successfully used in several mining tasks, including

mining dense databases [6], and incremental mining of evolving databases [11, 12, 13].

An efficient search for maximal frequent itemsets must have the ability to quickly remove

large branches of the search space from consideration. Thisproperty is associated with the

number of candidates generated in the search. The smaller the number of candidates generated,

the faster the search will be. In [6] an efficient algorithm called GENMAX was proposed. It

employs a backtracking search to find the maximal frequent itemsets. Backtracking algorithms

are useful for many combinatorial problems where the solution can be represented as a setI
= fi0; i1; :::g, where eachij is chosen from a finitepossible set, Pj. Initially I is empty; it

is extended one item at a time, as the search space is traversed. The length ofI is the same

as the depth of the corresponding node in the search tree. Given ak-candidate itemset,Ik =fi0; i1; :::; ik�1g, the possible values for the next itemik comes from a subsetRk � Pk called

thecombine set. If y 2 Pk�Rk, then nodes in the subtree with root nodeIk = fi0; i1; :::; ik�1; yg
will not be considered by the backtracking algorithm.

Each iteration of the algorithm tries extendingIk with every itemx in the combine setRk.
An extension is valid if the resulting itemsetIk+1 is frequent and is not a subset of any already

known maximal frequent itemset. The next step is to extract the new possible set of extensions,Pk+1, which consists only of items inRk that follow x. The new combine set,Rk+1, consists

of those items in the possible set that produce a frequent itemset when used to extendIk+1.
Any item not in the combine set refers to a pruned subtree. Thebacktrack search performs a

depth-first traversal of the search space.

The support computation employed by GENMAX is based on the associativity of itemsets,

which is defined as follows. LetC be ak-itemset of itemsC1 : : : Ck, whereCi 2 I. LetL(C)
be its tidset andj L(C) j is the length ofL(C) and thus the support count ofC. According

to [6], any itemset can be obtained by joining its atoms (individual items) and its support count

can be obtained by intersecting the tidsets of two of its subsets.

2.2 Efficiently Mining Frequent Itemsets in Distributed Databases

The search for the MFID employed by GENMAX is very efficient, but it can only be applied

whenD is a centralized database. Now we will explain how we can extend GENMAX to de-



velop an efficient distributed mining algorithm. We first present Lemma 1, which is the basic

theoretical foundation of our approach.

Lemma 1 � A global frequent itemset must be local frequent in, at least, one partition [8].�
In the first step each siteSi independently performs a search for MFIdi on its databasedi.

After all sites finish their searches, the result will be the set of all local MFIs,fMFId1 , MFId2 ,
... , MFIdig. This information is sufficient for determining all local frequent itemsets, and from

Lemma 1, it is also sufficient for determining all global frequent itemsets.

When all local MFIs are found, we start the second step. Each site sends its local MFI to a

combiner, and then the combiner joins all local MFIs. The result is the set
Sni=1 MFIdi , which

is an upper bound for MFID. The combiner then sends this upper bound to all sites.

In the third step each site independently performs a top downenumeration of the potentially

global frequent itemsets, as follows. Each itemset presentin the upper bound
Sni=1 MFIdi is

broken intok subsets of size(k � 1). The support count of this itemset is computed by inter-

secting the tidsets of its atoms. This process iterates generating smaller subsets and computing

their support counts until there are no more subsets to be checked. At the end of this step, each

site will have the same set of potentially global frequent itemsets (and the support associated

with each of these itemsets).

Lemma 2 � Sni=1 MFI di determines all global frequent itemsets. Proof.� We know from

Lemma 1 that ifC is a global frequent itemset, so it must be local frequent in at least one

partition,di. If C is local frequent in some partitiondl, so it must be determined by MFIdl , and

consequently by
Sni=1 MFIdi . �

By Lemma 2 all global frequent itemsets were found, but not all itemsets generated in the

third step are global frequent (some of them are just local frequent). The last step makes a

reduction operation on the local support counts of each itemset, to verify which of them are

global frequent itemsets. The process starts with siteS1, which sends the support counts of its

itemsets (generated in the third step) to siteS2. SiteS2 sums the support count of each itemset

(generated in the third step) with the value of the same itemset obtained from siteS1, and sends

the result to siteS3. This procedure continues until siteSn has the global support counts of all

potentially global frequent itemsets. Then siteSn finds all itemsets that have support greater

than or equal to the minimum support threshold, and all global frequent itemsets were found.

We illustrate all steps of the algorithm execution in Figure1. The value of minimum support

is 50%. SiteS1 and siteS2 will perform the distributed mining operation on databasesd1 and



d2. In the first step each site mines its local MFI. The result is MFId1 = fABDE, BCEg, and

MFId2 = fACDE, BCDg. In the next step, each site sends their local MFIs to the combiner, so

that it can compute the upper bound
Sni=1 MFIdi , which isfABDE, BCE, ACDE, BCDg. Now,

each site computes the support count of each subset of each itemset in
Sni=1 MFIdi . Some of

the generated subsets at site Si are not local frequents indi, but their support count must be

computed because some of them must be local frequent in othersite, and therefore they can still

be global frequent itemsets (i.e., ABE is not locally frequent ind2, but it is locally frequent ind1,
and is globally frequent). In the last step the global frequent itemsets are found by aggregating

(sum reduction operation) the local counts of each local frequent itemset.

Figure 1: Overall Process of Distributed Mining

2.3 Privacy-Preserving Communication Mechanism

As demonstrated, our distributed algorithm generates a totally accurate model of global frequent

itemsets. However, it is not a privacy-preserving approach, because, during the second step, the

combiner gets to know the MFI information of other sites, andduring the last step siteS2 gets

to know the exact local supports of each itemset from siteS1. To solve this problem we propose



a privacy-preserving communication mechanism. This mechanism simply changes steps 2 and

4 in the following way.

In the new step 2, each site uses another representation of the itemsets (ABD becomes, for

instance, 0-14-36) in a way such that the combiner is not ableto identify the itemsets. Each site

sends its coded local MFI information to the combiner (we assume that all sites use the same

codification), which is able to handle this information without knowing the true identity of each

item. After combining the local MFIs, the combiner sends theupper bound to all sites, and each

site is able to restore the original itemsets codification. At this point of the computation, each

site only knows its local MFI information and the upper bound, but not the MFIs from the other

sites. In this step the combiner plays the role of a trusted third party.

In step 4, before sending its local support counts to siteS2, siteS1 generates a random

number for each of its itemsets. This random number is then added to the support count of

each itemset. With this pertubation, siteS1 can safely send its local support counts, since this

information is meaningless to siteS2. The algorithm continues the same way as before up to

the last iteration. After receiving the values of the total local counts, siteSn requests from siteS1, the values of random numbers and their respective itemsets. SiteSn simply decrement each

global support count by the respective number, and checks which itemsets are global frequent.

Clearly, this communication mechanism is capable of findingthe global frequent itemsets with-

out revealing which itemset belongs to which site.

2.3.1 Discussions

Note that our mechanism is not suitable for some particular situations, that occur when the

private information can be revealed by knowledge of one’s own data and the final result:

1. There are only two sites: In this case, having the global model and one local model turns

possible to derive the other local model.

2. The global support of an itemset is 100%: In this case all sites will know that this itemset

and all its subsets also occur in all transactions of the other sites.

2.4 An Upper Bound for the Amount of Communication

We also present an upper bound for the amount of communication performed during the dis-

tributed mining operation. Our calculation is based just onthe local MFIs and on the size of the

upper bound for MFID. We divide the upper bound calculation into two steps. The first step is

related to the local MFI exchange operation. Since each one of then sites will have to send its



local MFI to the combiner, the first term is given by:
Pni=1PjMFIdi jj=1 j Ci;j j, wherej Ci;j j is

the size of thejth itemset of the local MFI of siteSi. Also, the combiner has to return to alln
sites the upper bound for the global MFI, and the amount of communication this operation will

need is given by:n�PjUBji=1 j Ci j, where UB is the upper bound for MFID (i.e.,
Sni=1 MFIdi),

andj Ci j is the size of theith itemset in UB.

The second step is related to the local support count reduction operation. In this operationn � 1 sites have to pass their local support counts. The amount of communication for this

operation is given by:(n� 1)�PjUBji=1 (2jCj j � 1), where the term
PjUBji=1 (2jCj j � 1) represents

the local support counts of all subsets of all itemsets in UB.

In our data structure ak-itemset is represented by a set ofk integers (of 4 bytes). So, in

the worst case (where each itemset is subset of only one maximal frequent itemset), the to-

tal amount of communication is given by: (
Pni=1PjMFIdi jj=1 j Ci;j j + n � PjUBji=1 j Ci j +(n� 1)�PjUBji=1 (2jCj j � 1)) �4 bytes. This upper bound shows that our approach is extremely

efficient in terms of communication overhead, when comparedwith the amount of communica-

tion necessary to transfer all data among the sites.

Now that we demonstrated that our approach is accurate and privacy-preserving, and present

an upper bound for the amount of communication necessary in the mining operation, we will

evaluate our approach in terms of performance.

3 Experimental Evaluation

Before we present the experimental results, we describe ourdatabases and the computational

setup used for distributed mining. Then we present the results on these databases.

3.1 The Databases

We chose several real and synthetic databases for testing the performance of our algorithm.

The WCup database is generated from the click-stream log of the 1998 World Cup Web site,

which is publicly available atftp://researchsmp2.cc.vt.edu/pub/worldcup/. We scanned the log and

produced a transaction file, where each transaction is a session of access to the site by a client.

Each item in the transaction is a web request. Not all web requests were turned into items;

to become an item, the request must have three properties: (1) Request method is GET; (2)

Request status is OK; and (3) File type is HTML. A session starts with a request that satisfies

the above properties, and ends when the last click from the client timeouts. The timeout was set

as 30 minutes. All requests in a session must come from the same client. We also chose a few



synthetic databases (also available from IBM Almaden), which have been used as benchmarks

for testing previous mining algorithms [2]. Table 1 shows the characteristics of the real and

synthetic databases used in our evaluation.

Database #Items Avg. Length #Transactions Size
T10I6D4000K 2,000 10 4,000,000 897MB
T10I8D4000K 2,000 10 4,000,000 862MB

WCup 5,271 8 6,525,879 545MB

Table 1: Database Characteristics.

3.2 The Experimental Environment

All the experiments were performed on a cluster of 8 dual 1GHzprocessors with 1 GB main

memory each. All the nodes are inter-connected via the Myrinet. Each node also has a 60GB

local disk attached to it. All the partitioned databases reside on the local disks of each node.

3.3 The Results

3.3.1 Performance Comparison

In order to show the advantages of distributed mining in terms of parallelism, we compare the

performance of our algorithm against a sequential algorithm, ECLAT [14]. Both algorithms gen-

erate the same set of frequent itemsets (i.e., all global frequent itemsets). In these experiments

we varied the number of nodes (i.e., sites) and the minimum support threshold. The basic metric

employed was the total execution time to perform the distrubuted mining operation. Figure 2

shows the execution times of the algorithms on different databases. As we can see even when

there is only one node, our approach (here calledDMFI) is superior. The reason is that ECLAT

generates much more candidates thanDMFI. This result shows that applying a search for the

maximal frequent itemsets and then generating only frequent subsets is a very efficient approach

to reduce the number of candidates generated. In terms of parallel gains, if we look at the best

result ofDMFI, we can see an improvement of a factor of 9 over ECLAT.

3.3.2 Parallelism: Speedup and Scaleup

We also investigated the performance of our algorithm in speedup and scaleup experiments. In

the speedup experiment, we investigated the speedup on a fixed size database with increasing

number of nodes. Each database has 8 partitions, and we combine them to form databases with



0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8

E
x
e
c
u
ti
o
n
 T

im
e
(s

e
c
s
)

Number of Nodes

T10I6D4000K

dMFI - 0.1%
ECLAT - 0.1%

dMFI - 0.2%
ECLAT - 0.2%

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8

E
x
e
c
u
ti
o
n
 T

im
e
(s

e
c
s
)

Number of Nodes

T10I8D4000K

dMFI - 0.1%
ECLAT - 0.1%

dMFI - 0.2%
ECLAT - 0.2%

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8

E
x
e
c
u
ti
o
n
 T

im
e
(s

e
c
s
)

Number of Nodes

WCup

dMFI - 0.1%
ECLAT - 0.1%

dMFI - 0.2%
ECLAT - 0.2%

Figure 2: Total Execution Time Comparison.

1, 2, 4, and 8 partitions. With this configuration we performed experiments on 1, 2, 4, and 8

nodes. Figure 3 shows the speedup on the different databasesand parallel configurations. The

speedup numbers for the real database are not so impressive as the speedup numbers for the

synthetic ones. The reason is that the real database has highly skewed data, and therefore each

partition of the real database has a very different set of frequent itemsets (and therefore very

different local MFIs). On the other hand, the skewness of thesynthetic data is very low (i.e.,

the frequent itemsets are evenly distributed among the partitions), therefore each partition of

the synthetic databases is likely to have a similar set of frequent itemsets. From the experiments

with synthetic databases we observed that
Sni=1 MFIdi (i.e., the upper bound) is very close to

MFID. This means that the set of local frequent itemsets is very similar to the set of global

frequent itemsets, and therefore few infrequent candidates are generated by each node. In order

to verify how the quality of the upper bound varies with the number of nodes, we compared the

size of the upper bound with the size of MFID. Figure 4 shows the relative size of the upper

bound for different number of nodes. When there is only one node, the relative size is 1 (i.e., the

upper bound is exactly MFID), and as expected, it grows with the number of nodes. The growth

is greater in the real database and for larger minimum support values. Although better results

were achieved with synthetic data (as is always expected), our approach was also efficient for

mining real data, achieving significative speedups of almost 7 when using 8 nodes (i.e., 88% of

parallel efficiency).

In the scaleup experiments, we employed databases with different number of transactions.

The number of transactions ranges from 500,000 to 4,000,000. The number of nodes involved

were also increased from 1 to 8 correspondingly. Both the number of transactions and number of

nodes are scaled up proportionally. From Figure 5 we can see that our approach is able to keep

its execution time almost constant when both the number of transactions and number of nodes



1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

S
p
e
e
d
u
p

Number of Nodes

T10I6D4000K

Ideal
0.1%
0.2%
0.5%

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

S
p
e
e
d
u
p

Number of Nodes

T10I8D4000K

Ideal
0.1%
0.2%
0.5%

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

S
p
e
e
d
u
p

Number of Nodes

WCup

Ideal
0.1%
0.2%

Figure 3: Speedup Performance.

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 2 3 4 5 6 7 8

R
e
la

ti
v
e
 S

iz
e
 o

f 
th

e
 U

p
p
e
r 

B
o
u
n
d

Number of Nodes

T10I6D4000K

0.1%
0.2%
0.5%

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1 2 3 4 5 6 7 8

R
e
la

ti
v
e
 S

iz
e
 o

f 
th

e
 U

p
p
e
r 

B
o
u
n
d

Number of Nodes

T10I8D4000K

0.1%
0.2%
0.5%

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

1 2 3 4 5 6 7 8

R
e
la

ti
v
e
 S

iz
e
 o

f 
th

e
 U

p
p
e
r 

B
o
u
n
d

Number of Nodes

WCup

0.1%
0.2%

Figure 4: Relative Size of the Upper Bound.

increase linearly, showing that our approach has small amount of communication overhead.

4 Conclusions and Future Work

This paper introduced a novel algorithm for mining frequentitemsets in distributed databases.

Instead of moving data or large portions of the model among the sites, we chose to move only

a very small portion of each local model, the local MFIs. Thischoice turns our algorithm

extremely efficient in terms of communication overhead, requiring only one round of message

passing and one reduction operation to aggregate final results. We prove that the model of global

frequent itemsets generated by our algorithm is totally accurate, showed an efficient mechanism

to ensure privacy on the communication between the sites, and present an upper bound for the

amount of necessary communication.

We compared our approach against a well-known sequential algorithm (but we intend to



0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1 2 3 4 5 6 7 8

S
c
a
le

u
p

Number of Nodes

T10I6D500K-4000K

Ideal
0.1%
0.2%
0.5%

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1 2 3 4 5 6 7 8

S
c
a
le

u
p

Number of Nodes

T10I8D500K-4000K

Ideal
0.1%
0.2%
0.5%

Figure 5: Scaleup Performance.

compare our approach against other distributed algorithms). Experimental results indicate that

significative performance improvements can be obtained using our approach. The efficiency in

terms of communication can enable our approach to mine really geographically (distributed)

databases. Besides performance and scalability, the distributed data mining task exhibits tech-

nical problems, like skewed distributions. We are currently working on an alternative approach

that is less sensitive to data skewness. Preliminary applications of our approach to mine real

databases from actual applications show promising results.

References

[1] R. Agrawal and J. Shafer. Parallel mining of associationrules. InIEEE Transactions on

Knowledge and Data Engineering, volume 8, pages 962–969, December 1996.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. InProc. of the

20th Int’l Conf. on Very Large Databases, SanTiago, Chile, June 1994.

[3] R. Agrawal and R. Srikant. Privacy-preserving data mining. InProc. of the ACM SIGMOD

Conference on Management of Data, pages 439–450, May 2000.

[4] D. Cheung, V. Ng, A. Fu, and Y. Fu. A fast distributed algorithm for mining association

rules. InProc. of the 4th Int’l Conference on Parallel and Distributed Systems, pages

31–42, Los Alamitos, USA, December 1996.

[5] A. Evfimievski, R. Srikant, R. Agrawal, and J. Gehrke. Privacy preserving mining of

association rules. InProc. of 8th ACM SIGKDD Int’l Conf. on Knowledge Discovery and

Data Mining, July 2002.



[6] K. Gouda and M. Zaki. Efficiently mining maximal frequentitemsets. InProc. of the 1st
IEEE Int’l Conference on Data Mining, San Jose, USA, November 2001.

[7] M. Kantarcioglu and C. Clifton. Privacy-preserving distributed mining of association rules

on horizontally partitioned data. InThe ACM SIGMOD Workshop on Research Issues on

Data Mining and Knowledge Discovery, June 2002.

[8] J. Lin and M. Dunham. Mining association rules: Anti-skew algorithms. InProc. of 14th
IEEE Int’l Conf. on Data Engineering, October 1998.

[9] Y. Lindell and B. Pinkas. Privacy preserving data mining. Advances in Cryptology,

1880:36–54, 2000.

[10] A. Veloso, W. Meira Jr., and M. B. de Carvalho. Mining reliable models of associations

in dynamic databases. InProc. of the 17th Brazilian Symposium on Databases, pages

263–277, Gramado, Brazil, October 2002.

[11] A. Veloso, W. Meira Jr., M. B. de Carvalho, S. Parthasarathy, and M. Zaki. Parallel,

incremental and interactive mining for frequent itemsets in evolving databases. InProc.

of the 6th Int’l Workshop on High Performance, Pervasive and Stream Data Mining, San

Francisco, USA, April 2003.

[12] A. Veloso, W. Meira Jr., M. B. de Carvalho, B. Pôssas, S.Parthasarathy, and M. Zaki.

Mining frequent itemsets in evolving databases. InProc. of the 2nd SIAM Int’l Conf. on

Data Mining, Arlington, USA, May 2002.

[13] A. Veloso, W. Meira Jr., M. B. de Carvalho, B. Rocha, S. Parthasarathy, and M. Zaki.

Efficiently mining approximate models of associations in evolving databases. InProc. of

the 6th Int’l Conf. on Principles and Practices of Data Mining and Knowledge Discovery

in Databases, Helsinki, Finland, August 2002.

[14] M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms for fast discovery of

association rules. InProc. of the 3rd ACM SIGKDD Int’l Conf. on Knowledge Discovery

and Data Mining, August 1997.

[15] M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New parallel algorithms for fast dis-

covery of association rules.Data Mining and Knowledge Discovery: An International

Journal, 4(1):343–373, December 1997.

View publication stats

https://www.researchgate.net/publication/221535967

