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Abstract

Mining distributed databases is emerging as a fundameraiputational problem. A
common approach for mining distributed databases is to nadivef the data from each
database to a central site and a single model is built. Thigreach is accurate, but too
expensive in terms of time required. For this reason, séwagaroaches were developed to
efficiently mine distributed databases, but they still igna key issue- privacy. Privacy
is the right of individuals or organizations to keep theirrmwmformation secret. Privacy
concerns can prevent data movemerdata may be distributed among several custodians,
none of which is allowed to transfer its data to another site.

In this paper we present an efficient approach for miningdet itemsets in distributed
databases. Our approach is accurate and uses a privacyepre&gy communication mech-
anism. The proposed approach is also efficient in terms ofagespassing overhead,
requiring only one round of communication during the minageration. We show that our
privacy-preserving distributed approach has superiorfpenance when compared to the
application of a well-known mining algorithm in distribatelatabases.



1 Introduction

Although data mining has its roots in the traditional fieldsmachine learning and statistics, it
is the sheer volume of data that poses the most serious prdblés application. Many orga-
nizations already have warehouses that stores data amauhts terabyte range, and mining
these warehouses requires both large memory and disk spratéjgh speed computing.

Traditional methods [2, 6, 11, 14] typically made the asstomzhat the data is centralized
and memory resident. This assumption is no longer tenablairéct application of tradi-
tional mining algorithms to distributed databases is néative, because it requires a large
amount of communication overhead. Implementation of dateng ideas in high-performance
distributed computing environments is thus becoming elui@r ensuring system scalability.
However, distributed mining has implications far beyondtjscaling up algorithms. This is
because sometimes the problem is not simply that the daistigdted, but that it must remain
distributed. The issues concerning modern organizationsat only the size of the data to be
mined, but also its distributed nature. Modern organizegimay have their databases logically
and physically located at different (distant) places, @ytimay be willing to share their data
mining models, but not their data. In all these cases whatesled is a decentralized approach
to data mining.

In this paper we are interested in the problem of mining feegutemsets in distributed
databases. Mining frequent itemsets is a fundamental as®heal task in many data mining
applications. These applications include the discovemssbciation rules, strong rules, corre-
lations, sequential rules, episodes, multi-dimensioattpns, and several other important dis-
covery tasks. We consider three important issues when gingguent itemsets in distributed
databases: performance, accuracy, and limited accesss$tpoprivacy sensitive data. Devel-
oping efficient techniques to mine distributed data is alehging task since these issues are
typically contradictory. This is because data mining teghas require accurate input data for
their results to be meaningful, but performance and privamycerns may influence the input
data (i.e., sampling [10, 13], data perturbation [3, 5]ptography [9], etc.).

Let us consider a real-life motivating example where pen@nce, accuracy and privacy are
important issues. Credit card transactions is taking alatwre of the payment systems world-
wide, and have led to a higher rate of stolen account numimersabsequent losses by banks.
Each bank has a database which stores both legitimate artUfeant credit card transactions,
so let us consider distributed data mining for credit caediét detection. The objective is to
build a data mining model which will be used by automateddrdatector systems to prevent
fraudulent transactions. This data mining model must bg general and accurate, because a



mistake means great loss of money. In order to build accumatgels of credit card fraud, a
data mining system must have access to information abodtabdulent patterns of all banks
(i.e., some types of fraud can have occurred only in one bahkg problem is that banks are
restricted by law (and also by competitive reasons) fronrisgadata about their customers
with other banks. However, they may share “black-box” mep#at is, they can share knowl-
edge about fraudulent transactions, but not their datahEBrmore, there are millions of credit
card transactions processed each day, and the data mirstepsynust be scalable and able to
compute the model of credit card fraud in a timely manner.

We present an efficient approach for mining frequent itemgehorizontally-distributed
databases. Instead of sharing possibly privacy sensititeetd perform the distributed mining
task, we chose to share just a small portion of each local madech are used to construct
the global model of frequent itemsets. This choice also make approach extremely efficient
in terms of communication overhead, enabling it to be usedrfiming even geographically
distributed databases. We also developed a communicagchanism to ensure privacy among
the sites involved in the mining operation. We prove thatdlwal model generated by our
approach is totally accurate, we present bounds for thédotaunt of communication, and we
demonstrate the performance of our approach through a sstpefriments under a variety of
conditions.

1.1 Frequent Itemset Mining

The frequent itemset mining task can be stated as followsZlee a set of distinct attributes,
also called items. LeD be a database of transactions, where each transaction haquee u
identifier ¢id) and contains a set of items. A set of items is calledtamsetwhere for each
nonnegative integek, an itemset with exactly items is called &-itemset. Theidsetof an
itemsetC' corresponds to the set of all transaction identifitids| where the itemset’ occurs.
The support counpf C, is the number of transactions &f in which it occurs as a subset.
Similarly, thesupportof C is the percentage of transactionsIdfn which it occurs as a subset.
The itemsets that meet a user specifi@dimum supporare referred to aBequentitemsets. A
frequent itemset isnaximalif it is not subset of any other frequent itemset.

The databas® can be divided inta partitions,d, ds, ..., d,. Each partitiond; is assigned
to a siteS;. We say thaD is horizontally distributed if its transactions are distried among the
sites. In this case, l&t.sup andC'.sup; be the respective support counts(oin D andd,;. We
will call C.sup the global support counof C', andC'.sup; thelocal support coundf C' in d;.
For a given minimum suppost, C'is global frequenif C.sup > sx | D |; correspondingly(’
is local frequentatd;, if C.sup;, > sx | d; |. The set of all maximal global frequent itemsets is



denoted as MK, and the set of maximal local frequent itemsets;as denoted as MR|. The
task of mining frequent itemsets in distributed databasés find all global frequent itemsets.

1.2 Related Work

A common approach for mining distributed databases is theakzed one, where all the data is
moved to a single central location and then mined. Anothermmon approach is the local one,
where models are built locally in each site, and then moveldcommon location where they
are combined. The later approach is the quickest but oftethetist accurate, while the former
approach is more accurate but generally quite expensiwnmstof time required. In the search
for accurate and efficient solutions, several intermedigigroaches have been proposed [1, 4,
15]. In [1] three distributed mining approaches were pr@gabsThe @WUNT DISTRIBUTION
algorithm is a simple parallel implementation oPRIORI[2]. All sites generate the entire set of
candidates, and each site can thus independently get lgqgabg counts from its partition. At
each iteration the algorithm does a sum reduction operatiattain the global support counts
by exchanging local support counts with all other sites. c8ionly the support counts are
exchanged among the sites, the communication overheadused. However, it performs one
round of communication per iteration (note that synchratian is implicit in communication).
The DATA DISTRIBUTION algorithm generates disjoint candidate sets on each sibevekkr,
to generate the global support counts, each site has tolse@mtire database (its local partition
and all remote ones) in all iterations of the algorithm. Hetlus approach suffers from high
communication overhead. Then@DIDATE DISTRIBUTION algorithm partitions the candidates
during each iteration, so that each site can generate disjandidates independently of the
other sites, but it still requires one round of communiaaper iteration. In [15] two distributed
algorithms were presentedARECLAT and RRMAXECLAT. Both algorithms are based on the
concept of equivalence classes. Each equivalence clagsponds to a sub-tree in the search
space for frequent itemsets, and they can be processedasgoasly on each site ARECLAT
outperforms ATA, COUNT, and GANDIDATE DISTRIBUTION algorithms for more than one
order of magnitude. ARMAXECLAT outperforms RRECLAT because it searches only the
maximal frequent itemsets, instead of all frequent itesiset

These techniques are devised to scale up a given algoritem APRIORI, ECLAT, etc.).
The data is distributed (or in some cases, replicated) anddfegent sites and a data mining
algorithm is executed in parallel on each site. These agpexdo not take into account the
possible distributed nature of the data. Some assume aspiggd network environment and
perform excessive communication operations. These appesaare not efficient when the
databases are really geographically distributed. They atsume that each site can have total



access to data from other sites, but this is not possible wheimg privacy-sensitive distributed
data. Performance and scalability are still importantessibut ignoring the distributed nature
of data can make distributed data mining vulnerable to neisus

Our distributed mining approach does not assume a highdspetsvork environment, be-
cause it is efficient in terms of communication overheadyiag only one round of message
passing and one reduction operation to aggregate finaltsestihis low degree of communi-
cation enables our approach to possibly mine even phygi¢dibtant) distributed databases.
Furthermore, previous work in privacy-preserving dataimgr{3, 5, 9] has basically addressed
one issue: preserving privacy by distorting the data valUée idea is that the distorted data
does not reveal private information, and thus it is safe ®fos mining. The data distortion
approach addresses a different problem from our work. Tharaption with distortion is that
the values must be kept private from whoever is doing the mgimiperation. We instead as-
sume that each site is allowed to see its local data, but motdta from the other sites. In
return, we are able to get exact, rather than approximatdtsedn [7] the authors presented a
privacy-preserving distributed data mining approach thaccurate, but it requires much more
communication than our approach (i.e., one round per iterat

In the next section we describe the basic principles anditlefis necessary to better under-
stand our approach, which is presented in Section 3. In @edtwe present our experimental
results. Finally, in Section 5 we conclude our work.

2 Efficient Distributed Data Mining for Frequent Itemsets

In this section we present our approach for mining distebildatabases. We start by describing
the basic algorithm in its serial version. Next we show hows #igorithm can be efficiently
extended to mine distributed databases, and then we pravththextended algorithm generates
an accurate global model of frequent itemsets. Finally, n@isa simple privacy-preserving
communication mechanism, and present an upper bound foartt@int of communication
necessary in the mining operation.

2.1 Efficiently Mining Frequent Itemsets in Centralized Databases

Almost all algorithms for mining frequent itemsets use tlaene procedure- first a set of

candidates is generated, next infrequent ones are prunddyrdy the frequent ones are used
to generate the next set of candidates. Clearly, an impiigane in this task is to reduce the
number of candidates generated. An interesting approactdiacce the number of candidates



is to first mine the MF}. Once the MF} is found, it is straightforward to obtain all frequent
itemsets (and their support counts) in a single databasge sathout generating infrequent
(and unnecessary) candidates. This approach works bettaisiwnward closure property
(all subsets of a frequent itemset must be frequent). Theoeuwt candidates generated to find
the MFI, is much smaller than the number of candidates generateddctlgifind all frequent
itemsets. Maximal frequent itemsets were successfullg usseveral mining tasks, including
mining dense databases [6], and incremental mining of @wpldatabases [11, 12, 13].

An efficient search for maximal frequent itemsets must haeeability to quickly remove
large branches of the search space from consideration. proerty is associated with the
number of candidates generated in the search. The smadlautihber of candidates generated,
the faster the search will be. In [6] an efficient algorithnleh GENMAX was proposed. It
employs a backtracking search to find the maximal frequentsets. Backtracking algorithms
are useful for many combinatorial problems where the sofutian be represented as a get
= {io, 71, ...}, where eachj is chosen from a finitgossible setP;. Initially I is empty; it
is extended one item at a time, as the search space is trdverse length off is the same
as the depth of the corresponding node in the search treeenGik-candidate itemset, =
{40, 11, ..., 7,1}, the possible values for the next itencomes from a subset, C P, called
thecombine setlf y € P, — Ry, then nodes in the subtree with root nd@e= {i, i1, ..., ix_1,y}
will not be considered by the backtracking algorithm.

Each iteration of the algorithm tries extendihgwith every itemz in the combine sek.
An extension is valid if the resulting itemsagt, ; is frequent and is not a subset of any already
known maximal frequent itemset. The next step is to extteEtiew possible set of extensions,
Py .1, which consists only of items i®;, that follow x. The new combine sef; ., consists
of those items in the possible set that produce a frequemisigé when used to exteng, ;.
Any item not in the combine set refers to a pruned subtree. bHuktrack search performs a
depth-first traversal of the search space.

The support computation employed bY@V AX is based on the associativity of itemsets,
which is defined as follows. Le&t be ak-itemset of items”; ... Cy, whereC; € I. Let £(C)
be its tidset and £(C) | is the length of£(C) and thus the support count 6f. According
to [6], any itemset can be obtained by joining its atoms (itial items) and its support count
can be obtained by intersecting the tidsets of two of its stfhs

2.2 Efficiently Mining Frequent Itemsets in Distributed Databases

The search for the Mkl employed by GNMAX is very efficient, but it can only be applied
whenD is a centralized database. Now we will explain how we canrektBENMAX to de-



velop an efficient distributed mining algorithm. We first peat Lemma 1, which is the basic
theoretical foundation of our approach.

Lemma 1l — A global frequent itemset must be local frequent in, at leastone partition [8].
[

In the first step each sit§; independently performs a search for MFon its database;.
After all sites finish their searches, the result will be teeaf all local MFIs,{MFl,;,, MFl,,,

..., MFl,, }. This information is sufficient for determining all locakfijuent itemsets, and from
Lemma 1, it is also sufficient for determining all global fresat itemsets.

When all local MFIs are found, we start the second step. E#&elssnds its local MFI to a
combiner, and then the combiner joins all local MFIs. Theilteis the setJ!_, MFI,,, which
is an upper bound for Mk. The combiner then sends this upper bound to all sites.

In the third step each site independently performs a top damwmeration of the potentially
global frequent itemsets, as follows. Each itemset preisetite upper boundlJ;_, MFl,, is
broken intok subsets of sizék — 1). The support count of this itemset is computed by inter-
secting the tidsets of its atoms. This process iteratesrgeng smaller subsets and computing
their support counts until there are no more subsets to bekelde At the end of this step, each
site will have the same set of potentially global frequeaimsets (and the support associated
with each of these itemsets).

Lemma 2 — | J!, MFI ,, determines all global frequent itemsets. Proof. — We know from
Lemma 1 that ifC is a global frequent itemset, so it must be local frequenttifeast one
partition,d;. If C'is local frequent in some partitiaf), so it must be determined by MF] and
consequently byJ!" | MFl,,. O

By Lemma 2 all global frequent itemsets were found, but nbiteinsets generated in the
third step are global frequent (some of them are just loajdent). The last step makes a
reduction operation on the local support counts of eachsegnto verify which of them are
global frequent itemsets. The process starts withSitevhich sends the support counts of its
itemsets (generated in the third step) to site Site S, sums the support count of each itemset
(generated in the third step) with the value of the same ig¢mistained from sit&;, and sends
the result to site5;. This procedure continues until sifg has the global support counts of all
potentially global frequent itemsets. Then sig finds all itemsets that have support greater
than or equal to the minimum support threshold, and all dllbguent itemsets were found.

We illustrate all steps of the algorithm execution in Figlird he value of minimum support
is 50%. SiteS; and siteS; will perform the distributed mining operation on databageand



dy. In the first step each site mines its local MFI. The result Bljyi= {ABDE, BCE}, and
MFl,, = {ACDE, BCD}. In the next step, each site sends their local MFIs to the aoenbso
that it can compute the upper boupf}_, MFI,,, which is{ABDE, BCE, ACDE, BCD. Now,
each site computes the support count of each subset of eswket inJ!_, MFI,,. Some of
the generated subsets at sitea® not local frequents if;, but their support count must be
computed because some of them must be local frequent ingsitagand therefore they can still
be global frequent itemsets (i.e., ABE is not locally frequia d, but it is locally frequent i/,
and is globally frequent). In the last step the global freguemsets are found by aggregating
(sum reduction operation) the local counts of each locajueat itemset.

Minimum Support 50%

Generating
MFI, mining Upper Bound MFL, mining
MFI, = {ABDE, BCE}

MFI, = {ACDE, BCD}

MFI, « MFI, = {ABDE, ACDE, BCD, BCE}

L/ A

=l =l
Computing
Local Counts

Computing Aggregating
Local Counts Local Counts
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Figure 1: Overall Process of Distributed Mining

2.3 Privacy-Preserving Communication Mechanism

As demonstrated, our distributed algorithm generatesaiyaiccurate model of global frequent
itemsets. However, it is not a privacy-preserving approaelcause, during the second step, the
combiner gets to know the MFI information of other sites, dndng the last step sité, gets

to know the exact local supports of each itemset fromSiteTo solve this problem we propose



a privacy-preserving communication mechanism. This meisiha simply changes steps 2 and
4 in the following way.

In the new step 2, each site uses another representatior géthsets (ABD becomes, for
instance, 0-14-36) in a way such that the combiner is nottali#entify the itemsets. Each site
sends its coded local MFI information to the combiner (wauass that all sites use the same
codification), which is able to handle this information vath knowing the true identity of each
item. After combining the local MFls, the combiner sendsupper bound to all sites, and each
site is able to restore the original itemsets codificatiohthds point of the computation, each
site only knows its local MFI information and the upper boulogt not the MFIs from the other
sites. In this step the combiner plays the role of a trusted garty.

In step 4, before sending its local support counts to Sitesite S; generates a random
number for each of its itemsets. This random number is theleéddo the support count of
each itemset. With this pertubation, siie can safely send its local support counts, since this
information is meaningless to site. The algorithm continues the same way as before up to
the last iteration. After receiving the values of the totaddl counts, sit&,, requests from site
S1, the values of random numbers and their respective itemS#&sS,, simply decrement each
global support count by the respective number, and checkshwitemsets are global frequent.
Clearly, this communication mechanism is capable of findegglobal frequent itemsets with-
out revealing which itemset belongs to which site.

2.3.1 Discussions

Note that our mechanism is not suitable for some particutaasons, that occur when the
private information can be revealed by knowledge of one’a data and the final result:

1. There are only two sites: In this case, having the globalehand one local model turns
possible to derive the other local model.

2. The global support of an itemset is 100%: In this case @svill know that this itemset
and all its subsets also occur in all transactions of thercites.

2.4 An Upper Bound for the Amount of Communication

We also present an upper bound for the amount of communicagoformed during the dis-
tributed mining operation. Our calculation is based justt@nlocal MFIs and on the size of the
upper bound for MR, We divide the upper bound calculation into two steps. Trst §itep is
related to the local MFI exchange operation. Since each btiea sites will have to send its



local MFI to the combiner, the first term is given by:"_, Z‘jﬂg”i‘ Ci; |, where| C;; | is

the size of thg*" itemset of the local MFI of sité;. Also, the combiner has to return to all
sites the upper bound for the global MFI, and the amount ofraamication this operation will
need is given byn x S_I7F1| ¢, |, where UB is the upper bound for MFKi.e.,|J_, MFl,,),
and| C; | is the size of the' itemset in UB.

The second step is related to the local support count remtuoperation. In this operation

n — 1 sites have to pass their local support counts. The amounbrofrwnication for this
operation is given by(n — 1) x S2175/(21%1 — 1), where the termp_|7?/(2/%] — 1) represents
the local support counts of all subsets of all itemsets in UB.

In our data structure a-itemset is represented by a setkointegers (of 4 bytes). So, in
the worst case (where each itemset is subset of only one rabkieguent itemset), the to-
tal amount of communication is given by} I"_, z?jf’di‘ | Cij | +n X% ZLZ?‘ | C; | +
(n—1) x ZLZ?‘(Q‘CJ“ — 1)) x4 bytes. This upper bound shows that our approach is extremely
efficient in terms of communication overhead, when compai¢id the amount of communica-
tion necessary to transfer all data among the sites.

Now that we demonstrated that our approach is accurate aratpspreserving, and present
an upper bound for the amount of communication necessatyeimining operation, we will
evaluate our approach in terms of performance.

3 Experimental Evaluation

Before we present the experimental results, we describelaabases and the computational
setup used for distributed mining. Then we present the tesulthese databases.

3.1 The Databases

We chose several real and synthetic databases for tesgéngettiormance of our algorithm.
The WCup database is generated from the click-stream logeoi®98 World Cup Web site,
which is publicly available aftp://researchsmp2.cc.vt.edu/pub/worldculye scanned the log and
produced a transaction file, where each transaction is éseslsaccess to the site by a client.
Each item in the transaction is a web request. Not all webeasiguwere turned into items;
to become an item, the request must have three propertigfRgquest method is GET,; (2)
Request status is OK; and (3) File type is HTML. A sessionstaith a request that satisfies
the above properties, and ends when the last click from thatdimeouts. The timeout was set
as 30 minutes. All requests in a session must come from the shemt. We also chose a few



synthetic databases (also available from IBM Almaden)cWinave been used as benchmarks
for testing previous mining algorithms [2]. Table 1 shows tharacteristics of the real and
synthetic databases used in our evaluation.

Database | #ltems| Avg. Length| #Transactions Size
T1016D4000K| 2,000 10 4,000,000 | 897MB
T10I8D4000K| 2,000 10 4,000,000 | 862MB

WCup 5,271 8 6,525,879 | 545MB

Table 1: Database Characteristics.

3.2 The Experimental Environment

All the experiments were performed on a cluster of 8 dual 1@kHressors with 1 GB main
memory each. All the nodes are inter-connected via the Myrikach node also has a 60GB
local disk attached to it. All the partitioned database&deen the local disks of each node.

3.3 The Results
3.3.1 Performance Comparison

In order to show the advantages of distributed mining in geahparallelism, we compare the
performance of our algorithm against a sequential algorjtBcLAT [14]. Both algorithms gen-
erate the same set of frequent itemsets (i.e., all globglufet itemsets). In these experiments
we varied the number of nodes (i.e., sites) and the minimppat threshold. The basic metric
employed was the total execution time to perform the distreth mining operation. Figure 2
shows the execution times of the algorithms on differenalblases. As we can see even when
there is only one node, our approach (here catibtF) is superior. The reason is thaCEAT
generates much more candidates tb&hFI. This result shows that applying a search for the
maximal frequent itemsets and then generating only fretgigrsets is a very efficient approach
to reduce the number of candidates generated. In terms aliglagains, if we look at the best
result of DMFI, we can see an improvement of a factor of 9 oveLET.

3.3.2 Parallelism: Speedup and Scaleup

We also investigated the performance of our algorithm iredp@ and scaleup experiments. In
the speedup experiment, we investigated the speedup ondasiize database with increasing
number of nodes. Each database has 8 partitions, and we mehigm to form databases with
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Figure 2: Total Execution Time Comparison.

1, 2, 4, and 8 partitions. With this configuration we perfochexperiments on 1, 2, 4, and 8
nodes. Figure 3 shows the speedup on the different databadgsarallel configurations. The
speedup numbers for the real database are not so impressitie apeedup numbers for the
synthetic ones. The reason is that the real database hdyg bkghived data, and therefore each
partition of the real database has a very different set afueat itemsets (and therefore very
different local MFIs). On the other hand, the skewness ofsyrghetic data is very low (i.e.,
the frequent itemsets are evenly distributed among thetipag), therefore each partition of
the synthetic databases is likely to have a similar set giieat itemsets. From the experiments
with synthetic databases we observed thdt, MFl,, (i.e., the upper bound) is very close to
MFIlp. This means that the set of local frequent itemsets is vemnylai to the set of global
frequent itemsets, and therefore few infrequent candsdate generated by each node. In order
to verify how the quality of the upper bound varies with thener of nodes, we compared the
size of the upper bound with the size of MFEIFigure 4 shows the relative size of the upper
bound for different number of nodes. When there is only orgenthe relative size is 1 (i.e., the
upper bound is exactly M), and as expected, it grows with the number of nodes. Thetgrow
is greater in the real database and for larger minimum supaduwes. Although better results
were achieved with synthetic data (as is always expected)approach was also efficient for
mining real data, achieving significative speedups of ataghen using 8 nodes (i.e., 88% of
parallel efficiency).

In the scaleup experiments, we employed databases witreliff number of transactions.
The number of transactions ranges from 500,000 to 4,000,008 number of nodes involved
were also increased from 1 to 8 correspondingly. Both thebmof transactions and number of
nodes are scaled up proportionally. From Figure 5 we canhsgeur approach is able to keep
its execution time almost constant when both the numberofactions and number of nodes
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increase linearly, showing that our approach has small atnafiicommunication overhead.

4 Conclusions and Future Work

This paper introduced a novel algorithm for mining frequigainsets in distributed databases.
Instead of moving data or large portions of the model amoeggsites, we chose to move only
a very small portion of each local model, the local MFIs. Tbi®ice turns our algorithm
extremely efficient in terms of communication overheadurmagg only one round of message
passing and one reduction operation to aggregate finatseS\é prove that the model of global
frequent itemsets generated by our algorithm is totallyeaie, showed an efficient mechanism
to ensure privacy on the communication between the sitespeesent an upper bound for the
amount of necessary communication.

We compared our approach against a well-known sequengaligim (but we intend to
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compare our approach against other distributed algorith&eperimental results indicate that
significative performance improvements can be obtaineausur approach. The efficiency in
terms of communication can enable our approach to mineyrgalbgraphically (distributed)
databases. Besides performance and scalability, thébdistd data mining task exhibits tech-
nical problems, like skewed distributions. We are curentbrking on an alternative approach
that is less sensitive to data skewness. Preliminary agdits of our approach to mine real
databases from actual applications show promising results
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