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Abstract. Classification aims to map a data instance to its appropriate class

(or label). In associative classification the mapping is done through an associa-

tion rule with the consequent restricted to the class attribute. Eager associative

classification algorithms build a single rule set during the training phase, and

this rule set is used to classify all test instances. Lazy algorithms, however, do

not build a rule set during the training phase, the rule set generation is delayed

until a test instance is given. The choice between eager and lazy algorithms

is not simple. Using a single rule set to perform all the predictions may not

take advantage of specific characteristics of a test instance. On the other hand,

building a specific rule set for each test instance may incur in excessive com-

putational efforts. In this paper we propose new eager and lazy algorithms for

associative classification. Also, we present heuristics and caching mechanisms

to alleviate computational costs during lazy classification, and a new hybrid al-

gorithm which combines characteristics of eager and lazy approaches. Finally,

we also propose a multi-criteria rule selection technique which is motivated by

the intuition that a single criterion cannot give a global picture of the rule (i.e.,

rules with high confidence but low support). We performed a systematic evalua-

tion of the proposed approaches using real data from an important application:

spam detection.

1. Introduction

Given a set of data instances and their class labels (i.e., the training data), the task of

classification is to find a function which maps a new data instance (i.e., a test instance) to

its corresponding class. Eager classification uses the training data to build a single rule

set that is used to classify all test instances. On the other hand, lazy classification uses

the training data to build a specific rule set for each test instance, and therefore, decisions

are based on the properties of the particular test instance being evaluated. While eager

algorithms build a single classifier that is good (on average) for all predictions, lazy algo-

rithms take advantage of particular characteristics of a given test instance, and this may

reflect in an improvement of the classification accuracy. This improvement in accuracy

comes with the cost of building several different rule sets, one for each test instance, mak-

ing the classification process slower. There are two alternatives to speedup the process.

First, one can employ heuristics to reduce the size of the rule set, focusing only on the

most important rules. Another alternative is to reduce work replication by caching some
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already processed rules. After a few instances have been classified, commonly used rules

already exist, and their computations do not need to be repeated. In this paper we focus on

associative classification, a well-known classification technique based on a special type

of association rule, where the consequent is restricted to the class attribute. We propose

eager and lazy associative classification algorithms, and after discussing the advantages

and the drawbacks of each approach, we also propose an hybrid (eager/lazy) algorithm.

The accuracy of associative classification algorithms (whether they are eager or

lazy) is intrinsically dependent on the criterion used to choose the best rule, that will be

used to perform the classification. The problem is that, usually, a single criterion cannot

give a global picture of the rules (i.e., rules with high confidence and low support), turning

the algorithms prone to misclassification. In this paper we also deal with multi-criteria

classification, where the best rule is the one that has the highest values in all the criteria

used. We present different rule selection criteria, and then we propose a multi-criteria rule

selection approach that starts the generation of the rule set by the most general rules and

keep generating more specific rules until the best rule is found.

The paper is organized as follows. In Section 2 we present necessary background

and related work on associative classification. In Section 3 we discuss in more detail eager

and lazy approaches and present the corresponding algorithms. In Section 4 we show the

experimental results. Finally, in Section 5 we draw the conclusions.

2. Preliminaries

In this section we provide preliminary concepts of associative classification. Further, we

also discuss some related work.

DEFINITION 1. [ITEMSETS] For any set X , its size is the number of elements in X . Let

I denote the set of n natural numbers {1, 2, . . ., n}. Each x ∈ I is called an item. A

non-empty subset of I is called an itemset. An itemset of size k, X = {x1, x2, . . ., xk} is

called a k-itemset. We say that X contains Y if Y ⊆ X .

DEFINITION 2. [TRAINING AND TEST INSTANCES] A data instance Ti is an itemset,

where i is a natural number called the instance identifier or tid. A dataset D is a finite set

of instances, and it is divided into two partitions, D = Dseen ∪ Dunseen, where Dseen is

the set of training instances (i.e., the training data) and Dunseen is the set of test instances

(i.e., the test data). If Ti is followed by the class attribute c, then Ti ∈ Dseen, otherwise

Ti ∈ Dunseen. The support of an itemset X is the fraction of training instances that contain

X , given as, σ(X ) =
|{Ti∈Dseen|X⊆Ti}|

|Dseen|
. The itemset X may appear too frequently in some

classes, and too rarely in others. Weighted support is the support of X normalized by the

support of each class, and it is given by γ(X ) = σ(X∪c)
σ(c)

.

DEFINITION 3. [ASSOCIATION RULES] An association rule is a rule with the form

X
θ,φ,π
−−−→ c, where c is the class attribute and X is an itemset (c /∈ X ). The confidence

of the rule, denoted as θ, is given by
σ(X∪c)
σ(X )

. The exclusiveness (or weighted confidence)

of the rule, denoted as φ, is given by
γ(X∪c)

γ(X∪c)+γ(X∪c)
. The higher the exclusiveness, the

more strongly X is associated to class c. The conviction of the rule, denoted as π, is

given by
σ(X )×σ(c)

σ(X∪c)
and measures implication. It is directional and it is maximal (π = ∞)

for perfect implications, and it properly indicates when the rule does not hold more than

expected (π = 1). A rule X
θ,φ,π
−−−→ c matches a data instance Ti if X ⊆ Ti.
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RELATED WORK − There are several association rule mining algorithms in the

literature. The most well known are APRIORI [Agrawal and Srikant 1994], FP-

GROWTH [Han et al. 2000], and ECLAT [Zaki et al. 1997]. There are also several al-

gorithms for classification, such as ID3 [Quinlan 1986], C4.5 [Quinlan 1993], and

CART [Breiman et al. 1984], but they are based on decision trees or Bayesian rules.

Differently, our work is related to associative classification, which was introduced

in [Liu et al. 1998] with the CBA classification system. Enhancements were proposed

in [Yin and Han 2003] where best rules are selected based on the Ocam’s Razor principle,

and in [Li et al. 2001] where the classification is based on multiple best rules (rather than

on one single best rule). These algorithms are all based on eager classification, but there

are also lazy classification algorithms [Friedman et al. 1996, Zheng and Webb 2000]

which are all based on decision trees and Bayesian rules, and not on association rules.

Our work is novel, first because the proposed algorithms (including the eager algorithm)

use a novel multi-criteria for rule selection approach, and also because there are no lazy

or hybrid algorithms for associative classification in the literature.

THE ECLAT ALGORITHM − Some ideas behind the ECLAT algorithm are specially

important for us, and we will also use these ideas in our classification algorithms. We start

by discussing search space partitioning using equivalence classes, which is very useful for

sake of enumerating itemsets with a particular item (i.e., the class attribute). For example,

to generate the rule X → c we first need to generate the itemset X ∪ c. We can easily

constrain the enumeration of itemsets to only supersets that contain one class, c, by using

the equivalence class partitioning scheme [Zaki et al. 1997].

Another important characteristic of the ECLAT algorithm is the vertical dataset

layout approach to perform support counting, which is more appropriate to our lazy rule

generation approach. Each itemset X has a tidset, denoted as L(X ), which is the set of

tids in Dseen in which X has occurred. Then σ(X ) is given as
|L(X )|
|Dseen|

. Basically, we can

count the support of a k-itemset X = {x1, x2, . . . , xk} in two different ways. The 2-way

intersection uses the tidsets of two (k-1)-subsets of X (say Y and Z) to calculate L(X ),
which is given as L(Y) ∩ L(Z). In some cases, however, we only have access to the

tidsets of the 1-itemsets, and in these cases, we use the k-way intersection approach to

calculate σ(X ), by calculating L(X ) as L(x1) ∩ L(x2) ∩ . . . ∩ L(xk).

3. Algorithms for Multi-Criteria Associative Classification

In this section we describe our proposed algorithms. First, we will explain our multi-

criteria rule selection approach, which is used in all the proposed algorithms. Then, for

each algorithm we will explain how it deals with the training and test data.

MULTI-CRITERIA RULE SELECTION − Our multi-criteria rule selection approach is

based on three criteria: θ, φ and π. The best rule is the one with the highest values in all

these three criteria. The rule selection always starts with the most general rules (rules of

size 2), and if no best rule is found (there is no rule with the highest values in all criteria),

then more specific rules (rules of size 3) are analyzed. This process continues analyzing

more specific rules until the best rule is found or the maximum rule size is reached (in

order to avoid overfitting). If no best rule is found, the rule with the highest conviction

value is selected (In our experiments, conviction seems to be the best single criterion).
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EAGER ALGORITHM (EC) − The algorithm starts by generating a set of frequent item-

sets 1 from Dseen. The itemset generation follows the ECLAT algorithm execution, which

is based on equivalence classes, where the search space is partitioned and itemsets with

the form X ∪ ci are generated for each class c ∈ {positive, negative} 2. The support

computation is based on the 2-way intersection approach. After all frequent itemsets are

found, EC generates a rule set R. Then, for each test instance Ti, EC retrieves all match-

ing rules from R (i.e., rule with the form X
θ,φ,π
−−−→ c where X ⊆ Ti). From the retrieved

rules, the best rule is selected according to our multi-criteria approach, and a class is fi-

nally chosen for the prediction. If there is no matching rule in R, a default prediction (i.e.,

the most frequent class in Dseen) is performed.

LAZY ALGORITHM (LC) − The algorithm starts by constructing the tidset of each item

in Dseen (including the classes, which are treated as frequent items). Until this moment no

rule has been generated. Now, for each test instance Ti = {t1, t2, . . . , tn}, LC generates

a rule set R. To reduce the amount of computation for generating the rule set, the items

{t1, t2, . . . , tn} ∈ Ti are sorted in according to their support values (in descending order),

and the first v (where v is specified by the user) most frequent items are maintained.

The algorithm keeps performing combinations between the v most frequent items and

generating rules such as t1
θ,φ,π
−−−→ c, t2

θ,φ,π
−−−→ c and {t1 ∪ t2}

θ,φ,π
−−−→ c. If v is much smaller

than n, few rules will be generated and the quality of the rule set will be reduced, since the

amount of information about the test instance will be smaller. The support computation

is based on the k-way intersection approach. Different test instances have different rule

sets, but different rule sets may share common association rules. To avoid generating

the same rule more than once when processing different test instances, LC uses a cache

whose key is given by the items that compose the rule and the content is composed by θ, φ
and π. From the generated rule set, the best rule is selected according to our multi-criteria

approach, and class is finally chosen for the prediction. All rules generated match the

test instance because the rules were generated based on the items that appear in the test

instance, and so there is no need for a default prediction.

HYBRID ALGORITHM (HC) − As mentioned earlier, the EC algorithm suffers from

the missing rule (or rule set coverage) problem when there is no matching rule in the rule

set. In this case the solution adopted by EC is to use a default prediction. However, this

solution is too restrictive and lacks diversity, since choosing a pre-determined class does

not take into account any characteristic of the test instance. The HC algorithm works

similarly to the EC algorithm, the only difference is that HC generates a customized rule

set for each test instance that is not covered by the original rule set.

In order to evaluate our algorithms, after all test instances are classified four mea-

sures are obtained:

• TT : number of positive cases that were correctly classified as positive.

• TF : number of negative cases that were wrongly classified as positive.

• FT : number of positive cases that were wrongly classified as negative.

• FF : number of negative cases that were correctly classified as negative.

1An itemset X is frequent if σ(X ) ≥ σ
min, where σ

min is a threshold specified by the user.
2In this paper we focus on binary classification.
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4. Experimental Results

In this section we present experimental results obtained from the application of our classi-

fication algorithms to a real-world problem: spam detection. We start with a description of

the input parameters and evaluation metrics that will be used throughout the experiments.

All experiments were run on a PENTIUM III 1GHz 512MB main memory.

During our experiments we varied the following input parameters: the minimum

support (when analyzing the EC and HC algorithms), the cache size and the maximum

number of items in a test instance (when analyzing the LC algorithm). We have also

varied the size of the training data and the size of the test data. Some metrics were also

defined with the goal of evaluating the effectiveness of the classification performed using

our algorithms:

1. Accuracy (Acc): It is the total number of correct classified cases (positive and

negative) divided by the total number of cases, given by: TT+FF
TT+TF+FT+FF

.

2. Precision (Prec): It is the number of correct classified positive cases divided by

the total number of positive classified cases, given by TT
TT+TF

.

3. Recall (Rec): It is the number of correct classified positive cases divided by the

total number of real positive cases, given by TT
TT+FT

.

4. Improvement (Imp): It quantifies how much it is better using the classifier than

not using it. Greater improvement values indicate better performance. For Imp <
1, not using the classifier is better. Improvement is given by: TT+FT

TF+FT
.

SPAM DETECTION − Spams or, more formally, unsolicited commercial electronic mes-

sages, are extremely annoying to most users, as they waste their time and extend dial-up

connections. They also waste bandwidth, and often expose minors to unsuitable con-

tent by advertising pornographic sites. Without appropriate counter-measures spams can

eventually undermine the usability of electronic messages. Technical counter-measures

include the development of spam filters, which can automatically detect a spam message.

Classification algorithms are usually the core of spam filters.

DATASET AND PROBLEM DESCRIPTIONS − The problem is to classify if a given elec-

tronic message is spam or legitimate (a message is a data instance). In our case, the

classification is based only on the content of the message (i.e., the words and symbols

that compose the message). Spams are marked as positive cases, legitimate messages are

negative cases. Spams correspond to 25% of the total number of messages 3. All attributes

are continuous (i.e., the same word/symbol may appear more than once in the message),

and for each attribute we assume that its value ranges is discretized into 3 intervals, and

then the intervals are mapped to consecutive positive integers.

RESULTS − We start the evaluation by comparing the EC and HC algorithms. Fig-

ure 1(a) shows precision, recall and accuracy numbers for these two algorithms. The

hybrid algorithm performs better in all three metrics. This result shows that using a lazy

procedure is better than using a pre-specified class for default prediction. Figure 1(b)

shows the impact of the lazy procedure in the total execution time, for different training

and testing configurations. As expected, EC is slightly faster than HC. Figure 1(c) shows

3This is the set of e-mail messages from the SPAMASSASSIN project, and it is largely ac-

cepted as the ultimate test collection for spam detection benchmark. It is publicly available at

http://spamassassin.apache.org/publiccorpus/
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how much of improvement the algorithm can achieve by second. The hybrid algorithm

needs less time to achieve more improvement and performs better than the eager one.
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Figure 1. (a) Prec/Rec/Acc for EC and HC Algorithms, (b) Execution Time and (c)

Improvement per second for EC and HC using Different Training Configurations.
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Figure 2. (a) Prec/Rec/Acc for LC Algorithm. (b) Execution Time and (c) Improve-
ment per second, for LC using Different Training Configurations.
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Next we analyze our proposed heuristic based on limiting the number of items

in a given test instance. Figure 2(a) shows precision, recall and accuracy numbers by

varying the maximum number of items in the test instances. All these numbers increase

by increasing the number of items in the test instance, and this is expected since more

information are available with more items being analyzed. Figure 2(b) shows the total

time spent by varying the maximum number of items, and clearly the time increases lin-

early with the number of items. Also, we can observe that the time spent by LC increases

with the number of test instances (i.e., 30% × 70%). Figure 3(c) the Improvement/Time

trade-off for the LC algorithm and, by comparing with Figure 1(c), we can observe that

LC generally performs better than both EC and HC algorithms.

Now we turn the attention to the analysis of the cache effectiveness. Using the

cache only affects the execution time of LC, and it does not affect precision, recall, accu-

racy, and improvement. Figure 3(a) shows the hit ratio. The ratio goes from 0 to 90% by

varying the cache size from 0 to ∞. Also from this figure we observed that the cache is

more effective for larger training configurations (i.e., 70% × 30%). Figure 3(b) shows the

impact of caching in execution time. From this figure we can see that larger caches are

generally better, except for small (but greater than 0) cache sizes, because in these cases,

there is a large overhead of cache replacement (since the replacement procedure is called

many times). Figure 3(c) shows the Improvement/Time trade-off. We can compare this

result with the ones depicted in Figures 1(c) and 2(c), and we can observe that caching is

the best mechanism, since caching does not reduces the improvement.

Our last analysis compares all algorithms by varying training and testing configu-

rations. Figure 4(a) shows improvements for the different algorithms. As we can see, the

improvement increases with the percentage of training for all algorithms. LC is the one

with highest improvement, showing that our lazy algorithm is the best one. Figure 4(b)

shows the execution time for all algorithms. The time spent by EC and HC algorithms

increases with the percentage of training instances, since the amount of data that has

to be processed in order to generate the rule set also increases. Differently, the time

spent by LC diminishes with the percentage of training instances, since (consequently)

the amount of test instances is reduced (and less rule set are generated). Figure 4(c)

shows the comparison between EC, HC and LC, in terms of accuracy numbers by apply-

ing different rule selection approaches. We compared out multi-criteria approach against

single-criterion ones, for instance highest confidence, highest conviction and highest ex-

clusiveness. Clearly, our multi-criteria approach performs much better than all other rule

selection approach. The best single criterion used is conviction, since this metric quanti-

fies both the negative and positive aspects of the rule (and not only the positive one, such

as confidence does).

5. Conclusions and Future Work

In this paper we investigated techniques for rule generation and rule selection in associa-

tive classification. We propose three algorithms with different rule generation character-

istics. EC is an eager algorithm, which generates a single rule set before any test instance

is given. LC is a lazy algorithm which generates one rule set for each test instance. HC

is a hybrid algorithm which combines characteristics from both EC and LC algorithms.

We evaluated the three algorithms, and concluded that LC shows the best precision, recall

and accuracy numbers. Also, LC demands more computation due to the fact that it has
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to generate a possibly large number of rule sets. We propose two techniques to alleviate

this problem: one heuristic and a simple caching mechanism. Our heuristic is based on

limiting the size of the test instances (i.e., it analyzes only the k most frequent items on

a test instance), and consequently, the heuristic also affects the effectiveness of the algo-

rithm. Our caching mechanism is simple, but extremely efficient, and makes LC faster

than both EC and HC. Our rule selection approach is based on the observation that one

single criterion is not sufficient to give the global picture (i.e., rules with high confidence

and low support). We propose to use a multi-criteria approach based on three metrics:

confidence, exclusiveness and conviction. The best rule is the one with highest value in

all these three metrics. The search for the best rule starts with more general rules and

keeps generating more specific ones. The multi-criteria approach performs better than all

single-criterion ones.

We are currently investigating associative classification techniques that are more

robust regarding changes in the underlying processes that generate the data (i.e., concept

drifts and shifts). For example, in the spam detection application, the spammer periodi-

cally changes the spam generation procedure in order to escape from the spam detector.

Our current work involves techniques that can capture trends and other properties in the

rule set, and use these properties to make the classifier more robust.
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