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ABSTRACT
How do we analyze sentiments over a set of opinionated Twitter
messages? This issue has been widely studied in recent years, with
a prominent approach being based on the application of classifi-
cation techniques. Basically, messages are classified according to
the implicit attitude of the writer with respect to a query term. A
major concern, however, is that Twitter (and other media channels)
follows the data stream model, and thus the classifier must operate
with limited resources, including labeled data for training classifi-
cation models. This imposes serious challenges for current classi-
fication techniques, since they need to be constantly fed with fresh
training messages, in order to track sentiment drift and to provide
up-to-date sentiment analysis.

We propose solutions to this problem. The heart of our approach
is a training augmentation procedure which takes as input a small
training seed, and then it automatically incorporates new relevant
messages to the training data. Classification models are produced
on-the-fly using association rules, which are kept up-to-date in an
incremental fashion, so that at any given time the model properly
reflects the sentiments in the event being analyzed. In order to
track sentiment drift, training messages are projected on a demand-
driven basis, according to the content of the message being clas-
sified. Projecting the training data offers a series of advantages,
including the ability to quickly detect trending information emerg-
ing in the stream. We performed the analysis of major events in
2010, and we show that the prediction performance remains about
the same, or even increases, as the stream passes and new training
messages are acquired. This result holds for different languages,
even in cases where sentiment distribution changes over time, or
in cases where the initial training seed is rather small. We derive
lower-bounds for prediction performance, and we show that our
approach is extremely effective under diverse learning scenarios,
providing gains that range from 7% to 58%.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing; I.5.2 [Pattern Recognition]: Classifier Design and
Evaluation
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1. INTRODUCTION
The rise of text-based social media channels has fueled scien-

tists with torrents of opinionated data about the most diverse topics
and entities. This has spurred the proliferation of tools with the
ability to analyze the sentiment expressed by the online population
which visits and participates in social channels and (micro-)blogs.
This population accounts for more than two-thirds of all Internet
users [1], and thus sentiment analysis will eventually become a key
feature of search engines, which may integrate the aggregate senti-
ment of the crowd into search results.

Sentiment analysis in these scenarios presents two characteris-
tics that make it more challenging than in other previous researched
scenarios. The first is that the task consists of analyzing a humon-
gous amount of messages that are produced continuously by a large
and uncontrolled number of users. The second is that these mes-
sages tend to be very short, as required by Twitter, but such prac-
tice is becoming a trend in other channels. We name this scenario
sentiment streams and the task sentiment stream analysis. In this
paper we focus on Twitter, but our techniques may be applicable to
any channels that share the same characteristics we just mentioned.
Twitter is one of the fastest-growing social media channels, and has
proven itself to be an authoritative source for breaking news, some
of which concerns events of huge impact world-wide [20]. Sen-
sitive information is created almost in the same time the event is
happening in the real world, and it becomes available shortly after
it is created. Also, the 140-character limit is very restrictive, not
providing enough space for users to explain, elaborate or get dis-
tracted from their main point. Twitter is thus a valuable niche for
large scale sentiment analysis, and recent years have experienced
the emergence of many tools and techniques for this task [26].

There is a growing trend in performing sentiment analysis us-
ing classification-related techniques: a process that automatically
builds a classification model by learning, from a set of previously
labeled messages (i.e., the training data), the underlying charac-
teristics that distinguish one sentiment from another (i.e., happi-
ness, madness, surprise, suspicion). The success of these classi-
fiers rests on their ability to judge attitude by means of textual-
patterns present in the messages, which usually appear in the form
of (idiomatic) expressions and combinations of words. It is well
accepted that the quality of the training data that is provided to the
classifier is crucial to its effectiveness. Although there is no con-



sensus on how the training data should be produced, it is common-
sense that the cost of manually labeling vast amounts of messages
is prohibitive, since the acquisition of these example messages may
require the inspection of skilled human annotators. This annota-
tion burden motivated the emergence of a large repertoire of semi-
supervised and active learning alternatives [7]. Still, these tech-
niques assume by large that the training data is sampled from a sta-
tionary distribution, but time-varying data plays a significant role in
sentiment analysis. Twitter, for instance, enables millions of users
to tweet at any moment, and thus, variations in sentiment distribu-
tion may happen constantly.

We investigate sentiment analysis over Twitter real-time mes-
sages. In such scenarios, classifiers must operate with limited com-
puting and training resources. To make things even worse, either
sentiment distribution or the characteristics related to certain sen-
timents may change over time in almost unforeseen ways. This
is known as sentiment drift, and it makes predictions less accu-
rate as time passes. To prevent deterioration over time the classi-
fication model has to be constantly refreshed, meaning that classi-
fiers must be able to automatically incorporate novel information
into the training data and update the model on-the-fly, so that the
predictions to come can take advantage of up-to-date information
immediately. Some well-established classification strategies may
become ill-suited in such hard circumstances, while alternate solu-
tions may be more convenient.

We propose to learn sentiments using classification models com-
posed of association rules [2]. After a small training seed is pro-
vided to the classifier, it is able to extract these rules which are es-
sentially local mappings relating sentiments to textual-patterns in
the messages. Also, two novel features make our classifiers unique
in dealing with different settings of sentiment drift, while operating
with limited amount of resources:

• They employ a self-augmenting training procedure, which
incorporates reliable predictions as new training information,
and as a result, the training data is automatically augmented
as the message stream passes. The classification model is
immediately refreshed by keeping rules up-to-date incremen-
tally, so that the next message in the stream can potentially
take advantage of the recently included information. De-
pending on the stream tightness, the classifiers can also ab-
stain from doubtful predictions, creating a small block of
messages that are temporarily waiting for a reliable predic-
tion. These messages for which no reliable prediction is pos-
sible with only the training messages available at the time,
may benefit from the training information acquired later.

• They perform demand-driven projection, which determines
a specific (potentially different) training projection for each
message passing through the stream. The training messages
that compose each training projection are automatically se-
lected according to the content of the message being ana-
lyzed. This incurs in a powerful strategy for tracking differ-
ent types of sentiment drift, since it removes training mes-
sages that are not meaningful to the message being analyzed.
We prove that the removed messages are not detrimental to
prediction performance, and that the number of rules ex-
tracted from each training projection grows polynomially with
the size of the vocabulary, no matter the minimum support
value. This enables the classifier to focus on trending infor-
mation that is just emerging in the stream, while staying free
from a huge amount of meaningless information.

These two features were not coincidentally proposed together.
In fact, they have a synergistic effect in the sense that both need

each other in order to work properly. The self-augmenting training
ability assures the inclusion of new training messages that are nec-
essary to produce up-to-date training projections. At this point,
the use of typical computational cost restrictions based on min-
imum support thresholds would compromise the entire process,
since important patterns that are just emerging in the stream would
be pruned, and as a result, the classification model would become
obsolete and unable to respond to sentiment trends. Therefore, in
order to quickly detect the appearance of novel information in the
message stream, the classifier must extract rules without employing
frequency restrictions based on support. As will be demonstrated,
the proposed demand-driven projection approach assures that rules
are efficiently extracted from the training projection (i.e., in polyno-
mial time), even without applying restrictions on support. Further-
more, the cost associated with rule extraction is greatly amortized
due to a lossless incremental approach, which drastically reduces
the number of accesses to the training data.

To evaluate the effectiveness of the proposed classifiers, we per-
formed a systematic set of experiments using sentiment-rich Twit-
ter data collected from three important events in 2010. We em-
ployed different different learning scenarios (i.e., different senti-
ments, different languages, and different training seeds). To vali-
date our claims we derived lower-bounds for classification perfor-
mance, and the results show that our classifiers are extremely ef-
fective under diverse learning scenarios, with gains in prediction
performance that range from 7% to 58%.

2. RELATED WORK
The ultimate goal of a classifier is to achieve the best possible

prediction performance for the problem at hand. Devising effective
classifiers for a specific problem is not a simple task, but there is a
body of evidence suggesting that classification offers substantial
advantages in several application scenarios, including sentiment
analysis [26]. There has been a large amount of prior research
in sentiment analysis, especially in the domain of product reviews,
movie reviews, and blogs [25]. A variety of classifiers were already
evaluated in many different sentiment learning scenarios, such as
analyzing brand impact of microbloging [19], or learning consumer
confidence and political opinion [9, 23, 24].

More recently, it becomes possible to analyze population senti-
ment at a large scale. Social channels like Twitter offer the neces-
sary resource: vast amounts of opinionated content [20]. Unfortu-
nately, there is a major bottleneck in the process: the necessity for
training examples which are labeled by human annotators. In order
to limit human intervention, automated alternatives that use emoti-
cons (or tags) [28] and other distant supervision approaches [16]
were also proposed, but (1) they are prone to error by definition,
(2) they are unable to capture other types of sentiments for which
no emoticon (or any tag) is associated, and (3) different sentiments
may be associated with the same emoticon (or the same tag). Ra-
mage et al. [27] characterize users and messages of Twitter using
topic models. Their approach is based on labeled latent Dirich-
let allocation, which is used to detect topics of words that tend
to co-occur in similar tweets and from implied tweet labels (e.g.
hashtags, emoticons ad replies). Other alternatives to address the
annotation burden include active and semi-supervised learning ap-
proaches [7]. However, there is also a major impediment that pre-
vent the application of these approaches: channels such as Twitter
follow the data streaming paradigm [4], and thus, (1) classifiers
must operate with limited amount of resources, and (2) online sen-
timent may change over time.

Many techniques have been proposed to handle the issues asso-
ciated with analyzing data streams. An incremental approach [14]



was proposed to focus on streaming data using Hoeffding bounds.
Other approaches incrementally update their classification model
with new training data to cope with the evolution of the stream [10,
15]. These techniques usually require complex operations to update
the model. Also, Wang et. al [31] and Fan [11] proposed ensemble
techniques for stream mining.

The above techniques assume that data distribution is smooth,
but actually, (concept) drifts are often hidden in the stream. Gama
et al. [13] proposed to use a forgetting mechanism based on a slid-
ing window with the most recent observations. Street and Kim [29]
proposed a technique based on a ensemble of decision trees to deal
with drifting streams. It splits data into batches, fits one decision
tree per batch and discards the old models heuristically. Zhu et
al. [36] proposed an active learning framework to selectively label
instances from drifting streams. The decision tree based technique
proposed in [18] keeps the model current while making the most of
old data by growing an alternative subtree whenever an old one be-
comes questionable, and replacing the old with the new when it be-
comes more accurate to adapt to the current concept. An approach
to concept drift [21] was proposed to create and remove weighted
experts dynamically corresponding to the changes of performance.
An Optional Weight Adjustment method [34, 35] utilizes the most
recent data block to detect optional weighted values for the clas-
sifier, and applies a kernel mean matching method to minimize
the discrepancy of data blocks in the kernel space. Two variants
of bagging: ADWIN Bagging and Adaptive-Size Hoeffding Tree
(ASHT) Bagging were introduced for tackling non-stationary con-
cepts in data streams [5]. Maloof [22] proposed a new incremental
rule learning algorithm, which uses heuristics to adapt the size of
training window dynamically.

The advantages of the techniques to be proposed in this paper,
when compared against existing techniques, are manifold. Firstly,
our classifiers are able to detect exactly the pieces of the training
data that must be updated. Consequently, the classification model
is updated in a highly efficient way, without wasting computing re-
sources. Secondly, our classifiers are able to project the training
data on a demand-driven basis, producing a specific training frame
for each message that is analyzed. The messages that compose each
frame are automatically selected according to qualitative informa-
tion present on the message being analyzed. We show that training
messages have an expiration time, after which they become totally
useless for the sake of classification. Finally, our classifiers are able
to abstain from doubtful predictions. The corresponding messages
are blocked until more evidence are obtained, and a reliable judge-
ment becomes possible.

3. LEARNING SENTIMENT STREAMS
In this section we present novel classifiers for learning senti-

ments that are expressed in streams of Twitter messages. We start
by discussing classification models based on specialized associa-
tion rules. Then we describe static models with offline rule ex-
traction, and dynamic models with self-augmenting training and
demand-driven projection features.

3.1 Sentiment Stream Analysis
In our context, the task of learning sentiment streams is defined

as follows. We have as input a small training seed (referred to as
D), which consists of a set of records of the form < d, si >, where
d is a message (represented as a list of terms), and si is the senti-
ment implicit in d. Messages in D are uniquely identified and the
sentiment variable s draws its values from a pre-defined and dis-
crete set of possibilities (e.g., s1, s2, . . ., sk). The training seed
is used to build functions relating textual patterns in the messages

to their corresponding sentiments. A sequence of future messages
(referred to as T ) consists of records < t, ? > for which only the
terms in message t are known, while the sentiment expressed in t is
unknown. Classification models obtained from D are used to score
the sentiments for each message in T . However, messages in T
come on streams, so that the classifier must operate with limited
computing resources while producing classification models. Also,
the classifier must adapt itself due to sentiment drift, being able to
acquire new training information as the stream passes, and to select
training messages that are relevant to each message in T .

There are countless strategies for devising a classifier for senti-
ment analysis. The majority of these classification strategies, how-
ever, are not well-suited to deal with real-time data coming on
streams. Some strategies [6, 8] are specifically devised for offline
classification, and this is problematic because producing classifi-
cation models on-the-fly would be unacceptably costly. Even up-
dating the models in scenarios with high-speed streams would be
excessively lengthy. In such hard circumstances, alternate classi-
fication strategies may become more convenient. In the following
we describe classification models composed of specific association
rules, and how these models are used for sentiment-scoring.

Definition 1. A sentiment rule is a specialized association rule
X −→ si, where the antecedent X is a set of terms (i.e., a termset),
and the consequent si is the predicted sentiment. The domain for
X is the vocabulary of D. The cardinality of rule X −→ si is given
by the number of terms in the antecedent, that is |X |. The support
of X is denoted as σ(X ), and is the number of messages in D
having X as a subset. The confidence of rule X −→ si is denoted
as θ(X −→ si), and is the conditional probability of sentiment si
given the terms in X , that is, θ(X −→ si) =

σ(X∪si)
σ(X )

.

Offline Rule Extraction
The simplest approach for sentiment learning using sentiment rules
is the offline one. A set of rules is extracted from the training data
D. These rules compose the classification model.

Definition 2. The classification model is denoted asR, and it is
composed of a set of rules X −→ si extracted fromD. The model is
represented as a pool of entries with the form <key, data>, where
key={X , si} and data={σ(X ), σ(X ∪ si), θ(X → si)}. Each en-
try in the pool corresponds to a rule, and the key is used to facilitate
fast access to the rule properties.

The rule extraction process is divided into two steps: support
counting and confidence computation. Once the support σ(X ) is
known, it is straightforward to compute the confidence θ(X −→ si)
for the corresponding rules [33]. There are several smart support-
counting strategies [2, 17, 33], and many fast implementations [3]
that can be used.

Usually, the support for termsets inD are computed in a bottom-
up way, which starts by scanning all messages inD and computing
the support of each term in isolation (i.e., 1-termsets). In the next
iteration, 2-termsets (i.e., termsets of size 2) are enumerated using
1-termsets, and their support values are calculated by accessing the
training data. The search for termsets proceeds, and the enumera-
tion process is repeated until the support values for all termsets in
D are finally computed. Obviously, the number of rules increases
exponentially with the size of the vocabulary (i.e., the number of
distinct terms in D), and computational cost restrictions have to
be imposed during rule extraction. Typically, the search space for
rules is restricted by pruning rules that do not appear frequently in



D (i.e., the minimum support approach). While such restrictions
make rule extraction feasible, they also lead to lossy classification
models, since some rules are pruned and not be included intoR.

Sentiment Scoring
Once the classification modelR is extracted from D, rules are col-
lectively used to score sentiments of messages that come later, T .
Basically, the model is interpreted as a poll, in which each rule
{X −→ si} ∈ R is a vote given by X for sentiment si. Given a
message t ∈ T , a rule X −→ si is only considered as a valid vote if
this rule is applicable to t.

Definition 3. A rule {X −→ si} ∈ R is said to be applicable to
message t ∈ T if X ⊆ t. That is, if all terms in X are present in t.

Not all rules in R are applicable to a specific message t ∈ T .
Eventually, the model may contain many rules that are not applica-
ble to any message in T . These rules are said to be useless, and the
set of all useless rules inR is denoted asR∅.

We denote as Rt the set of all rules in R that are applicable to
message t ∈ T . Thus, only and all the rules in Rt are considered
as valid votes when scoring sentiments in message t. Therefore,
for m future messages in T = {t1, t2, . . . , tm}, the classification
modelR can be decomposed as {Rt1 ∪Rt2 ∪ . . . ∪Rtm ∪R∅}.
Rules inR∅ represent a waste of computational resources, and may
pollute the classification model with irrelevant information. Ideally
|R∅| = 0.

Also, we denote as Rsit the subset of Rt containing only rules
predicting sentiment si. Votes in Rsit have different weights, de-
pending on the confidence of the corresponding rules. The weighted
votes for sentiment si are averaged, giving the score for sentiment
si with regard to message t, as shown in Equation 1:

s(t, si) =
∑ θ(X −→ si)

|Rsit |
(1)

Finally, the scores are normalized, as expressed by the scoring
function p̂(si|t), shown in Equation 2. The scoring function esti-
mates the likelihood of sentiment si being the implicit attitude of
message t.

p̂(si|t) =
s(t, si)
k∑
j=0

s(t, sj)

(2)

3.2 Self-augmenting Training and Projection
The performance associated with (static) classification models

tends to deteriorate over time. This is mainly due to sentiment
drift [32], which happens when data distribution in T is different
from that in D. The difference usually increases over time, and at
some point in time the training data may eventually become mean-
ingless and the classification model obsolete. Drift is commonly
observed in streaming environments, being evidenced either when
the sentiment distribution shifts, or when the relationship between
textual-patterns and sentiments changes [12]. In both cases the
need for model adaptation is prevalent in order to track changing-
sentiments over time.

Data Inclusion
In order to adapt the classification model accordingly, it is manda-
tory to gather the most current information emerging in the stream.
Latest, most current training messages, may be obtained by exploit-

ing the predictions performed using the sentiment-scoring function
shown in Equation 2. These predictions may be used to assign sen-
timents to messages, generating labeled messages. Further, reliable
predictions may be regarded as correct ones and generate reliable
labeled messages, which can be included into D.

Definition 4. Given an arbitrary message t ∈ T , we say that
< t, si > is a reliable labeled message if p̂(si|t) ≥ δmin, where
δmin is a user-specified threshold (0.0 < δmin ≤ 1.0).

The idea is to use δmin as a threshold indicating the minimum
reliability necessary to regard labeled message < t, si > as a cor-
rect one, and, therefore, to include it into the training data D. Intu-
itively, if reliable predictions are indeed correct ones, then the train-
ing data will be continuously augmented with novel training infor-
mation, keeping the training data up-to-date as the stream evolves.
However, the use of support-based pruning during rule extraction
prevents the full potential of self-augmenting training, since it is
highly probable that the classification model R will be composed
only of the most general rules in D, and most of these rules may
be not applicable to future messages carrying trending (i.e., not so
frequent) information.

Definition 5. Given a message t ∈ T , we say that model R is
agnostic to t, if Rt = ∅. That is, if R does not contain rules that
are applicable to t. A model R is said to be gnostic if Rt 6= ∅
∀t ∈ T .

Unfortunately, an optimal minimum support value that guaran-
tees a gnostic classification model, is unlikely to exist. There-
fore, as we discuss in the next section, our rule extraction must
be support-free, in order to produce gnostic models, and to exploit
the full potential and all the benefits of self-augmenting training.

Online Rule Extraction with Data Projection
So far we have discussed offline rule extraction. Extracting rules
on-the-fly, however, offers several advantages. One of these advan-
tages is that the classifiers become able to efficiently extract rules
from D without performing support-based pruning. The idea be-
hind online rule extraction is to avoid completely the extraction of
useless rules by projecting the training data on a demand-driven
basis. More specifically, rule extraction is delayed until a message
t ∈ T is given. Then, terms in t are used as a filter which config-
ures the training data D in a way that only rules that are applicable
to t can be extracted. This filtering process produces a projected
training data, denoted as Dt, which contains only terms that are
present in message t.

Lemma 1. All rules extracted from Dt are applicable to t.

Proof. Since all training messages in Dt contain only terms that
are present in message t, the existence of a rule X −→ si extracted
from Dt, such that X * t, is impossible. �

Lemma 1 implies that demand-driven training projection assures
that |R∅| = 0, evidencing that only useless rules are not included
into the classification model R. The next theorem states that our
classifier efficiently extracts rules fromD, no matter the minimum-
support value (which can be arbitrary low). The key intuition is that
the classifier works only on terms that are known to be associated to
each other, drastically narrowing down the search space for rules.



Theorem 1. The number of rules extracted from Dt increases
polynomially with the number of distinct terms in D.

Proof. Let n be the number of distinct terms in D. Since an arbi-
trary message t ∈ T contains at most l terms (with l � n), then
any rule applicable to t can have at most l terms in its antecedent.
That is, for any rule {X −→ si}, such that X ⊆ t, |X | ≤ l. Con-
sequently, the number of possible rules that are applicable to t is
l +

(
l
2

)
+ . . . +

(
l
l

)
= O(2l) � O(nl). Thus, the number of ap-

plicable rules increases polynomially in n. �

Another advantage provided by demand-driven training projec-
tion comes from the fact that the projection also exploits, as a side-
effect, the temporal locality associated with terms in D. This is
particularly important for dealing with sentiment drift, since by
projecting the training data according to the content of a message
t ∈ T , the classifier is essentially concentrating the representative
training information in nearly contiguous temporal data frames.
However, deciding about the recency of the frame is a tricky is-
sue, since different messages in T may demand training frames
positioned in different points of the stream timeline. That is, some
messages in T may demand more recent training frames, while
other messages in T may demand older ones. Thus, instead of em-
ploying a fixed-length temporal training frame for all messages in
T , our classifier employs a different frame (i.e., Dt) for each mes-
sage in t ∈ T . The recency of the training frame for an arbitrary
message t is decided based upon the terms that are in the own mes-
sage. Since these terms are chronologically related somehow, the
projected training data Dt is likely to contain representative train-
ing messages for scoring the sentiments in message t.

Extending Classification Models Dynamically
With online rule extraction, we extend the classification model R
dynamically as messages in T are processed. InitiallyR is empty;
a sub-model Rti is appended to R every time the classifier pro-
cesses a message ti. Thus, after processing a sequence of m mes-
sages {t1, t2, . . . , tm}, the modelR is {Rt1 ∪Rt2 ∪ . . .∪Rtm},
and therefore,R is gnostic to all those m messages.

Producing a sub-model Rt involves extracting rules from Dt.
This operation has a significant computational cost, since it is nec-
essary perform multiple accesses to D. Different messages in T =
{t1, t2, . . . , tm}may demand different sub-models {Rt1 ,Rt2 , . . . ,
Rtm}, but different sub-models may share some rules (i.e., {Rti ∩
Rtj} 6= ∅). In this case, memorization is very effective in avoiding
work replication, reducing the number of data access operations.
Thus, before extracting rule X −→ si, the classifier first checks
whether this rule is already in R. If an entry is found with a key
matching {X , si}, then the rule inR is used instead of extracting it
fromDt. If it is not found, the rule is extracted fromDt and then it
is inserted intoR. The main steps are summarized in Algorithm 1.

Algorithm 1 Online Rule Extraction
Require: message t ∈ T and D
Ensure: Rt andR

1: Dt ⇐D projected according to message t
2: Rt ⇐ rules {X → si} 6∈ R, extracted from Dt
3: appendRt toR

Model Maintenance
Entries in the classification modelR may become invalid when re-
liable labeled messages < t, si > are included into D. As a result,

R has to be updated properly. We propose to maintain the model
up-to-date incrementally, so that the updated model is exactly the
same one that would be obtained by re-constructing it from scratch.

Update speed is a key issue in model maintenance, and a chal-
lenge that threatens the efficiency of our approach is that the model
may be composed of a potentially large number of rules, and up-
dating all these rules may be unacceptably costly in a streaming
environment. Fortunately, not all rules inR have to be updated.

Lemma 2. The inclusion of a labeled message < t, si > into D
does not change the value of σ(X ), for any termset X 6⊂ t.

Proof. Since X 6⊂ t, the number of messages in D having X as a
subset is essentially the same as in {D ∪ t}. �

Lemma 3. The inclusion of a labeled message < t, si > into D
does not change the value of θ(X −→ s), for any rule {X −→ s} ∈
R for which X 6⊂ t, ∀s ∈ {s1, s2, . . . , sk}.

Proof. Comes directly from the fact that confidence is invariant
under the null-addition operation [30]. �

From Lemmas 2 and 3, the number of rules that have to be up-
dated due to the inclusion of labeled message< t, si >, is bounded
by the number of possible termsets in t. Since most of the mes-
sages that are included into D contain only a very small fraction of
all possible termsets, the inclusion of an arbitrary message t corre-
sponds to a null-addition to most of the rules in R. The following
lemma states exactly the rules inR that have to be updated.

Lemma 4. The only and all the rules in R that must be updated
due to the inclusion of labeled message < t, si > are those inRt.

Proof. All rules {X −→ si} ∈ R that have to be updated due to
the inclusion of < t, si > are those for which X ⊆ t. By defini-
tion,Rt contains only and all such rules. �

Once rules {X −→ s} ∈ Rt are retrieved from R, updating the
corresponding values for σ(X ) and θ(X −→ s) is a simple opera-
tion. It suffices to iterate on Rt and increment the values of σ(X )
and σ(X ∪ s). The corresponding values for θ(X −→ s) are ob-
tained by computing σ(X∪s)

σ(X )
∀s ∈ {s1, s2, . . . , sk}. These steps

are summarized in Algorithm 2.

Algorithm 2 Incremental Model Maintenance
Require: labeled message < t, si >, D, andRi
Ensure: R

1: for all rules {X → s} ∈ Rt do
2: increment σ(X )
3: increment σ(X ∪ si)
4: θ(X → si)⇐ σ(X∪si)

σ(X )

5: end for

The Sub Judice Strategy
Naturally, some predictions are not reliable enough, given certain
values of δmin. An alternative is to abstain from using such doubt-
ful predictions as the classifier does not have enough evidence for
a reliable judgement, that is, we do not use the corresponding la-
beled messages for model building and keep them sub judice. As
new reliable labeled messages are included into D, new sentiment



evidence is exploited, hopefully increasing the reliability of the la-
beled messages that were previously hold and releasing them. More
specifically, when a reliable labeled message is included into D,
the classifier re-evaluates all messages that are sub-judice. At the
end of the process, either doubtful messages become reliable ones
(possibly improving prediction performance), or there is no more
reliable labeled messages to be included into D and, therefore, the
remaining messages that are sub-judice have to be processed nor-
mally. The process stops when all messages in T are processed by
the classifier. The main steps are summarized in Algorithm 3.

Algorithm 3 Blocking Doubtful Predictions
Require: message t ∈ T , δmin
Ensure: D

1: if p̂(si|t) < δmin
2: keep t sub judice until another labeled message is included

into D
3: else
4: include labeled message < t, si > into D
5: end if

As will be discussed in the next section, messages in the stream
are kept sub-judice for a certain period of time, which depends on
the application (i.e., minutes, hours, days etc.). After this period,
all messages are necessarily processed.

4. EXPERIMENTAL EVALUATION
In this section we empirically analyze the sentiment scoring per-

formance of our classifiers. We employ the mean squared error
(MSE) as the basic evaluation measure in our experiments, since
we are primarily interested in evaluating sentiment scoring (rather
than sentiment prediction). In order to evaluate the scoring perfor-
mance over the time, we employ the area under the curve (AUC)1.
We used Multinomial Naive Bayes [4] as baseline, since it is a rep-
resentative of the state-of-the-art. All datasets used in our exper-
iments were manually labeled by three to five human annotators.
Unless otherwise stated, the training seed that is provided to the
classifiers are composed by the first 1% of the messages. In the
following we describe the datasets, and then we discuss the scoring
performance of our classifiers on these datasets2.

4.1 Brazilian Presidential Elections
The presidential election campaigns were held from June to Oc-

tober 2010. Candidate Dilma Rousseff launched a Twitter page
during a public announcement, and she used Twitter as one of the
main sources of information for her voters. The campaign attracted
more than 500,000 followers and Dilma was the second most cited
person on Twitter in 2010. The election came to a second round
vote, and Dilma Rousseff won the runoff with 56% of the votes.

Dilma Rousseff Election Campaign. We collected 466,724
Portuguese messages referencing Dilma Rousseff in Twitter during
her campaign. We randomly selected 66,643 of these messages,
and we annotated them in order to track the population sentiment of
approval during this period. Approval varied greatly due to several
polemic statements and political attacks, and our goal is to score

1Specifically, we calculate the area under the curve induced by the
MSE associated with chunks of messages, that is, messages are
grouped by minutes, hours or days depending on the application.
2We cannot redistribute the datasets due to Twitter restrictions
(http://dev.twitter.com/pages/api_terms)

approval during her campaign. The dataset contains 62,089 distinct
terms, and messages are grouped by day (i.e., all messages posted
in the same day are placed together in the same group). Messages
in the stream come in at a rate of 0.02 messages/sec.

Figure 1 shows a series of results obtained for the evaluation
of our classifiers in this dataset. Figure 1-a shows a colored map
which allows us to grasp the existence of temporal locality of mes-
sages passing in the stream. A message exhibits temporal local-
ity if it is likely to be accessed again in the near future, that is,
message d ∈ D becomes more likely to be in Dti and in Dtj if
ti ∈ T is close in time with tj ∈ T . In the figure, messages placed
in lighter colored regions are those that appeared in the projected
training data of the corresponding message in the x-axis. Messages
placed in darker regions, on the other hand, are those that did not
appear in the projected training data of the corresponding message
in the x-axis. Since messages in the x- and y-axes are chronolog-
ically ordered, we can understand how frequently these messages
are used over the time. Clearly, messages are gradually less and
less used as the stream passes, and future messages tend to demand
messages that were just included into D. Also, messages have an
expiration time, after which they become useless for the sake of
prediction. For instance, the first messages to appear in the stream
become meaningless after about 30,000 messages are processed by
the classifier. Our classifiers are able to automatically discard such
meaningless messages while building classification models.

Figure 1-b shows stacked histograms indicating the percentage
of messages in T that were correctly, wrongly, and not included
into D by varying the value of δmin. As expected, the percent-
age of messages that are included into D increases as δmin de-
creases. This is because message inclusion becomes less restric-
tive for lower values of δmin. For the same reason, the percent-
age of messages wrongly included into D increases as δmin de-
creases. Figure 1-c shows the same analysis, but allowing the sub
judice strategy. For this dataset, this strategy was clearly effec-
tive, since the percentage of correctly included messages always
increases, while the percentage of wrongly included messages al-
ways decreases. This is because the sub judice strategy makes the
classifier able to abstain from doubtful predictions until more ev-
idence is gathered with the inclusion of reliable training informa-
tion, and this greatly improves scoring performance. For instance,
for δmin = 0.7 and using a seed size of 2/100, we observed that,
on average, 8% of all messages were kept sub judice and 225 mes-
sages were inserted into D at each day (which was the time period
for which messages are allowed to be kept sub-judice).

Figure 1-d shows the online population approval sentiment over
the campaign. We try to approximate sentiment variations using
our classifiers. As can be seen, a better sentiment approximation
is obtained when the classifier is allowed to perform the sub judice
strategy. Figure 1-e shows the error area under the curve for dif-
ferent values of δmin and for different training seed sizes. Since
our basic performance metric is MSE, the smaller the area under
the curve, the better is the performance. As expected, performance
increases by increasing the seed size, since in this case more train-
ing messages are available. The best performance provided by our
classifier (δmin = 0.8) is highly competitive with the performance
provided by the baseline. Figure 1-f shows the same analysis, but
allowing the classifier to perform the sub judice strategy. Most of
the results have improved greatly− in some cases the error area de-
creases by more than 30%, and the resulting performance is much
superior than the performance provided by the baseline.

4.2 TIME’s Person of the Year
At the end of every year, TIME magazine selects a person, or a



group of persons that has most influenced events during the year.
The chosen person for 2010 was Mark Zuckerberg. The reader
choice, however, was Julian Assange, with an overwhelming supe-
riority of votes.

Twittersphere Battle: Zuckerberg and Assange. We col-
lected 93,411 English messages referencing Julian Assange and
Mark Zuckerberg from 12-15-2010 to 12-21-2010. We randomly
selected 5,616 of these messages, and we annotated them in order
to track diverse sentiments regarding the magazine’s decision. Sen-
timents include surprise (since the reader choice was pointing to
Julian Assange), approval/disapproval, and even fury. The dataset
contains 7,294 distinct terms, and messages are grouped by hour.
Messages in the stream come in at a rate of 0.02 messages/sec.

Figure 2 shows a series of results obtained for the evaluation of
our classifier in this dataset. Figure 2-a shows the effectiveness of
training augmentation. The percentage of correctly included mes-
sages is approximately the same for δmin values varying from 0.5
to 0.8. However, for δmin = 0.8, no message was wrongly in-
cluded into D. As a result, the best scoring performance, as shown
in Figure 2-b, was obtained with δmin = 0.8. In this case, the area
under the curve is essentially the same one obtained by the base-
line. However, as the figure also shows, our classifiers obtained
much better results when the sub judice strategy is allowed. In this
case we observed that, on average, 33% of all messages were kept
sub judice and 60 messages were included into D at each hour.
Figure 2-c shows a X-Y scatter-plot which correlates the moment
in time in which a message arrives and the moment in time in which
the same message is processed. As shown in the figure, messages
are blocked until it becomes possible to perform reliable predic-
tions for them. The first messages to pass through the stream are so
doubtful given only the training seed, that the corresponding pre-
dictions are kept sub judice even for relaxed δmin values (i.e., ≤
0.6). As more labeled messages are included into D, predictions
become more reliable, and only predictions with reliability below
δmin = 0.8 are kept sub judice.

4.3 FIFA World Cup
The 2010 Soccer World Cup involved 32 teams competing for

the title. The Brazilian team was defeated by the Dutch team on
07-02-2010, after a controversial match. The Brazilian team scored
first, but soon after the Dutch team scored twice and won the match.
A specific player, Felipe Melo, had decisive participation (for better
or worse) in all three goals.

The Brazilian Defeat. We collected 12,020 messages refer-
encing Felipe Melo. We randomly selected 4,646 of these mes-
sages, and we annotated them in order to track the sentiment of
appreciation for the participation of Felipe Melo. This resulted in
two datasets, the first one containing 3,214 annotated messages in
Portuguese (8,101 distinct terms), and the second one containing
1,432 annotated messages in English (4,962 distinct terms). For
these datasets, messages are grouped by minute. Messages in the
stream come in at a rate of 1.12 messages/sec.

Figures 3 and 4 show a series of results obtained for the evalua-
tion of our classifiers in these datasets. We start by discussing the
results regarding the dataset composed of messages in Portuguese.
Figure 3-a concerns the temporal locality associated with the mes-
sages in this dataset. Old messages are gradually less and less used
as the stream passes. For instance, the first messages to appear
in the stream become meaningless after about 2,000 messages are
processed by the classifier. It is also clear that messages exhibit

temporal locality, since, as can be seen, a given message is more
likely to be used again in the near future.

Figure 3-b shows the cumulative MSE as the stream passes. The
static classifier (i.e., the training data is never augmented with new
training messages) offers the worst performance, and the dynamic
classifier reaches its maximum performance for δmin = 0.5. This
δmin value was used to track appreciation sentiment over time, as
shown in Figure 3-c. As can be seen, there was a sudden appreci-
ation increase in the beginning of the match. This is because the
queried player, Felipe Melo, made an assistance to a goal. There
was also a sudden decrease in appreciation after one hour of match,
and this has happened because the same queried player failed two
consecutive times, allowing the adversary to score twice, winning
the match consequently. As shown in Figure 3-c, the dynamic clas-
sifier offers a much better approximation, when compared against
the static classifier. The superiority is due to the inclusion of new
training messages intoD, as shown in Figure 3-d. For δmin = 0.5,
the percentage of correctly included messages surpasses 95%.

Figure 3-e shows the error area under the curve obtained for dif-
ferent values of σmin. For most of δmin values, our classifier was
able to provide a better performance than the performance provided
by the baseline. The performance increases even more if the clas-
sifier is allowed to perform the sub judice strategy, as shown in the
same figure. We finish the analysis of the results obtained for this
dataset by inspecting the sub judice strategy. Figure 3-f correlates
the time in which a message arrives with the time in which the same
message is processed. As can be seen, messages are blocked un-
til it becomes possible to perform reliable predictions for them. A
large number of messages were blocked exactly just after one hour
of match, when there was a sudden sentiment drift. This shows that
the sub judice strategy is effective for dealing with sentiment drift
(as shown in Figure 3-e), even if the drift is huge, such as the one
depicted in Figure 3-c.

The last set of experiments concerns the evaluation of the same
event, but using the dataset composed of messages in English. Fig-
ure 4-a shows the cumulative MSE as the stream passes. Again,
the static classifier offers the worst results. Performance improves
greatly when δmin ≤ 0.8. In these cases, the number of correctly
included messages surpasses 92%, as shown in Figure 4-b. As
expected, the percentage of wrongly included messages increases
as δmin decreases, and thus, the best performance is achieved for
δmin = 0.7, as shown in Figure 4-c. Again, the sub judice strategy
offers a substantial improvement, and when it actually came into
action, it is able to decrease the error area by at least 15%.

5. CONCLUSIONS
This paper focused on the important problem of sentiment anal-

ysis in streaming environments. We have introduced new classi-
fiers based on sentiment rules. The proposed classifiers are able to
exploit reliable predictions in order to augment the training data.
The self-augmentation training procedure keeps the classifier up-
to-date automatically. Furthermore, sentiment rules are extracted
from the training data on a demand-driven basis, by projecting the
search space for sentiment rules according to qualitative informa-
tion in future messages, allowing an efficient extraction. Also, by
projecting the training data, the classifier eliminates irrelevant and
outdated information from consideration. This happens as a side
effect, because messages coming in the stream exhibits temporal
locality, and old messages are unlikely to be demanded by recent
messages passing through the stream. We also show that training
messages have an expiration time, after which they are totally use-
less for the sake of classification. Our classifier are able to discard
from consideration all such meaningless information. A systematic
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(a) Projected Training Data for each
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Figure 1: Dilma Rousseff’s Presidential Campaign (Portuguese).
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Figure 2: Person of the Year (English).
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Figure 3: Brazilian Defeat in the FIFA Cup (Portuguese).
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evaluation involving major 2010 events demonstrated the effective-
ness of the proposed classifiers, which were compared against a
representative of the state-of-the-art.

We proposed to further improve the prediction performance of
these classifiers by introducing the innovative sub-judice strategy,
which makes the classifiers able to abstain from doubtful predic-
tions, and to temporarily block these predictions until more ev-
idence is gathered due to the inclusion of new reliable training
information. Experimental evaluation has shown that the sub ju-
dice strategy substantially boosts prediction performance providing
gains up to 58%.
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