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Abstract Much of the existing work in machine learning and data mininghas
relied on devising efficient techniques to build accurate models from the data.
Research on how the accuracy of a model changes as a function of dynamic up-
dates to the databases is very limited. In this work we show that extracting this
information: knowing which aspects of the model are changing; and how they
are changing as a function of data updates; can be very effective for interactive
data mining purposes (where response time is often more important than model
quality as long as model quality is not too far off the best (exact) model.
In this paper we consider the problem of generating approximate models within
the context of association mining, a key data mining task. Wepropose a new
approach to incrementally generate approximate models of associations in evolv-
ing databases. Our approach is able to detect how patterns evolve over time (an
interesting result in its own right), and uses this information in generating ap-
proximate models with high accuracy at a fraction of the cost(of generating the
exact model). Extensive experimental evaluation on real databases demonstrates
the effectiveness and advantages of the proposed approach.

1 Introduction

One of the main characteristics of the digital information era is the ability to store huge
amounts of data. However, extracting knowledge, often referred to as data mining, from
such data efficiently poses several important challenges. First, the data operated on is
typically very large, so the tasks are inherently I/O intensive. Second, the computa-
tional demands are quite high. Third, many of these datasets are dynamic (E-commerce
databases, Web-based applications), in the sense that they are constantly being updated
(evolving datasets).

Researchers have evaluated data stratification mechanisms such as sampling to han-
dle the first problem and memory efficient and parallel computing techniques to handle
the second problem. Simply re-executing the algorithms to handle thethird problem
results in excessive wastage of computational resources and often does not meet the
stringent interactive response times required by the data miner. In these cases, it may
not be possible to mine the entire database over and over again. This has motivated
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the design of incremental algorithms, i.e., algorithms that are capable ofupdating the
frequent itemsets, and thus the associations, by taking into account justthe transactions
recorded since the last mining operation. In this paper we propose an approximate in-
cremental algorithm to mine association rules that advances the state-of-the-art in this
area.

Association mining is a key data mining task. It is used most often for market bas-
ket data analysis, but more recently it has also been used in such far-reaching domains
as bioinformatics [8], text mining [14] and scientific computing [7]. Previous research
efforts have produced many efficient sequential algorithms[6,1, 9, 18, 19, 21], several
parallel algorithms[22,13, 20, 3], and a few incremental algorithms for determining as-
sociations [16, 15, 2, 4].

Almost all incremental algorithms by and large employ specific data structures to
maintain the information previously mined so that it can be augmented bythe updates.
These techniques are designed to produce exact results, as would be producedby an
algorithm running from scratch. However, if response time is paramount, these algo-
rithms may still be too expensive. What is needed is a way to efficiently estimate the
association parameters (support, confidence) without computing them thussaving on
both computational and I/O time. Our approach relies on extracting historical trends
associated with each itemset and using these trends to estimate these parameters.For
instance, if an itemset support is roughly constant across time, it may notbe necessary
to determine its exactly frequency. An approximate value may serve. Furthermore, if
an itemset shows a consistent increase or decrease trend, we may also estimate its sup-
port as a function of the number of updates after the last actual count and theslope
associated with the trend.

The main contributions of this paper can be summarized as follows:

– We propose an approximate incremental algorithm, WAVE, for mining association
rules, based on discovering trends in itemset frequency actual databases over time.

– We evaluate the above algorithm along the traditional axes of quality (i.e., how
close to the exact model) and performance (as compared against a state-of-the-art
incremental algorithm) over several real datasets.

We begin by formally presenting the problem of finding association rules in the
next section. In Section 3 we present our approach for mining approximatemodels of
associations. The effectiveness of our approach is experimentally analyzed in Section
4. Finally, in Section 5 we conclude our work and present directions for future work.

2 Problem Description and Related Work

2.1 Association Mining Problem

The association mining task can be stated as follows: LetI = f1; 2; :::; ng be a set
of n distinct attributes, also called items, and letD be the input database. TypicallyD
is arranged as a set of transactions, where each transactionT has a unique identifierTID and contains a set of items such thatT � I . A set of itemsX � I is called an
itemset. For an itemsetX , we denote its correspondingtidlist as the set of allTIDS that
containX as a subset. The support of an itemsetX , denoted�(X), is the percentage
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of transactions inD in whichX occurs as a subset. An itemset is frequent if its support�(X) � minsup, whereminsup is a user-specified minimum support threshold.
An association rule is an expressionA p! B, whereA andB are itemsets. The

support of the rule is�(A [ B) (i.e., the joint probability of a transaction containing
bothA andB), and the confidencep = �(A[ B)=�(A) (i.e., the conditional probability
that a transaction containsB, given that it containsA). A rule is frequent if the itemsetA [ B is frequent. A rule is confident ifp � minconf , whereminconf is a user-
specified minimum confidence threshold.

Finding frequent itemsets is computationally and I/O intensive. Letj I j= m be
the number of items. The search space for enumeration of all frequent itemsetsis 2m,
which is exponential inm. This high computational cost may be acceptable when the
database is static, but not in domains with evolving data, since the itemset enumeration
process will be frequently repeated. In this paper we only deal with how to efficiently
mine frequent itemsets in evolving databases.

2.2 Related Work

There has been a lot of research in developing efficient algorithms for mining frequent
itemsets. A general survey of these algorithms can be found in [17]. Most of these algo-
rithms enumerate all frequent itemsets. There also exist methods which only generate
frequent closed itemsets [19] and maximal frequent itemsets [6]. While these meth-
ods generate a reduced number of itemsets, they still need to mine the entire database
in order to generate the set of valid associations, and therefore these methods are not
efficient in mining evolving databases.

Some recent effort has been devoted to the problem of incrementally mining fre-
quent itemsets [10, 15, 16, 2, 4, 5]. A few of these algorithms cope with the problem
of determining when to update the current model, while others update the model af-
ter an arbitrary number of updates [16, 15, 2, 4]. To decide when to update, Lee and
Cheung [10] propose the DELI algorithm, which uses statistical sampling methods to
determine when the current model is outdated. A similar approach proposed by Ganti
et al (DEMON [5]) monitors changes in the data stream. An efficient incremental algo-
rithm, called ULI, was proposed by Thommas [15]et al. ULI strives to reduce the I/O
requirements for updating the set of frequent itemsets by maintaining the previous fre-
quent itemsets and thenegative border [12] along with their support counts. The whole
database is scanned just once, but the incremental database must be scanned as many
times as the size of the longest frequent itemset.

The proposed work, WAVE, is different from the above approaches in several ways.
First, while these approaches need to performO(n) database scans (n is the size of the
largest frequent itemset), WAVE requires only one scan on the incremental database and
only a partial scan on the original database. Second, WAVE supports selective updates,
that is, instead of determining when to update the whole set of frequent itemsets, WAVE

identifies specifically which itemsets need to be updated and then updates only those
itemsets. Finally, WAVE employs simple estimation procedures that gives it the abil-
ity to improve the prediction accuracy while maintaining the update costs very small.
The combination of incremental techniques and on-the-fly data stream analysismakes
WAVE an efficient algorithm for mining frequent itemsets and associations in evolving,
and potentially streaming databases.
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3 The ZIGZAG and WAVE Algorithms

In previous work [16] we presented the ZIGZAG algorithm, a method which efficiently
updates the set of frequent itemsets in an evolving database paying heed to practical
time and memory constraints. This accomplishment is possible by using an incremen-
tal technique based on maximal frequent itemsets, an information lossless approach.
This approach results in significant I/O and computational savings, since the number of
maximal itemsets is significantly smaller than the number of all frequent itemsets.

ZIGZAG keeps information about the frequent itemsets. This information is com-
posed by the support of all maximal frequent itemsets and the tidlists of all 1-itemsets.
The maximal frequent itemsets are updated by a backtracking search approach, which
is guided by the results of the previous mining iteration. Further, ZIGZAG uses the
updated maximal frequent itemsets1 to incrementally construct the lattice of frequent
itemsets in the database. Additional features of ZIGZAG include the ability to track
stable itemsets [11].

WAVE is an extension to ZIGZAG which maintains the same data structure, but adds
the ability to detect and react to changes in evolving databases. Contrasting to other in-
cremental approaches [15, 2, 4, 5] which generally monitor changes in the database to
detect the best moment to update the entire set of itemsets, we choose instead to per-
form selective updates, that is, the support of every single itemset iscompletly updated
just when we cannot perform a good estimate of it anymore. Figure 1 depicts a real
example that motivates our selective approach. This figure shows the correlation of two
sets of popular itemsets. These popular itemsets are ranked by support (i.e., popularity
ranking) and their relative positions are compared. When the set of popular itemsets is
totally accurate, all the popular itemsets are in the correct position. However, when the
database is evolving it is hard to continously achieve a totally accurate set of popular
itemsets, since the support of those itemsets and their relative positions in the ranking
are constantly changing. From Figure 1 we can see a comparison of a totallyacurate
set of popular itemsets and a ranked set of itemsets which is becoming outdatedas the
database evolves. As we can see in this figure, although there were significative changes
in the support of some popular itemsets, there are also a large number of popular item-
sets which remain accurate (i.e., in the correct position) and do not need to beupdated,
and also a large number of popular itemsets which had evolved in a systematic way,
following some kind of trend. The starting point of our approach for mining popular
itemsets is the set of potentially frequent itemsets according to our estimation. We dis-
tinguish three types of itemsets:

Invariant: The support of the itemset does not change significantly over time (i.e., it
varies within a predefined threshold) as we add new transactions. This itemset is
stable, and therefore, it need not be updated.

Predictable: It is possible to estimate the support of the itemset within a tolerance.
This itemset presents some kind of trend, that is, its support increasesor decreases
in a systematic way over time.

Unpredictable: It is not possible, given a set of approximation tools, to obtain a good
estimate of the itemset support.

1 The maximal frequent itemsets solely determine all frequent itemsets
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Figure 1. Evolution of Frequent Itemsets. The X-Axis represents a Totally Accurate Ranking,
while the Y-Axis represents an Oudating Ranking.

In order to reduce the cost of mining popular itemsets, it is desirable to have no un-
predictable itemsets, and the search for tools that better estimate the support of itemsets
is probably endless, and is out of scope of this paper. Our belief is that it may not be
worth the effort to employ sophisticated tools, since their cost may approach or surpass
the cost of executing an incremental mining algorithm such as ZIGZAG.

We classify itemsets regarding its predictability by calculating the ratios between
the number of invariant, predictable, and unpredictable itemsets. Table 1 depicts the
ratios for the databases showed in Figure 2 for the sake of the evaluation of an approx-
imate approach potential. From this table we can see that both real databases present a
significant number of predictable itemsets.

DatabaseInvariantPredictableUnpredictable

WCup 7.2% 45.3% 47.5%
WPortal 9.1% 52.1% 38.8%

Table 1.Ratio between Invariant, Predictable and Unpredictable Itemsets.

Note that there exists a major difference between invariant and predictable item-
sets. If there is a large number of invariant itemsets in the database, the set of popular
itemsets generated will remain accurate for a long time. On the other hand, if there is
a large number of predictable itemsets, the model will lose accuracy over time. How-
ever, we can generate pretty good estimations of these predictable itemsets,potentially
maintaining the accuracy of the support of the popular itemsets.

WAVE is comprised of two phases. The first phase uses the tidlists associated with 1-
itemsets whose union results in the itemset we want to estimate the support. The second
phase analyzes the sampled results to determine whether it is necessary to countthe
actual support of the itemset. Each of these phases is described below.

Support Sampling � The starting point of the sampling is the tidlists associated with1-itemsets, which are always up-to-date since they are simply augumented by the novel
transactions. Formally, given two tidlistsl� andl� associated with the itemsets� and�,
we define that the exact tidlist of�[ � is l�[� = l� \ l�. We estimate the upper bound
on the merge of two tidlists as follows. We divide the tidlists into n bins. The upper
bound of the intersection of correspondingbins is the lower of the twobin values (bin
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value corresponding to the number of entries in thebin). The upper bounds associated
with thebins are then used as input to our estimation technique, described next.

Support Estimation based on Linear Trend Detection � Trend detection is a valu-
able tool to predict the frequent itemsets behavior in the context of evolving databases.
One of the most widespread trend detection techniques is linear regression, which finds
which itemsets follow a linear trend, i.e., which of them fit reasonably a function to
a straight line. The model used by the linear regression is expressed as the functiony = a+ bx, wherea is they-intercept andb is the slope of the line that represents the
linear relationship betweenx andy. In our scenario thex variable represents the num-
ber of transactions while they variable represents the estimated support. Themethod of
least squares determines the values ofa andb that minimize the sum of the squares of
the errors, and it is widely used for generating linear regression models.

To verify the goodness of the model generated by the linear regression, we must
estimate the goodness-of-fit. In the absence of this estimate, we have not the slight-
est indication that the parametersa andb in the model have any meaning at all. The
goodness-of-fitR2 represents the proportion of variation in the dependent variable that
has been accounted for by the regression line. ThisR2 indicator ranges in value from
0 to 1 and reveals how closely the estimatedy-values correlate to its actualy-values. AR2 value close to 1 indicates that the regression equation is very reliable. Insuch cases,
WAVE provides an approximated technique to find the support of predictable itemsets,
an approach that does not have an analog in the itemset mining research. Whenever
an itemset is predictable, its support can be simply predicted using the linear regres-
sion model, rather than computed with expensive database scans. Figure 2 shows theR2 distribution for the two databases used in the experiments. This estimate technique
achieves extraordinary savings in computational and I/O requirements, aswe will see
in Section 4.
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Figure 2.R2 Distribution in WCup and WPortal Databases.

4 Experimental Evaluation

In this section we evaluate the precision, performance and scalability of WAVE and
compare it to other incremental approaches. Real databases from actual applications
were used as inputs in the experiments. The first database, WCup, comes from click
stream data from the official site of the 1998 World Soccer Cup. WCup was extracted
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from a 62-day log, comprising 2,128,932 transactions over 4,768 unique items with an
average transaction length of 8.5 items and a standard deviation of 11.2.The second
database represents the access patterns of a Web Portal. The database, WPortal, com-
prises 432,601 transactions over 1,182 unique items, and each transactioncontains an
average length of 2.9 items. Our evaluation is based on three parameters given to WAVE:

Approximation tolerance�R2: the maximum approximation error acceptable.
Longevity: the number of transactions added to the database which triggers a complete

update process.
Base length: the number of transactions effectively mined before we start the estimat-

ing process.

Thus, for each minimum support used, we performed multiple executions of the
algorithm in different databases, where each execution employs a different combination
ofR2, longevity, andbase length. Further, we employed three metrics in our evaluation:

Precision: This metric quantifies how good the approximation is. It is the linearcor-
relation of two ordered sets of itemsets. The ranking criteria is the support, that is,
two ordered sets are totally correlated if they are of the same length, and the same
itemset appears in corresponding positions in both sets.

Work: This metric quantifies the amount of work performed by WAVE when compared
to ULI. We measure the elapsed time for each algorithm while mining a given
database in a dedicated single-processor machine. We then calculate the work as
the ratio between the elapsed time for our approach and the elapsed time for ULI.

Resource consumption:This metric quantifies the amount of memory used by each
algorithm. Observing this metric is interesting for the sake of practical evaluation
of the use of WAVE in large databases.

The experiments were run on anIBM - NetFinity 750MHz processor with 512MB
main memory. The source code for ULI [15], the state-of-the-art algorithm which was
used to perform our comparisons, was kindly provided to us by its authors. Timings
used to calculate the work metric are based on wall clock time.

4.1 Accuracy Experiments

Here we report the accuracy results for the databases described above. Firstly, we eval-
uate the precision achieved by WAVE. Next, we evaluate the gains in precision provided
by WAVE. We employed different databases, minimum supports,base lengths, longevi-
ties, andR2. Figure 3(a) depicts the precision achieved by WAVE in the WCup database.
From this figure we can observe that, as expected, the precision increases with theR2
used. Surprisingly, for this database the precision decreases with thebase length used.
Further, the precision decreases with both thelongevity and minimum support.

Slightly different results were observed for the same experiment using the WPortal
database. As expected the precision decreases with thelongevity. For base lengths as
small as 50K transactions the lowest precision was achieved by the largest minimum
support. We believe that this is because these smallbase lengths do not provide suf-
ficient information about the database. Forbase lengths as large as 100K transactions,
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the lowest precision was always achieved by the lowest minimum support.Interestingly,
the highest precision was initially provided by the highest minimumsupport, but as we
increase theR2 value we notice a crossover point after which the second largest support
value was the most precise.

We also evaluate the gains in precision achieved by WAVE. From Figure 4(a) we
can observe that, using the WCup database, WAVE provides larger gains in precision
for smaller values of minimum support. The opposite trend is observed when we eval-
uate the precision varying thelongevity, that is, in general larger gains are achieved
by largerlongevities. It is obvious that WAVE loses precision over the time, but this
result shows that WAVE can maintain a more accurate picture of the frequent itemsets
for more time. Finally, the precision increases with theR2 value, that is, increasing the
precision criteria results in improved prediction precision.

The gains in precision achieved by WAVE were also evaluated using the WPortal
database, and the results are depicted in Figure 4(b). In general we observe large gains
for smaller values of minimum support. We can also observe that, in all cases, the higher
the value of longevity, the larger is the gain in precision. One moretime WAVE shows
to be very robust in preserving the precision.
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Figure 3. Precision achieved by WAVE when varyingminimum support, R2, base length, and
longevity for a) WCup Database (top row), and b) WPortal Database (bottom row).

4.2 Performance Experiments

Now we verify the amount of work performed by WAVE in order to generate an ap-
proximate model of associations. From Figure 5(a) we can observe the results obtained
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Figure 4. Precision Gains provided by WAVE when varyingminimum support, R2, base length,
andlongevity for a) WCup Database (top row), and b) WPortal Database (bottom row).

using the WCup database. WAVE performs less work for smaller values of minimum
support. This is mainly because ULI spent much more time than WAVE in mining with
smaller values of minimum support. We can also observe that WAVE performs the same
amount of work when theR2 threshold reaches the value 0.7, no matter how much the
minimum support value is. The reason is that there are only few itemsets with an ap-
proximation as good as 0.7, and all these itemsets have a support higherthan 5%, which
was the highest minimum support used in this experiment.

We also verify the performance of WAVE using the WPortal database. In Figure 5(b)
we can observe that in general, for this database, WAVE performs less work for smaller
values of minimum support. This trend was observed when the database has asize of
50K transactions, but an interesting result arises for databases with largersizes as 100K
transactions. For smaller values ofR2, WAVE performs less work for larger values of
minimum support, but when we increase the value ofR2, WAVE performs less work for
smaller values of minimum support. The reason is that when the minimumsupport is
too small, a great number of itemsets present a poor estimate. When theR2 value is also
small, even these poor estimates (not so poor as theR2 value) are performed. However
the relative number of estimates and candidates generated is higher for higher values
of minimum support, and, as a consequence, more estimates were performed for higher
values of minimum supports. For this database, in all cases, the larger thelongevity,
the smaller is the work performed by WAVE. Finally, as we can observe in this figure,
WAVE performs less work for larger databases.
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Figure 5. Work Performed by WAVE when varyingminimum support, R2, base length, and
longevity for a) WCup Database (top row), and b) WPortal Database (bottom row).

4.3 Scalability Experiments

In this section we compare the amount of memory used by WAVE and ULI, when
we employ different databases, minimum supports,base lengths, longevities, andR2.
Note that the amount of memory used by ULI does not depend on theR2 employed.
From Figure 6(a), where we plot the relative amount of memory used by WAVE and
ULI to mine the WCup database, we can observe that in all cases WAVE uses less
memory than ULI. The amount of memory used by WAVE exponentilly decreases with
theR2 used. This result was expected since for smaller values ofR2 a larger number
of estimates are performed. When we decrease the minimum support value, therelative
use of memory also decreases. This is because WAVE is more scalable than ULI, with
respect to memory usage. The relative memory usage is smaller when we employ larger
longevities. Finally, the larger thebase length used, the less relative memory usage is
observed. As can be seen in Figure 6(b), similar results were observed whenwe used
the WPortal database.

5 Conclusions and Future Work

This paper introduced WAVE, an algorithm capable of generating high accurate ap-
proximate models of associations hidden in evolving databases. WAVE is able to effi-
ciently maintain the model of associations up-to-date within a tolerancethreshold. The
resulting accuracy is similar to what would be obtained by reapplying any conventional
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Figure 6. Relative Memory Usage when varyingminimum support, R2, base length, and
longevity for a) WCup Database (top row), and b) WPortal Database (bottom row).

association mining algorithm to the entire database. Extensive empiricalstudies show
that WAVE is very efficient, yielding accurate models within practical time and mem-
ory constraints. Preliminary applications of WAVE to mine real databases from actual
applications show promising results.

We plan to apply WAVE to more real-world problems; its ability to do selective up-
dates should allow it to perform very well on a broad range of tasks. Currently WAVE

incrementally maintains the information about the previously frequent itemsets and dis-
cards the other ones, but in some domains these infrequent itemsets may become useful� identifying these situations based on trend detection and taking advantageof them is
another area for further study.
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