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Abstract Much of the existing work in machine learning and data minag
relied on devising efficient techniques to build accuratelet® from the data.
Research on how the accuracy of a model changes as a funétilynamic up-
dates to the databases is very limited. In this work we shaw ektracting this
information: knowing which aspects of the model are chagigand how they
are changing as a function of data updates; can be very igéidor interactive
data mining purposes (where response time is often morertamichan model
quality as long as model quality is not too far off the besa(xmodel.

In this paper we consider the problem of generating appratérmodels within
the context of association mining, a key data mining task.pigpose a new
approach to incrementally generate approximate modelssaicéations in evolv-
ing databases. Our approach is able to detect how patteohseeswer time (an
interesting result in its own right), and uses this inforimatin generating ap-
proximate models with high accuracy at a fraction of the ¢okgenerating the
exact model). Extensive experimental evaluation on reglidesses demonstrates
the effectiveness and advantages of the proposed approach.

1 Introduction

One of the main characteristics of the digital information era is thétyl store huge
amounts of data. However, extracting knowledge, often referred to as datagnfrom
such data efficiently poses several important challenges. First, the datategbon is
typically very large, so the tasks are inherently I/O intensive. Secord¢caimputa-
tional demands are quite high. Third, many of these datasets are dyr&coc(merce
databases, Web-based applications), in the sense that they are constagtlypukited
(evolving datasets).

Researchers have evaluated data stratification mechanisms such as sampling to han
dle the first problem and memory efficient and parallel computing techniquestdle
the second problem. Simply re-executing the algorithms to handléhtite problem
results in excessive wastage of computational resources and often doesetdhm
stringent interactive response times required by the data miner. la tases, it may
not be possible to mine the entire database over and over again. Thisoligated
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the design of incremental algorithms, i.e., algorithms that are capahipdzting the
frequent itemsets, and thus the associations, by taking into accoutitgusiansactions
recorded since the last mining operation. In this paper we propose aoxapgte in-
cremental algorithm to mine association rules that advances the state-af-thehis
area.

Association mining is a key data mining task. It is used most oftemfarket bas-
ket data analysis, but more recently it has also been used in such far-reactmiagnslo
as bioinformatics [8], text mining [14] and scientific computing. [Ptevious research
efforts have produced many efficient sequential algorithms[6,1,9918211, several
parallel algorithms[22, 13, 20, 3], and a few incremental algorithmdébermining as-
sociations [16, 15, 2, 4].

Almost all incremental algorithms by and large employ specific data stexto
maintain the information previously mined so that it can be augmenteéldebypdates.
These techniques are designed to produce exact results, as would be proguaced
algorithm running from scratch. However, if response time is paramadhese algo-
rithms may still be too expensive. What is needed is a way to efficientlgnatithe
association parameters (support, confidence) without computing thensatung on
both computational and I/O time. Our approach relies on extracting luatdrends
associated with each itemset and using these trends to estimate these par&meters.
instance, if an itemset support is roughly constant across time, it mayenotcessary
to determine its exactly frequency. An approximate value may serve.druartire, if
an itemset shows a consistent increase or decrease trend, we may also estisugite it
port as a function of the number of updates after the last actual count arstbtie
associated with the trend.

The main contributions of this paper can be summarized as follows:

— We propose an approximate incremental algorithmy®/ for mining association
rules, based on discovering trends in itemset frequency actual databasemever ti

— We evaluate the above algorithm along the traditional axes of qualdy, tiow
close to the exact model) and performance (as compared against a state-tf-the-ar
incremental algorithm) over several real datasets.

We begin by formally presenting the problem of finding associatidesrin the
next section. In Section 3 we present our approach for mining approximadels of
associations. The effectiveness of our approach is experimentally analyzedtionS
4. Finally, in Section 5 we conclude our work and present directionautoiré work.

2 Problem Description and Related Work
2.1 Association Mining Problem

The association mining task can be stated as followsZLet {1,2,...,n} be a set
of n distinct attributes, also called items, and1e&be the input database. Typically
is arranged as a set of transactions, where each transgtti@ms a unique identifier
TID and contains a set of items such tlatC 1. A set of itemsX C 7 is called an
itemset. For an itemseX, we denote its corresponditidlist as the set of al' /D S that
containX as a subset. The support of an item&gtdenoteds(X), is the percentage
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of transactions irD in which X occurs as a subset. An itemset is frequent if its support
o(X) > minsup, whereminsup is a user-specified minimum support threshold.

An association rule is an expressigh - B, whereA and B are itemsets. The
support of the rule i (A U B) (i.e., the joint probability of a transaction containing
both A andB), and the confidenge= o (AU B)/o(A) (i.e., the conditional probability
that a transaction contairi$, given that it containst). A rule is frequent if the itemset
A U B is frequent. A rule is confident if > minconf, whereminconf is a user-
specified minimum confidence threshold.

Finding frequent itemsets is computationally and 1/O intensive.|LEt|= m be
the number of items. The search space for enumeration of all frequent item28ts
which is exponential inm. This high computational cost may be acceptable when the
database is static, but not in domains with evolving data, since thegtesnumeration
process will be frequently repeated. In this paper we only deal with howfitiesitly
mine frequent itemsets in evolving databases.

2.2 Related Work

There has been a lot of research in developing efficient algorithms for gniréquent

itemsets. A general survey of these algorithms can be found in [17} dtisese algo-
rithms enumerate all frequent itemsets. There also exist methods wHiclyemerate
frequent closed itemsets [19] and maximal frequent itemsets [6]. While tmesh-

ods generate a reduced number of itemsets, they still need to mine thedattibase
in order to generate the set of valid associations, and therefore thesedsietigonot
efficient in mining evolving databases.

Some recent effort has been devoted to the problem of incrementally miging f
guent itemsets [10, 15, 16, 2,4, 5]. A few of these algorithms cople thie problem
of determining when to update the current model, while others updatentidel af-
ter an arbitrary number of updates [16, 15, 2, 4]. To decide when to upde¢eand
Cheung [10] propose the DELI algorithm, which uses statistical sagphtethods to
determine when the current model is outdated. A similar approach propgg8edi
et al (DEMON [5]) monitors changes in the data stream. An efficient incrementad alg
rithm, called ULI, was proposed by Thommas [EbRl. ULI strives to reduce the 1/0O
requirements for updating the set of frequent itemsets by maintainingrévious fre-
quent itemsets and thregative border [12] along with their support counts. The whole
database is scanned just once, but the incremental database must be scanned as many
times as the size of the longest frequent itemset.

The proposed work, W/E, is different from the above approaches in several ways.
First, while these approaches need to perfértn) database scana (s the size of the
largest frequent itemset), AVE requires only one scan on the incremental database and
only a partial scan on the original database. Secomd/AMsupports selective updates,
that is, instead of determining when to update the whole set of frecpeemgéts, VMVE
identifies specifically which itemsets need to be updated and then updates asgy th
itemsets. Finally, WE employs simple estimation procedures that gives it the abil-
ity to improve the prediction accuracy while maintaining the updatéscesry small.
The combination of incremental techniques and on-the-fly data stream amabjlets
WAVE an efficient algorithm for mining frequent itemsets and associations iviege
and potentially streaming databases.
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3 The ZIGZAG and WAVE Algorithms

In previous work [16] we presented theGZAG algorithm, a method which efficiently
updates the set of frequent itemsets in an evolving database paying heedtiogbr
time and memory constraints. This accomplishment is possible by asiincremen-
tal technique based on maximal frequent itemsets, an information lossleszeabp.
This approach results in significant I/O and computational savingse gie number of
maximal itemsets is significantly smaller than the number of all frequemiséets.

Z1GZAG keeps information about the frequent itemsets. This information is com
posed by the support of all maximal frequent itemsets and the tidfist b-itemsets.
The maximal frequent itemsets are updated by a backtracking search approach, which
is guided by the results of the previous mining iteration. Furt@ecZAG uses the
updated maximal frequent itemsets incrementally construct the lattice of frequent
itemsets in the database. Additional features afZaG include the ability to track
stable itemsets [11].

WAVE is an extension to iZAG which maintains the same data structure, but adds
the ability to detect and react to changes in evolving databases. Contrasbithet in-
cremental approaches [15, 2, 4, 5] which generally monitor changes in the databas
detect the best moment to update the entire set of itemsets, we choeseal itsper-
form selective updates, that is, the support of every single itemsetipletly updated
just when we cannot perform a good estimate of it anymore. Figure 1 depirtal
example that motivates our selective approach. This figure shows thedatmmn of two
sets of popular itemsets. These popular itemsets are ranked by suppopdpularity
ranking) and their relative positions are compared. When the set of sojpernsets is
totally accurate, all the popular itemsets are in the correct position. Hawshen the
database is evolving it is hard to continously achieve a totally accueatsf popular
itemsets, since the support of those itemsets and their relativégmesith the ranking
are constantly changing. From Figure 1 we can see a comparison of a totahgte
set of popular itemsets and a ranked set of itemsets which is becoming owadated
database evolves. As we can see in this figure, although there were sig@fatetnges
in the support of some popular itemsets, there are also a large nufntgrdar item-
sets which remain accurate (i.e., in the correct position) and do not needipzlaged,
and also a large number of popular itemsets which had evolved in a systemagti
following some kind of trend. The starting point of our approachrfoning popular
itemsets is the set of potentially frequent itemsets according to ouragimWe dis-
tinguish three types of itemsets:

Invariant: The support of the itemset does not change significantly over timeifi.e.
varies within a predefined threshold) as we add new transactions. Thiseitésn
stable, and therefore, it need not be updated.

Predictable: It is possible to estimate the support of the itemset within a dolee.
This itemset presents some kind of trend, that is, its support increasiesreases
in a systematic way over time.

Unpredictable: It is not possible, given a set of approximation tools, to obtain@lgo
estimate of the itemset support.

! The maximal frequent itemsets solely determine all fregjitemsets
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Aiter 1K transactions After 5K transactions Aiter 10K transactions

Past Model

o PERTIARY ;
0 5000 10000 15000 20000 25000
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Figure 1. Evolution of Frequent Itemsets. The X-Axis represents allptAccurate Ranking,
while the Y-Axis represents an Oudating Ranking.

In order to reduce the cost of mining popular itemsets, it is desiraldiave no un-
predictable itemsets, and the search for tools that better estimate th@tafiemsets
is probably endless, and is out of scope of this paper. Our belief istthatyi not be
worth the effort to employ sophisticated tools, since their cost mayogp or surpass
the cost of executing an incremental mining algorithm suchia& ZG.

We classify itemsets regarding its predictability by calculating thesaietween
the number of invariant, predictable, and unpredictable itemsets. Tabdpittsl the
ratios for the databases showed in Figure 2 for the sake of the evalwdtim approx-
imate approach potential. From this table we can see that both real databases pres
significant number of predictable itemsets.

|Databasfnvarian{PredictablfUnpredictablé

WCup | 7.2% | 45.3% 47.5%
WPortal| 9.1% | 52.1% 38.8%

Table 1. Ratio between Invariant, Predictable and Unpredictaleleasets.

Note that there exists a major difference between invariant and predictabie i
sets. If there is a large number of invariant itemsets in the databasestthepopular
itemsets generated will remain accurate for a long time. On the other hahdyéf is
a large number of predictable itemsets, the model will lose accuracy ower How-
ever, we can generate pretty good estimations of these predictable itepugetgially
maintaining the accuracy of the support of the popular itemsets.

WAaVE is comprised of two phases. The first phase uses the tidlists assocititdd w
itemsets whose union results in the itemset we want to estimate tpersuphe second
phase analyzes the sampled results to determine whether it is necessary ttheount
actual support of the itemset. Each of these phases is described below.

Support Sampling — The starting point of the sampling is the tidlists associated with
1-itemsets, which are always up-to-date since they are simply augumentieel trovel
transactions. Formally, given two tidlists and!z associated with the itemsetsandg,

we define that the exact tidlist of U 3 is l,ug = I, N [3. We estimate the upper bound
on the merge of two tidlists as follows. We divide the tidligtsoin bins. The upper
bound of the intersection of correspondisigs is the lower of the twdin values bin
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value corresponding to the number of entries intthg. The upper bounds associated
with thebins are then used as input to our estimation technique, described next.

Support Estimation based on Linear Trend Detection — Trend detection is a valu-
able tool to predict the frequent itemsets behavior in the contextalienyg databases.
One of the most widespread trend detection techniques is linear regreshbioh finds
which itemsets follow a linear trend, i.e., which of them fit reasonablyrection to
a straight line. The model used by the linear regression is expressée &snction
y = a + bx, wherea is they-intercept and is the slope of the line that represents the
linear relationship betweenandy. In our scenario the variable represents the num-
ber of transactions while thgvariable represents the estimated support. héhod of
least squares determines the values afandb that minimize the sum of the squares of
the errors, and it is widely used for generating linear regression models

To verify the goodness of the model generated by the linear regressiomust
estimate the goodness-of-fit. In the absence of this estimate, we batkenslight-
est indication that the parameterandb in the model have any meaning at all. The
goodness-of-fif?? represents the proportion of variation in the dependent variable that
has been accounted for by the regression line. THisndicator ranges in value from
0to 1 and reveals how closely the estimagedalues correlate to its actugdvalues. A
R? value close to 1 indicates that the regression equation is very relialsiecincases,
WAVE provides an approximated technique to find the support of predictaipheséts,
an approach that does not have an analog in the itemset mining research. Whenever
an itemset is predictable, its support can be simply predicted usingribar lregres-
sion model, rather than computed with expensive database scans. Fiwoethe
R? distribution for the two databases used in the experiments. Thisastitechnique
achieves extraordinary savings in computational and 1/0O requirements asll see
in Section 4.

WCup WPortal

minsup=1%
minsup=2% - 0.85 MiNSUp=0.05% -

minsup=0.01%

0.65 minsup=5% 0.8 | minsup=0.1%

.4 .4
0O 01 02 03 04 05 06 07 08 09 1 0O 01 02 03 04 05 06 07 08 09 1
Normalized Ranking Normalized Ranking

Figure 2. R? Distribution in WCup and WPortal Databases.

4 Experimental Evaluation

In this section we evaluate the precision, performance and scalabilityavEVand
compare it to other incremental approaches. Real databases from actual applications
were used as inputs in the experiments. The first database, WCup, commeslifrio
stream data from the official site of the 1998 World Soccer Cup. WCup waaoted
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from a 62-day log, comprising 2,128,932 transactions over 4,7&fieritems with an
average transaction length of 8.5 items and a standard deviation ofThe Zecond
database represents the access patterns of a Web Portal. The database, WPortal, com-
prises 432,601 transactions over 1,182 unique items, and each transactiaims an
average length of 2.9 items. Our evaluation is based on three parametesr sgitAVE :

Approximation tolerance— R?: the maximum approximation error acceptable.

Longevity: the number of transactions added to the database which triggers a complete
update process.

Base length: the number of transactions effectively mined before we start the estimat-
ing process.

Thus, for each minimum support used, we performed multiple executibthe
algorithm in different databases, where each execution employs a differebiration
of R2, longevity, andbase length. Further, we employed three metrics in our evaluation:

Precision: This metric quantifies how good the approximation is. It is the lirear
relation of two ordered sets of itemsets. The ranking criteria is thpatithat is,
two ordered sets are totally correlated if they are of the same length, arsdithe
itemset appears in corresponding positions in both sets.

Work: This metric quantifies the amount of work performed by when compared
to ULI. We measure the elapsed time for each algorithm while mining angiv
database in a dedicated single-processor machine. We then calculate the work as
the ratio between the elapsed time for our approach and the elapsed timelfor UL

Resource consumption: This metric quantifies the amount of memory used by each
algorithm. Observing this metric is interesting for the sake of jcatevaluation
of the use of WVE in large databases.

The experiments were run on #BM - NetFinity 750MHz processor with 512MB
main memory. The source code for ULI [15], the state-of-the-art algorivhich was
used to perform our comparisons, was kindly provided to us by itsoasitiTimings
used to calculate the work metric are based on wall clock time.

4.1 Accuracy Experiments

Here we report the accuracy results for the databases described above. \Wwasthal-
uate the precision achieved byaVE. Next, we evaluate the gains in precision provided
by Wave. We employed different databases, minimum suppbase |engths, longevi-
ties, andR?. Figure 3(a) depicts the precision achieved byw#/in the WCup database.
From this figure we can observe that, as expected, the precision increasdisenit
used. Surprisingly, for this database the precision decreases witlasad&ength used.
Further, the precision decreases with bothltrgevity and minimum support.

Slightly different results were observed for the same experimengukimWPortal
database. As expected the precision decreases witlortigevity. For base lengths as
small as 50K transactions the lowest precision was achieved by the largestumi
support. We believe that this is because these sbaa# lengths do not provide suf-
ficient information about the database. base lengths as large as 100K transactions,
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the lowest precision was always achieved by the lowest minimum supperestingly,

the highest precision was initially provided by the highest mininsupport, but as we
increase thék?? value we notice a crossover point after which the second largest support
value was the most precise.

We also evaluate the gains in precision achieved k& From Figure 4(a) we
can observe that, using the WCup databasey&\provides larger gains in precision
for smaller values of minimum support. The opposite trend is oleskwhen we eval-
uate the precision varying tHengevity, that is, in general larger gains are achieved
by largerlongevities. It is obvious that VMvE loses precision over the time, but this
result shows that W/E can maintain a more accurate picture of the frequent itemsets
for more time. Finally, the precision increases with fevalue, that is, increasing the
precision criteria results in improved prediction precision.

The gains in precision achieved byAVE were also evaluated using the WPortal
database, and the results are depicted in Figure 4(b). In general we olasgevgdins
for smaller values of minimum support. We can also observe that, in all,dhsdsgher
the value of longevity, the larger is the gain in precision. One ntiare WAVE shows
to be very robust in preserving the precision.
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Figure 3. Precision achieved by WE when varyingminimum support, R?, base length, and
longevity for a) WCup Database (top row), and b) WPortal Databasedtvotow).

4.2 Performance Experiments

Now we verify the amount of work performed by A¥E in order to generate an ap-
proximate model of associations. From Figure 5(a) we can observe thitsrelstained
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Figure 4. Precision Gains provided by MV when varyingminimum support, R?, base length,
andlongevity for a) WCup Database (top row), and b) WPortal Databasedivotow).

using the WCup database.MME performs less work for smaller values of minimum
support. This is mainly because ULI spent much more time thang/¥h mining with
smaller values of minimum support. We can also observe thate\performs the same
amount of work when thé&? threshold reaches the value 0.7, no matter how much the
minimum support value is. The reason is that there are only few itemg#t an ap-
proximation as good as 0.7, and all these itemsets have a supportthigh&gbo, which
was the highest minimum support used in this experiment.

We also verify the performance of MVE using the WPortal database. In Figure 5(b)
we can observe that in general, for this database;g\performs less work for smaller
values of minimum support. This trend was observed when the databasesizasoh
50K transactions, but an interesting result arises for databases withdargeas 100K
transactions. For smaller values B, WAVE performs less work for larger values of
minimum support, but when we increase the valu&bfWave performs less work for
smaller values of minimum support. The reason is that when the miniswpport is
too small, a great number of itemsets present a poor estimate. Whi? ttadue is also
small, even these poor estimates (not so poor agthealue) are performed. However
the relative number of estimates and candidates generated is higher for hédines v
of minimum support, and, as a consequence, more estimates were perforrieghéy
values of minimum supports. For this database, in all cases, the largkemthevity,
the smaller is the work performed byA¥E. Finally, as we can observe in this figure,
WAVE performs less work for larger databases.
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Figure 5. Work Performed by \WvE when varyingminimum support, R?, base length, and
longevity for a) WCup Database (top row), and b) WPortal Databasedivotow).

4.3 Scalability Experiments

In this section we compare the amount of memory used byNand ULI, when
we employ different databases, minimum suppdsése lengths, longevities, and R2.
Note that the amount of memory used by ULI does not depend oRthemployed.
From Figure 6(a), where we plot the relative amount of memory used byEVénd
ULI to mine the WCup database, we can observe that in all cages Wses less
memory than ULI. The amount of memory used by exponentilly decreases with
the R? used. This result was expected since for smaller valug®>cd larger number
of estimates are performed. When we decrease the minimum support valtedative
use of memory also decreases. This is becausef\Vis more scalable than ULI, with
respect to memory usage. The relative memory usage is smaller when we eangéay |
longevities. Finally, the larger thdase length used, the less relative memory usage is
observed. As can be seen in Figure 6(b), similar results were observedwehesed
the WPortal database.

5 Conclusions and Future Work

This paper introduced WE, an algorithm capable of generating high accurate ap-
proximate models of associations hidden in evolving databasege \ig able to effi-
ciently maintain the model of associations up-to-date within a tolertimeshold. The
resulting accuracy is similar to what would be obtained by reapplying anyecgional
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Figure 6. Relative Memory Usage when varyinginimum support, R?, base length, and
longevity for a) WCup Database (top row), and b) WPortal Databasedivotow).

association mining algorithm to the entire database. Extensive empsticdies show
that WAVE is very efficient, yielding accurate models within practical time and mem-
ory constraints. Preliminary applications ofaME to mine real databases from actual
applications show promising results.

We plan to apply VWE to more real-world problems; its ability to do selective up-
dates should allow it to perform very well on a broad range of tasks.e@tiyr WAVE
incrementally maintains the information about the previously fretitemsets and dis-
cards the other ones, but in some domains these infrequent itemsets maehessiul
— identifying these situations based on trend detection and taking advarftéugen is
another area for further study.
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