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Abstract—Learning distributed representations in graphs has
a rising interest in the neural network community. Recent
works have proposed new methods for learning low dimensional
embeddings of nodes and edges in graphs and networks. Several
of these methods rely on the SkipGram algorithm to learn
distributed representations, and they usually process a large
number of multi-hop neighbors in order to produce the context
from which node representations are learned. This is a limiting
factor for these methods as graphs and networks keep growing
in size. In this paper, we propose a simple alternate method
which is as effective as previous methods, but being much
faster at learning node representations. Our proposed method
employs a restricted number of permutations over the immediate
neighborhood of a node as context to generate its representation,
thus avoiding long walks and large contexts while learning the
representations. We present a thorough evaluation showing that
our method outperforms state-of-the-art methods in six different
datasets related to the problems of link prediction and node
classification, being one to three orders of magnitude faster
than baselines when generating node embeddings for very large
graphs.

Index Terms—Network Analysis, Representation Learning

I. INTRODUCTION

Many important problems involving graphs require the use
of learning algorithms to make predictions about nodes and
edges [1], such as link prediction [2]–[4] and node/edge
classification [5]. These predictions and inferences on nodes
and edges from a graph are typically done using classifiers
with carefully engineered features [6], which takes time and
manual labor to be acquired and usually do not generalize well
to other problems or contexts.

Instead of manually extracted features, Word2Vec [7] learns
word embeddings from raw text by predicting a word from
its neighbors. This method is called SkipGram and a words’
context is determined by sliding a window in each sentence.
Word embeddings are used in many state-of-the-art solutions
for neural machine translation [8], question answering [9] and
natural language generation [10].

Learning representations for nodes and edges in graphs
can be more complex, though, in some senses. While text
can be seen as one dimensional, each node has a different
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number of connections. At the same time, while a word might
appear several times in the text, each node appears in only
one place in the graph. New algorithms have been proposed
to learn representations for nodes and edges in graphs and
three representatives are DeepWalk [11], Node2Vec [6] and
SDNE (Structural Deep Network Embedding) [12].

DeepWalk uses information obtained from random walks as
the equivalent of text sentences. It generates the random walks
starting on each node to create sentences where each word is
a node. The context is represented by these sentences and
the SkipGram method is used to generate node embeddings.
Node2Vec learns a mapping of nodes to a low dimensional
space of features that is based on the notion of a node’s
graph neighborhood. The context is defined by a second order
random walk to generate node neighborhoods. SDNE also
deals with the highly non-linear graph structure by exploiting
first-order and second-order node proximity to capture both
the local and the global graph structure [13].

In this work, we propose an efficient and effective algorithm
to generate graph embeddings in very large graphs, which
we call NBNE (Neighborhood Based Node Embeddings).
NBNE is based on the SkipGram idea to define context as the
nodes directly connected to each node of the graph. NBNE
separates neighbors of nodes in small groups using random
permutations, and then it maximizes the log likelihood of
predicting a node given another node in a group.

NBNE is efficient because it concentrates learning on the
most predictable parts of the graph, which is obtained by one-
hop neighborhood of each node, thus forcing SkipGram to
work with small contexts. In this case, a representation of a
node is obtained by predicting its neighbors and nodes with
similar neighborhoods (or contexts) are also associated with
similar representations.

The quality of these representations is compared with Deep-
Walk, Node2Vec and SDNE, considered here as strong base-
lines. We observe improvements in accuracy at much lower
computational costs. Experimental results for six graphs ob-
tained from different datasets show that NBNE is as effective
as the three baselines but at one to three orders of magnitude
faster. For instance, to learn node embeddings for graphs
as large as +300 000 nodes and +1000 000 edges, NBNE
took approximately 14 minutes, DeepWalk approximately 164
minutes and Node2Vec approximately 3 285 minutes.



The main contributions of this work are:
• We propose an efficient and effective algorithm to gen-

erate graph embeddings in very large graphs.
• We provide a thorough evaluation of our algorithm in real

and synthetic graphs, motivating our design choices.
• Experimental results in solving the node classification and

link prediction problems for six graphs show that our
algorithm is as effective as DeepWalk, Node2Vec and
SDNE at a much lower computational cost.

II. RELATED WORK

The definition of node similarity and finding general pur-
pose node and/or edge representations are non-trivial chal-
lenges [4]. Many definitions of similarity in graphs use the
notion of first and second order proximity. First-order proxim-
ity is the concept that connected nodes in a graph should have
similar properties, while the second-order proximity indicates
that nodes with similar neighborhoods should have common
characteristics.

Some earlier works on finding these embeddings use various
matrix representations of the graph, together with dimensional-
ity reduction techniques, to obtain node representations [14]. A
problem with these approaches is that they usually depend on
obtaining the matrix eigenvectors, which is infeasible for large
graphs (O(n2.376) with the Coppersmith-Winograd algorithm
[15]). Recent techniques attempt to solve this problem by
dynamically learning representations for nodes in a graph
using non-linear techniques based either on first and second
order proximities [12], [16] or random walks [6], [11]. Other
recent works focus on finding representations for specific
types of graphs. TriDNR [17] uses a graph structure coupled
with node content and labels to learn node representations in
citation networks. Their work can be directly applied to any
graph where nodes have labels and/or text contents. TEKE [18]
and KR-EAR [19] find representations for entities in knowl-
edge graphs, and metapath2vec [20] finds representations in
heterogeneous networks where edges can have different types.

The SDNE algorithm [12] is based on first and second order
proximities. It uses autoencoders to learn a compact repre-
sentation for nodes based on their adjacency matrix (second-
order proximity), while forcing representations of connected
nodes to be similar (first-order proximity) by using an hybrid
cost function. SDNE is not feasible for large graphs, since the
autoenconders are trained on the complete adjacency vectors.
Each vector has size O(|V |) and is created at least once,
creating a lower bound on time complexity O(|V |2). The
DeepWalk algorithm [11] generates k random walks starting
on each vertex in the graph to create sentences where each
“word” is a node. These sentences are then trained using the
SkipGram algorithm to generate node embeddings. DeepWalk
has a time complexity bounded by O(|V |). The Node2Vec
algorithm [6] also uses random walks with SkipGram and
can be seen as a generalization of DeepWalk. The difference
between the two algorithms is that Node2Vec’s random walks
are biased by two pre-assigned parameters p and q. During the
creation of the walks, these parameters are used to increase the

chance of the walk returning to a parent node or going farther
from it. Node2Vec requires several models to be generated and
a small sample of labeled nodes to be used so that the best
parameters p and q can be chosen. Node2Vec is not efficient
for densely connected graphs, since its time and memory
dependencies on the graph’s branching factor b are O(b2).

In this work, we considered DeepWalk [11] and Node2Vec
[6] as strong baselines, since they are highly effective. The
main differences between NBNE and the two baselines are:
(i) NBNE uses a different context sampling strategy which is
based in a node’s neighborhood instead of random walks, (ii)
NBNE is more effective than both Node2Vec and DeepWalk,
as supported by our experiments in six different graphs, and
(iii) NBNE is efficient for both dense and sparse graphs and
scalable for very large applications, having a much faster
training time than both Node2Vec and DeepWalk. We also
compared NBNE with SDNE [12], which is not scalable to
large graphs, having a time complexity O(|V |2). Although
having a large time complexity, SDNE can be highly paral-
lelized in modern GPUs, so we ran SDNE on both CPU and
GPU to compare its performance with NBNE.

III. NBNE: NEIGHBORHOOD BASED NODE EMBEDDINGS

The context of a word is not a straightforward concept, but
it is usually approximated by the words surrounding it. In
graphs, a node’s context is an even more complex concept.
As explained in Section II, DeepWalk and Node2Vec use
random walks as sentences and consequently as contexts in
which nodes appear. In constrast, in this work the contexts
are based solely on the neighborhoods of nodes, defined here
as the nodes directly connected to it. Consequently, nodes’
representations will be mainly defined by their neighborhoods
and nodes with similar neighborhoods (contexts) will be
associated with similar representations. This results in embed-
dings focused mainly on the second-order proximities. More
specifically, NBNE separates a nodes’ neighborhood in small
groups and then maximizes the log likelihood of predicting a
node given another in such a group. Group sampling is defined
in Section III-A and the method to learn the representations
from the groups is further explained in Section III-B. Section
III-C describes how to reduce overfitting while learning the
representations.

A. Groups Generation

NBNE groups nodes based on their neighborhoods. There
are two main challenges in forming groups from neighbor-
hoods, as follows:
• Nodes have different degrees, so groups containing all

the neighbors from a node are difficult to treat.
• There is no explicit order in the nodes in a neighborhood.

So there is no clear way to choose the order in which they
would appear in a group.

To deal with these challenges, NBNE forms small groups
with only k neighbors in each, using random permutations
of their neighborhoods. The number of permutations n is
specified and controls the trade-off between training time and



increasing the training dataset. Selecting a higher value for n
creates a more uniform distribution on possible neighborhood
groups, but also increases training time.

Algorithm 1 Groups Sampling
1: procedure GETGROUPS(graph, n, k)
2: groups ← [∅]
3: for j in 0 : n do
4: for node in graph.nodes() do
5: neighbors ← permutation(node.neighbors())
6: for i in 0 : len(neighbors)/k do
7: group ← [node]+neighbors[i·k : (i+1)·k]
8: groups .append(group)

B. Learning Representations

As described in Section III-A, we first create a set of groups
S, where each member of S is a node from the graph. We then
train the vector representations of nodes by maximizing the log
likelihood of predicting a node given another node in a group
and given a set of representations r, making each node in a
group predict all the others. The log likelihood maximized by
NBNE is given by:

max
r

1

|S|
∑
s∈S

(log (p (s|r))) (1)

where p (s|r) is the probability of each group, which is given
by:

log (p (s|r)) = 1

|s|
∑
i∈s

 ∑
j∈s,j 6=i

(log (p (vj |vi, r)))

 (2)

where vi is a vertex in the graph and vj are the other vertices
in the same group. The probabilities in this model are learned
using the feature vectors rvi , which are then used as the vertex
representations. The probability p (vj |vi, r) is given by:

p (vj |vi, r) =
exp

(
r′Tvj × rvi

)
∑

v∈V (exp (r′Tv × rvi))
(3)

where r′Tvj is the transposed output feature vector of vertex
j, used to make predictions. The representations r′v and rv
are learned simultaneously by optimizing Equation 1. This
is the same mathematical formulation of SkipGram [7], and
is performed using stochastic gradient ascent with negative
sampling [21].

By optimizing this log probability, the algorithm maximizes
the likelihood of predicting a neighbor given a node, creating
node embeddings so that nodes with similar neighborhoods
have similar representations. Since there is more than one
neighbor in each group, this model also makes connected
nodes having similar representations, because they will both
predict each others neighbors, resulting in representations also
with first order similarities. A trade-off between first and
second order proximities can be achieved by changing the
parameter k, which controls the number of nodes within each
generated group.

TABLE I
STATISTICS ON THE FIRST SIX GRAPH DATASETS

Nodes Edges Edges/Node # Classes
Facebook1 4 039 88 234 21.84 −
Astro1 18 772 198 110 10.55 −
PPI1,2 3 890 38 739 9.95 49
Wikipedia1,2 4 777 92 517 19.36 39
Blog1,2 10 312 333 983 32.38 39
DBLP1 317 080 1 049 866 3.31 −

1 used in Link Prediction
2 used in Node Classification

C. Avoiding Overfitting while Learning Representations

When using large values of n (i.e., number of permutations)
on graphs with few edges per node, overfitting may be seen
on the representations, as shown in details in Section V-A. We
can prevent overfitting by sequentially training on increasing
values of n and testing performance on a validation set every
few iterations, stopping when performance stops improving.

IV. EXPERIMENTS

NBNE was evaluated on two different tasks: link prediction
and node classification.1 We used six graphs, for which we
present results for the link prediction problem in Section IV-A
and for the node classification problem in Section IV-B. For
all experiments we used groups of size k = 5 and embeddings
of size d = 128, while the number of permutations was run for
n ∈ {1, 5, 10}. The best value of n was chosen according to
the precision on the validation set and we used early stopping,
as described in Section III-C.

DeepWalk, Node2Vec and SDNE were used as baselines,
having been trained and tested under the same conditions as
NBNE and using the parameters as proposed in [6] and [12].
More specifically, we trained them with the same training,
validation and test sets as NBNE and used a window size
of 10 (k), walk length (l) of 80 and 10 runs per node (r).
For Node2Vec, we tuned p and q on the validation set,
doing a grid search on values p, q ∈ {0.25; 0.5; 1; 2; 4}. The
SDNE algorithm has a time complexity of O(|V |2), but its
main computation, which is calculating the gradients of its
cost function and updating model parameters, can be highly
parallelized in modern GPUs. Thus, SDNE was implemented
using Tensorflow [22] and trained using a dedicated K40 GPU
with CUDA 8.0 and a dedicated 16 core linux server. We fixed
α = 0.2 and β = 10, since it was stated that these values
commonly give the best results. We used a SDNE architecture
with [10 300; 1 000; 128] nodes on each layer. We train these
embeddings using ν ∈ {0.1, 0.01, 0.001} and choose the best
value on the same validation sets used to tune n for NBNE.

Datasets We used six graphs in order to evaluate NBNE,
which are described next:

1) Facebook [23]: A subgraph of Facebook, where nodes
represent users and edges represent friendships.

2) Astro [24]: A network that covers collaborations be-
tween authors whose papers were submitted to the
Astrophysics category in Arxiv.

1The code for NBNE is available at https://github.com/tiagopms/nbne

https://github.com/tiagopms/nbne


3) Protein-Protein Interactions (PPI) [25]: We use the same
subgraph of the PPI network for Homo Sapiens as in
[6]. This subgraph contains nodes with labels from the
hallmark gene sets [26] and represent biological states.
Nodes represent proteins, and edges indicate biological
interactions between pairs of proteins.

4) Wikipedia [27]: A co-occurrence network of words
appearing in the first million bytes of the Wikipedia
dump. Labels represent Part-of-Speech tags.

5) Blog [28]: A friendship network, where nodes are blog-
gers and edges indicate friendships. Each node in this
dataset has one class which refers to the blogger’s group.

6) DBLP [29]: A co-authorship network where two authors
are connected if they published a paper together [30].

Table I presents details about these graphs. We can see that
Blog is the graph with the largest branching factor, 32.38, and
DBLP is the one with the smallest, 3.31. At the same time,
PPI is the smallest graph, with only 3 890 nodes, while DBLP,
the largest, as it contains 317 080 nodes and 1 049 866 edges.

A. Link Prediction
Link prediction attempts to estimate the likelihood of the

existence of a link between two nodes, based on observed links
[4]. Typical approaches to this task are based on similarity
metrics, such as Common Neighbors or Adamic-Adar [31].
[32] presents theoretical justifications for the performance of
these similarity metrics, while formalizing the link prediction
problem as one of estimating distances between nodes in latent
spaces. Instead of these heuristic-based similarity metrics, we
propose to train a logistic classifier based on the concatenation
of the embeddings from both nodes that possibly form an edge
and predict the existence of the edge.

To train the algorithms on this task, we first obtained a
sub-graph with 90% of the edges from each graph uniformly
selected at random, and obtained the node embeddings by
training the algorithms on this sub-graph. Then, we separated
a small part of these sub-graph edges as a validation set,
using the rest to train a logistic regression with the learned
embeddings as features.

After training is completed, the remaining 10% of the edges
are used as a test set to predict new links. 10-fold cross-
validation was used on the entire training process to assess the
statistical significance of the results, enabling us to compare
NBNE with the baselines.2 To evaluate the results on this task,
we used as metrics: AUC (area under the ROC curve) [33] and
training time.3 The logistic regressions were all trained and
tested using all available edges (respectively in the training or
test set), and an equal sized sample of negative samples, which,
during training, included part of the 10% removed edges.

Results: As shown in Table II, NBNE presented statistically
higher AUC scores than both DeepWalk and Node2Vec on all

2In all experiments we performed Welch’s t-tests with p = 0.01. The
symbol ∗ marks results which are statistically different from NBNE.

3Training times were all obtained using 16 core processors, running NBNE,
Node2Vec or DeepWalk on 12 threads, with all algorithms having been
implemented using gensim [34].

graphs except Facebook, in which there was no statistically
significant difference. NBNE was better than the baselines on
the Astro and PPI datasets, with more than 7% improvement,
also showing a 4.67% performance gain in Wikipedia and a
small, but statistically significant, gain on Blog. The difference
in performance on Facebook is not statistically significant.

In DBLP, NBNE again presents the best AUC score, al-
though the difference was small and its statistical significance
could not be verified due to the large training times of the
baselines. To train a single fold, Node2Vec took 3 285m59s
(more than 54 hours) and DeepWalk took 164m34s (approx-
imately 2 hours and 44 minutes), while NBNE took only
14m30s, which represents a 226/11 times improvement over
Node2Vec/DeepWalk, respectively.

In terms of training time, NBNE shows the biggest im-
provements on sparser networks of medium size, like Astro,
PPI and Wikipedia graphs. On these graphs, the best results
are obtained with n = 1, resulting in more than 50 times
faster training than DeepWalk and more than 1 500 times faster
than Node2Vec, achieving a 6 049 times faster training than
Node2Vec on Wikipedia. For the Blog and Facebook graphs
the best results are obtained with n = 5, resulting in larger
training times, but still more than one order of magnitude
faster than DeepWalk and more than 350 times faster than
Node2Vec. For the DBLP graph, the best results were achieved
with n = 10, still much faster than the baselines.

Table II also shows the results obtained with SDNE. As we
can see, both NBNE and SDNE algorithms are very compet-
itive in terms of AUC scores. NBNE outperformed SDNE in
Facebook and Astro graphs, while SDNE outperformed NBNE
in the PPI graph. It is clear that even when training SDNE
using a K40 GPU, NBNE still has more than an order of
magnitude faster training time on all graphs, being more than
two orders of magnitude faster on most of the graphs. When
comparing with SDNE trained on a CPU, NBNE has more
than three orders of magnitude faster training time. On Astro,
the graph with the largest number of nodes analyzed here,
NBNE had a 2 009 times faster training time compared with
SDNE on a GPU and 44 896 times faster compared to SDNE
on CPU.4

B. Node Classification

Given a partially labeled graph, node classification is the
task of inferring the class of the unknown nodes, using the
structure of the graph and/or the properties of the nodes. In
this section, we again compare NBNE with our baselines,
now analyzing node classification tasks on the Blog, PPI and
Wikipedia graphs.

For each algorithm, the node embeddings were trained using
the complete graph. After obtaining the node embeddings,
80% of the labeled nodes in the graph were used to train a
logistic classifier that predicted the class of each node, while
5% of the nodes were used for validation and the remaining

4We tried running SDNE with the DBLP dataset, but after five days it had
not reached half of the training, so we stopped it.



TABLE II
LINK PREDICTION RESULTS

Facebook Astro PPI

AUC Training AUC Training AUC Training
Time Time Time

NBNE 0.969 0m11s 0.833 0m07s 0.846 0m02s
DeepWalk 0.973 2m26s 0.755∗ 6m55s 0.774∗ 2m30s
Node2vec 0.976 69m33s 0.774∗ 182m16s 0.784∗ 66m37s

SDNE 0.951∗ 20m34s† 0.816∗ 234m24s† 0.875∗ 16m10s†
242m10s 5 237m59s 232m01s

Wikipedia Blog DBLP

AUC Training AUC Training AUC Training
Time Time Time

NBNE 0.685 0m02s 0.937 1m11s 0.933 14m30s
DeepWalk 0.653∗ 7m38s 0.910∗ 28m13s 0.924 164m34s
Node2Vec 0.655∗ 236m60s 0.920∗ 838m41s 0.932 3 285m59s

SDNE 0.678 22m23s† 0.946 81m33s† − −
337m47s 1 492m47s −

∗ Statistically different from NBNE. † Training time on GPU.

TABLE III
NODE CLASSIFICATION RESULTS

Blog PPI Wikipedia
Macro Training Macro Training Macro Training
F1 Time F1 Time F1 Time

NBNE 0.200 1m57s 0.098 0m16s 0.073 0m41s
DeepWalk 0.145∗ 31m31s 0.099 3m04s 0.068 13m04s
Node2vec 0.164∗ 959m12s 0.097 83m02s 0.069 408m00s

SDNE 0.1364∗ 96m48s† 0.076∗ 16m52s† 0.091∗ 19m60s†
1 476m33s 231m04s 338m40s

∗ Statistically different from NBNE. † Training time on GPU.

15% nodes were used as a test set. This entire process was
repeated for 10 different random seed initializations to access
the statistical relevance of the results.

Results: Results on the Blog, PPI and Wikipedia graphs are
shown in Table III and are presented in terms of Macro F1
scores and training times. NBNE achieved results that are
statistically similar to Node2Vec and DeepWalk, in terms
of Macro F1, on both PPI and Wikipedia, while showing
a statistically significant gain of 22.45% in the Blog graph,
indicating that NBNE’s embeddings did not only get a better
accuracy on Blog, but also that correct answers were better
distributed across the 39 possible classes.

Considering training times, NBNE is more than 10 times
faster than DeepWalk on these three datasets and is 300 to 600
times faster than Node2Vec, while not showing statistically
worse AUC score results in any graph analyzed here.

Table III also shows the results obtained with SDNE. As
can be seen, NBNE achieved superior results on two graphs,
with a gain of 29.27% on PPI and 46.94% on Blog, but losing
on Wikipedia by a margin of −20.20%. Still, NBNE is more
than an order of magnitude faster than SDNE on GPU in this
graph, being more than two orders of magnitude faster when
SDNE is trained on CPU.

V. GRAPH ANALYSIS AND MODEL PERFORMANCE

In this section we investigate the extent to which model
performance is impacted by graph properties, such as assorta-
tivity, size and sparseness.
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Fig. 1. (Color online) NBNE AUC scores vs embedding sizes on Facebook
graph with 50% edges removed.

A. Number of Permutations (n) and Embedding Sizes (d)

The quality of NBNE embeddings depends on both the size
of the embeddings (d) and the number of permutations (n).
For highly connected graphs, larger numbers of permutations
should be chosen (n ∈ [10, 1000]) to better represent distri-
butions, while for sparser graphs, smaller values can be used
(n ∈ [1, 10]). Figure 1 shows AUC scores for several values
of n and d on the Facebook link prediction task. For larger
numbers of permutations (n > 100) results improve with
embedding size, while for small values (n = 1) they decrease.
The plot also shows that n = 10 gives fairly robust values
for all tested embedding sizes. A further analysis can be seen
in Table IV, which indicates that graphs with more edges per
node tend to get better results with larger values of n, while
graphs with a smaller branching factor have better results with
only one permutation (n = 1). Other factors also enter into
account when choosing n, like graph size. For example, the
best result on the DBLP graph was obtained with n = 10,
despite its small branching size of 3.31.

Figure 2 shows training time is indeed linear on both embed-
ding size and number of permutations. The initial “flatness”
implies the algorithm has a large constant in its computational
time, and linearity is implied by the line inclination. This
figure also shows that Node2Vec is considerably slower than
DeepWalk, and only has a similar training time to running
NBNE with at least n = 1000. NBNE with n < 10 was by
far the fastest algorithm.

TABLE IV
LINK PREDICTION RESULTS FOR VARYING n WITH NBNE

PPI (9.95†) Facebook (21.84†) Blog (32.38†)
n Precision AUC Precision AUC Precision AUC
10 0.711 0.779 0.906‡ 0.964‡ 0.863‡ 0.935‡

5 0.730 0.807 0.907‡ 0.969‡ 0.868‡ 0.937‡
1 0.775 0.846 0.841 0.915 0.837 0.915
† Edges per node ‡ No statistical difference

B. Assortativity Analysis

Assortativity, also referred to as homophily in social net-
work analysis, is a preference of nodes to attach themselves
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Fig. 2. (Color online) Facebook dataset with 30% edges removed. Left: Training times vs embedding size. Right: Training times vs number of permutations.

to others which are similar in some sense. Next, we investigate
assortativity properties of the NBNE representations and of the
graphs themselves.

Graph Homophily: There are several ways to assess ho-
mophily in a graph. Table V presents both degree and la-
bel assortativity properties of the six graphs analyzed here,
calculated using the assortativity coefficient, as defined in
[35]. As we can see, these graphs cover a broad spectrum
of assortativity properties. PPI, Wikipedia and Blog graphs
present negative degree assortativity, which means nodes in
these graphs are more likely to connect with nodes of different
connectivity degrees. At the same time, Facebook, Astro and
DBLP present positive degree assortativity, which indicates
that their nodes tend to connect to others with similar degrees.

TABLE V
DATASETS HOMOPHILY INFORMATION

Assortativity
Degree1 Label1

Facebook 0.0635 −
Astro 0.2051 −
PPI -0.0930 0.0533
Wikipedia -0.2372 -0.0252
Blog -0.2541 0.0515
DBLP 0.2665 −

We also analyze graphs with both positive and negative
label assortativity in the label classification task. While PPI
and Blog datasets present positive label assortativity, with
connected nodes more frequently sharing classes, Wikipedia
has a negative assortativity, with its connected nodes being
more likely to have different classes.

Number of Permutations (n): We analyze how the number
of permutations (n) influences both homophily and overfit-
ting in our learned representations. We qualitatively measure
homophily by comparing either cosine or euclidean distances
between adjacent nodes to the distances of non-adjacent nodes.

The cosine distances for the PPI graph, shown by the box
plots in Figure 3 (top-left), clearly show for larger values of
n how the embeddings overfit to the specific graph structure,
with the learned similarity on edges not generalizing to the

links which were previously removed. In this graph, for larger
numbers of permutations the removed edges have a distribution
more similar to the non-edges than to the edges used during
training, which is a tendency that can be observed in the other
graphs, although in a smaller scale.

The box plots in Figure 3 (top-right) show the cosine
distance for Facebook nodes. We can see that for n = 5
there is a larger separation between removed edges and non
edges, which justifies the algorithm’s choice of this value. For
larger values of n we can again see an overlap between the
distributions, caused by the embeddings overfitting. On the
other hand, the cosine distances for the DBLP in Figure 3
(bottom-left) show the largest separation for n = 10. Finally,
the box plots in Figure 3 (bottom-right) show cosine distances
for the Blog graph. We can see that for n = 1 and n = 5 there
is actually a larger cosine distance between nodes in removed
edges than in non-edges, with this situation only inverting for
n ≥ 10. This happens due to this graph’s negative degree
homophily. This is also observed for similar graphs in the
PPI and Wikipedia graphs, though with a smaller intensity in
the PPI graph, which has a smaller absolute value of degree
assortativity and where only embeddings for n = 1 present
this property.

The box plots in Figure 3 further support our intuition that
graphs with larger branching factors should have larger values
of n. At the same time, this choice also depends on the graph
size and structure, as shown by the algorithms choice of n =
10 for the DBLP graph, which contains the largest degree
assortativity. The best choice of n depends on the task in hand,
but we believe that, at least for link prediction, this choice
is both directly proportional to a graph’s branching size and
degree assortativity. Nonetheless, the difficulty in analyzing
these graphs supports our choice of choosing n on a per graph
basis.

To better understand the results of the experiment on the PPI
graph with n = 1, shown in Figure 3 (top-left), we present
in Figure 4 a detail of the euclidean distances between nodes
that share or not an edge for this number of permutations. We
can see that the distribution of removed edges is a lot closer
to the edges used for training than to the non edges.
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Fig. 3. (Color online) Cosine distances. Top-Left: PPI graph. Top-Right: Facebook graph. Bottom-Left: DBLP graph. Bottom-Right: Blog graph. All graphs
had 10% of edges removed.
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Fig. 4. (Color online) Euclidean distances on PPI graph for n = 1.

Window size (w) for Node2Vec and DeepWalk: The window
size (w) controls the distance around a node which Node2Vec
and DeepWalk use to learn their embeddings. With larger
window sizes, then, the algorithm will try to predict more
distant vertex while learning representations, we suspect this
makes these baselines less stable and efficient. Figure 5 shows
the effect of w on the AUC scores obtained by Node2Vec on
four of the analyzed graphs (DeepWalk’s results follow the
same trend, so we omitted it). This figure shows us that for
these 4 graphs (Astro, PPI, Blog and Facebook), reducing the
window size to w = 1 actually increases their AUC scores, as
we expected. The same trend does not occur when we change
the group size (k) of NBNE. For some graphs (PPI, Facebook)
NBNE improves with smaller groups (k = 1), while for others
it is better for larger groups (Astro, Blog).

VI. CONCLUSIONS

The proposed node embedding algorithm, NBNE, shows
results similar or better than the state-of-the-art algorithms
Node2Vec, DeepWalk and SDNE on several different graphs.
It shows promising results in two application scenarios: link
prediction and node classification, while being fast and scal-
able for large graphs. The proposed NBNE algorithm focuses
learning on the node immediate neighbors, creating represen-
tations from small contexts, which make them more stable
and faster to learn. Empirical results show that NBNE can
be trained in a fraction of the time taken by DeepWalk (10
to 190 times faster), Node2Vec (200 to 6 000 times faster) or
SDNE (29 to 2 000 times faster), giving fairly robust results.
Since embeddings are learned using only the node immediate
neighbors, we expect it to also be easier to implement more
stable asynchronous distributed algorithms to learn them, and
we leave this as future work.
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