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Abstract test instance$or the classification problem consist of a set
of records for which only the feature variables are known

Decision tree classifiers perform a greedy search for while the class value is unknown. The training model is
rules by heuristically selecting the most promising feasur ~ used to predict the class variable for such test instances.
Such greedy (local) search may discard important rules. As-  Classification is a well-studied problem (see [12, 20] for
sociative classifiers, on the other hand, perform a global excellent overviews) and several models have been pro-
search for rules satisfying some quality constraints (i.e. posed over the years, which include neural networks [17],
minimum support). This global search, however, may gen-statistical models like linear/quadratic discriminants][
erate a large number of rules. Further, many of these rules decision trees [2, 19], and genetic algorithms [11]. Among
may be useless during classification, and worst, important these models, decision trees are particularly suited far da
rules may never be mined. Lazy (non-eager) associativemining. Decision trees can be constructed relatively fast
classification overcomes this problem by focusing on the compared to other methods. Another advantage is that de-
features of the given test instance, increasing the chancecision tree models are simple and easy to understand [19].
of generating more rules that are useful for classifying the  as an alternative to decision trees, associative classifier
test instance. In this paper we assess the performance of,ave been proposed [8,16,18]. These methods first mine as-
lazy associative classification. First we demonstrate that ggciation rules from the training data, and then build a-clas

an associative classifier performs no worse than the corre- sifier using these rules. This classifier produces goodteesul
sponding decision tree classifier. Also we demonstrate thatg,q yields improved accuracy over decision trees [18].

lazy cIa_ssifiers outp(_a(form the (_:orresponding eager ones.  npacision trees perform a greedy search for rules by
Ofur clalms arelempllrlcally conr?rme?] by an extenswelset heuristically selecting the most promising features. They
of experimental results. We show that our proposed lazy gyt yyith an empty concept description, and gradually add
a_lssomanve cI_a55|f|er i responsible for an error ratg redu restrictions to it until there is not enough evidence to con-
tion of approximately 10% whe_n compared against ts €a9€T tinye, or perfect discrimination is achieved. Such greedy
counterpart, and for a reduction of 20% when compared (local) search may prune important rules. Associative-clas

against a decision tree classifier. A simple caching mech-gitiars on the other hand, perform a global search for rules
anism makes lazy associative classification fast, and thussatisfying some quality constraints. This global search,
improvements in the execution time are also observed. however, may generate a large number of rules, and many
of the generated rules may be useless during classification
. (i.e., they are not used to classify any test instance).
1 Introduction In this paper we propose a novel lazy associative classi-
fier, in which the computation is performed on a demand-
The classification problem is defined as follows. We driven basis. We place our associative classifier within an
have an input data set called ttraining datawhich con-  jnformation gain framework that allows us to compare it
sists of a set of multi-attribute records along with a specia to decision tree classifiers. Our method can overcome the
variable called thelass This class variable draws its value  |arge rule-set problem of traditional (eager) associatias-
from a discrete set of classes. The training data is used tosifiers, by focusing on the features that actually occuriwith
construct a model which relates the feature variables for at the test instance while generating the rules. We show that
tribute values) in the training data to the class variablee T the proposed lazy classifier outperforms its eager counter-

*This research was sponsored by UOL (www.uol.com.br) thrdtgh ~ Part, SinC? _in the Ia;y approach only the_ “useful” portion
UOL Bolsa Pesquisa program, process number 20060519184000a. of the training data is mined for generating the rules ap-




plicable to the test instance. Due to this local focus, the| Play | Outlook | Temperature] Humidity [ Windy |

lazy classifier can better classify a test instance, for whic yes rainy cool normal false
a global, eager rule-set may not work that well. Simple no rainy cool normal true
caching mechanisms are used to avoid work replication dur{yes | overcast hot high false
ing lazy associative classification. First we demonstiaeé t no sunny mild high false
associative classifiers perform no worse than decision treeyeg rainy cool normal | false
classifiers. Then we show that lazy classifiers outperform yes sunny cool normal false
the corresponding eager classifiers. Our claims are empiri- yes rainy cool normal false
cally confirmed by an extensive set of experimental results. yes sunny hot normal false
Timings are also showed in order to evaluate different clas- yes | overcast mild high true
sifiers with respect to computational complexity. no sunny mild high true
[ ?(yes)[ sunny | cool | high [ false |

2 Related Work
Figure 1. Training and Test Instances.

Most existing work on associative classification relies

on developing new algorithms to improve the overall clas- L . .
A lazy decision tree was proposed in [10] and it was shown

sification accuracy. CBA [18] generates a single rule-set hat the | hi ior than th i
and ranks the rules according to their confidence/supportt atthe azyapproacn s sgperlort gnt € corresponding ea
ger one (i.e., C4.5). Despite all the improvements obtained

values. Then it selects the best rule to be applied to

each test instance. Enhancements to CBA were proposetljrJy using lazy algorithms, we are not aware of any proposals
in [8,16,21,23]. HARMONY [21] uses an instance-centric of lazy associative classification algorithms, as well as an

rule-generation approach in the sense that it assures-the in@ssessment that demonstrates why they perform better than

clusion of at least one rule for each training instance in the both decision trees and eager associative classifiers.
final rule-set. CMAR [16] uses multiple rules (instead of a

single best one) to perform the classification. CPAR [23] 3 Eager Associative Classifiers

adopts a greedy technique to generate a smaller rule-sets.

CAEP [8] explores the concept emerging patternsand, In this section we describe eager associative classifiers,
as aresult, it usually predicts accurately all classes) @ve  5nq demonstrate why they perform better than decision
their populations are unbalanced. It has been empiricallyi,ees. We start by discussing how decision rules may be
shown that these associative classifiers usually perfotm be generated from decision trees. Then we describe associa-
ter than decision trees. However, there is a lack of studiesije classifiers that are based on information gain, so that

showing the theoretical implications of associative dtass e may compare them regarding the rules that are gener-
fiers. Therefore, there is little intuition regarding theusd ated by each approach.

reasons behind the better performance of associative-class
fiers when compared to decision trees.

Rule induction classifiers, such as RISE [6], RIPPER [3],
and SLIPPER [4], use greedy heuristics which are driven ) L
by global metrics. RISE performs a complete overfiting by Given any sgbset of tral_nlng instances let s; denote
considering each instance as a rule, and then it generalizegIe number of instances V‘{'t,h CI"?"S’S and let|S| = Eifi
the rules. RIPPER and SLIPPER extend the “overfit and °€ the total number. _Of training |.nstances. Then= El
prune” paradigm, that is, they start with a large rule-set an denotes the probability of clags in 5. The entropy ofS
prune it using several heuristics. Further, the SLIPPER al-iS then given ag#(5) = 5, pilogp;. For any partition
gorithm also associates a probability with each rule, weigh ©f S into m subsetsS;, with S = U/, S;, the resulting
ing the contribution of the rule during classification. split entropy is given a®({S;}) = ¥, [ B(S,). The

Most work on lazy classification [1] was based on near- information gain for the split is then given @S, {S;}) =
est neighbor algorithms [5]. The problemshall disjuncts ~ E(S) — E({S;}).
was first noted in [13], where it was showed that existing A decision tree is built using a greedy, recursive splitting
classifiers create models that are good for large disjumnits b strategy, where the best split is chosen at each interna nod
are far from ideal for small disjuncts (which correctly clas according to the information gain criterion. The splittiaig
sifies only few training instances). Itis hard to assessthe a a node stops when all instances are from a single class or if
curacy of small disjuncts because they cover few instancesthe size of the node falls below a minimum support thresh-
yet removing all of them is unjustified since many of them old, calledminsup. Figure 1 shows an example of training
may be significant and the overall accuracy would degrade.data, and Figure 2 shows the corresponding decision tree.

3.1 Decision Trees and Decision Rules




let D be the set of alh training instances
let 7 be the set of alin test instances
. letC® be the set of all rule$X — ¢} mined fromD

1

2. sortC® according to information gain
3. foreach; € 7 do
4
5

overcast

pick the first rule{ X — ¢} € C°|X C ¢,

predict class

no yes no yes yes

Figure 3. Eager Associative Classifier.

Figure 2. Decision Tree Classifier. Figure 3 shows the basic steps of the eager associative
classifier. In the initial step, the algorithm mines all

The | ¢ the table in Fi 1sh , frequent CARs, and sort them in descending order of
e last row of the table in Figure 1 shows one testlnst"’mceinformation gain. Then, for each test instarigethe first

which is recognized by the decision tree in Figure 2. The CAR matchingt; is used to predict the class. Figure 4

de|C|S|on_ tr:ee can ?e con|S|dtfareId ars] a set of d|§10|_nt_ deCISIorEhows; an associative classifier built from our example set of
rules, with one rule per leaf. In that way, a decision tre€ . ining instances in Figure 1, using the algorithm showed

can be simulated by a set of decision rules. In this case, thqn Figure 3. Three CARs match the test instance of our
information gain for each decision rule is calculated in the example (Iaét row of Table 1):

same way as it is calculated for each path of the decision; {windy=false and temperature=coeplay=yes
tree. Thus, a decision rule has the same value of informa-, {outlook=sunny and humidity=highplay=nc}

tion gain of its corresponding path in the decision tree 3. {outlook=sunny and temperature=cogblay=yes

3.2 Entropy-based Associative Classifier Rule {Windy:fajse and tempera’[ure:cg@play:yeg.
would be selected, since it is the best ranked CAR. By ap-
We denote aslass association rules (CARH)8] those plying this CAR, the test instance will be correctly classi-
association rules of the fordv — ¢, where the antecedent fied. Intuitively, associative classifiers perform betteart
(X) is composed of feature variables and the consequnt ( decision trees because associative classifiers allowalever
is just a class. CARs may be generated by a slightly mod- CARs to cover the same partition of the training data. In
ified association rule mining algorithm. Each itemset must our example, the test case is recognized by only one rule
contain a class and the rule generation also follows a tem-in the decision tree, while the same test case is recognized
plate in which the consequent is just a class. CARs are esby three CARs in the associative classifier. Selecting the
sentially decision rules, and as in the case of decisiostree proper CAR to be applied is an issue in associative classifi-
CARs are ranked in decreasing order of information gain. cation.
Finally, during the testing phase, the associative classifi ~ Next we present a theoretical discussion about the per-
simply checks whether each CAR matches the test instanceformance of decision trees and eager associative classifier
the class associated with the first match is chosen. Note that ) o
seen in the light of CARs, a decision tree is simply a greedy Theorem 1 The rules derived from a decision tree are a
search for CARSs, using a level-wise search algorithm, thatSubset of the CARs mined using an eager associative clas-
only expands the current best rule with other features. OnSifier based on information gain.
the other hand, an eager associative classifier naithg®s-
sible CARs with a givenminsup. It is also interesting to
note that sorting the final rule-set on information gain, an
using the best CAR for classification, is also a greedy strat-
egy. While the greedy approach has its limitations, eager
associative classifiers are not limited by grefix problem
of decision rules, that is, once the best feature is chosen aE
each node, all nodes under that subtree must contain it.

Proof 1 LetmaxE be the maximum entropy of all decision
g tree rules. Select a sé* from all CARs such that their
entropy is at mostnax E. It is clear that the decision tree
rules are a subset a@f¢. O

Theorem 1 states that, for a giveninsup, CARS con-
ain (at least) all information of the corresponding dearisi
tree. Since each decision tree rule may be seem as a CAR,
1A single decision rule may correspond to multiple paths in #ision a.n(_j since all pOSSIbl(.E CARs were enumerated, then the de-
tree, depending on the order in which the items in the rule ansidered. cision tree can be built by choosing the proper CARs.
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yes no yes no yes no yes no yes no no yes yes

Figure 4. Associative Classifier

Theorem 2 CARs perform no worse than decision tree lazy approactprojectsthe training datapD, only on those

rules, according to the information gain principle. features in the test instancd, From this projected train-
ing data,D 4, the CARs are induced and ranked, and the

Proof 2 Given an instance to be classified, and, without pest CAR is used. From the set of all training instances,

loss of generality, a decision tree with just pure leaves, th p, only the instances sharing at least one feature with the

decision tree predicts classfor that instance. We analyze test instanced are used to fornD 4. Then, a rule-se€’,

two scenarios: first, just one CAR matches the instance, ands generated fror 4. SinceD 4 contains only features in

second, more than one CAR matches. When just one CARy 3|l CARs generated fror® 4 must matchA. The lazy
matches, itis the same as the decision tree rule, since the sezssociative classifier is presented in Figure 5.

of CARs subsumes the set of decision rules. In this case, the

associative classifier and the decision tree make the same |et D pe the set of alh training instances
prediction. When more than one CAR matches an instance| |et 7 be the set of alin test instances
the prediction may be either the same class (9ags the . foreacht; € 7 do

matching decision rule or another class. If the associative
classifier predictg then the two approaches are equivalent.
In case a class other thanis predicted, by definition, the
best matching CAR provides a better information gain than
the decision rule, and thus, according to the information
gain principle, the CAR will make a better predictidi.

letD,, be the projection oD on features only frons;

1

2

3. letC}, be the set of all rule§X’ — c} mined fromD;,
4 sortCﬁi according to information gain

5

pick the first rule{ X — ¢} € C}., and predict class

Theorem 2 states that the additional CARs of the asso-
ciative classifier that are not in the decision tree, caneet d Figure 5. Lazy Associative Classifier
grade the classification accuracy. This is because an addi-
tional CAR is only used if it is better than all decision rules ~ Now we demonstrate that the lazy associative classifier
(according to the information gain principle). produces better results than its eager counterpart. Given a
However, eager associative classifiers generate a largdest instancet, and a set of CARS, we denote by 4 those
number of CARs, most of which are useless during classi- CARs{X — ¢} in C whereX’ C A.
fication. For instance, from the set of 13 CARs showed in ) . ,
Figure 4, only 3 match the test instance (the remaining 10Theorem 3 Let A be the set of features in a given test in-

CARs are useless). Next, we present a lazy classifier andPtance. LeC? be the set of CARs obtained from the eager

- e .
compare it to the eager version described in this section. assomatlve' classifier induced by, a'nd.CA be th? S?t of
CARs obtained from the lazy associative classifier induced

. - by A. For a givenminsup, we haveC C Cl,.
4 Lazy Associative Classifier Y J b A=A

Proof 3 By definition, bothC¢ and C; are composed of
Unlike the eager associative classifier that extracts a setCARs{X — ¢} in whichX C A, that is, all CARs contain
of ranked CARs from the training data, the lazy associative only features ind. Also the training instances matchiog
classifier induces CARs specific to each test instance. The(i.e., the projected training data) are a subset of the set of



| Play [ Outlook [ Temperaturel Humidity [ Windy |

no — — — true
yes | overcast hot — —
yes — hot — —
yes | overcast — — true
no — — — true
| ?(yes)| overcast] hot | low | true

Figure 6. Projected Training Data.

all training instances (i.e.D4 C D). Thus, for a given
minsup, if arule {X¥ — c} is frequent inD, then it must
also be frequent ifb 4. SinceCly is generated fror® 4 and

C4 is generated fronD (andD 4 C D), C4 C CY. O

The next example illustrates Theorem 3. Figure 6 shows
the training data given in Figure 1 (i.eD), projected by
the features in the test instance (i.4), showed in the last
row in Figure 6. The projected training data (i.®4) is
composed of the 5 instances showed in the figure. Suppose
mansup is set to 40%. In this case, the set of CARS,
found by the eager classifier is composed of the two CARs:
1. {windy=false and humidity=normatplay=yeg
2. {windy=false and temperature=ceeplay=yeg

None of the two CARs matches the test instance, and
thus,C4=0. On the other hand, the projected training data
has less instance®D(; C D), and therefore, CARs not
frequent inD may be frequent ifD 4. This is because
a frequent CAR must occur at least 4 timesZin(since

all eager CARs (according to the information gain princi-
ple). Intuitively, lazy classifiers perform better than eag
classifiers because of two characteristics:

e Missing CARs: Eager classifiers search for CARs in

a large search space, which is induced by all features
of the training data. While this strategy generates a
large rule-set, CARs that are important to some spe-
cific test instances may be missed (this is particularly
true for skewed/unbalanced distributions). Lazy classi-
fiers, on the other hand, are context-sensitive and focus
the search for CARs in a much smaller search space,
which is induced by the features of the test instance.

Highly Disjunctive Spaces: Eager classifiers generate
CARs before the test instance is even known. In this
case, the difficulty for the classifier is in anticipating
all the different directions in which it should attempt to
generalize its training examples (i.e., what CARs must
be generated). For this reason, eager classifiers often
combine small disjuncts in order to generate more gen-
eral predictions (more general CARs should be appli-
cable to more test instances). This can reduce classifi-
cation performance in highly disjunctive spaces, where
single disjuncts may be important to classify specific
instances. Lazy classifiers, on the other hand, gen-
eralize their training examples exactly as needed to
cover the test instance. Thus, lazy classifiers are often
most appropriate when the search space is complex,
and there are myriad ways to generalize a case.

The aforementioned discussion shows an intuitive con-
cept, that is, the more CARs are generated, the better is the
classifier. However, the same concept also leads to over-
fitting, reducing the generalization and affecting the clas
sification accuracy. In fact, overfiting and high sensiivit

These lazy CARs not only predict the correct class, but to irrelevant features are shortcomings of lazy classifiers
also are simpler than the eager CARs. Next we discuss howA natural solution is to identify and discard the irrelevant
the lazy CARs perform when compared to the eager CARs.features. Thus, feature selection methods have been pro-
posed [7]. As the experimental results show in the next
section, we have no evidence that our lazy classifiers were
seriously affected by overfitting. We explain these results
because just the best and more general CARs are used.

Another disadvantage is that lazy classifiers typically re-
quire more work to classify all testinstances. However;sim
Jle caching mechanisms are very effective to decrease this
workload. The basic idea is that different test instanceg ma
induce different rule-sets, but different rule-sets magreh
common CARs. In this case, memorization or caching of
CARs is very effective in reducing work replication.

Our cache is a pool of entries, and it stores CARs of

Theorem 4 states that the CARs added by the lazy clasthe form{X — c}. Each entry has the forrakey,data-,
sifier do not degrade the classification accuracy. This is be-where key={X,c} and data={support,confidence,info
cause an additional lazy CAR is only used if it is better than gain}. A given CAR has only one entry in the cache, and

|D|=10), but only 2 times irD 4 (since|D4|=5). The lazy
classifier found two CARS i® 4:
1. {outlook=overcastplay=yeg
2. {temperature=het-play=yeg

Theorem 4 Lazy CARs perform no worse than eager
CARs, according to the information gain prnciple.

Proof 4 Theorem 3 showed that, for a giverinsup, C§ C

CY4. LetR® be the best rule ig¢ (according to the informa-
tion gain principle), and leR' be the best rule ig’;. Two
scenarios have to be considered when determining a clas
for the test instancel. In the first scenarioR! is identical

to R¢ ; in this case the same class is predicted by both ea-
ger and lazy classifiers. In the second scenaRbjs better
thanRe, and thusR! must provide a better predictiof



our implementation stores all cached CARs in main mem- EAC shows to be slightly better than CBA. CMAR performs
ory. Before generating a CAR, the algorithm first checks better than EAC because it uses multiple CARs to classify
whether this CAR is already in the cache. If an entry is atestinstance, while EAC uses only the best ranked CAR.
found, the CAR in the cache entry is used. Otherwise, the Some datasets deserve special discussion. The hepati-
CAR is processed and then it is inserted into the cache. tis dataset, for instance, has two very unbalanced classes.
The cache size is limited, and when the cache is full, EAC is able to reduce 20.8% of the errors in this dataset.
some CARs are discarded to make room for others. Since itWe investigated the reason for such an improvement, and
is impossible to predict how far in the future a specific CAR we observed that the effectiveness of C4.5 varies heavily
will be used, we choose the LFU (Least Frequently Used) with each class. For the most frequent class, C4.5 and EAC
heuristic (which counts how often a CAR is used, and those present a similar result. However, for the less frequersisla
that are used least are discarded first), in order to improveC4.5 performs poorly. Similar results were observed in the
cache efficiency. Rule caching is extremely effective in re- labor and sonar datasets. The gains provided by associative
ducing the computation time for lazy classification. In fact classification do not come exclusively from its capacity of
caching can make lazy classification faster than eager clasperforming equally accurately in all classes when they are

sification, as we will show in the next section. unbalanced, since EAC performed much better than C4.5 in
the waveform dataset, which has very well balanced classes.
5 Experimental Evaluation C4.5 was superior than CBA in the horse dataset. Investi-

gating the reason for that, we observed that CBA generates
a very large number of 100% confident rules (homogeneous
partitions), so that breaking ties and selecting a singé be
rule becomes hard and prone to error.

In this section we show the experimental results for the
evaluation of the proposed classifiers in terms of classifi-
cation effectiveness and computational performance. Our
evaluation is based on a comparison against C4.5 [19] and .. ]
LazyDT [10] decision tree classifiers. We also compare our 92 Eager and Lazy Associative Classifiers
numbers to some results from other associative classifiers,
such as CPAR [23], CMAR [16] and HARMONY [21], We continue our analysis by comparing the effectiveness
and to some results from rule induction classifiers, such of eager (EAC) and lazy classifiers (LAC). Table 1 shows
as RISE [6], RIPPER [3], and SLIPPER [4]. We used their corresponding error rates. For very small datasets ea
26 datasets from the UCI Machine Learning Repository to ger and lazy classifiers perform similarly, since the CARs
compare the effectiveness of the classifiers that were generated by both classifiers were essentially the
In all the experiments we used 10-fold cross-validation same for the parameters used. For instance, the result ob-
and the final results of each experiment represent the aviained with labor and zoo datasets were exactly the same.
erage of the ten runs. We quantify the classification ef- Also, we can observe that lazy classifiers perform better
fectiveness of the classifiers through the conventionarerr When the dataset is sparse (i.e., auto, pima, diabetes, ger-
rate (the percentage of test instances incorrectly cladjifi ~man, and wine datasets). The error reduction in these
We used the entropy method [9] to discretize continuous at-datasets range from 13.9% to 52.7%. This result is ex-
tributes. In the experiments we set minimum confidence to pected, since the small disjuncts problem is more likely to
50% (for confidence based classifiers) angnsup to 1%. happen in sparse datasets. Further, we can also notice that
All other parameters were tuned according to [10,16,18,21] the lazy classifiers always outperform the corresponding ea
The experiments were performed on a Linux-based PC withger ones, except for the ionosphere dataset. We believe that
a Intel Pentium 111 1.0 GHz processor and 1.0 GByte RAM. for this dataset, the lazy classifiers have overfitted tha.dat
Figure 7 shows the rule-set utilization for eager and lazy

5.1 Decision Trees and Eager Classifiers classifiers. A CAR is useful if it is used to classify a test
instance. Utilization is given by the number of useful CARs
sdivided by the total number of distinct CARs that were gen-

We start our analysis by comparing the effectiveness o
4 y paring grated. Ideally, only the best CAR matching each test in-

C4.5 decision trees and eager classifiers. Table 1 shows th .
error rates obtained by each classifier and the error reducSt2nce should be generated. This ideal case corresponds to a

tion relative to C4.5. As can be seen, EAC always outper- total rule-set ut|I|;at|on (100%), that_ls, all gener.ate@lFEs
forms C4.5. which is not true for CBA. CMAR. and HAR- are used to classify at least one testinstance. Since the num

MONY. Further, CBA performs better when the dataset is ber of test instances is constant, the rule-set utilizadien

sparse, that is, there is usually a large number of featurefenOIs on th? numbzr of d'f]tht CbARS ]}rc];t\sre geéjnirated.
and each instance contains just few of them. On average "¢'€asingnunsup reduces the numboer o S, and there-
fore, itincreases rule-set utilization. However, the adeaof

2We used the implementations in the MLC++ library [15]. having no CAR matching a test instance will also increase




Decision Tree Eager Associative Lazy Associative| Error Reduction
Dataset Classifiers Classifiers Classifiers over C4.5(%)
C4.5 LazyDT EAC CBA | CMAR | HARMONY LAC LAC EAC LAC

inf. gain | inf. gain | inf. gain | conf conf conf inf.gain conf inf. gain | inf. gain
anneal 6.5 4.2 3.9 3.6 2.7 8.5 35 3.6 40.0 46.1
australian 13.5 15.2 13.0 13.4| 13.9 - 12.7 13.4 3.7 6.2
auto 29.2 24.7 265 | 27.2| 21.9 39.0 22.2 22.9 9.2 24.0
breast 3.9 5.1 3.6 4.2 3.6 7.6 3.2 4.1 7.7 17.9
cleve 18.2 17.2 16.1 | 16.7| 17.8 - 15.6 16.7 11.5 14.3
crx 15.9 16.9 150 | 14.1| 15.1 - 14.2 14.1 5.7 10.7
diabetes 27.6 24.9 246 | 25.3| 24.2 - 19.7 21.3 10.9 28.6
german 29.5 26.1 272 | 26.5| 25.1 - 23.4 22.0 7.8 20.7
glass 27.5 26.5 26.8 | 27.4| 29.9 50.2 26.0 27.4 25 5.4
heart 18.9 17.7 18.1 | 185| 17.8 435 16.9 17.2 4.2 10.6
hepatitis 22.6 20.3 179 | 15.1| 195 22.0 17.1 15.1 20.8 24.3
horse 16.3 17.2 154 | 18.7| 17.4 17.5 14.5 17.2 55 11.0
hypo 1.2 1.2 1.2 1.7 | 16 - 1.0 1.2 0.0 16.7
ionosphere| 8.0 8.0 7.6 8.2 8.5 8.0 7.8 8.5 5.0 25
iris 5.3 5.3 4.9 7.1 6.0 6.7 3.2 4.6 7.5 39.6
labor 21.0 20.4 19.1 | 17.0| 10.3 - 19.1 17.0 9.0 9.0
led7 26.5 26.5 242 | 27.8| 275 25.4 22.1 255 8.7 16.6
lymph 21.0 20.1 20.2 | 19.6| 16.9 - 19.1 18.2 3.8 9.0
pima 275 25.9 275 | 27.6| 24.9 27.6 22.0 21.3 0.0 20.0
sick 2.1 2.1 2.1 2.7 25 - 2.0 2.0 0.0 4.8
sonar 27.8 24.6 229 | 21.7| 20.6 - 20.5 19.6 17.6 26.3
tic-tac-toe 0.6 0.6 0.6 0.0 0.8 7.7 0.6 0.0 0.0 0.0
vehicle 33.6 31.8 30.8 | 31.3| 31.2 - 28.9 30.0 8.3 14.0
waveform 24.6 22.7 21.3 | 20.6| 16.8 19.5 19.3 18.9 13.4 215
wine 7.9 7.9 7.2 8.4 5.0 8.1 3.4 3.9 8.9 57.0
Z00 7.8 7.8 6.6 54 2.9 7.0 6.5 54 15.4 16.7

[Average | 171 | 162 [ 155 [158] 148 [ 199 [ 140 [ 143 | 87 [ 182 |

Table 1. Error Rates for Decision Trees and Associative (Eag  er and Lazy) Classifiers.

(i.e., the missing rule problem). On the other hand, lower- results reported in [3,4,6]. Table 2 shows the relativeqrerf
ing minsup obviously reduces the percentage of CARs that mance for each classifier (i.e., the accuracy of one classifie
are used, since the number of CARs will increase. As we divided by the accuracy of the other classifier), when com-
can see, reducinguinsup always reduces the percentage pared to eager associative classifiers. Each number in this
of CARs that are used. Further, lazy classifiers always pro-table indicates how many times EAC is superior than the
vide a better rule-set utilization. This is because lazgsila  corresponding adversary RISE, RIPPER or SLIPPER (in
fiers focus only on the features of each test instance duringterms of accuracy). The SLIPPER algorithm won in 6 of
rule generation. Differently, eager classifiers use atifiezs the 26 datasets (and lost in 11), showing to be most compet-
within the training data, and therefore, the search space fo itive rule induction classifier. The RIPPER classifier won in
CARs is augmented. The rule-set utilization of lazy and ea- 4 datasets and the RISE classifier won in only one dataset.
ger classifiers approaches for dense datasets, since in this

case the search space for CARs tends to be similar. Table 2 also shows the relative performance of rule in-
duction classifiers when compared to the lazy associative

5.3 Rule Induction and Associative Clas- classifiers. RISE and RIPPER lost in almost all datasets,
sifiers and SLIPPER was the most competitive one. Compared to

LAC (inf. gain), SLIPPER won in one dataset (and matched
We also compared the proposed eager and lazy associain 6), and compared to LAC (confidence), SLIPPER won in
tive classifiers against RISE, RIPPER and SLIPPER, using4 datasets (and matched in 2).
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Figure 7. Rule-Set Utilization.

5.4 Overfitting and Underfitting tive, but RIPPER shows to be slightly superior. For some
datasets (such as hypo, sick and waveform), EAC and RIP-
We also analyze the sensitivity of the classifiers regard- PER generate a very large number of CARs. Although LAC
ing the complexity of the models they induce. The model implements extra work, namely feature projection and rule
complexity has an intuitive relation with the size of theasil ~ generation for every test instance, it usually generateshmu
(or the height of the tree) that constitute the model. The less distinct CARs than EAC and RIPPER, and thus, LAC
longer the rules within the model, the more complex it is. is the best performer on average.
By using complex rules, the classifier tends to overfit the
data, hurting the classifier accuracy. On the other hand, b .
using simplg rules, the classifier w)iql underfit the data alsoy6 Conclusions and Future Work
hurting the accuracy. Thus, the choice of the complexity
of the rules is a trade-off between underfitting and overfit-  Decision tree classifiers perform a greedy search which
ting, and may vary according to the dataset being used. Fig-may discard relevant information. Based on this obsematio
ure 8 shows the error rates associated with different elassi we present an assessment of associative classification. The
fiers for some of the datasets by varying the complexity of generated CARs are ranked based on their information gain,
the model. The datasets anneal, cleve, crx, glass, led7, sicso that we can compare the performance of decision trees
and zoo benefit from more complex models. These dataset@nd associative classifiers. We present evidence regarding
are more dense and need more complex rules. We noticehe superiority of associative classifiers. However, it &lw
that the effectiveness of both eager and lazy classifiers ar&nown that no classifier can outperform others in all set-
similar for these datasets. On the other hand, for datasetdings [22], and thus there may be certain specific situations
such as iris, auto, lymph and diabetes there is a demand fowhere decision trees outperform associative classifiers.
simpler rules. We observed that the lazy classifier is able to  We also propose improvements to associative classifica-

provide improvements in the majority of the cases. tion by introducing a novel lazy classifier. The lazy classi-
fier searches a larger hypothesis space than the correspond-
5.5 Execution Times ing eager classifier, because it uses many different local

models to form its implicit global approximation to the tar-
Table 3 shows the execution times obtained by C4.5, get function. Eager classifiers commit at training time to a
RIPPER, EAC, and LAC classifiers. In all executions, single global approximation. An important feature of the
minsup was set to 1%, and the cache size is set to 10,000proposed lazy classifier is its ability to deal with thmall
CARs. All times correspond to the total time spent (in sec- disjunctsproblem. Based on this observation, we present
onds) using 10-fold cross-validation. In general, C4.5 is evidence showing that a lazy associative classifier outper-
the worst performer. RIPPER and EAC are very competi- forms the corresponding eager one. Our claims were con-



Relative Performance Relative Performance Relative Performance

Dataset EAC(inf.gain) LAC(inf. gain) LAC(confidence)
RISE \ RIPPER\ SLIPPER| RISE \ RIPPER\ SLIPPER| RISE \ RIPPER\ SLIPPER

anneal 1.01 1.00 1.00 1.01 1.00 1.01 1.01 1.00 1.01
australian 1.03 1.00 0.99 1.04 1.00 1.00 1.03 0.99 0.99
auto 1.04 1.00 0.98 1.10 1.06 1.04 1.09 1.06 1.03
breast 1.02 1.01 1.01 1.03 1.02 1.02 1.02 1.00 1.01
cleve 1.03 1.02 1.00 1.03 1.02 1.01 1.02 1.01 0.99
Crx 1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.01 1.01
diabetes 1.03 1.01 1.00 1.10 1.08 1.06 1.08 1.05 1.04
german 1.03 1.04 1.02 1.08 1.10 1.08 1.10 1.12 1.10
glass 1.08 1.06 1.02 1.10 1.07 1.03 1.07 1.05 1.02
heart 1.07 1.01 1.01 1.09 1.03 1.02 1.09 1.03 1.02
hepatitis 1.09 1.07 1.05 1.10 1.08 1.06 1.12 1.11 1.09
horse 1.00 0.99 0.99 1.02 1.01 1.00 0.98 0.98 0.97
hypo 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00
ionosphere 1.03 1.01 1.00 1.03 1.01 1.00 1.02 1.00 0.99
iris 1.02 1.02 1.00 1.04 1.03 1.02 1.02 1.02 1.01
labor 0.99 0.96 0.95 0.99 0.96 0.95 1.01 0.99 0.98
led7 1.06 1.09 1.03 1.08 1.12 1.06 1.04 1.07 1.01
lymph 1.06 1.01 1.00 1.07 1.02 1.01 1.08 1.04 1.02
pima 1.04 0.99 0.96 1.12 1.07 1.04 1.13 1.08 1.05
sick 1.01 1.00 1.00 1.01 1.00 1.00 1.01 1.00 1.00
sonar 1.02 0.98 1.01 1.05 1.01 1.00 1.06 1.03 1.01
tic-tac-toe 1.02 1.02 1.01 1.01 1.01 1.01 1.02 1.02 1.02
vehicle 1.05 1.10 1.01 1.08 1.13 1.04 1.06 1.12 1.03
waveform 1.05 1.04 1.02 1.08 1.06 1.04 1.08 1.07 1.05
wine 1.01 1.01 0.98 1.05 1.05 1.02 1.04 1.05 1.02
Z00 1.07 1.06 1.02 1.07 1.06 1.02 1.08 1.07 1.03

Win/Tie/Lost | 22/3/1] 16/6/4 |

11/9/6 | 24/11] 2U/4/L |

19/6/1 | 24/1/1] 18/4/4 | 20/2/4 |

Table 2. Performance of Associative Classifiers relatively

firmed by empirical comparisons to C4.5 and LazyDT deci-

sion tree classifier, using datasets from the UCI data repos-
itory. We also compared the proposed classifiers against

other three associative classifiers and three rule inductio

classifiers and outperformed them in most of the cases.

(5]

So far, our classifiers use only the best CAR for sake [6]
of classification. In the future we will combine simple and
complex CARs in order to enhance classification. Finally,

we will explore more realistic application scenarios.
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