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Abstract—In Collectible Card Games like “Magic: the Gath-
ering”, one of the developers’ main challenges is creating new
and interesting cards that are not too strong or game-braking,
pertaining the game’s overall balance. One way to address this
issue is through the analysis of the cards resource costs. Powerful
cards need more resource to be played while weaker ones need
less resource. This work proposes a recommender system to a
card’s resource scale. In summary, we model the problem as
a classification task and present and in-depth analysis of our
results. We propose using LSTMs to learn a vector representation
for text followed by XGBoost models to incorporate remaining
features. Our approach is capable of reaching a Mean Reciprocal
Rank of 0.8064 despite superficially identical cards having dif-
ferent mana costs. The analysis provided indicate that the model
was able to learn useful rules for predicting a card’s resource
cost and highlight key insights for future research.

Index Terms—Collectible Card Games, Game Balancing, Deep
Learning, Gradient Boosting

I. INTRODUCTION

Collectible Card Games (CCG), also called a Trading Card

Games (TCG), are games played with specially designed sets

of cards. The modern concept of CCG was first presented

in “Magic: The Gathering”, designed by Richard Garfield and

published by Wizards of the Coast in 1993 [1]. One of Magic’s

core cards are lands. Each player can play one land card per

turn and these are responsible for resource generation. Each

other kind of card has a resource cost, called mana cost, which

informs the amount and color of mana needed to play the given

card. Figure 1 illustrates the basic features of Magic cards.

During the span of its 26 years of existence, “Magic: the

Gathering” published over 17,000 different cards with various

mana costs, as illustrated in Figure 2. In Magic and several

other CCGs, a way of balancing cards is addressing the amount

of resource needed to use them. Powerful cards with various

abilities require larger amounts of mana to be spent in order

for them to be played, while simpler ones require less mana.

However, this balancing is far from perfect. One consequence

is the occurrence of ’broken’ and ’useless’ cards that provide

way too strong or weak effects respectively in comparison to

their mana cost.

This work was partially funded by authors individual grants from CNPq
and FAPEMIG.

Fig. 1. Core concepts that encompass a “Magic: The Gathering” card.
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Fig. 2. Number of cards released in each year with mana cost up to 7. Data
collected in March of 2019.

Designing for balance is core in competitive games. En-

suring fairness in player vs. player games is crucial to the

success of any game that features this sort of interaction. This

is a particularly relevant problem in Magic. Cards that are

too strong end up being banned or have their monetary value

inflated, preventing access to most players. The weak cards, in

turn, end up not being chosen to constitute the decks of many

players. This phenomenon leads to many cards not being seen
978-1-7281-1884-0/19/$31.00 ©2019 IEEE



in actual play, which not only harms the competitive scenario

giving players less options, but also consists in the waste of

time and effort of the development team.

This work addresses the challenge of proposing balanced

mana cost for cards in “Magic: the Gathering” CCG. We

propose a resource scale method based on cards already

published. We model this task as a learning the multi-class

classification problem. We employ a LSTM to quantify the

influence of a card’s textual patterns in its cost and extract its

vector representation from the output of the penultimate layer.

We also explore the usage of both Multi-Layer Perceptrons

and XGBoost to join this representation with other handcrafted

features, some of which are illustrated in Figure 1.

The proposed model is able to learn card’s cost abstractions,

reaching +0.8 MRR (Mean Reciprocal Rank) in the general

case and +0.93 MRR when it is allowed to abstain from

predicting under ambiguous interpretations yet still handling

over half the cards in the dataset of existing cards. It is worth

noticing that the data could be interpreted as noisy, as there are

cards with the same features and abilities but with different

mana costs, as well as cards with the same mana cost and

features but with distinctly different abilities.

II. RELATED WORK

Although many works feature “Magic: The Gathering”, to

our knowledge, none attempt to actively tackle the issue of

game balancing. In particular, no work addresses the task

of suggesting mana costs for new and existing cards. The

closest one is from Summerville and Mateas [2]. They created

new magic cards by means of a denoising-autoencoder. In

particular, their approach allows a player to specify only part

of a card’s features and the model is able to fill in the blanks.

Although the work of Summerville and Mateas could be

applied in our scenario, evaluating mana costs is neither their

end goal nor an objective in which their model is focused on.

Other works involving Magic are the ones from Ling et.

al. [3] who proposes a new network type capable of code

generation through the features of TCG cards and uses a

dataset comprised of Magic cards to validate their results;

Ward and Cowling [4] who explored the usage of bandit based

Monte Carlo search applied to the problem of card selection

in “Magic: The Gathering”; and Zilio, Prates and Lamb [5]

that tackled the task of image-text matching.

Regarding game balancing in CCG we can highlight the

work of Gold [6] which addresses the concepts of what is fun

and balanced in CCGs, one of their examples being Magic.

His analysis is focused on the game-play elements of a match

itself. In order for a game to be fair and fun, matches need to be

close and the lead needs to change. Simply adding randomness

might not solve it. Another work that tackles the same problem

is the one from Ham [7] which elucidates balancing challenges

in games that use any sort of collectible objects. He performs

several case studies and mainly focuses on the relationship

between powerful cards and their rarity as well as their overall

price, and how this affects a player’s fun regarding game

balance and the concept of what is unfair. We, on the other

hand, do not feel that the rarities of cards are good balancing

factors in modern CCG games. There are multiple instances

of weak and cheap cards which are rare. Rather, we chose to

focus on a more direct and impactful feature for balancing:

their resource cost.

III. BACKGROUND

In order to understand how to solve the proposed problem

of predicting a resourse scale for Magic cards and compre-

hend the employed model, this section addresses the various

concepts and methods employed in this work. The objective

is to summarize the knowledge necessary to understand the

techniques used. It discusses LSTM, gradient boosting, node

embeddings and the SHAP algorithm.

A. Long Short-Term Memory networks

Long Short-Term Memory (LSTM) networks are an ex-

tension of Recurrent Neural Networks (RNN) that intended

to remedy their problem of vanishing gradients [8]. Unlike

other neural networks, the decision of a recurrent network at

instant t − 1 affects its decision at instant t. These networks

receive two inputs: the present and the recent past. In their

architecture, loops allow information to persist. A fraction of

the network examines the segment of the input relative to

instant t and returns an output. A loop feeds this output back

to the network which lets the learnt information to be persisted

over time. This allows the decision making at instant t+1 to

take into account the output at instant t.

A RNN-based model often encounters the problem of

vanishing gradients. Less information about the distant past is

propagated at each iteration of the RNN loop. In text analysis,

relationships between words that are too far apart in sentences

may dissipate along time. LSTM solves this problem by

storing information beyond the recent past. Data can be stored

in its memory cell as well as overwritten, read or completely

forgotten. Gates control how much of the memory data needs

to be updated, allowing partial information propagation.

B. Node embeddings

Many important problems involving graphs require the use

of learning algorithms to make predictions about nodes and

edges. The main goal behind node embeddings is to map nodes

to low-dimensional embeddings in such a way that similarity

in the embedding space approximates similarity in the original

graph. NBNE [9], [10] solves this challenge by applying a skip

gram-like algorithm using nodes neighborhoods as contexts.

The model learns node’s representations by maximizing the

log probability of predicting a node given another node

within a maximum predefined distance. The main advantage of

NBNE is its training speed, which is far faster than other state-

of-the-art methods while still maintaining similar or better

performance.

C. Gradient boosting

The main idea behind boosting is using an ensemble of weak

learners that can be somehow combined to generate a stronger



model. More specifically, there might be an efficient algorithm

that could convert poor hypothesis, like weak learners which

are slightly better than a random guesser, into a single very

good hypothesis. One approach is filtering the observations,

modifying the distribution of examples in such a way as to

force the weak learning algorithm to focus on the harder-to-

learn parts of the distribution [11].

Let y be the values of the output variable, i be an iteration of

the gradient boosting algorithm and Gi(x) be the output of the

proposed model at time i. The algorithm improves Gi(x) by

constructing a new model that adds an estimator h to provide

a better model, which leads to Gi+1(x) = Gi(x) + h(x). A

perfect h would imply in h(x) = y − Gi(x) . Therefore, the

gradient boosting approach will attempt to fit h to the residual

loss. However, to classification problems, residuals y −G(x)
for a given model are the negative gradients in respect to G(x).
Thus, gradient boosting is a gradient descent algorithm for

combining and training weak learners. In this work we employ

XGBoost, which improves upon the original gradient boosting

machines [12].

D. Shapley additive explanations

Shapley value is a solution concept in cooperative game

theory [13]. Let N be a set of n players in a cooperative

game, S denote a coalition of players and v be a characteristic

function over S. That is, v(S) denotes the worth of a coalition

S and describes the total expected sum of payoffs that the

members of S obtain by cooperation. Adding player ni to

an existing coalition S increases the expected payoff by

v(S ∪ {ni})− v(S). Since there are n! possible ways to line

up the n players and the player ni must be preceded by all

the members of S and followed by remaining players in N ,

there are |S|!(n−1−|S|)! lineups in which player ni joins the

existing coalition S. If we sum its contribution over all lineups

in which ni joins S and over all possible existing coalitions S

that it might join, we get its total contribution over all possible

lineups of N . The Shapley value ϕni
(v) of player ni is the

average of its total contribution in the cooperative game (v,N)
The idea of Shapley additive explanations (SHAP) is the

usage of this concept from game theory to interpret a target

model [14]. We represent how model x′ explains a phe-

nomenon as a d-dimensional vector E(x′) = e1, e2, ..., ed
showing which features are contributing the model’s predic-

tion. Specifically, ei takes a value that corresponds to the

influence that the respective feature xi had on the model deci-

sion. Since many features are vector representations of some

card characteristic, we cannot assume feature independence.

Correlated features end up sharing credit or importance.

IV. PROPOSED APPROACH

Our proposed approach can be divided into two separate

models, one for creating a representation of a card’s text and

other to properly classify a card. We formulate the first model

as a function f(s; θf ) parameterized by θf that maps a word

sequence s to a vector representation v. The second model is

a function g(v, u; θg) parameterized by θg that maps a pair of

vectors (v, u) to a probability distribution encompassing the

classification task. Given a word sequence s, we can obtain its

representation by applying f(s; θf ) thus obtaining v. We feed

v alongside the remaining features u to g(v, u; θg) and obtain

the probabilities of each class given the inputs s and u. We

employ a bidirectional LSTM to learn θf , XGBoost to learn

θg and NBNE in order to reduce the dimensionality of u.

A. Embeddings of card effects

First and foremost we train word embeddings thorough

the Word2Vec algorithm [15] on all words contained in the

card’s abilities. We filter stopwords present and perform both

lemmatization and stemming over all words. Since we have

diversified training instances, this becomes a necessary step to

generate more robust embeddings and to avoid the occurrence

of infrequent variants of relevant words.
A bidirectional LSTM layer followed by a fully connected

layer are responsible for processing the input and generating a

classification, in which the output of the last LSTM cell is fed

to the classification layer [16]. The intuition is that this cell

contains the summarized information of the whole description

and is appropriate for extracting the new representation. A

softmax activation over the last layer allows us to obtain the

probabilities for each class. Figure 3 illustrates our proposed

architecture.

Word	1 Word	2 ... Word	s

...

Maximum	text	size:	50	words

...

Embedding	layer

bi-LSTM	layer

Dense	layer

Probability	Vectors

Forward	LSTM

Backward	LSTM

Embeddings	output
Classifier	Output

LSTM	output	(learnt	representation)

Classifier

Hidden	State	of	LSTM

Fig. 3. Proposed neural network to perform the classification task over cards
descriptions.

The architecture employed serves as a feature extraction

approach and allows us obtain a new compact representation of

all the textual data in a card. To obtain the final newly learned

representation of the original textual features, we extract the

output of the penultimate layer just before the classification

step. The obtained vectors can then be used as input into any

learning model and are explicitly guided by the given classes.

Unlike other possible methods of extracting representations

from text, this approach already introduces a bias relative to

mana cost which will aid further models employed.



B. Addressing dimensionality of sparse features

Most of a card’s features are composed of either categorical

or list attributes. One simple solution is to hot-encode them.

For features like “rarity”, which has only five possible values,

this approach works well. However, there are features such

as printings expansions or the list of its subtypes. When hot-

encoded, we get an extremely sparse representation as each

one has more than 300 possible values. In fact, we obtain data

of dimensionality superior to 1500 when all categorical and

list features are hot-encoded. As an alternative solution, we

propose to encode these features through node-embeddings.
Each of the high dimensional hot-encoded features can be

modelled as a graph, where the nodes represent the cards

and the edges encompass the relations inside each of the

categorical classes. To illustrate this idea, let’s address the

graph of the printing expansions: two nodes have an edge

between them if the cards they represent have at least one

expansion in common. When all expansions are evaluated,

we obtain an undirected graph containing all relationships

between cards given their printings.
Next, we use the NBNE to obtain a compact representation

of each of feature. Because it is based on the analysis of a

node’s neighbourhood, connected cards are close in vector

space while unrelated ones end up distancing themselves.

Through this approach, we are able to summarize each feature

of high dimensionality. We opt to generate node-embeddings

of size ten since, among the features of small dimensionality,

none exceeds ten possible values. We reduce our data from

over 1500 dimensions to 121, barring the representations

extracted from the bidirectional LSTM.

V. EXPERIMENTS

In this section, we discuss the evaluation procedures and

results found associated with the proposed model, hereinafter

referenced as LSTM-XGBoost. In particular, our experiments

should answer the following research questions:

RQ1: In collectable card games, how well can a card’s

resource cost be predicted from its features?

RQ2: Does the usage of latent outputs as inputs to other

models exceed a typical end-to-end network?

RQ3: What is the impact of modeling sparse categorical

features as node-embeddings?

RQ4: Given collectable card games features, can we exploit

some sort of inherent pattern?

RQ5: What is the impact of allowing the model to abstain

from giving a doubtful prediction?

RQ6: What is the impact of specializing in the most

difficult parts of the problem?

RQ1, RQ2 and RQ3 are analyzed during our general model

evaluation in Section V-A. In Section V-B, we attempt to

characterize data using our knowledge regarding the data while

splitting the base into more concise sets, adressing RQ4 in

V-B. Sections V-C and V-D are devoted to answering RQ5

and RQ6 respectively.
We consider only cards of mana cost up to 7 since cards

with cost of 8 or higher are few and far between. We also filter

cards with long texts (more than 50 words) or without any

text at all. However, like many real world problems, the data

is unbalanced. In particular, there are more cards with cost

3 than in any other class. Data augmentation is performed

over the underrepresented classes by making new synthetic

cards which text is compromised of random permutations of

sentences from the original cards. After data augmentation,

we obtain 26040 cards, of which 9039 are synthetic cards and

17001 are original ones.

To ensure the validity of the reported experiments, the orig-

inal card and all its synthetic variations are always contained

in the same train or test split. To ensure the relevance of the

results, we assess the statistical significance of our measure-

ments by means of a pair wise t-test [17] with p−value ≤ 0.05
and through 5-fold cross validation. Unless otherwise noted,

all results are statistically different from one another.

We perform an exhausting grid search to find a suitable

set of hyper-parameters for both the bidirectional LSTM and

XGBoost. In particular, we access the LSTM layer size (which

is tied to the size of the text’s vector representation) as well

as the number of estimators and the depth of XGBoost trees.

Our analysis leads to the usage of a bidirectional LSTM of size

150 and regarding XGBoost, 100 estimators with maximum

depth of 35. We use Stochastic Gradient Descent (SGD) [18]

to optimize the Cross-entropy loss function.

A. Model evaluation

Our first set of experiments address RQ1. In regards to

RQ2, we use as baseline a bidirectional LSTM followed by

a Multilayer-Perceptron (MLP). The core goal of the MLP

is to encode and interpret the non-textual features of each

card. We consider two possible architectures, one in which

the MLP is employed in parallel to the LSTM and both their

outputs are combined into a final prediction (LSTM+MLP)

and a second one in which the outputs of the bidirectional

LSTM are concatenated to the remaining inputs, and this new

vector is fed to the MLP (LSTM-MLP). We also evaluate the

standalone MLP, bidirectional LSTM and XGBoost models.

In order to answer RQ3, we consider the scenarios with the

presence of node-embeddings and without, using instead the

hot encoded representations. All the results are summarized in

Table I.

Node-embeddings Many-hot encoded

ACC MRR ACC MRR

MLP (numeric) .2031 .5012 .0941 .2634
XGBoost (numeric) .5955 .6921 .5599 .6587
LSTM (text) - - .6404 .7655
LSTM-XGBoost (text) - - .6102 .7112
LSTM+MLP .5954 .7344 .5913 .7342
LSTM-MLP .5898 .7314 .5891 .7299
LSTM-XGBoost .6841 .8064 .6582 .7766

TABLE I
RESULTS OBTAINED BY THE PROPOSED MODELS. THE LSTM-XGBOOST

APPROACH IS STATISTICALLY SUPERIOR IN BOTH ACCURACY AND MRR.

Before addressing RQ4, we should first understand the

behavior of the proposed model. We analyze the precision,



recall and F1-score for each class. Table II illustrates the per-

formance of LSTM-XGBoost and Table III of the standalone

bidirectional LSTM.

precision recall F1-score support

Mana 0 .97 .99 .98 3255
Mana 1 .73 .75 .74 3255
Mana 2 .47 .47 .47 3255
Mana 3 .38 .33 .36 3255
Mana 4 .46 .45 .45 3255
Mana 5 .65 .67 .66 3255
Mana 6 .82 .85 .84 3255
Mana 7 .92 .95 .94 3255

TABLE II
LSTM-XGBOOST RESULTS FOR EACH OF THE EVALUATED CLASSES.

ACCURACY OF 0.6841 AND MRR OF 0.8064.

precision recall F1-score support

Mana 0 .93 .96 .94 3255
Mana 1 .66 .70 .68 3255
Mana 2 .42 .39 .40 3255
Mana 3 .34 .27 .30 3255
Mana 4 .42 .42 .42 3255
Mana 5 .59 .62 .60 3255
Mana 6 .78 .83 .80 3255
Mana 7 .87 .95 .91 3255

TABLE III
BIDIRECTIONAL LSTM RESULTS. THIS MODEL ONLY USES THE TEXTUAL

DATA OF A CARD. ACCURACY OF 0.6404 AND MRR OF 0.7655

During further analysis around the model’s confusion ma-

trix, illustrated in Figure 4, some interesting patterns can

be seen. Although the middle classes are indeed the worst

performers, the model still predicts mana costs arithmetically

close to their true values. This emergent behavior was not

explicitly modeled and is a desirable characteristic. It serves

as a strong indicator that the model does indeed learn useful

general features despite the nature of the data and that it may

be applied to suggesting balanced mana costs.

Confusion Matrix for LSTM-XGBoost
ACC : 0.6841 MRR : 0.8064
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Fig. 4. LSTM-XGBoost Confusion matrix. Values are concentrated close to
the main diagonal, implying that the model learned useful rules.
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Fig. 5. SHAP values of the top 20 features used for classification. Several
dimensions related to text representation appear as top performers.

We employ the SHAP algorithm to visualize the impact of

each feature used as input to LSTM-XGBoost. It is possible to

observe that a considerable part of the model’s explanation is

a result of a card’s abilities representation. Among the twenty

most relevant features, twelve of them are some dimension of

the text vector representation as seen in Figure 5. Regarding

the numerical attributes, there is not much that can be done

in order to improve the model besides experimenting with

new modeling forms. However, if we were able to generate

more robust representations of each card’s text in such a

way that they better classify the data, we should observe an

improvement in the predictions. The next experiments involve

mainly LSTM and how to address this task. We chose to

analyze the LSTM individually rather than the full LSTM-

XGBoost model to directly access the impact of our decisions

over the representations, explicitly filtering any correlation that

might exist with the remaining features.

B. Data characterization

A common phenomenon in games published over a long

period of time and which allow the usage of both old elements

and new ones is power creep [19]. The idea behind the concept

is that a company has to sell their new products, but everything

new they create has to compete with previously existing pieces.

To draw consumers’ attention and justify further acquisitions,

new products end up becoming superior to older ones to the

point of becoming strictly better and completely outclassing

one another. This means that older content becomes obsolete

or relatively under-powered. In “Magic: The Gathering”, in

each new edition developers attempt to power up some aspects

of new cards while bringing down in power other ones, overall

balancing things out.



93-00 01-06 07-11 12-14 15-16 17-19
Mana 0 .93 .94 .97 .94 .97 .98
Mana 1 .72 .69 .65 .68 .63 .67
Mana 2 .43 .38 .38 .39 .35 .41
Mana 3 .32 .30 .26 .26 .30 .29
Mana 4 .45 .44 .37 .37 .38 .40
Mana 5 .62 .62 .57 .65 .62 .66
Mana 6 .84 .82 .81 .84 .84 .83
Mana 7 .87 .94 .92 .92 .93 .94

Accuracy .61 .65 .62 .66 .65 .68

MRR .75 .76 .75 .77 .77 .79

TABLE IV
CLASS F1-SCORE, ACCURACY AND MRR FOR EACH TIME SPAN.

Of course, given the rather large span of time and the high

number of cards already printed, it becomes unfeasible to

promote a globalized human-based balancing approach. This

leads to developers mainly focusing on the recent past and in

popular traditional cards, which in turn leads to some degree

of power creep. Over the nearly three decades of its existence,

many of the design decisions have changed. New abilities

were introduced, new combinations of cards emerged and the

game became more dynamic. With this in mind, we propose

an analysis of Magic in intervals of time as shown in Table

IV. Each time split contains roughly the same amount of

cards. This leads to a far more reliable and concise analysis,

especially because the card distribution over the years is rather

different.

The color system is one of the game’s most fundamental and

iconic elements. It gives the game diversity in its cards, effects,

and play styles, while preventing any one deck from having

every tool in the game. Each of the five colors represents a set

of beliefs and principles [20]. A color’s philosophy explains

how it sees the world, what objectives it hopes to realize

and what resources and tactics a color has at its disposal.

Gameplay-wise, this dictates which card types and abilities

thematically fit within a color. With this in mind, we explore

creating different models for each of core Magic’s colors as

well as one for colorless cards and multi-colored ones.

“Magic: The Gathering 2011 player’s handbook” provides

an overview of each color. White comes from plains, mead-

ows and fields, they bring light and order. Blue comes from

islands and bodies of water, involving intellect and illusion.

Black comes from swamps and places of death. Black

magic is steeped in darkness and death. Red comes from

mountains and rocky places and call forth fire and passion.

Green comes from forests and jungles and conjure growth

and might. Colorless are unbound and can come from a

variety of places. Multicolored are flexible and encompass

all the philosophies from each of their colors.

We assume a learning scenario in which cards can be

mapped to context domains, associated with their color iden-

tities, enabling us to learn specific models for each color

domain. Our main hypothesis is that there are abilities that

might be more valuable in certain domains than in others. This

should be reflected by Magic’s design choice of associating

each color with a philosophy and a mechanic. For instance, if

Mana 0 .97 .96 .97 .96 .98 .95 .99
Mana 1 .67 .63 .65 .66 .69 .66 .66
Mana 2 .34 .32 .38 .36 .42 .43 .35
Mana 3 .29 .29 .32 .30 .34 .29 .42
Mana 4 .36 .47 .41 .41 .45 .45 .39
Mana 5 .59 .59 .60 .63 .64 .66 .65
Mana 6 .81 .80 .79 .78 .81 .87 .81
Mana 7 .91 .93 .90 .94 .89 .93 .93

Accuracy .62 .63 .62 .62 .64 .70 .78
MRR .75 .76 .75 .75 .76 .80 .85

TABLE V
CLASS F1-SCORE, ACCURACY AND MRR FOR EACH COLOR TYPE.

an ability is vastly present in some color but scarce in others,

it might be the case that it should be valued differently in each

context. Further, cards that have more than a single color or

no color at all are more flexible regarding their abilities and

strategies. It should be useful to address them separately from

other cards. Table V summarizes the experiment regarding

these assumptions.

C. Dealing with uncertainty

The output of LSTM-XGBoost is composed of a probability

distribution which indicates the most likely classes for each of

the input instances. From information theory, the more equally

distributed a probability distribution, the greater its entropy

and therefore the greater the uncertainty over the prediction

of the modeled random variable [21]. During training, the

models are optimized with the cross-entropy loss function in

an attempt to minimize uncertainty of the model’s output by

maximizing the likelihood of predicting the correct classes

while minimizing the likelihood of incorrect ones. Even so,

there are cases where the model presents considerable uncer-

tainty due to the design setting of superficially identical cards

having different mana costs.
We propose establishing a certainty threshold during the

evaluation step as the minimum probability that should be

associated with a single class to validate the proposed pre-

diction in RQ5. Indirectly, this modeling entails classifying

low entropy instances and abstaining from high entropy cases.

Under these constraints, the model presents a remarkable gain

in performance as shown in Figure 6 while still classifying

over half the validation instances.

D. Domain adaptation on hard classes

In order to answer RQ6, we explore a transfer learning

approach related to our problem. In particular, we first train

the model using all data samples and then perform domain

adaptation over the intermediary classes where the model

usually struggles. Table VI illustrates the new results in the

specialized classes, and an improvement can be seen. Table VII

shows the model performance including the remaining classes.

Although the performance for the specific specialized classes

improves, the model forgets how to handle the easier classes

and ends up with an overall worse performance. This leads us

to believe that domain adaptation in the most difficult classes

is not a suitable approach.



Confusion Matrix for LSTM-XGBoost (0.5 certainty)

Macro-ACC : 0.8011 Micro-ACC : 0.9012

Macro-MRR : 0.8692 Micro-MRR : 0.9385
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Fig. 6. LSTM-XGBoost Confusion matrix setting a certainty threshold of 0.5.
Since under this constraint each class presents a distinct amount of instances,
we opt to use the percentage of occurrences rather than their absolute values
for better visualization.

precision recall F1-score support

Mana 2 .51 .48 .49 3255
Mana 3 .38 .36 .37 3255
Mana 4 .45 .48 .47 3255
Mana 5 .64 .67 .66 3255

TABLE VI
BIDIRECTIONAL LSTM RESULTS AFTER DOMAIN ADAPTATION IN THE

MOST DIFFICULT CLASSES.

precision recall F1-score support

Mana 0 1.00 .11 .20 3255
Mana 1 .00 .00 .00 3255
Mana 2 .24 .49 .33 3255
Mana 3 .20 .37 .26 3255
Mana 4 .24 .48 .32 3255
Mana 5 .33 .68 .44 3255
Mana 6 1.00 .00 .00 3255
Mana 7 .98 .03 .05 3255

TABLE VII
BIDIRECTIONAL LSTM RESULTS AFTER DOMAIN ADAPTATION IN ORDER

TO SPECIALIZE IN THE MOST DIFFICULT CLASSES. THE MODEL FORGETS

HOW TO HANDLE THE ORIGINALLY EASY CLASSES AND HAS AN OVERALL

WORSE PERFORMANCE. ACCURACY OF 0.2693 AND MRR OF 0.4874.

E. Results and discussion

Among the first set of experiments, we can visualize the

impact of modeling sparse features as node-embeddings. We

can see an improvement in performance in all cases barred

the LSTM combined with MLP scenario. They are indeed

useful even though no node feature appear amongst the top

performer features. The data’s dimensionality reduction allows

the model to properly focus on more relevant features while

still pertaining information regarding the sparse ones.

Overall, the developed models present high performance

evidenced by their MRR. A desirable emergent behavior is

that when the model misclassifies the cost of some card, it’s

usually attributed to an arithmetically close mana cost. This

was verified during our analysis over the confusion matrix

which presents high values close to the main diagonal. It

leads us to believe that the LSTM-XGBoost does indeed learn

general useful features for a resource scale.

Other arguments corroborating with the proposed hypothesis

emerge from the SHAP analysis. We can see a strong influence

of features like power or toughness of a card, which was

expected, but we also see the presence of features related to

the text representation of a card. In particular, we observe

that some dimensions are more closely associated with some

classes than others. A couple examples include dimension

134 which is extremely important to cards with cost of 7 or

dimensions 13 and 131 which present strong ties with cards

of cost 6. We can also identify some dimensions that appear

to be useful to differentiate between cards of close mana cost,

like dimension 98 having considerable impact involving costs

4 and 5 or dimension 133 which is useful to costs 1 and 2.

Although we cannot explicitly state what each dimension

represents, it’s clear that there are ties between specific mana

costs and certain characteristics present in the text of each

card. The model learns to make these connections and provide

mana costs scale recommendations given the card’s features.

Take for instance the cards shown in Figure 7. Cancel and

Counter spell have same exact text but distinct mana costs.

Likewise, Lightning bolt and Shock have the same mana cost

but one does slightly more than the previous one. Our model

returns that Lighting Bolt should have a cost of two and Shock

is appropriate as is. Although the model miss classify the blue

cards, it provides consistent results, classifying the two equal

cards similarly and the stronger one is attributed a higher

cost. It is also able to understand the differences in similar

cards and correctly predict which is stronger, as shown with

Angel of Mercy and Aven Cloudchaser. Not only it’s able to

capture what similar cards have in common, but also what

they have that sets them apart. Cards with intermediary mana

costs compromise the majority of published cards as well as

the most common cards found in player’s decks. In a certain

way it’s natural that they are the ones with the largest variance.

A useful way to attempt to deal with this is to split the data

into more concise bins. We explore making this division based

on either release date or their color. We can observe that the

model trained upon the recent years is the performant while the

one trained on the oldest cards is the worst performer. Many

instances from cards with similar effects and divergent mana

costs arise from new cards being compared to old ones. We

could take advantage of this phenomenon and deploy models

based primarily on recent years. Regarding colors, we do not

see any improvement when dealing with regular colored cards.

However, we observe a great increase in performance when

dealing with both colorless and multicolored cards. This seems

to imply that cards from these two scenarios are significantly

different from the other ones. Further analysis is required, but

it might be the case that we should also focus on cards that are

exclusively of a color rather than simply considering if they

have that color in their identity.



Fig. 7. Some examples of “Magic: The Gathering” cards and their predicted mana costs.

By far, the largest gain in performance is when we allow the

model to abstain from giving a prediction. Most cases in which

the model performs a miss classification arise from the inher-

ent ambiguity of the input. When dealing only with instances

that the model has moderate certainty, we reach an MRR of

0.9385. Since some classes are easier than others, the model

naturally gives more predictions of these classes. Considering

macro MRR, we still maintain a good performance of 0.8692.

This serves as yet another argument in corroboration of our

hypothesis and in favour of the proposed approach.

VI. CONCLUSION

In this work we proposed a novel approach to dealing

with the task of recommending mana costs for “Magic: The

Gathering” cards. To our knowledge, this has never been done

before and, as such, we propose an in-depth analysis of the

peculiarities of the task at hand. Under usual circumstances,

the proposed model reaches a MRR of 0.8064 but we show

that, given some restrictions, this result can be improved upon.

Through our experiments, we present several arguments

that corroborate with the hypothesis that it is indeed possible

to learn useful general features that explain a card’s mana

cost. The instances that the model miss classify the inputs

might not be “true errors” given the ambiguity of mana costs

and how cards exist in the wild. It could be the case that

these cards are indeed unbalanced and the model is instead

proposing a suitable new mana cost for them. In order to

further validate our model, a simple yet effective method

would be a qualitative evaluation of its output. One approach

could be the creation of new synthetic cards which have

random attributes extracted from our database. Given the

model’s output for these new cards, we could ask the opinion

of seasoned Magic players regarding their mana cost and their

thoughts regarding its balance.

Aside from creating models for each studied scenario, some

directions for future work also include the usage of Generative

Adversarial Networks (GAN). In order to augment the under-

represented classes we simply created new permutations of a

card’s text. The main issue with this approach is that these

classes remain with a considerably smaller vocabulary. Using

GANs to perform data augmentation would allow us to have

a broader vocabulary for all considered classes.
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and A. Senior, “Latent predictor networks for code generation,” in
54th Annual Meeting of the Association for Computational Linguistics.
Association for Computational Linguistics, 2016, pp. 599–609.

[4] C. Ward and P. Cowling, “Monte carlo search applied to card selec-
tion in magic: The gathering,” in IEEE Symposium on Computational

Intelligence and Games, 2009, pp. 9–16.
[5] F. Zilio, M. Prates, and L. Lamb, “Neural networks models for analyzing

magic: The gathering cards,” in 25th International Conference on Neural

Information Processing, ICONIP, 2018, pp. 227–239.
[6] K. Gold, “Why games must be more than fair: Random walks, long

leads, and tools to encourage close games,” 2010.
[7] E. Ham, “Rarity and power: balance in collectible object games,” Game

Studies, vol. 10, 2010.
[8] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

computation, vol. 9, no. 8, pp. 1735–1780, 1997.
[9] T. Pimentel, A. Veloso, and N. Ziviani, “Unsupervised and scalable

algorithm for learning node representations,” International Conference

on Learning Representations, 2017.
[10] T. Pimentel, A. A. Veloso, and N. Ziviani, “Fast node embeddings:

Learning ego-centric representations,” in 6th International Conference

on Learning Representations, 2018.
[11] R. Schapire, “The strength of weak learnability,” Machine learning,

vol. 5, no. 2, pp. 197–227, 1990.
[12] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in

22nd SIGKDD International Conference on Knowledge Discovery and

Data Mining, 2016, pp. 785–794.
[13] L. S. Shapley, “A value for n-person games,” Contributions to the Theory

of Games, vol. 2, no. 28, pp. 307–317, 1953.
[14] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model

predictions,” in Advances in Neural Information Processing Systems,
2017, pp. 4765–4774.

[15] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in Advances in Neural Information Processing Systems, 2013,
pp. 3111–3119.

[16] G. L. Zuin, L. Chaimowicz, and A. Veloso, “Learning transferable
features for open-domain question answering,” in 2018 International

Joint Conference on Neural Networks, IJCNN, 2018, pp. 1–8.
[17] T. Sakai, “Statistical reform in information retrieval?” SIGIR Forum,

vol. 48, no. 1, pp. 3–12, 2014.
[18] L. Bottou, “Large-scale machine learning with stochastic gradient de-

scent,” in International Conference on Computational Statistics, 2010,
pp. 177–186.

[19] T. Falcão and D. Marques, “Pagando para vencer, parte 2: Serialização,
power creep e capitalismo tardio em hearthstone,” in 41◦ Congresso

Brasileiro de Ciências da Comunicação. Intercom, 2018.
[20] M. Rosewater, “Pie fights.” Wizards of the Coast, Renton,

Washington, US, 2016, accessed on 22-March-2019. [On-
line]. Available: https://magic.wizards.com/en/articles/archive/making-
magic/pie-fights-2016-11-14

[21] C. E. Shannon, “A mathematical theory of communication,” Bell system

technical journal, vol. 27, no. 3, pp. 379–423, 1948.


