Learning to Rank at Query-Time using Association Rules:

Adriano Veloso, Humberto M. Almeida, Marcos Gongalves, Wagner Meira Jr.
Computer Science Dept
Federal University of Minas Gerais
] Belo Horizonte, Brazil
{adrianov, hmossri, mgoncalv, meira}@dcc.ufmg.br

ABSTRACT

Some applications have to present their results in the form of
ranked lists. This is the case of many information retrieval
applications, in which documents must be sorted according
to their relevance to a given query. This has led the in-
terest of the information retrieval community in methods
that automatically learn effective ranking functions. In this
paper we propose a novel method which uncovers patterns
(or rules) in the training data associating features of the
document with its relevance to the query, and then uses
the discovered rules to rank documents. To address typical
problems that are inherent to the utilization of association
rules (such as missing rules and rule explosion), the pro-
posed method generates rules on a demand-driven basis, at
query-time. The result is an extremely fast and effective
ranking method. We conducted a systematic evaluation of
the proposed method using the LETOR benchmark collec-
tions. We show that generating rules on a demand-driven
basis can boost ranking performance, providing gains rang-
ing from 12% to 123%, outperforming the state-of-the-art
methods that learn to rank, with no need of time-consuming
and laborious pre-processing. As a highlight, we also show
that additional information, such as query terms, can make
the generated rules more discriminative, further improving
ranking performance.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Information
Search and Retrieval; 1.2.6 [Artificial Intelligence|: Learn-
ing to Rank

General Terms

Algorithms, Experimentation

*This research was sponsored by UOL (www.uol.com.br)
through its UOL Bolsa Pesquisa program, process num-
ber 20080131200100, and partially supported by CNPq,
CAPES, Finep, and Fapemig.

Permission to make digital or hard copies of all or part of tiork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyooiherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SIGIR 08, July 20-24, 2008, Singapore.

Copyright 2008 ACM 978-1-60558-164-4/08/07 ...$5.00.

1. INTRODUCTION

The interest in ranking models, paradigms, and functions
is not new, and is still an important research topic in many
fields. In Information Retrieval, where often, documents
must be sorted according to their relevance to a given query,
ranking is paramount since it directly affects retrieval qual-
ity. Several empirical ranking methods such as boolean mod-
els, vector space models and probabilistic models have been
proposed in the literature [3]. Due to the difficulty in empir-
ically tuning the parameters of the ranking functions that
are obtained from the above methods, state-of-the-art search
engines are recently adopting alternate methods which are
derived from machine learning techniques. These methods
automatically learn effective ranking functions and are re-
garded as learning to rank methods [22].

The task of learning to rank in information retrieval is
defined as follows. We have as input the training data (re-
ferred as D), which consists of a set of records of the form
< q,d,r >, where q is a query (represented as a list of terms
{t1,t2,...,tn}), dis a document (represented as a list of fea-
tures {fi, f2,..., fm}), and r is the relevance of d to q. The
relevance draws its values from a discrete set of possibilities
(e.g., 0, 1 and 2). The training data is used to construct a
model which relates features of the documents to their cor-
responding relevance. The test set (referred as 7) consists
of records < q,d,? > for which only the query ¢ and the
document d are known, while the relevance of d to ¢ is un-
known. The model learned from the training data is used
to produce an estimation or likelihood of relevance of such
documents to the corresponding queries, which can be used
to generate a final ranking.

Several learning to rank methods have already been pro-
posed. They usually rely on techniques such as neural net-
works [4], genetic programming [10] and support vector ma-
chines [14, 25] to learn the ranking model. In this paper we
propose an alternative to such methods, which is based on
the utilization of association rules [1]. Instead of optimizing
a specific target measure (i.e., MAP, NDCG or precision) the
proposed method generates a model, R, composed of rules
of the form f; N...N fi — r, which describe the training
data by means of feature-relevance associations. These rules
can contain any mixture of the available features in the an-
tecedent and a relevance level in the consequent. Once the
model is built, the rules composing it are directly used to
estimate the relevance of documents in the test set.

The search space for rules is huge, and thus, computa-
tional cost restrictions must be imposed during model gen-
eration. Typically, a minimum support threshold (o.min) is

employed in order to select the most frequent rules to com-
pose the model (i.e., rules occurring at least opmin times in
the training data). This strategy, although simple, has some
problems. If o, is set too low, a large number of rules will
be generated, and often most of these rules are useless for
ranking documents in the test set (representing a wastage
of computational resources). Otherwise, if omin is set too
high, some important rules will not be included in R, caus-
ing problems if some documents in the test set contain rare
features. Usually, there is no optimal value for opin, that is,
there is no single value that ensures that only rules useful for
ranking are included in R, while at the same time important
rules are not missed. The proposed method deals with this
problem by generating rules on a demand-driven basis, that
is, the model generation process is delayed until a query is
performed and the retrieved documents are informed. Then,
several document-specific models, R4, are quickly generated
at query-time, using an efficient rule caching mechanism.
Since each model is specifically generated to rank document
d, only useful rules are included in R4. Also, the chance of
missing important rules for ranking document d is drasti-
cally reduced, potentially increasing ranking performance.

Further improvements are still possible by enabling the
use of additional information while generating the rules,
namely the query terms. In this case, the proposed method
generates a specific model, RY, for each query/document
pair. This model is composed of rules of the form ¢, N...N
gy N fiN...N fi — r. This information may turn the gen-
erated rules more discriminative and accurate.

To evaluate the effectiveness of the proposed method, we
performed a systematic set of experiments using the LETOR
benchmark collections (OHSUMED, TD2004, and TD2003)
and several evaluation measures (MAP, NDCG and preci-
sion). The results show that the proposed method is able
to outperform all state-of-the-art learning to rank methods,
with gains in MAP ranging from 12% to 123%. Ranking per-
formance is improved even further if query terms are used
during rule generation, indicating that this information is
valuable for ranking documents. Furthermore, the proposed
method is extremely fast, being able to assign a rank value
to a document in roughly 0.0007 seconds, demonstrating the
feasibility of learning to rank at query-time.

2. RELATED WORK

Several methods have been proposed on how to compose
a ranking function for information retrieval. Zobel and Mof-
fat, for example, presented more than one million possibili-
ties to compute such functions [27]. Those possibilities take
into account essentially a small number of features, such as
term frequency, inverse document frequency, and document
normalizations. Due to the growth in volume and popularity
of the Web throughout the last decade, extra features have
been proposed for improving retrieval, including those rela-
tive to the document structure (e.g. title, anchor text, and
URL) and features concerning the importance of a document
based on link analysis (e.g., Page Rank, HITS authority and
hub). Thus, learning to rank methods that consider and
combine all sorts of features for effective document retrieval
and automatic ranking have become a topic of interest.

Several methods based on machine learning techniques [19]
have been proposed and applied for learning to rank in in-
formation retrieval. According to Cao et al. [5, 6], the cur-
rent methods fall into three categories: (i) point-wise, (ii)

pair-wise and (iii) list-wise approaches. In the point-wise
approach [7, 20], each training example is composed of a
set of document features and its corresponding rank relative
to a query. The learning process tries to map features into
ranks. In the pair-wise approach [4, 5, 12, 13, 14, 15, 21, 23],
each training example is composed of pairs of instances and
the preference relation among them. In this case, the goal
is to classify each pair into correctly or incorrectly ranked
categories. Finally, in the list-wise approach [6, 24, 25], a
list of documents are used as training instances. A ranking
function is learned, and then used to sort documents.

Nallapati [20] proposed a formalization of the ranking task
as a binary classification problem (i.e. documents are as-
signed as relevant or irrelevant), exploring the use of clas-
sifiers such as SVM and Maximum Entropy. Gao et al [13]
proposed a discriminative model for ranking (LDM) to op-
timize average precision. Herbrich et al. [14] proposed the
Ranking SVM method, which is based on the pair-wise ap-
proach. Joachims also applied SVM for learning ranking
functions using click-through data for training [15]. Other
approaches based on SVM include [5, 21, 25]. Burges et al.
[4] proposed RankNet, which is based on neural networks.
Tsai et al. [23] extended RankNet by proposing a fidelity loss
function on the basis of the probabilistic ranking framework.
Freund et. al [12] proposed RankBoost, a boosting approach
for combining preferences. Another boosting-based method
is presented in [24].

Other methods to discover ranking functions are based
on genetic programming (GP) [16]. Fan et al. have pro-
posed several approaches for discovering ranking functions
using GP. In [8, 9] a method to automatically generate term-
weighting schemes for different contexts (e.g., collections and
users) was proposed. The work in [22] presented another GP
approach, based on statistical information of the collection,
documents, and queries. A combined component approach
(CCA) for generating ranking functions was proposed in [2].

The method proposed in this paper uses a different strat-
egy to generate ranking models. Instead of optimizing a
target measure, the proposed method simply constructs a
model which describes the training data using association
rules. Then, the generated rules are used to estimate the
relevance of documents in the test set. To avoid a combina-
torial explosion, the method generates rules on a demand-
driven basis, at query-time. As a result, only necessary rules
are generated, making the method fast. By learning to rank
at query-time, the proposed method can also use more spe-
cific information, such as query terms, further improving
ranking performance. The method is intuitive (easily un-
derstood using a set of illustrative examples), but is also
extremely effective, as will be shown in the experiments.

3. RANKING USING ASSOCIATION RULES

In this section we present a novel ranking method based
on association rules. We start by defining association rules,
and then we describe how these rules are used for estimating
the relevance of documents and generating a ranking.

3.1 Association Rules

Association rules are patterns describing implications of
the form X —), where X is the antecedent of the rule, and
Y is its the consequent. Association rules were initially used
for market basket analysis [1], however, more recently they
were successfully used in classification tasks [17].

Retrieved
Query Documents Relevance

id | PageRank BM25 tf
I | [0.850.02] [0.36-0.55] [0.23-0.27] 1
federal grant programs | 2 | [0.74-0.84] [0.36-0.55] [0.46-0.61] 1
3 | [0.51-0.64 0.56-0.70 0.23-0.27 0
Training 4] 10.74-0.84 0.36-0.55 0.28-0.45 0
Data scholarship programs | 5 | [0.65-0.73] [0.56-0.70] [0.46-0.61] 1
6 | 0.93-1.00 0.36-0.55 0.62-0.76 0
7 0.74-0.84 0.22-0.35 0.12-0.22 0
international trade 8 | [0.65-0.73] [0.56-0.70] [0.46-0.61] 0
9 | [0.85-0.92 [0.71-0.80] [0.46-0.61] 1
10 | [0.85-0.02] [0.56-0.70] [0.46-0.61] 1
Test Set | after-school programs | 11 | [0.51-0.64] [0.36-0.55] [0.28-0.45] 0
12 | [0.34-0.50] [0.22-0.35] [0.46-0.61] 1

Table 1: Queries, Documents and Relevance.

For sake of ranking, we are primarily interested in using
the training data, D, to map features to relevance levels. In
this case, rules have the form X — 7;, where the antecedent
of the rule is a set of features and the consequent is a rele-
vance level. Two measures are used to quantify the quality
of a rule. The support of X — r;, referred as o(X — 1), is
the fraction of examples in D containing features X and rel-
evance r;. The confidence of X — r;, referred as (X — r;),
is the conditional probability of r; given X. To ensure that
the rule represents a strong implication between X and r;,
a minimum confidence threshold (6min) is employed during
rule generation. Also, to avoid a combinatorial explosion
while generating the rules, a minimum support threshold
(o0min) is employed, so that only frequent rules are gener-
ated. There are several efficient algorithms for rule genera-
tion following the support/confidence paradigm [1, 26].

Consider the collection shown in Table 1, used as a run-
ning example in this paper. There are three queries in the
training data, and one query in the test set. For each query
there are three retrieved documents, and each document is
represented by three features — PageRank, BM25 and tf
(which were normalized and discretized). Thus, there are
nine examples in the training data, and three documents in
the test set. Let omin = 0.2 and 0min, = 0.67. In this case,
the following rule-set (or model), R, is generated:

1. PageRank=[0.85-0.92]— r=1 (6=1.00)
2. PageRank=[0.74-0.84]— r=0 (6=0.67)
3. BM25=[0.56-0.70]— r=0 (4=0.67)

4. tf=[0.46-0.61]— r=1 (0=0.75)

Now, suppose we want to assign a rank to document 10 in
the test set using R. Rule 2 is not applicable to document
10, because the feature in its antecedent (PageRank=[0.74-
0.84]) is not present in document 10. Let Rq be the set of
all rules in R that are applicable to document d. A naive
strategy would be to select the rule with highest 6 value in
Ra, and apply the consequent of the selected rule as the pre-
dicted relevance level. One major problem with this strategy
is that it neglects all evidence coming from the other rules in
Raq. An alternative is to use all rules in R4 to estimate the
relevance of document d. This strategy has the advantage
of using all available evidence in R4, potentially providing
a better rank estimation.

3.2 Relevance Estimation

As previously discussed, in order to better estimate the
relevance of a document d, it is necessary to combine all
rules in R4. Our strategy is to interpret R4 as a poll, in
which each rule X — r; € R4 is a vote given by evidence
X for relevance 7;. Votes have different weights, depend-
ing on the confidence of the corresponding rules (rules with
higher 6 values weight more heavily). The weighted votes
for relevance r; are summed and then averaged (by the total
number of rules in R4 that predict relevance r;), forming the
score associated with relevance r;, as shown in Equation 1:

Z (X —r;)

X—r,€Ry

S(Ti) = | Ra | . (1)

Therefore, for a document d, the score associated with
relevance r; is given by the average confidence of the rules
predicting r; € Rq. Finally, the rank of d is estimated by a
linear combination of the normalized scores associated with
each relevance, as shown in Equation 2:

k
rank = Zri X ks(;z) (2)
i=0 Zj:o s(r;)

The value of rank is an estimation of the true relevance
of document d using rules in R4, and ranges from r¢ to r,
where 7o is the lowest relevance and 7y is the highest one.

The main steps of relevance estimation using association
rules are shown in Algorithm 1. To illustrate how this
method works, suppose again that we want to rank docu-
ment 10 using the rule-set shown in Section 3.1. Rules 1 and
4 predict relevance 1, while rule 3 predicts relevance 0. Thus,
according to Eq. 1, the scores associated with relevances 0
and 1 are respectively s(0)=0.67 and s(1)=1249-T5-0.87.
Now, according to Eq. 2, the rank value of document 10 is
given by 0 X 508 + 1 X 59:580-=0.56.

The next document to be ranked is document 11. How-
ever, there is no applicable rule for this document (Rg4,, =0).
In order to generate applicable rules to document 11, opin
should be lowered to 0.1, but in this case several useless rules
will also be generated. Next we will present an alternative
approach, which generates rules on a demand-driven basis,
depending on the document being ranked.

Algorithm 1 AR — R

Algorithm 2 AR — R4

Require: Examples in D and 7, thresholds omin and Omin
Ensure: A rank value rank for each document d € 7

1: R < rules extracted from D | ¢ > omin, 0 > Omin
2: for all pair (d,q) € 7 do
33 Ra<ruesX —>rinR|XCd

4: foralli|0<i<kdo
Z 0(X — 1)
5: s(ry) < XﬁriER‘”’kd‘ (i.e., Eq. 1)
6: end for
7 rank <0
8 foralli|0<i<kdo
9: rank < rank +r; x % (i.e., Eq. 2)
7=0 J
10: end for
11: end for

4. LEARNING TO RANK AT QUERY-TIME

The method presented in the previous section may not
perform well on complex search spaces, such as the ones
observed in learning to rank problems. This is because it
generates rules before documents to be ranked are known,
and the difficulty in this case is in anticipating the rules that
will be necessary for ranking documents in the test set. The
common approach of using a single value of oy to restrict
the space for rules can be hard, since important rules may
be lost due to this absolute cut-off value.

4.1 On-Demand Rule Generation

In this section we present an alternate approach which
generates rules exactly as needed to rank a specific doc-
ument. Instead of generating a single rule-set, R, from
which non-applicable rules are then removed, the proposed
approach directly generates only applicable rules from the
training data, resulting in multiple rule-sets, where each Rq
is generated exclusively for document d in the test set.

Rule generation is delayed until a set of documents is con-
sidered for a given query in the test set. Then, each individ-
ual test document is used as a filter to remove irrelevant fea-
tures and examples from the training data, D. This process
generates a projected training data, Dy, which is focused
only on the useful examples for ranking a specific document,
d. Therefore, there is an automatic reduction of the size and
dimensionality of the training data, since useless examples
are not considered during rule generation®. As a result, for
a given value of o.,in, important rules that are not frequent
in the original training data, D, may become frequent in the
filtered /projected training data, Dg, providing a better cov-
erage of the examples 2. Since a specific rule-set is generated
for each document in the test set, in the end of the process
several different models are generated. However, the rank-
ing models that are generated from the projected training
data (Rq4) are much simpler than the model that would be
generated from the entire training data (R).

! An example e € D is useless for ranking d if e Nd=0. That
is, the example e is useless for ranking document d if e does
not share any feature with d, since, in this case, no rule
generated from e will be applicable to d.

?Note that the cut-off value (which iS OminX | Da |) may
change according to the size of Dy. Thus, different docu-
ments may imply in different cut-off values.

Require: Examples in D and 7, thresholds omin and Omin
Ensure: A rank value rank for each document d € 7

1: for all pair (d,q) € T
2: Dy < D after projected according to d
3: Rg < rules extracted from Dy | 0 > Omin, 0 > Omin

The main steps of learning to rank at query time are shown
in Algorithm 2 (please note that steps 4 to 11 are identical
to those shown in Algorithm 1, and thus, they were omit-
ted in Algorithm 2). To facilitate the understanding of how
this method works, let’s consider again the example in Ta-
ble 1. Suppose that we want to rank document 11. The first
step is to project the training data based on the features of
document 11, forming Dy, ,, which is shown in Table 2. As
can be seen, only five (out of nine) examples contain useful
information for ranking document 11. From Dg,,, and for
0min=0.2 and 0,,;,=0.67, only two rules are found:

1. BM25=(0.36-0.55]N¢f=[0.28-0.45]— =0 (6=1.00)
2. PageRank=[0.51-0.64]— r=0 (6 =1.00)

Both rules are applicable to document 11, since they were
generated from Dg,,. Also, both rules predict relevance 0,
and thus, according to Equation 1, s(0)=124190—1.00 and
s(1)=0. Finally, according to Equation 2, the rank value of
document 11 is given by 0 x —=90__ 4 1 x 900 ___q .

1.00+0.00 1.00+0.00
Retrieved
Documents Relevance
id | PageRank BM?25 tf
1 — [0.36-0.55] — 1
2 - [0.36-0.55] - 1
3 | [0.51-0.64] — — 0
4 — [0.36-0.55] [0.28-0.45] 0
5 - - — 1
6 — [0.36-0.55] — 0
7 — — - 0
8 — — — 0
9 - - — 1
| 11 | [0.51-0.64] [0.36-0.55] [0.28-0.45] | 0 |

Table 2: Training Data after being projected accord-
ing to Document 11 (i.e., Dq,,).

Thus, generating rules on a demand-driven basis has three
main advantages. First, only useful rules are generated. Sec-
ond, necessary rules are more likely to be included in the
ranking model (since multiple cut-off values are employed),
and third, there is an automatic reduction in size and di-
mensionality of the training data (making rule generation
faster).

4.2 Caching Common Rules

Processing a rule has a significant computational cost,
since this process involves accessing the training data multi-
ple times. Different documents may need different rule-sets
(models), but different rule-sets may share common rules. In
this case, caching is effective in reducing work replication.

Algorithm 3 AR — R}

Require: Examples in D and 7, thresholds omin and Omin
Ensure: A rank value rank for each document d € 7

1: for all pair (d,q) € T
2: DI < D after projected according to {d U ¢}
3: RY < rules extracted from DY | 6 > omin, 0 > Omin
4 foralli |0<i<k
Z 0(X — ry)
X—r;eRY
IR

o

s(ri) <
6: end for

Our cache is a pool of entries, and it stores rules of the
form X — r;. Each entry has the form <key, data>, where
key={X,r;} and data={c(X — r;),0(X — r;)}. Our im-
plementation stores all cached rules in main memory. Before
generating a rule X — r;, the proposed method first checks
whether this rule is already in the cache. If an entry is found
with a key matching {X,r;}, the rule in the cache entry is
used instead of generating it. If it is not found, the rule is
generated and then it is inserted into the cache.

When the cache is full, some rules have to be discarded
to make room for other ones. The replacement heuristic is
based on the support of rules. Specifically, the least frequent
rule in the cache is the first to be discarded. There are two
reasons to adopt this heuristic. First, the more frequent a
rule is, the higher is the chance of using it later. Second,
the cost associated with generating more frequent rules is
higher than the cost associated with less frequent ones. We
show empirically that caching rules is extremely effective.

4.3 Further Improvements

So far we presented methods that explore only document
features while generating rules. In this section we show how
to enhance the quality of rules by using an additional ev-
idence — the query terms. The basic idea is to explore
potential associations between query terms and features in
order to make rules more discriminative by including query
terms in their antecedents. The main steps of this method
are shown in Algorithm 3 (please note that steps 7 to 11
are identical to those shown in Algorithm 1, and thus, they
were omitted in Algorithm 3). To illustrate how it works,
please consider again the example shown in Table 1, and
suppose we want to rank document 12 (with opmin=0.2 and
0min=0.67). After projecting D according to document 12
(D4,), the following rules are found:

1. BM25=[0.22-0.35]— r=0 (=1.00)
2. tf=[0.46-0.61]— r=1 (6=0.75)

Applying Equations 1 and 2, the rank value for document
12 is 0.43. If we allow the rules to also contain query terms,
then an additional rule is also found from Dj ,:

e term=programsNif=[0.46-0.61]— r=1 (6=1.00)

Now, applying Equations 1 and 2, the rank value increases
to 0.47. In some cases, query terms can be a valuable infor-
mation for ranking, as we will show in the next section.

5. EXPERIMENTAL EVALUATION

In this section we present the experimental results for the
evaluation of the proposed methods in terms of classification
effectiveness and computational efficiency. Our evaluation
is based on a comparison against current state-of-the-art
methods for learning to rank. We first present the collec-
tions employed in the evaluation, and then we discuss the
effectiveness of the proposed methods in these collections.

5.1 The LETOR Benchmark

LETOR [18] is a benchmark for research on learning to
rank, released by Microsoft Research Asia®. LETOR makes
available a package composed of three subset (OHSUMED,
TD2003, and TD2004), evaluation tools and several baseline
evaluation results (such as Ranking SVM [14], RankBoost
[12], AdaRank [24], FRank [23], ListNet [6], and MHR [21]).
To evaluate the performance of the proposed methods against
these baselines, we used NDCG@n, P@n, and MAP mea-
sures. Pre-processing involved only normalization and dis-
cretization [11] of features in the training data.

Each subset contains a set of queries, features for query-
document pairs, and the corresponding relevance judgments.
Features cover a wide range of properties, such as term
frequency, BM25, PageRank, HITS etc. In order to con-
duct five-fold cross validation, each subset is arranged in
five folds, including training, validation and test data.

The OHSUMED collection is a subset of MEDLINE that
is a database on medical publications. OHSUMED has 106
queries. For each query is associated a number of documents
and their respective relevance degree with respect to the
query (i.e. definitely, possibly, or not relevant). In LETOR,
there are a total of 16,140 query-document pairs with rele-
vance judgments, and 25 extracted features.

The TD2003 and TD2004 subsets were obtained from
TREC 2003 and TREC 2004 collections (topic distillation
tasks). There are 1,053,110 html documents and 11,164,829
hyperlinks. There are 50 and 75 queries for TD2003 and
TD2004 respectively, and a total of 44 extracted features,
including low-level and high-level content features, hyper-
link features, and hybrid features. Relevance judgment for
each query-document pair can be relevant or not relevant.

5.2 Ranking Performance

We start our analysis by evaluating the retrieval qual-
ity of the proposed methods, referred hereafter as AR (R),
AR (R4), and AR (RY), which were described in Algo-
rithms 1, 2 and 3, respectively. We used the validation set
to obtain omin and @min values, which were set to 0.001 and
0.25, respectively. Tables 3, 4 and 5 show MAP numbers
for OHSUMED, TD2003 and TD2004 subsets, respectively.
The result for each trial is obtained by averaging partial re-
sults obtained from each query in the trial. The final result
is obtained by averaging the five trials. Improvements of the
proposed methods over the best baseline are highlighted in
bold. We conducted two sets of significance tests (t-test) on
these improvements for each subset. The first set of signifi-
cance tests was carried on the average of the results for each
query. The second set of significance tests was carried on
the average of the five trials. The values between parenthe-
sis are the p-values corresponding to the comparison with
the most competitive baseline in each subset.

3 Available at http://research.microsoft.com /users/LETOR,/

AR Ranking | RankBoost | FRank | ListNet AdaRank MHR

Trial R Ra Ry SVM MAP NDCG
1 0.355 (0.15) 0.379 (0.06) 0.379 (0.06) 0.334 0.340 0.345 0.346 0.341 0.348 0.329
2 0.452 (0.37) 0.463 (0.10) 0.475 (0.03) 0.451 0.447 0.461 0.450 0.449 0.450 0.443
3 0.445 (0.90) 0.453 (0.82) 0.469 (0.46) 0.460 0.446 0.449 0.467 0.458 0.457 0.456
4 | 0512 (0.80) 0.518 (0.44) 0.525 (0.27) | 0.511 0.506 0515 | 0517 | 0507 0509 | 0.502
5 0.457 (0.77) 0.472 (0.37) 0.472 (0.38) 0.480 0.464 0.463 0.468 0.454 0.447 0.471
Avg | 0.444 (0.18) 0.457 (0.18) 0.464 (0.04) | 0.447 0.440 0.446 | 0440 | 0.442 0442 | 0.440
Overall Improvements obtained by AR (R) -0.67% 0.91% -0.45% | -1.11% | 0.45% 0.45% [0.91%
Overall Improvements obtained by AR (R4) 2.24% 3.86% 247% | 1.78% | 3.39% 3.38% | 3.86%
Overall Improvements obtained by AR (RY) 3.80% 5.45% 4.04% | 3.34% | 4.98% 4.98% | 5.45%

Table 3: MAP Numbers for OHSUMED subset.

For all subsets, the best overall results were always ob-
tained by AR (RY). This result is important, since it shows
the great value of using query-specific information for sake
of ranking. However, this additional information (i.e., query
terms) used during model generation, makes unfair a direct
comparison of AR (RY) to other methods that do not use
this information. So, next we only compare the results ob-
tained by AR (R) and AR (R4) to the baseline results.

As can be seen in Table 3, all methods showed competitive
results in the OHSUMED subset. The worst overall result
was obtained by RankBoost (0.440), while the best result
was obtained by AR (Rgq) (0.457). The main reason for
so much competitiveness is that OHSUMED contains only
few features, which are extracted basically from textual evi-
dence, reducing the possibilities of improvements. Still, AR
(R4) showed improvements (relative to the best baseline,
which in this case was ListNet) in 4 trials, while AR (R)
showed improvements only in the first two trials. The differ-
ence in ranking performance between AR (R) and AR (Rq)
is mainly due to the missing rule problem, which happens
when there is not a sufficient number of rules to be applied
for some documents in the test set. This problem does not
occur with AR (Rg4), which generates rules on a demand-
driven basis, according to the need of the document being
ranked. Similarly, we believe that other methods may also
suffer from insufficient evidence during model generation,
explaining the best performance obtained by AR (Rq).

For TD2003, ListNet was again, the most competitive
baseline. As shown in Table 4, AR (Rg4) showed improve-
ments in 3 trials, specially in the first one. The overall im-
provement ranges from 12% (relative to ListNet) to 123%
(relative to AdaRank.MAP). In contrast to OHSUMED,
TD2003 contains more and diverse features, making possible
the achievement of more significant improvements.

For TD2004, the most competitive baseline was Rank-
Boost. As shown in Table 5, AR (R4) showed improvements
in the first three trials, specially in the first one. Again,
AR (R4) showed the best overall results, with overall im-
provements ranging from 2.35% (relative to RankBoost) to
31.10% (relative to AdaRank.NDCG).

The next set of experiments evaluates the effectiveness of
AR (R), AR (Rg4) and AR(RY), in terms of NDCG and
precision. Figure 1 shows NDCG and precision numbers ob-
tained from the execution of the evaluated methods. Again,
AR (RY) showed to be the best performer, but we will use
AR (Rga) to make a more fair comparison with the baselines.

For OHSUMED and TD2004, the results are very com-
petitive, specially in terms of precision. In terms of NDCG,

AR (Rg4) was able to provide a slight overall improvement
over the baselines. Again, impressive improvements were
obtained using the TD2003 subset. In terms of NDCG, im-
provements range from 17.30% (relative to Ranking SVM)
to 134.61% (relative to AdaRank.NDCG). In terms of pre-
cision, improvements range from 15.38% (relative to Rank-
Boost) to 130.67% (relative to AdaRank.NDCG).

5.3 Computational Efficiency

The computational efficiency of methods that learn to
rank at query-time — AR (Rq4) and AR (RY) — was evalu-
ated through the total execution time, that is, the processing
time spent in generating rules and ranking all documents in
the test set. The experiments were performed on a Linux-
based PC with a Intel Pentium III 1.0 GHz processor and
1.0 GBytes RAM. Figure 2 (left) depicts the times obtained
from the execution of AR (Rg4) for different cache sizes.
We varied the cache size from 0 to 150MB, and for each
storage capacity we obtained the corresponding execution
time. Clearly, execution time is very sensitive to cache size.
Caches as large as 150MB are able to store all rules with
no need of replacement, being the best configuration. In
the OHSUMED subset, times varied from 243 to 11 seconds
(corresponding to an average of 0.10 seconds per query). In
the TD2003 subset, times varied from 17,504 to 53 seconds
(an average of 0.94 seconds per query). But the most impres-
sive result was obtained in the TD2004 subset, where times
of AR (Rgq) varied from 38,176 to only 102 seconds (an aver-
age of 1.36 seconds per query), an improvement of more than
two orders of magnitude, showing that caching is extremely
effective, and makes feasible learning to rank at query-time.
The reason for the excellent caching performance is depicted
in Figure 2 (right), which shows the fraction of documents
demanding a specific rule k. For instance, the first rule in
the x-axis was demanded for all documents in the test set.
That is, the first rule appears in all rule-sets generated by
AR (R4). Similarly, other rules appear frequently in differ-
ent rule-sets, indicating that a large fraction of documents
in the test set demands rules in common. Since these rules
are cached, execution time is greatly reduced.

We have shown in Section 5.2 that query terms are valu-
able for ranking, since the best performance was always ob-
tained by AR (R%). By repeating the previous experiment
with varying cache sizes, but now using AR (RY), we also
observed that exploring query terms during rule generation
does not incur in serious overhead. The increase in execution
times varies from only 0.9% (TD2004) to 2.2% (TD2003),
when query terms are used during rule generation.

AR Ranking | RankBoost | FRank | ListNet AdaRank
Trial R Ra RY SVM MAP NDCG
1 0.276 (0.18) 0.276 (0.18) 0.293 (0.14) 0.148 0.144 0.160 0.179 0.205 0.220
2 0.289 (0.38) 0.289 (0.38) 0.300 (0.32) 0.270 0.257 0.299 0.271 0.134 0.134
3 0.340 (0.34) 0.340 (0.34) 0.401 (0.30) 0.377 0.217 0.306 0.365 0.049 0.049
4 0.266 (0.89) 0.289 (0.58) 0.324 (0.37) 0.224 0.252 0.265 0.300 0.189 0.189
5 0.222 (0.68) 0.278 (0.35) 0.295 (0.27) 0.263 0.191 0.195 0.250 0.110 0.333
Avg | 0.291 (0.25) 0.306 (0.07) 0.324 (0.02) 0.256 0.212 0.245 0.273 0.137 0.185
Overall Improvements obtained by AR (R) 13.67% 37.26% 18.77% | 6.59% | 112.41% 57.30%
Overall Improvements obtained by AR (R4) 19.53% 44.34% 24.90% | 12.09% | 123.36% 65.40%
Overall Improvements obtained by AR (R%) 26.56% 52.83% 32.24% | 18.68% | 136.50% 75.13%
Table 4: MAP Numbers for TD2003 Subset.
AR Ranking | RankBoost | FRank | ListNet AdaRank
Trial R Ra R; SVM MAP NDCG
1 0.428 (0.44) 0.495 (0.09) 0.527 (0.07) 0.410 0.413 0.435 0.403 0.390 0.391
2 0.314 (0.67) 0.353 (0.37) 0.378 (0.30) 0.307 0.340 0.363 0.342 0.223 0.200
3 0.374 (0.85) 0.478 (0.26) 0.477 (0.25) 0.426 0.440 0.452 0.435 0.407 0.391
4 0.315 (0.65) 0.315 (0.55) 0.314 (0.68) 0.252 0.347 0.278 0.321 0.289 0.260
5 0.311 (0.82) 0.318 (0.46) 0.319 (0.90) 0.358 0.378 0.376 0.359 0.243 0.250
Avg | 0.349 (0.04) 0.392 (0.32) 0.403 (0.23) | 0.350 0.383 0381 | 0.372 | 0.331 0.299
Overall Improvements obtained by AR (R) -0.29% -8.88% -8.40% | -6.18% | 5.44% 16.72%
Overall Improvements obtained by AR (R4) 12.00% 2.35% 2.89% | 5.37% | 18.43% 31.10%
Overall Improvements obtained by AR (RY) 15.14% 5.22% 5.77% | 8.33% | 21.75% 34.78%
Table 5: MAP Numbers for TD2004 Subset.
OHSUMED OHSUMED
075 ' AR (R) 0.75 ' AR (R)
L AR (Rd) i AR (R,d)
07 B AR(Rgd) B AR(Rqd)
RankingSVM 07 B [RankingSVM
0.651 [1 RankBoost 1 e RankBoost
O L B e 18 L E Moo
8 0.6 0 Acerankine 2 0.65 F 0 pasrankie
Z 055F Rt I sé i
o S
0.5 ; 1 06 ;é
045} 1 0.55F EE
04 NZENEE:
@1
08f | R | 2R,
B AR(Rqd) B AR(Rgd)
o7y roe | 0 B e
L FRanl 10 FRan
§ 06 5 E /Lxlg‘a’\és:nk MAP g 051 E ;‘;‘a";{ea‘nk.MAP
> 0.5 . sé»; B g-j ol4 L E ; H AdaRank.NDCG
il . 1oos
03 v 02f v v
0.2
@2 @3
TD2004
006'; ! AR fz)d) 0'062 ! AR E‘R)d)
651 & & R il or 8 MR Rad)
06f e e
o 055F B FRank _ 5 051 S B FRank
(@] L E /Lxlg‘a’\és:nk MAP 12 0.45r E E ;‘;‘a";{ea‘nk.MAP
o 0.5 B AdaRank.NDCG g 04+ E £ g AdaRank.NDCG
< 045) 18 o3k o
04r q 0.3F E
0.35¢] 0.25F i
0.3 0.2 =
@1

Figure 1: NDCG and Precision Numbers for OHSUMED, TD2003 and TD2004 Subsets.

100000

OHSUMED ——
TD2003
TD2004

w000 01

0.01
1000
0.001

Execution Time (sec)
Fraction of Documents

0.0001 OHSUMED ——
TD2003 -

TD2004
10 e 1605 h ; . .

0 20 40 60 80 100 120 140 1 10 100 1000 10000 100000
Cache Size (MB) k

Figure 2: Left — Effect of Caching in Exec. Time.
Right — Fraction of Documents demanding Rule k.

6. CONCLUSIONS AND FUTURE WORK

In this paper we propose and evaluate novel methods that
learn to rank. The proposed methods introduce interest-
ing innovations, such as the use of association rules and the
ability to learn ranking models at query-time (enabling the
better use of more discriminative information, such as query
terms). By generating rules on a demand-driven basis, de-
pending on the documents to be ranked, only the necessary
information is extracted from the training data, resulting in
fast and effective ranking methods. Experimental results,
obtained using the LETOR benchmark, indicate that meth-
ods that learn to rank at query-time outperform the state-of-
the-art methods. The results also suggest that query terms
are valuable information for sake of ranking. The running
times of the proposed methods, which are able to rank a doc-
ument in roughly 0.0007 seconds, is also worth mentioning,
and makes feasible learning ranking models at query-time.

As future work, we intend to improve performance in two
directions: (i) by combining the results obtained by multiple
methods, and (ii) by exploring other query-specific informa-
tion, such as query type (navigational, transactional etc.).

7. REFERENCES

[1] R. Agrawal, T. Imielinski, and A. Swami. Mining
association rules between sets of items in large
databases. In Proc. of the SIGMOD Conf., pages
207-216. ACM, 1993.

[2] H. Almeida, M. Gongalves, M. Cristo, and P. Calado.
A combined component approach for finding
collection-adapted ranking functions based on genetic
programming. In Proc. of the SIGIR Conf., pages
399-406. ACM, 2007.

[3] R. Baeza-Yates and B. R-Neto. Modern Information
Retrieval. Addison-Wesley-Longman, 1999.

[4] C. Burges, T. Shaked, E. Renshaw, A. Lazier,

M. Deeds, N. Hamilton, and G. Hullender. Learning to
rank using gradient descent. In Proc. of the ICML,
pages 89-96. ACM, 2005.

[5] Y. Cao, J. Xu, T. Liu, H. Li, Y. Huang, and H. Hon.
Adapting ranking SVM to document retrieval. In
Proc. of the SIGIR Conf., pages 186-193. ACM, 2006.

[6] Z. Cao, T. Qin, T. Liu, M. Tsai, and H. Li. Learning
to rank: from pairwise approach to listwise approach.
In Proc. of the ICML, pages 129-136. ACM, 2007.

[7] K. Crammer and Y. Singer. A new family of online
algorithms for category ranking. In Proc. of the SIGIR
Conf., pages 151-158. ACM, 2002.

[8] W. Fan, M. Gordon, and P. Pathak. Personalization of
search engine services for effective retrieval and
knowledge management. In Proc. of the ICIS, pages
20-34, 2000.

[9] W. Fan, M. Gordon, and P. Pathak. Discovery of
context-specific ranking functions for effective
information retrieval using genetic programming.
TKDE, 16(4):523-527, 2004.

[10] W. Fan, M. Gordon, and P. Pathak. Genetic
programming-based discovery of ranking functions for
effective web search. J. of Management Information
Systems, 21(4):37-56, 2005.

[11] U. Fayyad and K. Irani. Multi interval discretization
of continuous-valued attributes for classification
learning. In In Proc. of the IJCAL, pages 1022-1027.
Morgan Kaufmann, 1993.

[12] Y. Freund, R. Iyer, R. Schapire, and Y. Singer. An
efficient boosting algorithm for combining preferences.
J. of Machine Learning Research, 4:933-969, 2003.

[13] J. Gao, H. Qi, X. Xia, and J. Nie. Linear discriminant
model for information retrieval. In Proc. of the SIGIR
Conf., pages 290-297. ACM, 2005.

[14] R. Herbrich, T. Graepel, and K. Obermayer. Large
margin rank boundaries for ordinal regression. MIT
Press, 2000.

[15] T. Joachims. Optimizing search engines using
clickthrough data. In Proc. of the KDD Conf., pages
133-142. ACM, 2002.

[16] J. Koza. Genetic Programming: On the programming
of computers by natural selection. MIT Press, 1992.

[17] B. Liu, W. Hsu, and Y. Ma. Integrating classification
and association rule mining. In Proc. of the KDD
Conf., pages 80-86. ACM, 1998.

(18] Y. Liu, J. Xu, T. Qin, W. Xiong, and H. Li. LETOR:
Benchmark dataset for research on learning to rank
for information retrieval. In Proc. of the Learning to
Rank Workshop in conjuntion with SIGIR, 2007.

[19] T. Mitchell. Machine Learning. McGraw Hill, 1997.

[20] R. Nallapati. Discriminative models for information
retrieval. In Proc. of the SIGIR Conf., pages 64-71.
ACM, 2004.

[21] T. Qin, X. Zhang, D. Wang, T. Liu, W. Lai, and
H. Li. Ranking with multiple hyperplanes. In Proc. of
the SIGIR Conf., pages 279-286. ACM, 2007.

[22] A. Trotman. Learning to rank. Information Retrieval,
8(3):359-381, 2005.

[23] M. Tsai, T. Liu, T. Qin, H. Chen, and W. Ma. FRank:
a ranking method with fidelity loss. In Proc of the
SIGIR Conf., pages 383-390. ACM, 2007.

[24] J. Xu and H. Li. Adarank: a boosting algorithm for
information retrieval. In Proc. of the SIGIR Conf.,
pages 391-398. ACM, 2007.

[25] Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A
support vector method for optimizing average
precision. In Proc. of the SIGIR Conf., pages 271-278.
ACM, 2007.

[26] M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li.
New algorithms for fast discovery of association rules.
In Proc. of the KDD Conf., pages 283-296, 1997.

[27] J. Zobel and A. Moffat. Exploring the similarity space.
SIGIR Forum, 32(1):453-490, 1998.

