
Mining Frequent Itemsets in Distributed and Dynamic Databases

M. E. Otey C. Wang S. Parthasarathy
Computer and Information Science Dept.

The Ohio-State University
{otey, wachao, srini}@cis.ohio-state.edu

A. Veloso W. Meira Jr.
Computer Science Dept.

Universidade Federal de Minas Gerais
{adrianov, meira}@dcc.ufmg.br

Abstract

Traditional methods for frequent itemset mining typically
assume that data is centralized and static. Such methods im-
pose excessive communication overhead when data is dis-
tributed, and they waste computational resources when data
is dynamic. In this paper we present what we believe to be
the first unified approach that overcomes these assumptions.
Our approach makes use of parallel and incremental tech-
niques to generate frequent itemsets in the presence of data
updates without examining the entire database, and imposes
minimal communication overhead when mining distributed
databases. Further, our approach is able to generate both
local and global frequent itemsets. This ability permits our
approach to identify high-contrast frequent itemsets, which
allows one to examine how the data is skewed over different
sites.

1 Introduction

Advances in computing and networking technologies
have resulted in distributed and dynamic sources of data.
A classic example of such a scenario is found in the ware-
houses of large national and multinational corporations.
Such warehouses are often composed of disjoint databases
located at different sites. Each database is continuously up-
dated with new data as transactions occur. The update rate
and ancillary properties may be unique to a given site.

A user may be interested in generating a global model of
the database, thus the sites must exchange some informa-
tion about their local models. However, the information ex-
change must be made in a way that minimizes the commu-
nication overhead. The frequency at which the global model
is updated may vary from the frequency at which each local
model is updated. Furthermore, in such a distributed sce-
nario, the user may be interested in not only knowing the
global model of the database, but also the differences (or
contrasts) between the local models.

Analyzing these distributed and dynamic databases re-
quires approaches that make proper use of the distributed re-

sources, minimize communication requirements and reduce
work replication. In this paper we present an efficient fre-
quent itemset mining approach when data is both distributed
and dynamic. The main contributions of our paper are:

1. A parallel algorithm based on the ZIGZAG incremental
approach, which is used to update the local model;

2. A distributed mining algorithm that minimizes the
communication costs for mining over a wide area net-
work, which is used to update the global model;

3. Novel interactive extensions for computing high con-
trast frequent itemsets;

4. Experimentation and validation on real databases.

Related Work. In [1] three distributed approaches were
proposed. COUNT DISTRIBUTION is a simple distributed
implementation of APRIORI. DATA DISTRIBUTION gener-
ates disjoint candidate sets on each site. CANDIDATE DIS-
TRIBUTION partitions the candidates during each iteration,
so that each site can generate disjoint candidates indepen-
dently of the other sites. [9] presents another distributed
algorithm, PARECLAT, which is based on the concept of
equivalence classes. These techniques are devised to scale
up a given algorithm (e.g., APRIORI, ECLAT, etc.). They
perform excessive communication operations and are not
efficient when data is geographically distributed.

Some effort has also been devoted to incrementally min-
ing frequent itemsets [5, 7, 8, 2, 4] in dynamic databases.
The DELI algorithm was proposed in [5]. It uses statistical
sampling methods to determine when the current model is
outdated. A similar approach [4] monitors changes in the
data stream. An efficient algorithm called ULI [7], strives
to reduce I/O requirements for updating the frequent item-
sets by maintaining the previous frequent itemsets and the
negative border along with their supports.

The rest of the paper is organized as follows. In Section 2
we describe the algorithms and novel interactive extensions.
In Section 3 we validate the algorithms through extensive
evaluation. Concluding remarks are made in Section 4.

2 Parallel, Distributed Incremental Mining

In this section we describe our parallel and distributed
incremental mining algorithms. Specifically, the idea is
that within a local domain one can resort to parallel min-
ing approaches (either within a node or within a cluster)
and across domains one can resort to distributed mining ap-
proaches (across clusters). The key distinction between the
two scenarios is the cost of communication.

Problem Definition. Let I be a set of distinct items. Let
D be a database of transactions, where each transaction has
a unique identifier (tid) and contains a set of items. A set
of exactly k items is called a k-itemset. The tidset of an
itemset C corresponds to the set of all transaction identifiers
(tids) where the itemset C occurs. The support of C, is the
number of transactions of D in which it occurs as a subset.
The itemsets that meet a user-specified minimum support
are referred to as frequent itemsets. A frequent itemset is
maximal if it is not subset of any other frequent itemset.

Using D as a starting point, a set of new transactions d+

is added forming ∆ (D ∪ d+). Let sD be the minimum
support used when mining D, and FD be the set of frequent
itemsets obtained. Let Π be the information kept from the
current mining that will be used in the next operation (in
our case, Π consists of FD). An itemset C is frequent in ∆
if its support is no less than s∆. If a frequent itemset in D
remains frequent in ∆ it is called a retained itemset.

The database ∆ can be divided into n partitions,
δ1, ..., δn. Each partition δi is assigned to a site Si. Let
C.sup and C.supi be the respective support of C in ∆
(global support) and δi (local support). Given s∆, C is
global frequent if C.sup ≥ s∆× | ∆ |; correspondingly,
C is local frequent at δi, if C.supi ≥ s∆× | δi |. The set of
all maximal global frequent itemsets is denoted as MFI∆,
and the set of maximal local frequent itemsets at δi is de-
noted as MFIδi

. The task of mining frequent itemsets in
distributed and dynamic databases is to find F∆.

The ZIGZAG Incremental Algorithm. The main idea be-
hind the algorithm is to incrementally compute MFI∆ using
Π. This avoids the generation of many unnecessary candi-
dates. Having MFI∆ is sufficient to know which itemsets
are frequent; their exact support are then obtained by ex-
amining d+ and using Π, or, where this is not possible, by
examining ∆. ZIGZAG employs a backtracking search to
find MFI∆ which is explained in [8].

The support computation is based on the associativity of
itemsets − let L(Ck) be the tidset of Ck. The support of any
itemset is obtained by intersecting the tidsets of its subsets.
To avoid replicating work done before, ZIGZAG first veri-
fies if the candidate is a retained itemset. If so, its support
can be computed by using d+ and Π.

Parallel Search for the MFI∆. The main idea of our par-
allel approach is to assign distinct backtrack trees to dis-
tinct processors. Note that there is no dependence among
the processors, because each tree corresponds to a disjoint
set of candidates. Since each processor can proceed inde-
pendently there is no synchronization while searching for
MFI∆. To achieve a suitable level of load-balancing, the
trees are assigned to the processors by using the scheme of
bitonic partitioning [3]. The bitonic scheme is a greedy al-
gorithm, which first sort all the wi (the work load due to
tree i). wi is calculated based on our ideas for estimat-
ing the number candidates using correlation measures, pre-
sented in [8]. Next it extracts the tree with maximum wi,
and assign it to processor 0. The next highest workload tree
is assigned to processor 1 and so on.

2.1 Distributed Algorithm

Lemma 1 − A global frequent itemset must be local fre-
quent in at least one partition. �

Lemma 2 −
⋃n

i=1 MFIδi
determines F∆. �

First, each site Si independently performs a parallel
and incremental search for MFIδi

, using ZIGZAG on its
database δi. After all sites finish their searches, the result
will be the set {MFIδ1

, MFIδ2
, ... , MFIδi

}. This informa-
tion is sufficient for determining all global frequent item-
sets. Next, the algorithm starts after all local MFIs were
found. Each site sends its local MFI to the other sites, and
then they join all local MFIs. Now each site knows the set⋃n

i=1 MFIδi
, which is an upper bound for MFI∆. In the next

step each site independently performs a top down incremen-
tal enumeration of the potentially global frequent itemsets,
as follows. Each itemset present in the upper bound

⋃n

i=1

MFIδi
is broken into k subsets of size (k − 1). This pro-

cess iterates generating smaller subsets and incrementally
computing their supports until there are no more subsets to
be checked. At the end of this step, each site will have the
same set of potentially global frequent itemsets.

The final step makes a reduction on the local supports of
each itemset, to verify which of them are globally frequent.
The process starts with site S1, which sends the supports of
its itemsets to S2. S2 sums the support of each itemset with
the value of the same itemset obtained from S1, and sends
the result to S3. This procedure continues until site Sn has
the global supports of all potentially global frequent item-
sets. Then site Sn finds all itemsets that have support greater
than or equal to s∆, which constitutes F∆ (by Lemma 2).

2.2 Interactive Issues

High-Contrast Frequent Itemsets. An important issue
when mining ∆ is to understand the differences between
δ1, δ2, ..., δn. An effective way to understand such differ-
ences is to find the high-contrast frequent itemsets. The

supports of such itemsets vary significantly across the
databases. We use the well-established notion of entropy
to detect how the support of a given itemset is distributed
across the databases. For a random variable, the entropy
is a measure of the non-uniformity of its probability dis-
tribution. Given an itemset C, the value pC(i) = C.supi

C.sup

is the probability of occurrence of C in δi.
∑n

i=1 pC(i) =
1, and H(C) = −

∑n

i=1(pC(i) × log(pC(i))) is a mea-
sure of how the local supports of C is distributed across
the databases. Note that 0 ≤ H(C) ≤ log(n), and so
0 ≤ E(C) = log(n)−H(C)

log(n) ≤ 1. If E(C) is greater than
or equal to a given minimum entropy threshold, then C is
classified as high-contrast frequent itemset.

Query Response Time. One of the goals of the algorithm
is to minimize response time to a query for F∆ in a dy-
namic, distributed database. Since ∆ is dynamic, each site
is incrementally updating its local frequent itemsets. The
time it takes to update the local frequent itemsets is propor-
tional to | d+ |. We can view the updates to the database as
a queue containing zero or more such blocks. If a query ar-
rives while a block is being processed, there cannot be a re-
sponse until the calculation of the local frequent itemsets is
completed. An obvious approach to reducing response time
is to decrease the size of d+. However, because of over-
head, the time it takes to do two increments of size | d+ | is
longer than the time it takes to do a single increment of size
2 × | d+ | (n > 1). So there is a trade-off: The larger d+

is, the more up-to-date F∆ will be, since it incorporates a
greater number of changes to ∆, but the longer the response
time to the query will be.

3 Experimental Evaluation

Our experimental evaluation was carried out on two clus-
ters. The first cluster consists of dual PENTIUM III 1GHz
nodes with 1GB of main memory. The second cluster con-
sists of single PENTIUM III 933 MHz nodes with 512 MB
of main memory. We assume that each database is dis-
tributed between the clusters, and that each node in the clus-
ter has access to its cluster’s portion of the database. Within
each cluster, we have implemented the parallel program us-
ing the MPI message-passing library (MPICH), and for
communication between clusters we have used sockets. We
used a real database for testing the performance of our al-
gorithm. The WCup database is generated from the click-
stream log of the 1998 World Cup web site. This database
is 645 MB in size and contains 7,618,927 transactions. Ad-
ditional experiments on other real and synthetic databases
can be found in [6].

Intra-Cluster Evaluation. Figure 1(a) shows the execu-
tion times obtained for the WCup dataset in parallel and
incremental configurations. As we can see, better execution

10

100

1000

1 2 3 4 5 6 7 8

E
la

p
s
e

d
 T

im
e

 (
s
e

c
s
)

Processors

WCup - 0.5% (different increment sizes)

100%
20%
10%

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 6 8 10 12 14 16 18 20

S
p

e
e

d
u

p

Block Size (%)

WCup Incremental vs. Non-Incremental (8 nodes)

0.5% Support
1.0% Support

Figure 1. (a) Total Execution Times, and (b)
Speedups on Different Incremental Configu-
rations.

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

4.5e+06

10 15 20 25 30 35 40

#
 T

ra
n

s
a

c
ti
o

n
s

Deadline (secs)

WCup - 1.0% - 2 nodes - 4 clusters (different increment sizes)

10%
20%
40%

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40 45 50W
a

it
in

g
 t

im
e

 (
s
e

c
s
)

[a
v
g

-v
a

r,
 a

v
g

,
a

v
g

+
v
a

r]

Deadline (secs)

WCup - 1.0% - 2 nodes - 4 clusters (different increment sizes)

3.5% - 6.5% (10% total)
7% - 13% (20% total)

14% - 26% (40% total)

Figure 2. (a) Number of Transactions Pro-
cessed, and (b) Query response time.

times are obtained when we combine both parallel and in-
cremental approaches. Furthermore, for the same parallel
configuration, the execution time is better for smaller block
sizes, as Figure 1(b) shows.

Inter-Cluster Evaluation. The next experiment exam-
ines how the size of a block and the time at which a query
arrives (the deadline) affects the amount of data used to
build F∆. The lines on the graph represent different block
sizes, which are given here as percentages of the database
on each cluster. Figure 2(a) shows that the more time that
elapses before the query arrives, the more data that is in-
corporated into the model, which is to be expected. It also
shows that as the block size decreases, fewer transactions
can be processed before the query arrives. This is because
there is more overhead involved in processing a large num-
ber of small blocks than there is in processing a small num-
ber of large blocks. We also investigated the performance
of our algorithm in experiments for evaluating the query re-
sponse time (the amount of time a user must wait before F∆

is computed). Figure 1(a) shows that as the increment size
decreases, the time to wait for a response also decreases.
However, the time at which a query arrives affects the wait-
ing time in a somewhat random manner. This is because

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
o

m
m

u
n

ic
a

ti
o

n
 (

b
y
te

s
)

Minimum Support (%)

WCup (different increment sizes)

10% (2 clusters)
20% (2 clusters)
40% (2 clusters)
10% (4 clusters)
20% (4 clusters)
40% (4 clusters)

0

10

20

30

40

50

60

70

80

90

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
P

e
rc

e
n

ta
g

e
 o

f
H

ig
h

-C
o

n
tr

a
s
t

It
e

m
s
e

ts
Minimum Support (%)

WCup (different minimum entropies)

0.1 (2 clusters)
0.02 (2 clusters)

0.1 (4 clusters)
0.02 (4 clusters)

Figure 3. (a) Communication Overhead, and
(b) High-Contrast Frequent Itemsets.

a query can arrive at any point during the processing of a
block. The time remaining to compute the local frequent
itemsets therefore varies. Figure 2(b) shows the query re-
sponse time averaged over five runs, and the vertical bars
represent the variance in the runs. The trade-off between
block size and query response time is apparent: as the block
size increases, the number of transactions processed also in-
creases, but the response time increases as well. This shows
that we can assign larger blocks to less powerful clusters,
the basic idea being that the local model can be updated less
frequently, but in response, smaller query response times
can be obtained.

We also performed a set of experiments to analyze the
communication overhead imposed by our algorithm. We
examined the number of bytes transferred between clusters
when we varied the minimum support, the block size, and
the number of clusters involved in the computation. The
results can be seen in figure 3(a). As is expected, as the
minimum support decreases, the number of candidates will
increase, and will therefore increase the number of bytes
that must be transferred between the clusters, since our al-
gorithm must exchange the supports of every candidate pro-
cessed. Also, as the block size increases, the amount of
communication decreases. The reason is that for smaller
block sizes the number of candidates processed tends to be
greater. Finally, the amount of communication required in-
creases when more clusters are involved in the process.

The last set of experiments concerns high-contrast fre-
quent itemsets. We varied three parameters: the mini-
mum support, the number of clusters involved in the pro-
cess, and the minimum entropy. The results are showed
in Figure 3(b). As we can observe, very different results
were obtained from each database. The percentage of high-
contrast frequent itemsets is interesting here because it re-
veals the skewness of the database. Usually the percent-
age of high-contrast frequent itemsets will diminish as the
minimum support threshold increases. This is quite under-
standable considering that when the support threshold is

low, there will be a large number of global frequent item-
sets generated, and many of these itemsets become global
frequent only because they are frequent in some small num-
ber of sites, resulting in many high-contrast frequent item-
sets. In contrast, as the support threshold increases, it be-
comes harder for a local frequent itemset to become global
frequent, which results in a smaller number of high-contrast
frequent itemsets. Meanwhile, the more clusters on which
the data distributed, the greater the possibility of skewness
in the data.

4 Conclusions

In this paper we considered the problem of mining fre-
quent itemsets in dynamic and distributed databases. We
presented an efficient distributed and parallel incremental
algorithm to deal with this problem. Our experiments ex-
amined the trade-offs involved in minimizing the query re-
sponse time (whether to sacrifice query response time in or-
der to incorporate more transactions in the model) and the
amount of data transferred between clusters. Future work
involves using sampling techniques to minimize the query
response time and investigating how to minimize query re-
sponse time in wide-area networks, where communication
latencies tend to be relatively large.

References

[1] R. Agrawal and J. Shafer. Parallel mining of association rules.
In IEEE Trans. on Knowledge and Data Engg., volume 8,
pages 962–969, 1996.

[2] D. Cheung, J. Han, and et al. Maintenance of discovered as-
sociations in large databases: An incremental updating tech-
nique. In Proc. of the Int’l. Conf. on Data Engineering, 1996.

[3] M. Cierniak, M. Zaki, and W. Li. Compile-time scheduling
algorithms for a heterogeneous network of workstations. In
The Computer Journal, volume 40, pages 356–372.

[4] V. Ganti and J. G. et al. Demon: Mining and monitoring
evolving data. In Proc. of the 16th Int’l Conf. on Data Engi-
neering, pages 439–448, San Diego, USA, 2000.

[5] S. Lee and D. Cheung. Maintenance of discovered associa-
tions: When to update? In Research Issues on Data Mining
and Knowledge Discovery, 1997.

[6] M. E. Otey, A. Veloso, C. Wang, S. Parthasarathy, and
W. Meira. Mining frequent itemsets in distributed and dy-
namic databases. In OSU-CISRC-9/03-TR48, 2003.

[7] S. Thomas, S. Bodagala, K. Alsabti, and S. Ranka. An ef-
ficient algorithm for the incremental updation of association
rules. In Proc. of the 3rd Int’l Conf. on Knowledge Discovery
and Data Mining, August 1997.

[8] A. Veloso and W. M. J. et al. Mining frequent itemsets in
evolving databases. In Proc. of the Int’l Conf. on Data Min-
ing, Arlington, USA, 2002.

[9] M. Zaki and S. P. et al. New parallel algorithms for fast dis-
covery of association rules. Data Mining and Knowledge Dis-
covery: An International Journal, 4(1):343–373, 1997.

View publication statsView publication stats

https://www.researchgate.net/publication/220766776

