
Parallel and Distributed Frequent Itemset Mining on
Dynamic Datasets

�

Adriano Veloso
��� �

, Matthew Erick Otey
�

Srinivasan Parthasarathy
�
, and Wagner Meira Jr.

�
�

Computer Science Department, Universidade Federal de Minas Gerais, Brazil�
adrianov,meira � @dcc.ufmg.br�

Department of Computer and Information Science, The Ohio-State University, USA�
otey, srini � @cis.ohio-state.edu

Abstract Traditional methods for data mining typically make the assumption
that data is centralized and static. This assumption is no longer tenable. Such
methods waste computational and I/O resources when data is dynamic, and they
impose excessive communication overhead when data is distributed. As a result,
the knowledge discovery process is harmed by slow response times. Efficient im-
plementation of incremental data mining ideas in distributed computing environ-
ments is thus becoming crucial for ensuring scalability and facilitate knowledge
discovery when data is dynamic and distributed. In this paper we address this
issue in the context of frequent itemset mining, an important data mining task.
Frequent itemsets are most often used to generate correlations and association
rules, but more recently they have also been used in such far-reaching domains as
bio-informatics and e-commerce applications. We first present an efficient algo-
rithm which dynamically maintains the required information even in the presence
of data updates without examining the entire dataset. We then show how to par-
allelize the incremental algorithm, so that it can asynchronously mine frequent
itemsets. Further, we also propose a distributed algorithm, which imposes low
communication overhead for mining distributed datasets. Several experiments
confirm that our algorithm results in excellent execution time improvements.

1 Introduction

The field of knowledge discovery and data mining (KDD), spurred by advances in data
collection technology, is concerned with the process of deriving interesting and useful
patterns from large datasets. Frequent itemset mining is a core data mining task. Its
statement is very simple: to find the set of all subsets of items that frequently occur to-
gether in database transactions. Although the frequent itemset mining task has a simple
statement, it is CPU and I/O intensive, mostly because the large number of itemsets that
are typically generated and the large size of the datasets involved in the process.

Now consider the problem of mining frequent itemsets on a dynamic dataset, like
those found in e-commerce and web-based domains. The datasets in such domains are
constantly updated with fresh data. Let us assume that at some point in time we have
computed all frequent itemsets for such a dataset. Now, if the dataset is updated, then
	

This work was done while the first author was visiting the Ohio-State University

2 Veloso et al.

the set of frequent itemsets that we had previously computed would no longer be valid.
A naive approach to compute the new set of frequent itemsets would be to re-execute a
traditional algorithm on the updated dataset, but this process is not efficient since it is
memoryless and ignores previously discovered knowledge, essentially replicating work
that has already been done, and possibly resulting in an explosion in the computational
and I/O resources required. To address this problem, several researches have proposed
incremental algorithms [15,6,9,14,4], which essentially re-use previously mined infor-
mation and try to combine this information with the fresh data to efficiently re-compute
the new set of frequent itemsets. The problem now is that the size and rate at which
the dataset can be updated are so large that existing incremental algorithms are inef-
fective. Therefore, to mine such large and high-velocity datasets, we must also rely on
high-performance multi-processing computing.

Two dominant approaches for using multiple processors have emerged: distributed
memory (where each processor has a private memory), and shared memory (where all
processors access common memory). The performance-optimization objectives for dis-
tributed memory approaches are different from those of shared memory approaches.
In the distributed memory paradigm synchronization is implicit in communication, so
the goal becomes communication optimization. In the shared memory paradigm, syn-
chronization stems from locks and barriers, and the goal is to minimize these points.
However, the majority of the parallel mining algorithms [1,3,5] suffer from high com-
munication and synchronization overhead. In this paper we propose an efficient parallel
and incremental algorithm for mining frequent itemsets on dynamic datasets. Our algo-
rithm makes use of both shared and distributed memory advantages, and it is extremely
efficient in terms of communication and synchronization overhead. Extensive experi-
mental evaluation confirm that it results in excellent execution time improvements.

1.1 Problem Definition

The frequent itemset mining task can be stated as follows: Let � be a set of distinct
attributes, also called items. Let � be a set of transactions, where each transaction has
a unique identifier (tid) and contains a set of items. A set of items is called an itemset.
An itemset with exactly � items (where � is a nonnegative integer) is called a � -itemset.
The tidset of an itemset � corresponds to the set of all transaction identifiers (tids) in
which the itemset � occurs. The support count of � , is the number of transactions of
� in which it occurs as a subset. Similarly, the support of � , denoted by �����	� , is the
percentage of transactions of � in which it occurs as a subset. The itemsets that meet a
user specified minimum support are referred to as frequent itemsets. A frequent itemset
is maximal if it is not subset of any other frequent itemset.

Using � as a starting point, a set of new transactions
�� is added, forming the
dynamic dataset
 (i.e.,
�������
 �). Let ��� be the minimum support used when
mining � , and ��� be the set of frequent itemsets obtained. Let � be the information
kept from the current mining that will be used to enhance the next mining operation. In
our case, � consists of � � (i.e., all frequent itemsets, along with their support counts,
in �). An itemset C is frequent in
 if �����	������� . Note that an itemset � not frequent
in � , may become a frequent itemset in
 . In this case, C is called an emerged itemset.
If a frequent itemset in � remains frequent in
 it is called a retained itemset.

Parallel and Distributed Frequent Itemset Mining on Dynamic Datasets 3

The dataset
 can be divided into � partitions,
� ��� � ����������� �
	 . Each partition

���
is

assigned to a site
 � . We say that
 is horizontally distributed if its transactions are
distributed among the sites. In this case, let � � ����� and � � ����� � be the respective sup-
port counts of � in
 and

� �
. We will call � � �
��� the global support count of � , and

� � ����� � the local support count of � in
� �

. For a given minimum support � � , � is
global frequent if � � ������� � �����
 � ; correspondingly, � is local frequent at

� �
,

if � � ����� � � � ����� � � � . The set of all maximal global frequent itemsets is denoted
as MFI � , and the set of maximal local frequent itemsets at

� �
is denoted as MFI ��� .

The task of mining frequent itemsets in distributed and dynamic datasets is to find ��� ,
with respect to a minimum support � � and, more importantly, using � and minimizing
access to � (the original dataset) to enhance the algorithm’s performance.

1.2 Related Work

Incremental Mining Some recent effort has been devoted to the problem of incre-
mentally mining frequent itemsets [9,14,15,4,6]. Some of these algorithms cope with
the problem of determining when to update the current model, while others update the
model after an arbitrary number of updates [15]. To decide when to update, Lee and
Cheung [9] propose the DELI algorithm, which uses statistical sampling methods to
determine when the current model is outdated. A similar approach proposed by Ganti
et al [6] monitors changes in the data stream. An efficient incremental algorithm, called
ULI, was proposed by Thomas [14] et al. ULI strives to reduce the I/O requirements for
updating the set of frequent itemsets by maintaining the previous frequent itemsets and
the negative border [9] along with their support counts. The whole dataset is scanned
just once, but the incremental dataset must be scanned as many times as the size of the
longest frequent itemset. This work presents extensions to the ZIGZAG algorithm for
incremental mining, presented in [15].

Parallel and Distributed Mining Often, the size of a new block of data (i.e.,
 �) or
the rate at which it is inserted is so large that existing incremental algorithms are inef-
fective. In these cases, parallel or distributed algorithms are necessary. In [12] a parallel
incremental method for performing 2-dimensional discretization on a dynamic dataset
was presented. [10] gives an overview of a wide variety of distributed data mining algo-
rithms for collective data mining, clustering, and association rule mining. In particular,
there has been much research into parallel and distributed algorithms for mining asso-
ciation rules [16,8,11]. In [17] an overview of several of these methods was presented.
In [1] three parallel versions of the apriori algorithm were introduced, namely, COUNT

DISTRIBUTION, DATA DISTRIBUTION, and CANDIDATE DISTRIBUTION. They con-
clude that the COUNT DISTRIBUTION approach performs the best. The FDM (FAST

DISTRIBUTED MINING) [3] and DMA (DISTRIBUTED MINING OF ASSOCIATION

RULES) [5] algorithms result in fewer candidate itemsets and smaller message sizes
compared to the COUNT DISTRIBUTION algorithm. Schuster and Wolff propose the
DDM (DISTRIBUTED DECISION MINER) algorithm in [13]. They show that DDM is
more scalable than COUNT DISTRIBUTION and FDM with respect to the number of
sites participating and the minimum support.

4 Veloso et al.

2 Distributed, Parallel and Incremental Algorithm

In this section we describe the algorithm developed to solve the problems defined in
the previous section. We start by presenting our incremental algorithm, ZIGZAG. Next,
we present a parallel approach for mining the maximal frequent itemsets. Finally, we
describe our distributed, parallel and incremental algorithm. We also prove the correct-
ness of the algorithm and present an upper bound for the amount of communication
necessary in the distributed and incremental mining operation.

Incremental Algorithm Almost all algorithms for mining frequent itemsets use the
same procedure � first a set of candidates is generated, the infrequent ones are pruned,
and only the frequent ones are used to generate the next set of candidates. Clearly, an
important issue in this task is to reduce the number of candidates generated. An inter-
esting approach to reduce the number of candidates is to first find MFI� . Once MFI � is
found, it is straightforward to obtain all frequent itemsets (and their support counts) in
a single dataset scan, without generating infrequent (and unnecessary) candidates. This
approach works because the downward closure property (all subsets of a frequent item-
set must be frequent). The number of candidates generated by this approach is generally
much smaller than the number of candidates generated to directly find all frequent item-
sets. The maximal frequent itemsets has been successfully used in several data mining
tasks, including incremental mining of evolving datasets [15].

In [15] an efficient incremental algorithm for mining evolving datasets, ZIGZAG,
was proposed. The main idea is to incrementally compute MFI � using previous knowl-
edge � . This avoids the generation and testing of many unnecessary candidates. Having
MFI � is sufficient to know which itemsets are frequent; their exact support can be ob-
tained by examining
 � and using � , or, where this is not possible, by examining
 .

ZIGZAG employs a backtracking search to find MFI� . Backtracking algorithms are
useful for many combinatorial problems where the solution can be represented as a set

�
= ����� � � � �
������� , where each �
	 is chosen from a finite possible set, ��	 . Initially

�
is empty;

it is extended one item at a time, as the search space is traversed. The length of
�

is
the same as the depth of the corresponding node in the search tree. Given a � -candidate
itemset,

��

= ����� � � � �
������� �
�� ��� , the possible values for the next item �
 comes from a

subset �
�� �
 called the combine set. If �����
 ���
 , then nodes in the subtree with
root node

��

= ����� � � ���
������� �
�� ��� � � will not be considered by the backtracking algorithm.

Each iteration of the algorithm tries to extend
�

with every item � in the combine set�
 . An extension is valid if the resulting itemset
�

� � is frequent and is not a subset

of any already known maximal frequent itemset. The next step is to extract the new
possible set of extensions, �
 � � , which consists only of items in �
 that follow � .
The new combine set, �
 � � , consists of those items in the possible set that produce a
frequent itemset when used to extend

��

� � . Any item not in the combine set refers to

a pruned subtree. The backtracking search performs a depth-first traversal of the search
space, as depicted in Figure 1. In this example the minimum support is 30%. The framed
itemsets are the maximal frequent ones, while the cut itemsets are the infrequent ones.

The support computation employed by ZIGZAG is based on the associativity of
itemsets, which is defined as follows. Let � be a � -itemset of items � � �
��� �
 , where
� � � �

. Let � ���	� be its tidset and � � ���	� � is the length of � � �	� and thus the sup-

Parallel and Distributed Frequent Itemset Mining on Dynamic Datasets 5

Figure 1. Backtrack Trees for Items A and B on �

port count of � . According to [7], any itemset can be obtained by joining its atoms
(individual items) and its support count can be obtained by intersecting the tidsets of its
subsets. In the first step, ZIGZAG creates a tidset for each item in
 � and � . The main
goal of incrementally computing the support is to maximize the number of itemsets
that have their support computed based just on
�� (i.e., retained itemsets), since their
support counts in � are already stored in � . To perform a fast support computation,
we first verify if the extension

� �
� � � ��� � is a retained itemset. If so, its support can be

computed by just using
 � and � , thereby enhancing the support computation process.

Parallel Search for Maximal Frequent Itemsets We now consider the problem of
parallelizing the search for maximal frequent itemsets in the shared memory paradigm.
An efficient parallel search in this paradigm has two main issues: (1) minimizing syn-
chronization, and (2) improving data locality (i.e., maximizing access to local cache).
The main idea of our parallel approach is to assign distinct backtrack trees to distinct
processors. Note from Figure 1 that the two issues mentioned above can be addressed
by this approach. First, there is no dependence among the processors, because each
backtrack tree corresponds to a disjoint set of candidates. Since each processor can pro-
ceed independently there is no synchronization while searching for maximal frequent
itemsets. Second, this approach is very efficient in achieving good data locality, since
the support computation of an itemset is based on the intersection of the tidsets of the
last two generated subsets. To achieve a suitable level of load-balancing, the backtrack
trees are assigned to the processors in a bag of tasks approach. That is, we have a bag
of trees to be processed. Each processor takes one tree, and as soon as it finishes the
search on this tree, it takes another task from the bag. When the bag is empty (i.e., all
backtrack trees were processed), all maximal frequent itemsets have been found.

Distributed, Parallel and Incremental Algorithm We now consider the problem
of parallelizing the ZIGZAG algorithm in the distributed memory paradigm. We first
present Lemma 1, which is the basic theoretical foundation of our distributed approach.

Lemma 1 � A global frequent itemset must be local frequent in at least one partition.
Proof. � Let � be an itemset. If � � ����� ��� � � � � �
� � for all � ��� �
������� � , then
� � ����� � � � ���
 � (since � � ����� ���

	�	� � � � ����� � and �
 � ���
	�	� � � �
� �), and

6 Veloso et al.

� cannot be globally frequent. Therefore, if � is a global frequent itemset, it must be
local frequent in some partition

���
. �

In the first step each site
 � independently performs a parallel and incremental
search for MFI ��� , using ZIGZAG on its dataset

� �
. In the second step each site sends

its local MFI to the other sites, and then they join all local MFIs. Now each site knows
the set �

	�	� � MFI ��� , which is an upper bound for MFI � . In the third step each site
independently performs a top down incremental enumeration of the potentially global
frequent itemsets, as follows. Each itemset present in the upper bound �

	�	� � MFI ��� is
broken into � subsets of size ����� � � . This process iterates generating smaller subsets
and incrementally computing their support counts until there are no more subsets to be
checked. At the end of this step, each site will have the same set of potentially global
frequent itemsets (and the support associated with each of these itemsets).

Lemma 2 ���
	�	� � MFI ��� determines all global frequent itemsets. Proof. � We know

from Lemma 1 that if � is a global frequent itemset, so it must be local frequent in at
least one partition. If � is local frequent in some partition

� �
, so it must be determined

by MFI ��� , and consequently by �
	�	� � MFI ��� . �

By Lemma 2 all global frequent itemsets were found, but not all itemsets generated
in the third step are globally frequent (some of them are just locally frequent). The
fourth and final step makes a reduction operation on the local support counts of each
itemset, to verify which of them are globally frequent in
 . The process starts with site

 � , which sends the support counts of its itemsets (generated in the third step) to site

 � . Site
 � sums the support count of each itemset (generated in the third step) with the
value of the same itemset obtained from site
 � , and sends the result to site
�� . This
procedure continues until site
 	 has the global support counts of all potentially global
frequent itemsets. Then site
 	 finds all itemsets that have support greater than or equal
to � � , which constitutes the set of all global frequent itemsets, (i.e., � �).

An Upper Bound for the Amount of Communication We also present an upper bound
for the amount of communication performed during the distributed mining operation.
The upper bound calculation is based just on the local MFIs and on the size of the upper
bound for MFI � . We divide the upper bound construction into two steps. The first step
is related to the local MFI exchange operation. Since each one of the � sites must send

its MFI to the other sites, the first term is given by: �
	� � � ��� 	�

��� � �	 � � � � � � 	 � , where

� � � � 	 � is the size of the ����� itemset of the local MFI of site
 � .
The second step is related to the local support count reduction operation. In this

operation � � � sites have to pass their local support counts. The amount of communi-
cation for this operation is given by: � � � � � � � � ������ � � ��� � ����� � � � , where �! is �

	� � �
MFI ��� , and the term � � ���"�� � � ��� � � � � � � � represents the local support counts of all subsets
of all itemsets in �! . In our data structure a � -itemset is represented by a set of � inte-
gers (of 4 bytes). So, in the worst case (when each itemset is subset of only one itemset

in �!), the total amount of communication is given by: (�
	�	� � � � 	#
��$� � �	 � � � � � � 	 � +

� � � � � � � � ���"�� � � ��� � � � � � � �) �&% bytes. This upper bound shows that our approach
is extremely efficient in terms of communication overhead, when compared with the
amount of communication necessary to transfer all data among the sites.

Parallel and Distributed Frequent Itemset Mining on Dynamic Datasets 7

3 Experimental Evaluation

Our experimental evaluation was carried out on an 8 node dual PENTIUM processor
SMP cluster. Each SMP has 1GB of main memory and 120GB of disk space. We assume
that each dataset is already distributed among the nodes, and that updates happen in a
periodic fashion. We have implemented the parallel program using the MPI message-
passing library (MPICH over GM), and POSIX PTHREADS.

We used both real and synthetic datasets for testing the performance of our algo-
rithm. The WPORTAL dataset is generated from the click-stream log of a large Brazilian
web portal, and the WCUP dataset is generated from the click-stream log of the 1998
World Cup web site, which is publicly available at ftp://researchsmp2.cc.vt.edu/pub/. We
scanned each log and produced a respective transaction file, where each transaction is
a session of access to the site by a client. Each item in the transaction is a web request.
Not all requests were turned into items; to become an item, the request must have three
properties: (1) the request method is GET; (2) the request status is OK; and (3) the file
type is HTML. A session starts with a request that satisfies the above properties, and
ends when there has been no click from the client for 30 minutes. All requests in a
session must come from the same client. We also used a synthetic dataset, which has
been used as benchmarks for testing previous mining algorithms. This dataset mimics
the transactions in a retailing environment [2]. WPORTAL has 3,183 distinct items com-
prised into 7,786,137 transactions (428MB), while WCUP has 5,271 distinct items com-
prised into 7,618,927 transactions (645MB). T5I2D8000K has 2,000 distinct items
comprised into 8,000,000 transactions (1,897MB).

Performance Comparison The first experiment we conducted was to empirically ver-
ify the advantages of incremental and parallel mining. We compared the execution time
of the distributed algorithms (non-incremental, incremental, parallel non-incremental,
and parallel incremental search). We varied the number of nodes (1 to 8), the number
of processors per node (1 and 2), and the increment size (10% and 20% of the origi-
nal dataset). In the incremental case, we first mine a determined number of transactions
and then we incrementally mine the remaining transactions. For example, for increment
sizes of 20%, we first mine 80% of the dataset and then we incrementally mine the re-
maining 20%. Each dataset was divided into 1, 2, 4, and 8 partitions, according to the
number of nodes employed. Figure 2 shows the execution times obtained for different
datasets, and parallel and incremental configurations. As we can see, better execution
times are obtained when we combine both parallel and incremental approaches. Further,
when the parallel configuration is the same, the execution time is better for smaller in-
crement sizes (since the dataset is smaller), but in some cases the parallel performance
is greater than the incremental performance, and better results can be obtained by ap-
plying the parallel algorithm with larger increment sizes. This is exactly what happens
in the experiments with the WCUP and WPORTAL datasets. The algorithm using the
parallel search, applied to an increment size of 20% is more efficient than the algorithm
with sequential search, applied to an increment size of 10%, for any number of nodes.

The improvements obtained on the real datasets are not so impressive as the im-
provement obtained on the synthetic one. The reason is that the real dataset has a skewed

8 Veloso et al.

data distribution, and therefore the partitions of the real datasets have a very different
set of frequent itemsets (and therefore very different local MFIs). On the other hand,
the skewness of the synthetic data is very low, therefore each partition of the synthetic
dataset is likely to have a similar set of frequent itemsets. From the experiments in the
synthetic dataset we observed that �

	� � � MFI ��� was very similar to each local MFI. This
means that the set of local frequent itemsets is very similar to the set of global frequent
itemsets, and therefore few infrequent candidates are generated by each node.

1

10

100

1000

1 2 3 4 5 6 7 8

El
ap

se
d

Ti
m

e
(s

ec
s)

Nodes

WCup - 0.5%

1 thread - 100%
2 threads - 100%

1 thread - 20%
2 threads - 20%
1 thread - 10%

2 threads - 10%

1

10

100

1000

1 2 3 4 5 6 7 8
El

ap
se

d
Ti

m
e

(s
ec

s)

Nodes

WCup - 1%

1 thread - 100%
2 threads - 100%

1 thread - 20%
2 threads - 20%
1 thread - 10%

2 threads - 10%

1

10

100

1000

1 2 3 4 5 6 7 8

El
ap

se
d

Ti
m

e
(s

ec
s)

Nodes

WPortal - 0.005%

1 thread - 100%
2 threads - 100%

1 thread - 20%
2 threads - 20%
1 thread - 10%

2 threads - 10%
1

10

100

1000

1 2 3 4 5 6 7 8

El
ap

se
d

Ti
m

e
(s

ec
s)

Nodes

WPortal - 0.01%

1 thread - 100%
2 threads - 100%

1 thread - 20%
2 threads - 20%
1 thread - 10%

2 threads - 10%

10

100

1000

10000

1 2 3 4 5 6 7 8

El
ap

se
d

Ti
m

e
(s

ec
s)

Nodes

T5I2D8000K - 0.5%

1 thread - 100%
2 threads - 100%

1 thread - 20%
2 threads - 20%
1 thread - 10%

2 threads - 10%

1

10

100

1000

1 2 3 4 5 6 7 8

El
ap

se
d

Ti
m

e
(s

ec
s)

Nodes

T5I2D8000K - 1.0%

1 thread - 100%
2 threads - 100%

1 thread - 20%
2 threads - 20%
1 thread - 10%

2 threads - 10%

Figure 2. Total Execution Times on different Datasets.

Parallel Performance We also investigated the performance of our algorithm in ex-
periments for evaluating the speedup of different parallel configurations. We used a
fixed size dataset with increasing number of nodes. The datasets were divided into 1,
2, 4, and 8 partitions, according to the number of nodes employed. With this configu-
ration we performed speedup experiments on 1, 2, 4, and 8 nodes. In order to evaluate

Parallel and Distributed Frequent Itemset Mining on Dynamic Datasets 9

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8

S
p

e
e

d
u

p

Nodes

WCup

0.5%
1.0%

2

4

6

8

10

12

1 2 3 4 5 6 7 8

S
p

e
e

d
u

p

Nodes

WPortal

0.005%
0.01%

2

4

6

8

10

12

1 2 3 4 5 6 7 8

S
p

e
e

d
u

p

Nodes

T5I2D8000K

0.5%
1.0%

Figure 3. Speedup of the Parallel Algorithm

1

2

3

4

5

6

7

68101214161820

S
p

e
e

d
u

p

Increment Size (%)

WCup

0.5%
1.0%

1

2

3

4

5

6

7

8

9

68101214161820

S
p

e
e

d
u

p

Increment Size (%)

WPortal

0.005%
0.01%

1

2

3

4

5

6

7

8

9

10

68101214161820

S
p

e
e

d
u

p

Increment Size (%)

T5I2D8000K

0.5%
1.0%

Figure 4. Speedup of the Incremental Algorithm

only the parallel performance, we used the parallel (two processors) non-incremental
algorithm and varied the number of nodes. The speedup is in relation to the sequential
non-incremental algorithm. Figure 3 shows the speedup numbers of our parallel algo-
rithm. The “super-linear” speedups are due to the parallel MFI search (remember that
our environment has 8 dual nodes). Also note that the speedup is inversely proportional
to the minimum support. This is because for smaller minimum supports the MFI search
becomes more complex, and consequently the parallel task becomes more relevant.

Incremental Performance We also investigated the performance of our algorithm in
experiments for evaluating the speedup of different incremental configurations. In this
experiment, we first mined a fixed size dataset, and then we performed the incremental
mining for different increment sizes (5% to 20%). In order to evaluate only the incre-
mental performance, we used the incremental algorithm with sequential MFI search. We
also varied the number of nodes, but the speedup was very similar for different number
of nodes, so we show only the results regarding one node. Figure 4 shows the speedup
numbers of our incremental algorithm. Note that the speedup is in relation to re-mining
the entire dataset. As is expected, the speed is inversely proportional to the size of the
increment. This is because the size of the new data coming in is smaller. Also note that
better speedups are achieved by greater minimum supports. We observed that, for the
datasets used in this experiment, the proportion of retained itemsets (itemsets that are
computed by examining only
 � and �) is larger for greater minimum supports.

10 Veloso et al.

4 Conclusions

In this paper we considered the problem of mining frequent itemsets on dynamic datasets.
We presented an efficient distributed and parallel incremental algorithm to deal with
this problem. Experimental results confirm that our algorithm results in execution time
improvement of more than one order of magnitude when compared against a naive ap-
proach. The efficiency of our algorithm stems from the fact that it makes use of the MFI,
reducing both the number of candidates processed and the amount of communication
necessary. The MFI is updated by an efficient parallel and asynchronous backtracking
search.

References

1. R. Agrawal and J. Shafer. Parallel mining of association rules. In IEEE Trans. on Knowledge
and Data Engg., volume 8, pages 962–969, 1996.

2. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc. of the 20 �
�

Int’l Conf. on Very Large Databases, SanTiago, Chile, June 1994.
3. D. Cheung, J. Han, V. Ng, A. Fu, , and Y. Fu. A fast distributed algorithm for mining

association rules. In 4 �
�

Int’l. Conf. Parallel and Distributed Info. Systems, 1996.
4. D. Cheung, S. Lee, and B. Kao. A general incremental technique for maintaining discov-

ered association rules. In Proc. of the 5 �
�

Int’l. Conf. on Database Systems for Advanced
Applications, pages 1–4, April 1997.

5. D. Cheung, V. Ng, A. Fu, , and Y. Fu. Efficient mining of association rules in distributed
databases. In IEEE Trans. on Knowledge and Data Engg., volume 8, pages 911–922, 1996.

6. V. Ganti, J. Gehrke, and R. Ramakrishnan. Demon: Mining and monitoring evolving data. In
Proc. of the 16 �

�
Int’l Conf. on Data Engineering, pages 439–448, San Diego, USA, 2000.

7. K. Gouda and M. Zaki. Efficiently mining maximal frequent itemsets. In Proc. of the 1
�
�

IEEE Int’l Conf. on Data Mining, San Jose, USA, November 2001.
8. E.-H. Han, G. Karypis, , and V. Kumar. Scalable parallel data mining for association rules.

In ACM SIGMOD Conf. Management of Data, 1997.
9. S. Lee and D. Cheung. Maintenance of discovered association rules: When to update? In

Research Issues on Data Mining and Knowledge Discovery, 1997.
10. Byung-Hoon Park and Hillol Kargupta. Distributed data mining: Algorithms, systems, and

applications. In Nong Ye, editor, Data Mining Handbook, 2002.
11. J.S. Park, M. Chen, , and P. S. Yu. CACTUS - clustering categorical data using summaries.

In ACM Int’l. Conf. on Information and Knowledge Management, 1995.
12. S. Parthasarathy and A. Ramakrishnan. Parallel incremental 2d discretization. In Proc. IEEE

Int’l Conf. on Parallel and Distributed Processing, 2002.
13. A. Schuster and R. Wolff. Communication efficient distributed mining of association rules.

In ACM SIGMOD Int’l. Conf. on Management of Data, 2001.
14. S. Thomas, S. Bodagala, K. Alsabti, and S. Ranka. An efficient algorithm for the incremental

updation of association rules. In Proc. of the 3
���

ACM SIGKDD Int’l Conf. on Knowledge
Discovery and Data Mining, August 1997.

15. A. Veloso, W. Meira Jr., M. Bunte, S. Parthasarathy, and M. Zaki. Mining frequent itemsets
in evolving databases. In Proc. of the 2

���
SIAM Int’l Conf. on Data Mining, USA, 2002.

16. M. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New parallel algorithms for fast discovery
of association rules. Data Mining and Knowledge Discovery: An International Journal,
4(1):343–373, December 1997.

17. M. J. Zaki. Parallel and distributed association mining: A survey. IEEE Concurrency,
7(4):14–25, December 1999.

View publication statsView publication stats

https://www.researchgate.net/publication/220727950

