
Predicting Software Defects with Explainable Machine Learning

Geanderson Santos
Federal University of Minas Gerais
Belo Horizonte, Minas Gerais, Brazil

geanderson@dcc.ufmg.br

Eduardo Figueiredo
Federal University of Minas Gerais
Belo Horizonte, Minas Gerais, Brazil

figueiredo@dcc.ufmg.br

Adriano Veloso
Federal University of Minas Gerais
Belo Horizonte, Minas Gerais, Brazil

adrianov@dcc.ufmg.br

Markos Viggiato
University of Alberta

Edmonton, Alberta, Canada
viggiato@ualberta.ca

Nivio Ziviani
Federal University of Minas Gerais
Belo Horizonte, Minas Gerais, Brazil

nivio@dcc.ufmg.br

ABSTRACT

Most software systems must evolve to cope with stakeholders’

requirements and fix existing defects. Hence, software defect pre-

diction represents an area of interest in both academia and the

software industry. As a result, predicting software defects can help

the development team to maintain substantial levels of software

quality. For this reason, machine learning models have increased in

popularity for software defect prediction and have demonstrated

effectiveness in many scenarios. In this paper, we evaluate a ma-

chine learning approach for selecting features to predict software

module defects. We use a tree boosting algorithm that receives as

input a training set comprising records of software features en-

coding characteristics of each module and outputs whether the

corresponding module is defective prone. For nine projects within

the widely known NASA data program, we build prediction models

from a set of easy-to-compute module features. We then sample

this sizable model space by randomly selecting software features

to compose each model. This significant number of models allows

us to structure our work along model understandability and pre-

dictive accuracy. We argue that explaining model predictions is

meaningful to provide information to developers on features re-

lated to each module defective-prone. We show that (i) features that

contribute most to finding the best models may vary depending

on the project, and (ii) effective models are highly understandable

based on a survey with 40 developers.

CCS CONCEPTS

· Computing methodologies → Cross-validation; · Software

and its engineering;

KEYWORDS

software defects, explainable models, NASA datasets, SHAP values

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SBQS’20, December 1–4, 2020, São Luís, Brazil

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8923-5/20/12. . . $15.00
https://doi.org/10.1145/3439961.3439979

ACM Reference Format:

Geanderson Santos, Eduardo Figueiredo, Adriano Veloso, Markos Viggiato,

and Nivio Ziviani. 2020. Predicting Software Defects with Explainable Ma-

chine Learning. In 19th Brazilian Symposium on Software Quality (SBQS’20),

December 1–4, 2020, São Luís, Brazil. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3439961.3439979

1 INTRODUCTION

Software defect prediction is an area of interest in both academia

and the software industry [1, 13, 25]. Hence, new machine learning

techniques that can develop more accurate and efficient predictive

models have emerged in the past few years [2, 3, 21]. Researches

base these defective prediction models on learned features from

either (i) source code and metadata information [8, 13, 15, 22, 33, 35,

40] or (ii) quality metrics used to specify software design complexity

[42, 46]. Studies on features learned from software source code, and

metadata information usually employ approaches based on deep

neural networks [42, 46]. Studies that rely on software quality

metrics use either code inspections and unit testing [8] or machine

learning approaches, such as Support Vector Machines (SVM) [5,

11], Decision Trees [41], Naïve Bayes [39, 43], neural networks [38],

or dictionary learning-based prediction [15].

Despite the high accuracy usually achieved by machine learn-

ing models, they are often overly complicated and may hinder the

understandability of the model. In most cases, we usually cannot

explain the prediction of any machine learning model, and we still

need investigation regarding the explanation of model decisions

that could help developers to reason on the rationale behind a

machine learning model that predicts a software defect [13, 20].

Further, explaining model decisions is also beneficial, as it enables

the proper understanding of the effects in software development

costs and efforts during development. Therefore, predicting defects

while understanding the predictors help organizations to reduce de-

velopment and maintenance costs and to concentrate efforts on the

most defect-prone parts of the system [1]. This finding is relevant as

high-quality software development is expensive, and defect-fixing

processes require a laborious effort from a company [51]. Hereafter,

we use the terms łexplainabilityž and łinterpretabilityž to refer

to the same concept due to the lack of consensus in the machine

learning community about these definitions [14]. For this reason,

we refer to these terms as łunderstandabilityž.

Differently from previous works that tune a single defect pre-

diction model [5, 8, 43], we perform an exploration of the model

space, which results in hundreds of thousands of evaluated models

SBQS’20, December 1ś4, 2020, São Luís, Brazil Santos, et al.

[30]. Specifically, we learned prediction models considering distinct

combinations of McCabe and Halstead features (see Section 2.3.2)

applied to modules from nine NASA projects [22]. Since we com-

pose each sampled model of a specific set of features, the learned

models correspond to a myriad of explanations for the software

defect phenomenon. We compared the effectiveness of our models

with other machine learning methods typically used in software

defect prediction. As a result, on average, 3.5% of the randomly

generated models (considering 2,097,152 models) show superior

accuracy when compared with seven baselines. We showed that

some features are more relevant for defect prediction, although

the importance of these features varies within projects. For eight

out of nine NASA projects considered in our study, we could learn

models that achieved similar or superior effectiveness when com-

pared with baseline models. These eight models that provide higher

accuracy gains are also easily understandable, according to their

SHAP (SHapley Addictive exPlanation) values. Finally, we investi-

gate model understandability through a survey with 40 developers

about the model prediction.We used the survey study to understand

whether or not the explanations provided by SHAP could be useful

for developers to understand what is behind a defect prediction. We

conclude that, in most cases, developers can reason on the features

causing defects in the modules.

We organize the rest of our paper as follows. In Section 2, we

describe our study setup. Next, we present and discuss our results

and their implications in Section 3. Section 4 discusses the threats

to validity concerning our work. Then, Section 5 presents related

work of learning to predict defects from source code and metadata

information. Finally, Section 6 concludes our paper with insights

for further explorations.

2 STUDY SETUP

2.1 Goal and Research Questions

This paper aims to evaluate a machine learning approach for select-

ing features to predict software module defects using the classic

NASA datasets. To achieve this goal, we discuss the following re-

search questions:

RQ1: How randomly sampling the model space compare to state-

of-the-art baselines?

RQ2: What is the relationship between the number of features and

prediction effectiveness?

RQ3: How high-quality model understandability is affected by

prediction effectiveness?

2.2 Defect Prediction Definition

We can define the task to predict software defects as follows. The

input of our model represents a training set, which requires a set of

instances known as < x ,y >. The x is a vector of software features

(x = {x1,x2, . . . ,xn }). Complementary, the y denotes the outcome

of our model. More specifically, NASA datasets define a defect based

on the following expression, where one or more errors change the

status of a module to defective.

de f ective? = errorcount >= 1

The training set compounds a model that reports features to the

corresponding outcome. The test set comprises records < x , ? >

for which only the module x is available, while the corresponding

label y is unknown. Thus, to find the optimal machine learning

model, we need to enumerate all the combinations of features to

produce the models. Another solution is to sample the model space

to build a machine learning model for each set of software features.

Furthermore, we construct the model space by randomly selecting

the software features that compose these models. We start by creat-

ing models with a single software feature until we use the entire

pool of software features. In this manner, we end up selecting each

software feature evenly from the software metrics.

2.3 Data

As previously stated, we use the datasets containing metrics com-

puted frommodules of nine NASA software projects. These datasets

are subject to other research studies about defect prediction [1, 22ś

24]. The various NASA projects comprise a broad range of NASA

systems. For instance, CM1 refers to spacecraft instruments; KC1,

KC3, MC2 refer to storage management for grounded data; MW1

manages the data transactions; and PC1, PC2, PC3, PC4 refer to

software for an earth-orbiting satellite. Therefore, we can compare

our results to other predictive models. Table 1 exemplifies the data

with the 21 features. For each module within a project, there is

a value assigned to each feature. The average value for a project

represents the sum of values assigned to each module divided by

the number of modules within the project (Table 1). These aver-

age values differ between projects as observed in Table 1, e.g., the

average BRANCH_COUNT (number of branches) for project CM1

is 12.98, and for the project, KC1 is 7.24. Table 1 also shows the

percentual of defective modules in each project, and it is clear the

imbalanced nature of the data, i.e., defective modules are heavily

under-represented in comparison with non-defective modules. We

removed repeated/duplicate data points to avoid identical modules

in training and testing data.

2.3.1 Data Imbalance. The data considered in this work are highly

imbalanced, where approximately 11% of software modules present

defects, and nearly 89% of modules are clean (Table 1). For this

reason, we could not naively evaluate our models with the NASA

dataset without an extensive data exploration process [32]. As a

result, we employed a technique known as Synthetic Minority

Oversampling Technique (SMOTE) [34]. Therefore, by using the

SMOTE technique, we balanced the data 50/50 (i.e., half of the

modules have defects, and the other half represents clean modules).

More details about this technique are available in the replication

package1.

2.3.2 Features for Defect Prediction. NASA datasets are mostly

composed of either McCabe or Halstead software quality metrics.

These classic measures are module-based features originally pro-

posed to anticipate the complexity of a module and reason on the

quality of a software [44]. Table 2 describes the 21 features used in

our paper with its descriptions. Metrics starting with either McCabe

or Halstead are specific to these metrics (lines 2 to 11 in the Table).

1https://github.com/anonymous-replication/replication-nasa

Predicting Software Defects with Explainable Machine Learning SBQS’20, December 1ś4, 2020, São Luís, Brazil

Table 1: Overview of NASA Data Program Metrics.

Projects CM1 KC1 KC3 MC2 MW1 PC1 PC2 PC3 PC4

Programming Language C C++ Java C C C C C C

Number of Modules 505 1,571 458 127 403 1,059 4,505 1,511 1,347

Defective Modules 9.5% 20.31% 9.39% 34.65% 7.69% 7.18% 0.51% 10.59% 13.21%

1 BRANCH_COUNT 12.98 7.24 10.78 16.42 10.22 13.20 7.62 12.60 8.28

2 CYCLOMATIC_COMP. 7.30 4.13 6.32 8.90 5.99 7.41 4.39 6.99 4.75

3 DESIGN_COMP. 4.94 3.63 5.43 3.09 4.51 4.32 3.18 3.62 2.88

4 ESSENTIAL_COMP. 3.08 2.17 2.64 4.40 2.44 3.46 2.19 2.97 2.28

5 HALSTEAD_CONTENT 49.91 31.37 51.19 35.39 46.71 37.52 22.95 43.52 28.46

6 HALSTEAD_DIFFICULTY 20.00 10.36 17.39 27.67 12.28 20.34 14.38 18.30 18.09

7 HALSTEAD_LEVEL 0.08 0.19 0.07 0.08 0.12 0.08 0.11 0.08 0.11

8 HALSTEAD_EFFORT 49058 9248 30806 65064 11070 42547 12995 47008 21432

9 HALSTEAD_ERR._EST 0.42 0.15 0.37 0.40 0.20 0.32 0.14 0.35 0.20

10 HALST._LENGTH 196.55 82.00 185.86 204.97 106.20 157.45 79.46 162.21 110.89

11 HALST._PROG_TIME 2725.4 513.8 1711.4 3614.6 615.05 2363.7 721.94 2611.6 1190.6

12 HALSTEAD_VOLUME 1262.2 438.11 1118.2 1202.8 600.43 964.11 426.10 1036.2 596.65

13 LOC_BLANK 16.72 2.98 4.78 11.25 6.45 8.76 11.12 8.22 7.82

14 LOC_CODE_AND_COMM. 5.64 0.21 0.23 2.38 0.27 1.43 14.55 1.75 2.38

15 LOC_COMMENTS 17.42 1.65 2.45 13.78 5.40 5.80 5.74 5.73 5.49

16 LOC_EXECUTABLE 41.06 24.17 32.20 41.55 26.66 29.85 2.62 28.26 20.47

17 LOC_TOTAL 46.70 32.28 32.43 43.94 26.92 31.27 17.17 30.01 22.85

18 NUM_OPERANDS 76.73 31.16 68.65 86.79 46.78 68.43 32.45 72.68 42.72

19 NUM_OPERATORS 119.82 50.84 117.20 118.18 59.41 89.02 47.01 89.54 68.17

20 NUM_UNIQ._OPERAN. 35.34 15.07 29.16 23.94 25.86 27.20 12.70 27.77 14.40

21 NUM_UNIQ._OPERAT. 19.03 10.58 15.99 15.58 13.51 16.46 11.88 15.21 12.73

As stated in Table 2, features are also related to other code char-

acteristics, such as the number of operands and operators (unique

or not unique) and the different variations of lines of code (for

instance, comments, executable code, and blank lines).

2.3.3 Baseline Models. To compare the effectiveness of our ap-

proach, we considered seven machine learning models previously

applied in the literature: Logistic Regression (LR) [26, 29, 52]. Naive

Bayes (NB) [13, 15, 50], K-Nearest Neighbor (NBB) [16, 40, 47],

Neural Network (NN) [15, 48], Decision Trees (CART) [6, 15, 17],

Support Vector Machine (SVM) [5, 11, 31], and Random Forest

[8, 35, 49]. We also included XGBoost [21, 30] as a baseline method,

as this algorithm offered unique opportunities to deal with the data

[3]. Differently from our approach, all the baseline algorithms use

the full set of features while learning their models. We found rele-

vant hyper-parameters using an automated parameter optimization

technique [18] with a 10-fold cross-validation technique assisted

by the scikit-learn package in the Python programming language

[19]. The results reported are the average of the ten runs using

cross-validation, and to ensure their relevance, we assess the statis-

tical significance of our measurements using a Scott-Knott Effect

Estimation Size (ESD) test [36, 37]. Further, we evaluate the effec-

tiveness of the considered models using the standard ROC Area

Under the Curve (AUC) and F1 measure. The AUC is an estimate of

the probability that a prediction model will rank a randomly cho-

sen positive instance higher than a randomly chosen negative class

instance. In our context, we consider a positive class, the ones that

represent a defect, while the negative class instances are the ones

Table 2: NASA Data Program Software Quality Features.

metric description

1 Branch count Number of branches

2 McCabe’s complexity Number of independent paths

3 McCabe’s design Complexity of a module

4 McCabe’s essential Degree of structuredness

5 Halstead content Independent complexity of a module

6 Halstead difficult Difficult to handle the module

7 Halstead level Inverse of the error proneness

8 Halstead effort Estimated mental effort

9 Halstead error Number of errors in module

10 Halstead length Operators and operands numbers

11 Halstead time Estimate time to develop module

12 Halstead volume Bits required to execute the module

13 Blank lines Number of blank lines

14 LOC and comments Numbers of lines of code and comments

15 Lines of comments Number of lines of comments

16 LOC Total lines of code

17 LOC exucutable Total lines of code executable

18 Operands Total number of operands

19 Operators Total number of operators

20 Unique operands Number of unique operands

21 Unique operators Number of unique operators

that are clean (non-defective). Moreover, the F1 measure represents

the harmonic mean between the precision and recall [10]. We also

SBQS’20, December 1ś4, 2020, São Luís, Brazil Santos, et al.

checked for highly correlated features to avoid the multicollinearity

problem from both the baseline models and our approach. Thus,

we removed software features with over 99% of the correlation to

other features.

2.4 Feature Importance

Machine learning models that can effectively predict defects in

source code are usually hard to understand. Thus, it is relevant to

understanding why a model has made such predictions because it

provides valuable insights into the nature of the defects [13, 20, 30].

As an example, if a developer knows that the size of a module is an

essential feature that makes the module defect-prone, it may cause

the developer to focus on the refactoring of that specific module.

The typical approach to understanding such predictions bases on

the calculation of the impact of each software feature. Therefore,

a software feature is relevant for the prediction if permuting its

values increases the error. Thus, the model relies on specific features

for the defect prediction. Software features interact with each other

in complex ways to build accurate machine learning models. One

technique to calculate the complexity between these features is

applying Shapley values [28]. These values can find a significant

division that characterizes the features of importances distributions.

Formally, the explanation model д is a linear function of binary

variables:

д(z) = ϕ0 +

m∑

i=1

ϕi × zi , (1)

where ϕi for i = 0, 1, . . . ,m are parameters called Shapley values,m

is the number of simplified input features, zi = {z1, z2, . . . , zm } is a

binary vector in simplified input space where z ∈ {0, 1}m . Shapley

values measure how each feature contributes to the prediction. In

this case, how they contribute to predicting a software defect. In

theory, these values are optimal and provide an accurate attribution

value. Here, we apply the implementation of these values known

as SHAP (SHapley Addictive exPlanation) [21]. This technique is

an approximation of Shapley values to compute the importance of

each software feature.

3 RESULTS

3.1 Competitiveness of Random Models

In this section, we compare distinct baseline models to predict de-

fects in the target data [4, 5, 13, 15, 23, 23, 39, 48]. Thus, we want to

estimate the predictive capability of the data, i.e., the data quality

to predict defects in the selected projects. For this experimenta-

tion, we applied the same setup to the nine NASA projects [22].

Table 3 displays the results of the baseline models for each NASA

dataset. We note that in eight of the considered datasets, the random

search could find models that achieve superior predictive accuracy

compared to the remaining models (for both AUC numbers and

F1 measure). The random search was unsuccessful only for the

MC2 dataset (AUC) and PC3 (F1) for which they could not find an

XGBoost model that is as effective as the baseline model.

As our set of experiments using AUC and F1 are not statistically

sound to evaluate the performance of the target baselines. This

happens because it is hard to distinguish the performance achieved

by these algorithms looking solely in Table 3. Thus, we apply a test

Groups

M
e
a
n
s

0
.4

0
.5

0
.6

0
.8

0
.9

RS.XGB NN XGB LR CART NB KNN RF SVMRS.XGB NN XGB LR CART NB KNN RF SVM

Means grouped by color(s)

Groups

M
e
a
n
s

0
.5

0
.6

0
.7

0
.8

RS.XGB XGB CART RF KNN LR NN NB SVMRS.XGB XGB CART RF KNN LR NN NB SVM

Means grouped by color(s)

Figure 1: Scott-Knott Effect Size Estimation test. AUC Num-

bers (Above). F1 Measure (Below).

known as Scott-Knott Effect Size Difference (ESD) [36, 37]. The ESD

test is a mean comparison approach that leverages a hierarchical

clustering to partition the set of treatment means into statistically

distinct groups with non-negligible difference [36, 37]. Figure 1

reveals that our approach (RS-XGB) expresses the lowest treatment

means compared to the remaining baseline models. Therefore, the

ESD test unveils that out of the nine classifiers used in this ex-

periment, we find six clusters for the AUC evaluation metric (the

left portion of Figure 1). While, for the F1 evaluation metric (the

right portion of Figure 1), we detected seven clusters. The best

performing model separates from the baseline models for each of

the evaluation metrics. As a result, we may conclude that RS-XGB

is slightly more effective to predict defects using the NASA data.

From these experiments, we may assume that the superiority

of random models occurs due to some reasons. In the first place,

we use a flexible tree boosting algorithm based on training a large

number of low-accuracymodels and then combining the predictions

produced by those weak models to obtain a high-accuracy model.

Further, we implement a particular subset of features instead of

requiring the algorithm to use all available software features. In

the remainder of this paper, we show the results considering the

AUC evaluation metric as it is very similar to the F1 measure in our

context.

Predicting Software Defects with Explainable Machine Learning SBQS’20, December 1ś4, 2020, São Luís, Brazil

Table 3: AUC Numbers / F1 Measure score for different NASA projects. Numbers in bold indicate the best models for each

evaluation metric.

Baseline Models Performance (AUC / F1)

Models CM1 KC1 KC3 MC2 MW1 PC1 PC2 PC3 PC4

LR 0.753 / 0.690 0.795 / 0.708 0.691 / 0.704 0.761 / 0.601 0.742 / 0.747 0.852 / 0.717 0.822 / 0.755 0.813 / 0.755 0.901 / 0.799

NB 0.702 / 0.518 0.790 / 0.509 0.677 / 0.584 0.739 / 0.514 0.724 / 0.660 0.799 / 0.442 0.805 / 0.543 0.780 / 0.661 0.861 / 0.606

KNN 0.666 / 0.736 0.689 / 0.723 0.670 / 0.711 0.783 / 0.657 0.656 / 0.722 0.734 / 0.787 0.554 / 0.843 0.649 / 0.706 0.732 / 0.791

NN 0.744 / 0.397 0.797 / 0.707 0.707 / 0.576 0.835 / 0.660 0.689 / 0.534 0.829 / 0.594 0.905 / 0.721 0.799 / 0.579 0.921 / 0.743

SVM 0.667 / 0.565 0.767 / 0.653 0.572 / 0.588 0.747 / 0.472 0.659 / 0.633 0.774 / 0.469 0.139 / 0.638 0.476 / 0.445 0.879 / 0.523

CART 0.674 / 0.760 0.818 / 0.766 0.754 / 0.705 0.709 / 0.719 0.703 / 0.761 0.819 / 0.732 0.832 / 0.787 0.842 / 0.787 0.900 / 0.844

RF 0.706 / 0.719 0.584 / 0.752 0.605 / 0.610 0.483 / 0.729 0.735 / 0.771 0.696 / 0.764 0.901 / 0.799 0.734 / 0.835 0.601 / 0.852

XGB 0.722 / 0.776 0.814 / 0.799 0.655 / 0.781 0.766 / 0.779 0.779 / 0.791 0.802 / 0.811 0.899 / 0.876 0.811 / 0.821 0.884 / 0.852

RS-XGB 0.801 / 0.799 0.815 / 0.803 0.839 / 0.821 0.781 / 0.796 0.849 / 0.805 0.868 / 0.851 0.905 / 0.888 0.842 / 0.802 0.917 / 0.891

3.2 Features and Prediction Effectiveness

We devote the following set of experiments to evaluating the num-

ber of features that contribute to the understandability of our ma-

chine learning model. Figure 2 shows AUC numbers obtained by

models varying the number of software features within the model,

and also average AUC numbers when considering all models of

a particular size. The plots show AUC numbers obtained by best

and worst-performing XGBoost models of each size. Interestingly,

the best performing models are composed of up to six features in

all datasets, which enables good understandability with high AUC

numbers. Results show that as the number of features increases,

AUC values often decreases.

To get an overview of which features are most important for

a model, we plotted the SHAP values of every feature within the

model for every module. Figure 3 shows SHAP summary plots

associated with the best models for eight datasets. The plot sorts

feature by the sum of SHAP value magnitudes overall modules

and use SHAP values to show the distribution of the impacts each

feature has on the model output. The feature value in red is high

and the feature value in blue is low. We understand model decisions

for modules in PC2 and PC3 datasets with only two features, four

of the datasets used four features (CM1, KC3, MW1, PC4), one used

five features (MC2), and one used eight features (KC1). Notice that

the relevant features may vary depending on the dataset. Some

of the most relevant features are LOC_COMMENTS (number of

comment lines), a feature already discussed in the literature as

a source of łbad smellsž because of its capacity to hide the real

code complexity [7]. Figure 3 also shows that Halstead’s software

metrics and NUM_OPERANDS (total number of operands) are often

present in variations of the model explanation. As the NASA dataset

focuses on the Halstead and McCabe metrics, we can infer that the

Halstead metrics are more useful to understand machine learning

model prediction.

3.3 Model Understandability

We devote the final set of experiments to verifying the implications

of the model for software developers’ understandability. Figure 4

illustrates an explanation for the decision of an arbitrary model

randomly gathered from the model space composed of the combi-

nation of all features. This randomly selected model represents one

instance of one module in one of the nine NASA datasets. Thus,

software features in red increase the model output, while features

in blue decrease the output. As a result, features LOC_TOTAL=284

(total number of lines of code) and BRANCH_COUNT=45 (number

of branches) yield the most significant increase for predicting a

defective module and features NUM_UNIQUE_OPERANDS (unique

operands) and LOC_EXUCUTABLE (number of lines of code exe-

cutable) have a minor impact on the model prediction in the same

direction. There are features in blue that contribute to the mod-

ule not being defective. However, as their influence is too low, the

figure does not show these features. Such type of explanation is

helpful when the developer of the module needs to evaluate a single

defective module.

Based on this scenario, we conducted an online survey with 40

developers from unique backgrounds. The developers are all based

in Brazil. The example used in the survey study is the same as

presented in Figure 4. The key idea of the survey is to understand

whether developers can comprehend the results of our models gen-

erated from our approach to feature selection with SHAP. After

understanding the local explanation, we check if developers are

undertaking the proper actions on the defective module based on

multiple-choice questions. Even though the survey was multiple-

choice, we provide the participants with a text-box to express any

opinion about the study. The entire survey is available in the repli-

cation package of this paper.

We focus the study on the background of the participants and

their understandability of an arbitrary predictive model. Among

the participants, 18 (45%) holds a master’s degree in some computer

science areas, e.g., information systems, computer science, or com-

puter engineering. The other 11 (27.5%) holds an undergraduate

degree in some computing area, and 7 (17.5%) are still undergradu-

ates in computer-related areas. The remaining 4 (10%) has a Ph.D.

in computer science. Twenty-seven developers (67.5%) studied com-

puter science, eleven (27.5%) studied information systems, and two

(5%) studied computer engineering in their latest achieved degree.

The survey also questioned how long the participants developed

code in their careers. The results showed that 19 (47.5%) developed

software for over five years, ten (25%) participants developed code

between three and four years, and another ten (25%) developers

worked in the industry for less than three years. Only one partici-

pant (representing 2.5%) opted to not respond to this question. As

the results indicate, most developers that participated in the survey

SBQS’20, December 1ś4, 2020, São Luís, Brazil Santos, et al.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 3 6 9 12 15 18 21

A
U

C

Model Size

CM1

Best models
Average models

Worst models

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 3 6 9 12 15 18 21

A
U

C

Model Size

KC1

Best models
Average models

Worst models

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 3 6 9 12 15 18 21

A
U

C

Model Size

KC3

Best models
Average models

Worst models

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 3 6 9 12 15 18 21

A
U

C

Model Size

MC2

Best models
Average models

Worst models

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 3 6 9 12 15 18 21

A
U

C

Model Size

MW1

Best models
Average models

Worst models

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 3 6 9 12 15 18 21

A
U

C

Model Size

PC1

Best models
Average models

Worst models

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 3 6 9 12 15 18 21

A
U

C

Model Size

PC2

Best models
Average models

Worst models

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 3 6 9 12 15 18 21

A
U

C

Model Size

PC3

Best models
Average models

Worst models

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 3 6 9 12 15 18 21

A
U

C

Model Size

PC4

Best models
Average models

Worst models

Figure 2: AUC numbers for different datasets and varying number of features (model size) within the models.

hold a master’s degree in computer science and developed software

for over five years.

3.3.1 Developers Understandability. The second part of the survey

evaluates the extent to which the developers understood SHAP

feature importances. To do so, we opted for showing Figure 4 and

asking the developers three questions to understand the results of

our model, as we discuss next.

(a) In the first question (Q1), we wanted to know if the partici-

pants would increase the number of lines of code based on

the local explanation shown in Figure 4. As we can observe

in Figure 4, the total number of lines of code is associated

with defective modules. Therefore, we expected that the de-

velopers would not increase the size of the module that is

already defect-prone. To analyze the data, we have applied

a Likert-type scale with five options: (1) strongly disagree,

(2) disagree, (3) neither agree nor disagree (4) agree, and (5)

strongly agree, as shown in Figure 5. Among the developers,

19 (or 47.5% of participants) strongly disagree (1) with the

increase of lines of code in the module. Eleven developers

(27.5%) disagree with the statement (2), and six developers

(15%) agree (4) in increasing lines of codes. Other options

had a minor impact for the developers, e.g., only two devel-

opers (5%) strongly agree (5) in adding more lines of code,

and two developers (5%) (3) could not give an opinion about

the subject. From this question, we may conclude that the

developers could understand the local explanation, as 30 de-

velopers (75%) disagree or strongly disagree that they should

increase the lines of code in this module.

(b) In the second question (Q2), we wanted to explore whether

the developers understood the order of importance of the

features that affect the defectiveness of the module. Figure 4

shows that the number of lines of code is the feature that

contributes the most to classifying the module as defective.

Thus, we asked if the developers consider that the total num-

ber of lines of code was more important than the number of

unique operands. We chose this comparison because these

two features are similar. Hence, we want to avoid confu-

sion from the participants. This question used the Likert

type scale from the last question. We also show the results

in Figure 5, thirteen developers (32.5% of participants) (5)

strongly agree that the total number of lines of code is more

important for the model. Twelve developers (30%) (4) agree

that the total number of lines of code is more relevant to the

Predicting Software Defects with Explainable Machine Learning SBQS’20, December 1ś4, 2020, São Luís, Brazil

Figure 3: (Color online) From top to bottom, left to right: CM1, KC1, KC3, MC2, MW1, PC2, PC3, PC4. Best overall performing

models for each dataset.

Figure 4: Local explanation randomly selected from the predictor.

Figure 5: Questions 1 and 2 about the defectiveness of the

model.

model than the number of unique operands. Nine developers

(22.5%) (2) disagree with the importance of lines of code.

Participants chose other options, as four developers (10%) (1)

strongly disagree the total number of lines of code is more

important to the model, while two developers (5%) (3) could

not express an opinion about the subject. We conclude that

most developers (25 or 62.5%) understood the output and

considered the number of lines of code more important than

the number of unique operands. It is important to note that

SBQS’20, December 1ś4, 2020, São Luís, Brazil Santos, et al.

62.5%
17.5%

7.5%

7.5%
5.0%

LOC, BRANCH_C & UNIQ_OPER
ESS_COMP, LOC_EXE & UNIQ_OPER
LOC, LOC_EXE & ESSENT_COMP
LOC_EXE, BRAN_C & ESS_COMP
BRAN_C, ESS_COMP & LOC_EXE

Figure 6: Set of Important Features.

little to no training was provided to the developers to re-

spond to the survey. We adopted a basic textual description

of the features and generated models as the only training to

capacitate the developers about the survey. For this reason,

we believe training would improve the understandability of

developers about SHAP importances. However, the results

from both questions (Q1 and Q2) show that the developers

could comprehend the local explanation.

(c) Finally, we asked developers which are the top three features

that bring the module to a defective state (Q3) (based on Fig-

ure 4). We give the participants several combinations of three

options. The right answer was the combination of the total

number of lines of code, number of branches, and number of

unique operands. Figure 6 shows that 25 developers (62.5%)

chose the right combination of defect-prone features. At the

end of the survey, we concluded that most developers could

understand the local explanation generated by SHAP using

RS−XGBoost. We also conclude that if participants had the

local explanation during the development of a module, they

could anticipate problems that may arise in the module based

on the local explanations provided in this survey.

3.3.2 Implications for Developers. The end of the survey and the

experiments with machine learning models provided insights into

the implications of our work for developers.

(i) Our study infers how hard it is to build models that are

understandable from different software projects. For this rea-

son, developers should not expect identical machine learn-

ing models to explain various software projects built from

distinct programming languages. We recommend training

models under the same software project, or at least, training

models using the same programming language.

(ii) Our study indicates that it is possible to apply a technique

similar to the one used in our experimental phase to build a

tool to classify defects in software projects. We found that

the only restriction to such a tool relates to the feature clas-

sification under Halstead and McCabe metrics.

(iii) Although developers were not given detailed training about

the survey (or SHAP), they were able, in most cases (75% in

Q1, 62.5% in Q2, and 62.5% in Q3), to understand the output

provided by SHAP. We may conclude that we reached con-

siderable model understandability because the developers

could assess the scenario only accounting the knowledge

about software development. Again, the proposed tool could

output SHAP graphs, like the ones used in the survey, to

support the developers’ understanding of their project.

4 THREATS TO VALIDITY

This work has some limitations that could potentially threaten our

conclusions. In this section, we discuss four types of threats to

our investigation. First, we examine the external threats to validity.

Then, we review the internal threats to validity. Next, we consider

the construct threats to validity. Finally, we show the conclusion

threats to validity.

External Validity: Threats to external validity represent situa-

tions that limit our ability to generalize the results of our study [45].

In our study, a threat to the external validity concerns the limited

number of projects we analyzed (only nine NASA projects). Fur-

thermore, the scope of these projects probably limits the capability

to generalize to various contexts of software development. For this

reason, the findings of our investigation may not generalize well to

other software projects, especially the ones implemented in various

programming languages (as most of NASA projects are based on C

language).

Internal Validity: Threats to internal validity are practices that

can affect the independent variable to causality [45]. In our context,

this threat refers to the selected NASA datasets because we naively

applied the data reported in the NASA data program [22]. However,

we could not validate the data on how the NASA team collected the

data [23]. As a result, the data may be incomplete or even wrongly

selected by the authors [12, 27]. Other papers already demonstrated

minor inconsistencies in this data [9, 12]. To mitigate the effect

of imbalanced data, which is a known problem in the NASA data

[9, 12, 27], we apply a machine learning technique called SMOTE

to balance the data. However, we cannot guarantee that the data

reflects the actual nature of the software projects used in our study.

Construct Validity: Construct validity assumes the result of

the experiments to the concept or theory [45]. The current litera-

ture acknowledges SHAP values as a valid technique to understand

machine learning predictions [21]. However, other agnostic models

may find different explanations based on a series of software fea-

tures and data internal arrangement. As an example, the current

explainable defect prediction literature focus on techniques such as

LIME and BreakDown [14] to understand defects in source code.

Conclusion Validity: Threats to the conclusion validity relate

to issues to express the correct conclusion between the treatment

and the outcome [45]. In our study, this threat also links to the

explanations generated by SHAP. Our models depend upon the de-

fect labels of the NASA dataset [22]. Other research studies learned

that many projects rely on a six months post-release period to

generate defects in the source code [49]. Therefore, our study did

not take into consideration the post-release windows and may not

generalize well in instances reported in previous works.

Predicting Software Defects with Explainable Machine Learning SBQS’20, December 1ś4, 2020, São Luís, Brazil

5 RELATED WORK

Software defect prediction applying machine learning techniques

has received extensive recognition in the software engineering

community for a long time. Several research studies rely on source

code metadata [42] and software metrics [15, 22] as features to

machine learning-based algorithms. For instance, Wang et al. [42]

studied the impact of using the program’s semantic as the predic-

tion model’s features. The authors used deep learning networks to

automatically learn semantic features from token vectors obtained

from abstract syntax trees. In a similar approach, Xu et al. [46]

employed a non-linear mapping method to extract representative

features by embedding the original data into a high-dimension

space. Their results achieved average F-measure, g-mean, and bal-

ance of 0.480, 0.592, and 0.580. Our work, on the other hand, aimed

at using features learned from the classic Halstead and McCabe

metrics.

The current literature applies several software metrics for de-

fect prediction. As an example, Menzies et al. [22] presented defect

classifiers using code attributes defined by McCabe and Halstead

metrics. They concluded that the choice of the learning method

is more important than which subset of the available data we use

for learning. From a different perspective, Jing et al. [15] used a

dictionary learning technique to predict software defects by us-

ing characteristics of software metrics mined from open-source

software. They used datasets from NASA projects as test data to

evaluate the proposed method, which achieved a recall value of 0.79,

improving the recall by 0.15 when compared to other methods. In

this paper, we also used the McCabe and Halstead software metrics

and the NASA datasets. However, unlike Menzies et al. [22] and

Jing et al. [15], we focused on understandable machine learning

models for predicting software defects.

Some studies investigate cross-project and cross-company de-

fect prediction [8, 40]. For instance, Fukushima et al. [8] explored

cross-project prediction models within the context of just-in-time

prediction. Their results indicated no relationship between project

prediction performance and cross-project prediction performance,

and just-in-time prediction models built using projects with similar

characteristics or using ensemble methods usually perform well

in a cross-project context. In a similar approach, Turhan et al. [40]

used cross-company data for building localized defect predictors.

They used principles of analogy-based learning to cross-company

data to fine-tune these models for localization. The authors used

static code features extracted from the source code, such as com-

plexity features and Halstead metrics. The paper concludes that

cross-company data are useful in extreme cases, and when within-

company data is not available. Unlike these previous papers, we did

not aim at analyzing defects across different projects or companies.

Defect prediction is challenging, and previous work addresses

these matters [33, 35]. For instance, Tantithamthavorn and Hassan

[33] documented pitfalls and difficulties in applying novel defect

modeling. The authors divided their model into seven steps: hy-

pothesis formulation, designing metrics, data preparation, model

specification, model construction, model validation, and model

interpretation. Then, they discussed pitfalls for each step of the

proposed defect modeling. In a different paper, Tantithamthavorn

et al. [35] showed the impact of noisy data on the creation of defect

prediction models. They argue that mislabelled data could impact

not only the effectiveness but also the reliability of the model. The

authors apply a case study with thousands of manually-curated

issue reports. Unlike Tantithamthavorn work [33, 35], we did not

focus on the pitfalls and challenges of dealing with noisy data. Al-

though, we tried to mitigate or overcome them in our study with

correlation analysis, feature importance, and proper data cleaning.

In this work, we used features composed of software metrics

proposed by McCabe and Halstead to built understandable defect

prediction models using the tree boosting algorithm XGBoost [3].

We compared the effectiveness of XGBoost against seven well-

known machine learning methods, which usually perform well on

the defect prediction task. We went beyond the aforementioned

works by using SHAP values [21] to optimally compute the impor-

tance of each feature in the prediction, which allows identifying the

most impactful software quality features when predicting software

defects.

6 CONCLUSIONS AND FUTUREWORK

In this paper, we examined the space for software defect prediction

models using an efficient implementation of the ensemble method

known as the XGBoost algorithm, which resulted in millions of

randomly generated machine learning models. Therefore, we evalu-

ated these models considering their accuracy and understandability.

Thus, our study found that only 3.5% of the target models (out of a

space of 2 097 152 models) achieved AUC numbers superior com-

pared to the baseline. We also demonstrated that software defect

prediction represents a project-specific task. In this sense, software

features composing the effective models may vary depending on the

project characteristics. We conclude that it is helpful to understand

the software features contributing to model decisions. Finally, we

applied SHAP values to understand model decisions and observed

that best performing models are simple to understand because they

are composed of a few features and well-distributed numbers. Thus,

model explanations may provide insight on which software quality

features of the code are more prone to defect.

As future work, we plan to mine data from public repositories on

GitHub or similar platforms.We could label this data and then apply

similar models used in this research. Therefore, we would provide

the software quality community with additional case studies of the

models proposed in this paper. The end product of this study could

be a tool for developers to analyze their projects. Thus, we would

like to test how developers would apply suchmachine learning tools

to track defects in their projects. However, a prominent issue to

using data publicly available at GitHub is the precise labeling of the

data using McCabe and Halstead’s metrics. Furthermore, the public

data available on GitHub could provide different perspectives in

terms of predicting software defects using machine learning models.

For example, we would like to classify a commit to generate a

temporal analysis concerned with the evolution of the software

throughout time.

ACKNOWLEDGMENTS

This research was partially supported by Brazilian funding agencies:

CNPq (Grant 424340/2016-0), CAPES, and FAPEMIG (grant PPM-

00651-17).

SBQS’20, December 1ś4, 2020, São Luís, Brazil Santos, et al.

REFERENCES
[1] A. Agrawal and T. Menzies. 2018. Is better data better than better data miners?:

on the benefits of tuning SMOTE for defect prediction. In International Conference
of Software Engineering (ICSE).

[2] T. Chen and C. Guestrin. 2015. XGBoost : Reliable Large-scale Tree Boosting
System.

[3] T. Chen and C. Guestrin. 2016. Xgboost: A scalable tree boosting system. In
International Conference on Knowledge Discovery and Data Mining (SIGKDD).

[4] D. Cruz, A. Santana, and E. Figueiredo. 2020. Detecting Bad Smells with Machine
Learning Algorithms: an Empirical Study. In International Conference on Technical
Debt (TechDebt ’20).

[5] K. O Elish and M. O Elish. 2008. Predicting defect-prone software modules using
support vector machines. Journal of Systems and Software 81, 5 (2008).

[6] R. Ferenc, Z. Tóth, G. Ladányi, I. Siket, and T. Gyimóthy. 2018. A Public Uni-
fied Bug Dataset for Java. In Proceedings of the 14th International Conference on
Predictive Models and Data Analytics in Software Engineering. Association for
Computing Machinery.

[7] M. Fowler. 1999. Refactoring: Improving the Design of Existing Code. Addison-
Wesley.

[8] T. Fukushima, Y. Kamei, S. McIntosh, K. Yamashita, and N. Ubayashi. 2014. An
empirical study of just-in-time defect prediction using cross-project models. In
Working Conference on Mining Software Repositories (MSR).

[9] B. Ghotra, S. McIntosh, and A. E. Hassan. 2015. Revisiting the Impact of Classifi-
cation Techniques on the Performance of Defect Prediction Models. In IEEE/ACM
37th IEEE International Conference on Software Engineering (ICSE).

[10] C. Goutte and E. Gaussier. 2005. A Probabilistic Interpretation of Precision, Recall
and F-Score, with Implication for Evaluation. In Proceedings of the 27th European
Conference on Advances in Information Retrieval Research (ECIR).

[11] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson. 2009. Using the Support
Vector Machine as a Classification Method for Software Defect Prediction with
Static Code Metrics. In Engineering Applications of Neural Networks.

[12] D. Gray, D. Bowes, N. Davey, Y. Sun, and B. Christianson. 2011. The misuse of the
NASA metrics data program data sets for automated software defect prediction.
In 15th Annual Conference on Evaluation Assessment in Software Engineering
(EASE).

[13] T. Jiang, L. Tan, and S. Kim. 2013. Personalized defect prediction. In IEEE/ACM
International Conference on Automated Software Engineering (ASE).

[14] J. Jiarpakdee, C. Tantithamthavorn, H. K. Dam, and J. Grundy. 2020. An Empirical
Study of Model-Agnostic Techniques for Defect Prediction Models.

[15] X. Jing, S. Ying, Z. Zhang, S. Wu, and J. Liu. 2014. Dictionary learning based
software defect prediction. In International Conference of Software Engineering
(ICSE).

[16] R. Kaur and S. Sharma. 2019. An ANN Based Approach for Software Fault
Prediction Using Object Oriented Metrics. (2019).

[17] P. Knab, M. Pinzger, and A. Bernstein. 2006. Predicting Defect Densities in
Source Code Files with Decision Tree Learners. In Proceedings of the International
Workshop on Mining Software Repositories (MSR) (MSR).

[18] M. Kuhn. 2015. Caret: Classification and regression training. http://topepo.github.
io/caret/index.html.

[19] Buitinck L., Louppe G., Blondel M., Pedregosa F., Mueller A., Grisel O., Niculae
V., Prettenhofer P., Gramfort A., Grobler J., Layton R., VanderPlas J., Joly A.,
Holt B., and Varoquaux G. 2013. API design for machine learning software:
experiences from the scikit-learn project. In ECML PKDD Workshop: Languages
for Data Mining and Machine Learning.

[20] C. Lewis, Z. Lin, C. Sadowski, X. Zhu, R. Ou, and E J. Whitehead Jr. 2013. Does
bug prediction support human developers? findings from a google case study. In
International Conference of Software Engineering (ICSE).

[21] Scott M Lundberg and Su-In Lee. 2017. A unified approach to interpreting
model predictions. In Annual Conference on Neural Information Processing Systems
(NIPS).

[22] T. Menzies, J. Greenwald, and A. Frank. 2007. Data mining static code attributes
to learn defect predictors. IEEE Transactions on Software Engineering (2007).

[23] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A. Bener. 2010. Defect
prediction from static code features: current results, limitations, new approaches.
Automated Software Engineering (2010).

[24] T. Menzies and J. S. Di Stefano. 2004. How good is your blind spot sampling
policy. In IEEE International Symposium on High Assurance Systems Engineering.

[25] G. Moreira, R. Mellado, R. Junior, A. Cunha, and L. Dias. 2012. Predicting Post-
Release Defects in OO Software using Product Metrics. In IX Experimental Soft-
ware Engineering Latin American Workshop.

[26] N. Nagappan, T. Ball, and A. Zeller. 2006. Mining Metrics to Predict Compo-
nent Failures. In Proceedings of the 28th International Conference on Software
Engineering.

[27] J. Petrić, D. Bowes, T. Hall, B. Christianson, and N. Baddoo. 2016. The Jinx on
the NASA Software Defect Data Sets. In Proceedings of the 20th International
Conference on Evaluation and Assessment in Software Engineering (EASE). Article
13, 5 pages.

[28] Shapley L. S. 1953. A Value for n-Person Games. In Annals of Mathematical
Studies, H. W. Kuhn and A. W. Tucker (Eds.). Princeton University Press.

[29] G. E. Santos and E. Figueiredo. 2020. Commit Classification using Natural Lan-
guageProcessing: Experiments over Labeled Datasets. In XXIII Ibero-American
Conference on Software Engineering.

[30] G. E. Santos and E. Figueiredo. 2020. Failure of One, Fall of Many: An Exploratory
Study of Software Features for Defect Prediction. In 20th IEEE International
Working Conference on Source Code Analysis and Manipulation.

[31] B. Shuai, H. Li, M. Li, Q. Zhang, and C. Tang. 2013. Software Defect Prediction
Using Dynamic Support Vector Machine. In Ninth International Conference on
Computational Intelligence and Security.

[32] M. Tan, L. Tan, S. Dara, and C. Mayeux. 2015. Online defect prediction for
imbalanced data. In IEEE/ACM 37th IEEE International Conference on Software
Engineering (ICSE).

[33] C. Tantithamthavorn and A. E. Hassan. 2018. An Experience Report on Defect
Modelling in Practice: Pitfalls and Challenges. In International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP).

[34] C. Tantithamthavorn, A. E. Hassan, and K. Matsumoto. 2018. The Impact of
Class Rebalancing Techniques on the Performance and Interpretation of Defect
Prediction Models. CoRR (2018).

[35] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, A. Ihara, and K. Matsumoto.
2015. The Impact of Mislabelling on the Performance and Interpretation of Defect
Prediction Models. In International Conference on Software Engineering (ICSE).

[36] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto. 2017. An
Empirical Comparison of Model Validation Techniques for Defect Prediction
Models. IEEE Transactions on Software Engineering (2017).

[37] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto. 2019. The
Impact of Automated Parameter Optimization on Defect Prediction Models. IEEE
Transactions on Software Engineering (2019).

[38] M. T. Thwin and T. Quah. 2005. Application of neural networks for software
quality prediction using object-oriented metrics. Journal of systems and software
(2005).

[39] B. Turhan and A. Bener. 2009. Analysis of Naive Bayes’ assumptions on software
fault data: An empirical study. Data & Knowledge Engineering (2009).

[40] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano. 2009. On the relative value
of cross-company and within-company data for defect prediction. Empirical
Software Engineering (2009).

[41] J. Wang, B. Shen, and Y. Chen. 2012. Compressed C4.5 models for software defect
prediction. In International Conference on Quality Software (QSIC).

[42] S. Wang, T. Liu, and L. Tan. 2016. Automatically learning semantic features for
defect prediction. In International Conference of Software Engineering (ICSE).

[43] T. Wang and W. Li. 2010. Naive bayes software defect prediction model. In
International Conference on Computational Intelligence and Software Engineering
(CiSE).

[44] E. J. Weyuker. 1988. Evaluating Software Complexity Measures. IEEE Transactions
on Software Engineering (1988).

[45] C. Wohlin, P. Runeson, M. Hst, M. C. Ohlsson, B. Regnell, and A. Wessln. 2012.
Experimentation in Software Engineering. Springer.

[46] Z. Xu, J. Liu, X. Luo, and T. Zhang. 2018. Cross-version defect prediction via
hybrid active learning with kernel principal component analysis. In International
Conference on Software Analysis, Evolution and Reengineering (SANER).

[47] X. Xuan, D. Lo, X. Xia, and Y. Tian. 2015. Evaluating Defect Prediction Approaches
Using a Massive Set of Metrics: An Empirical Study. In Proceedings of the 30th
Annual ACM Symposium on Applied Computing (SAC). 4.

[48] Y. Yang, Y. Zhou, J. Liu, Y. Zhao, H. Lu, L. Xu, B. Xu, and H. Leung. 2016. Effort-
Aware Just-in-Time Defect Prediction: Simple Unsupervised Models Could Be
Better than Supervised Models. In Proceedings of the 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering.

[49] S. Yatish, J. Jiarpakdee, P. Thongtanunam, and C. Tantithamthavorn. 2019. Mining
Software Defects: Should We Consider Affected Releases?. In IEEE/ACM 41st
International Conference on Software Engineering (ICSE).

[50] Sun Z., Li J., and Sun H. 2018. An empirical study of public data quality problems
in cross project defect prediction. Computing Research Repository (CoRR) (2018).

[51] F. Zhang, A. E. Hassan, S. McIntosh, and Y. Zou. 2017. The Use of Summation
to Aggregate Software Metrics Hinders the Performance of Defect Prediction
Models. IEEE Transactions on Software Engineering (2017).

[52] T. Zimmermann and N. Nagappan. 2008. Predicting defects using network analy-
sis on dependency graphs. In International Conference of Software Engineering
(ICSE).

	Abstract
	1 Introduction
	2 Study Setup
	2.1 Goal and Research Questions
	2.2 Defect Prediction Definition
	2.3 Data
	2.4 Feature Importance

	3 Results
	3.1 Competitiveness of Random Models
	3.2 Features and Prediction Effectiveness
	3.3 Model Understandability

	4 Threats to Validity
	5 Related Work
	6 Conclusions and Future Work
	Acknowledgments
	References

