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ABSTRACT
Performing accurate suggestions is an objective of paramount im-
portance for effective recommender systems. Other important and
increasingly evident objectives are novelty and diversity, which are
achieved by recommender systems that are able to suggest diversi-
fied items not easily discovered by the users. Different recommen-
dation algorithms have particular strengths and weaknesses when
it comes to each of these objectives, motivating the construction of
hybrid approaches. However, most of these approaches only focus
on optimizing accuracy, with no regard for novelty and diversity.
The problem of combining recommendation algorithms grows sig-
nificantly harder when multiple objectives are considered simulta-
neously. For instance, devising multi-objective recommender sys-
tems that suggest items that are simultaneously accurate, novel and
diversified may lead to a conflicting-objective problem, where the
attempt to improve an objective further may result in worsening
other competing objectives. In this paper we propose a hybrid rec-
ommendation approach that combines existing algorithms which
differ in their level of accuracy, novelty and diversity. We employ
an evolutionary search for hybrids following the Strength Pareto
approach, which isolates hybrids that are not dominated by others
(i.e., the so called Pareto frontier). Experimental results on two
recommendation scenarios show that: (i) we can combine recom-
mendation algorithms in order to improve an objective without sig-
nificantly hurting other objectives, and (ii) we allow for adjusting
the compromise between accuracy, diversity and novelty, so that the
recommendation emphasis can be adjusted dynamically according
to the needs of different users.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information Filtering
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1. INTRODUCTION
Recommender systems are increasingly emerging as enabling

mechanisms devoted to overcoming problems that are inherent to
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information overload, providing intelligent information access and
delivery, and thus potentially improving browsing and consump-
tion experience. Historically, the typical goal of a recommender
system is to maximize accuracy as much as possible in predicting
and matching user information needs, often by considering indi-
vidual delivered items in isolation [12]. More recently, however,
it has become a consensus that the success of a recommender sys-
tem depends on other dimensions of information utility, notably the
diversity and novelty of the suggestions performed by the system
[9, 19, 25, 33]. More specifically, even being accurate, obvious and
monotonous recommendations are generally of little use, since they
do not expose users to unprecedent experiences.

Increasing novelty and diversity by completely giving up on ac-
curacy is straightforward - and meaningless, since the system will
not meet the users needs anymore. In fact, there is an apparent
trade-off between these dimensions, which becomes evident by in-
specting the performance of existing top-N recommendation algo-
rithms. An easy conclusion is that different algorithms may per-
form distinctly depending on the dimension of interest (i.e., the
best performer in terms of accuracy is not the best one in terms
of novelty and diversity), and thus it is hard to point to a best per-
former if all the dimensions are considered simultaneously. A con-
clusion which is harder to reach is whether these algorithms are
indeed complementary, so that the strengths of an algorithm may
compensate the weaknesses of others. The potential synergy be-
tween different recommendation algorithms is of great importance
to multi-objective recommender systems, since they must achieve
a proper level of each dimension (i.e., objective).

In this paper we hypothesize that it is possible to properly aggre-
gate different recommendation algorithms, so that the resulting hy-
brids balances the level of accuracy, diversity and novelty in its sug-
gestions. In this case, each potential hybrid is given as a weighted
combination of well-established recommendation algorithms (e.g.,
simple algorithms as well as representative of the state-of-the-art).
Our proposed hybridization approach consists in finding appropri-
ate weights for the constituent algorithms. By considering each
dimension (i.e., accuracy, novelty and diversity) as a separate ob-
jective, we reduce the hybridization task to a multi-objective opti-
mization problem, in which we search for the optimal combination
of weights that maximizes accuracy, diversity and novelty.

Since the considered objectives are potentially conflicting, we
employ an evolutionary search for optimal hybrids. Evolutionary
algorithms denote a class of optimization methods that are char-
acterized by a set of candidate solutions (aka individuals) called
a population, which is maintained during the entire optimization
process. The population of individuals evolves towards better (and
potentially optimal) solutions by employing genetic operators, such
as reproduction, mutation and crossover. In our context, each indi-
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vidual represents a possible combination of weights (i.e., a pos-
sible hybrid). Optimal hybrids lie in the so-called Pareto frontier
[37], and are optimal in the sense that no hybrid in the frontier
can be improved upon without hurting at least one of its objec-
tives. Therefore, the evolutionary algorithm evolves the population
towards producing hybrids that are located closer to the Pareto fron-
tier, and then a linear search returns the most dominant hybrid [37],
which is likely to balance accuracy, novelty and diversity. Alter-
natively, hybrids in the Pareto frontier can be selected according
to a certain need, allowing the recommender system to adjust the
compromise between accuracy, novelty and diversity, so that the
recommendation emphasis can be adapted dynamically according
to the needs of each user (i.e., new users may benefit more from
more accurate suggestions, whereas older users may require more
novel and diversified suggestions).

We conducted a systematic evaluation involving different rec-
ommendation scenarios, with explicit user feedback (i.e., movies
from the MovieLens dataset), as well as implicit user feedback (i.e.,
artists from the LastFM dataset). The experiments showed that it is
possible to (i) combine different algorithms in order to produce bet-
ter recommendations and (ii) control the desired balance between
accuracy, novelty and diversity. In order to evaluate the baseline
algorithms and our hybrids, we used the methodology for top-N
evaluation proposed in [12] and measured novelty and diversity us-
ing the framework proposed in [33].

2. PRELIMINARIES
In this section we review the main concepts about evolutionary

algorithms and multi-objective optimization. Finally, we discuss
related work on hybrid and multi-objective recommender systems.

2.1 Evolutionary Algorithms
Evolutionary algorithms are meta-heuristic optimization tech-

niques that follow processes such as inheritance and evolution as
key components in the design and implementation of computer-
based problem solving systems [15, 20]. In evolutionary algo-
rithms, a solution to a problem is represented as an individual in
a population pool. The individuals may be represented as different
data structures, such as vectors, threes, or stacks [26]. If the indi-
vidual is represented as a vector, for example, each position in the
vector is called a gene.

Typically, evolutionary algorithms employ a training and a val-
idation set, as described in Algorithm 1. Initially, the population
starts with individuals created randomly (line 6). The evolutionary
process is composed of a sequence of solution generations. The
process evolves generation by generation through genetic opera-
tions (lines 7-12). The goal of this process is to obtain better solu-
tions after some generations. A fitness function is used to assign a
fitness value to each individual (line 9), which represents its perfor-
mance on the training set or in a cross validation set. To produce
a new generation, genetic operators are applied to individuals with
the aim of creating more diverse and better individuals (line 12).
Typical operators include reproduction, mutation, and crossover.

2.2 Multi-Objective Optimization
Since we are interested in maximizing three different objectives

for the sake of recommender systems (i.e. accuracy, novelty, and di-
versity), we use a multi-objective evolutionary algorithm. In multi-
objective optimization problems there is a set of solutions that are
superior to the remainder when all the objectives are considered
together. In general, traditional approaches to multi-objective op-
timization problems are very limited because they become too ex-

Algorithm 1 Evolutionary Algorithm.
1 LetM be a training set
2 Let V be a validation set
3 LetNg be the number of generations
4 LetNI be the number of individuals
5 S ←− ∅
6 P ←− initial random population of individuals
7 For each generation g of Ng do
8 For each individual i ∈ P do
9 fitness←− fitness(i,M,V)
10 Sg ←−NI top-ranked individuals of generation g

according to their fitness
11 S ←− S ∪ Sg
12 P ←− New population created by applying genetic

operators to individuals in Sg
13 BestIndividual←− SelectionMethod(S)

pensive as the size of the problem grows [8]. Multi-objective evolu-
tionary algorithms are a suitable option to overcome such an issue.

Typically, multi-objective evolutionary algorithms are classified
as Pareto or non-Pareto [37]. In the non-Pareto optimization case,
the objectives are combined into a single evaluation value that is
used as fitness value (i.e., average of the objectives). In Pareto algo-
rithms, on the other hand, a vector of objective values is used (i.e.,
the individual is given as an objective vector). The evaluation of
Pareto approaches follows the Pareto dominance concept. An indi-
vidual dominates another if it performs better in at least one of the
objectives considered. Given two arbitrary individuals, the result
of the dominance operation has two possibilities: (i) one individual
dominates another, or (ii) the two individuals do not dominate each
other. An individual is denoted as non-dominated if it is not dom-
inated by any other individual in the population, and the set of all
non-dominated individuals compose the Pareto frontier.

In this work we use a second version of the strength Pareto evolu-
tionary algorithm (SPEA-2) [36, 37]. The aim is to find or approxi-
mate the Pareto-optimal set for multi-objective problems. The main
features of this algorithm are: (i) the fitness assignment scheme
takes into account how many individuals each individual dominates
or is dominated by, (ii) it uses a nearest neighbour density estima-
tion technique to break ties in solutions with the same fitness, (iii)
the size of the population of non-dominated solutions is a fixed
value η. Thus, we have two situations. First, when the actual num-
ber of non-dominated solutions is lower than η, the population is
filled with dominated solutions; second, when the actual number
of non-dominated solutions exceeds η, some of them are discarded
by a truncation operator which preserves boundary conditions,even
though we always keep the current Pareto Frontier in a list separate
from the population, so we can later retrieve the individuals in it.

2.3 Related Work
Traditionally, hybrid recommender strategies are the combina-

tion of two different families of algorithms - namely, content-based
and collaborative filtering [1]. In this work, we combine many (up
to 8) recommendation algorithms - different content-based and col-
laborative filtering algorithms that deal with explicit and implicit
feedback, etc. We treat each recommendation algorithm as a black-
box, so adding or removing recommendation algorithms is easy.
Different hybridization strategies have been proposed to combine
recommender methods, such as weighted approaches [10], voting
mechanisms [30], switching between different recommenders [6,
24], and re-ranking the results of one recommender with another [7].

A prominent use of hybridization in recommender systems is
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the Belkor system that won the Netflix competition [4, 5]. Their
method is a statically weighted linear combination of 107 collab-
orative filtering engines. There are important differences between
their work and ours: (i) their solution is single-objective (accuracy),
(ii) they combine only collaborative filtering information, and (iii)
the recommendation task is rating prediction, focused on RMSE -
which makes the aggregation simpler, since all of the ratings are on
the same scale and consist of the same items.

There has been an increasing consensus in the recommender sys-
tems community about the importance of proposing algorithms and
methods to enhance novelty and diversity [17, 33]. As showed
in [35], user satisfaction does not always correlate with high recom-
mender accuracy. Thus, different multi-objective algorithms have
been proposed to improve user experience considering either diver-
sity or novelty. For instance, in [35], the authors define a greedy re-
ranking algorithm that diversifies baseline recommendations. An-
other approach to improve diversity is presented in [34], where they
suggest an optimization method to improve two objective functions
reflecting preference similarity and item diversity.

On the other hand, novelty has been understood as recommend-
ing long-tail items, i.e., those items which few users have accessed.
In [33], the authors present hybrid strategies that combine collabo-
rative filtering with graph spreading techniques to improve novelty.
The authors in [9] take an alternative approach: instead of assess-
ing novelty in terms of the long-tail items that are recommended,
they follow the paths leading from recommendations to the long
tail using similarity links. As far as we know, this is the first work
that proposes a hybrid method that is multi-objective in terms of
the three metrics, i.e., accuracy, diversity and novelty.

Extensive research has also been performed exploiting the robust
characteristics of genetic algorithms in recommender systems. For
instance, in [28] the authors build a content-based recommender
system and use genetic algorithms to assign proper weights to the
words. Such weights are combined using the traditional IR vector
space model [2] to produce recommendations. In [23] the authors
use a genetic algorithm to build a recommender method that con-
siders the browsing history of users in real-time. In contrast to
our approach (which uses a GA to combine multiple recommender
methods), they use GA to build a single-method.

In [22], the authors present an implementation of GA for opti-
mal feature weighting in the multi-criteria scenario. Their appli-
cation of GA consists in selecting features that represent users’ in-
terest in a collaborative filtering context, in contrast to our method,
which focuses on assigning weights to different recommendation
algorithms in order to improve the overall performance in terms of
accuracy, novelty and diversity.

3. PARETO-EFFICIENT HYBRIDIZATION
In this section we introduce our search approach for Pareto-Opti-

mal hybrids. We start by discussing how different recommenda-
tion algorithms are combined, so that potential hybrids are created.
Then we describe the evolutionary search for Pareto-Optimal hy-
brids. Finally, we discuss an approach to deal with the compromise
between accuracy, novelty and diversity, so that the system is able
to adjust itsef for different user perspectives.

3.1 Weighted Hybridization
Our hybridization approach is based on assigning weights to

each constituent algorithm. We denote the set of constituent al-
gorithms as A and the score given by algorithm Aj for an item i
is represented by Aj(i). As the constituent algorithms may output
scores in drastically different scales, a simple normalization proce-

dure is necessary to ensure that all algorithms in A operate in the
same scale. The aggregated score for each item i is calculated as:

S(i) =

|A|∑

j=1

Aj(i) ∗Wj (1)

where W is a vector that represents the weight assigned to each
constituent algorithm. The assignment of weights to each algorithm
is formulated as a search problem which we discuss next.

3.2 Searching for Pareto-Optimal Hybrids
Finding a suitable vector of weights W can be viewed as a search

problem in which possible solutions are given as a combination of
weights {w1, w2, . . . , w|A|}, such that each wi is selected in a way
that optimizes a established criterion. We consider the application
of evolutionary algorithms for searching optimal solutions. These
algorithms iteratively evolve a population of individuals towards
optimal solutions by performing operations based on reproduction,
mutation, recombination, and selection [18]. This approach is in-
teresting because we have no knowledge of the search space, since
any number of different algorithms may be used, in different do-
mains. Next, we precisely define an individual.

Definition 1: An individual is a candidate solution, which is en-
coded as a sequence of |A| values [w1, w2, . . . , w|A|], where each
wi indicates the weight associated with algorithm Ai ∈ A.

Each algorithm Ai assigns scores to items using a cross-validation
set. Finally, weights are assigned to each algorithm and their scores
are aggregated according to Equation 1, producing an individual. A
fitness function is computed for each individual in order to make
them directly comparable, so that the population can evolve to-
wards optimal solutions.

Definition 2: An optimal solution is a sequence of weights W =
{w1, w2, . . . , w|A|}, satisfying:

maximize φ(oi) ∀ oi ∈ {accuracy, novelty, diversity} (2)

where φ(oi) is a metric used to measure an objective, which can
be either accuracy, novelty or diversity. These metrics are bet-
ter discussed in Section 4. For now it suffices to notice that the
performance of each individual is given by a 3-dimensional objec-
tive vector, containing the average accuracy, novelty and diversity
over the users in the cross validation set ( since different metrics
may operate in different scales, we normalize each φ(oi) to the
0-1 interval). Searching for optimal solutions, therefore, is a multi-
objective optimization problem, in which the value of φ(oi) must
be maximized for each of the 3 objectives that compose an optimal
solution. Therefore, multiple optimal individuals are possible. It
is worth noticing that different datasets and combinations of algo-
rithms and A will generate different optimal individuals.

A general strategy for solving a multi-objective optimization prob-
lem is to exploit the concept of Pareto dominance, which may be
used to find solutions that are not dominated by others. These non-
dominated solutions lie in the so-called Pareto frontier, and are op-
timal in the sense that no solution in the frontier can be improved
upon without hurting at least one of its objectives. Therefore, the
evolutionary algorithm evolves the population towards producing
individuals that are located closer to the Pareto frontier, and then a
linear search returns the individual which simply maximizes the av-
erage (or some other combination, as we see on the next section) of
the three objectives. Under this strategy, we follow the well-known
Strength Pareto Evolutionary Algorithm approach [36], which has
shown to be highly effective and also because it provides more di-
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verse results when compared to existing approaches [11, 13, 32]
for many problems of interest. The Strength Pareto approach iso-
lates individuals that achieve a compromise between maximizing
the competing objectives by evolving individuals that are likely to
be non-dominated by other individuals in the population.

It is worth noticing that our approach does not depend on which
recommendation algorithms are being aggregated, nor does it de-
pend on the data domain. This makes adding or removing algo-
rithms trivial, and allows the data to determine how each algorithm
contributes to each of the objectives - an algorithm may be the most
accurate when ratings are available, but not so accurate when only
implicit feedback is used.

The Pareto-Optimal search is computationally expensive. How-
ever, it can be performed in an off-line manner, and with low fre-
quency. After the Pareto-Optimal weights are discovered, there is
no need to perform the search repeatedly, unless a recommendation
algorithm is added or removed, or a lot of new feedback data enters
the system. Therefore, using this approach would not hinder the
system’s online performance.

3.3 Adjusting the System Priority
It is well recognized that the role that a recommender system

plays may vary depending on the target user. For instance, accord-
ing to [19], the suggestions performed by a recommender system
may fail to appear trustworthy to a new user because it does not
recommend items the user is sure to enjoy but probably already
knows about. Based on this, a recommender system might prior-
itize accuracy instead of novelty or diversity for new users, while
prioritizing novelty for users that have already used the system for
a while. This is made possible by our hybridization approach, by
searching which individual in the Pareto frontier better solves the
user’s current needs.

The choice of which individual in the Pareto frontier is accom-
plished by performing a linear search on all of the individuals, in
order to find which one maximizes a simple weighted mean on each
of the three objectives in the objective vector, where the weights in
the weighted mean represent the priority given to each objective. It
is worth noting that fitness values are always calculated using the
cross-validation set. Therefore, considering a 3-dimensional prior-
ity vector Q, which represents the importance of each objective j,
the individual in the Pareto frontier P is chosen as:

arg max
i∈P

|O|∑

j=1

QjOij (3)

4. EVALUATION METHODOLOGY
The testing methodology we adopted in this paper is similar to

the one described in [12], which is appropriate for the top-N recom-
mendation task. For each dataset, ratings are split into two subsets:
the training setM and the test set T . The training setM can (if
necessary) be split into two subsets: the cross-validation training
set C and the cross-validation test set V , which is used in order to
tune parameters or adjust models. The test set T and the cross-
validation test set V only contain items that are considered relevant
to the users in the set. For explicit feedback (i.e., MovieLens), this
means that the sets T and V only contain 5-star ratings.

In the case of implicit feedback (i.e., Last.fm), we normalized
the observed item access frequencies of each user to a common rat-
ing scale [0,5], as used in [33]. Namely, r(u, i) = n ∗ F (frecu,i),
where frecu,i is the number of times u has accessed i and F (frecu,i)
= |j ∈ u|fu,j < fu,i|/|u| is the cumulative distribution function
of frecu,i over the set of items accessed by the user u, denoted as
u. In this case, the test set and the cross validation test set only

contain ratings such that r(u, i) >= 4, since the number of 5 star
ratings is very small using this mapping of implicit feedback into
ratings. It is worth noting that all the sets have a corresponding
implicit feedback set, used by the recommendation algorithms that
can deal with implicit feedback.

The detailed procedure to create M and T is the same used in
[12], in order to maintain compatibility with their results. Namely,
for each dataset we randomly sub-sampled 1.4% of the ratings from
the dataset in order to create a probe set. The training setM con-
tains the remaining ratings, while the test set T contains all the
5-star ratings in the probe set (in the case of explicit feedback) or
4+ star ratings (in the case of implicit feedback mapped into ex-
plicit feedback). We further divided the training set in the same
fashion, in order to create the cross-validation training and test sets
C and V . The ratings in the probe sets were not used for training.

In order to evaluate the algorithms, we first train the models us-
ingM. Then, for each item in T that is relevant to user u:

• We randomly select 1,000 additional items unrated by user u.
The assumption is that most of them will not be interesting
to u.

• The algorithm in question forms a ranked list by ordering all
of the 1,001 items. The most accurate result corresponds to
the case where the test item i is in the first position.

Since the task is top-N recommendation, we form a top-N list by
picking the N items out of the 1,001 that have the highest rank. If
the test item i is among the top-N items, we have a hit. Otherwise,
we have a miss. Recall and precision are calculated as follows:

recall(N) =
#hits

|T | (4)

precision(N) =
#hits

N ∗ |T | =
recall(N)

N
(5)

In order to measure the novelty of the recommendations, we used
a popularity-based item novelty model proposed in [33], so that the
probability of an item i being seen is estimated as:

P (seen |ik) =
|u ∈ U |r(u, i) �= ∅|

|U | (6)

where U denotes the set of users. Since the testing methodology
supposes that most of the 1,000 additional unrated items are not
relevant, we used the metrics in the framework proposed in [33]
without relevance awareness. The novelty of a top-N recommenda-
tion list from R presented to user u is therefore given by:

nov(R(N)) = EPC (N) = C

iN∑

ik∈R

rd(k)(1− p(seen |ik)) (7)

where rd(k) is a rank discount given by rd(k) = 0.85k−1[33] and
C is a normalizing constant given by 1/

∑iN
ik∈R rd(k). Therefore,

this metric is rank-sensitive (i.e. the novelty of the top-rated items
counts more than the novelty of other items). As is the case with
precision and recall, we average the EPC@N value of the top-N
recommendation lists over the test set.

We used a distance based model in order to measure the diversity
of the recommendation lists. Once again, we used the metrics from
[33] without relevance-awareness. The recommendation diversity,
therefore, is given by:

div(R(N)) = EILD(N) =

iN ,lN∑

ik∈R
il∈R
l �=k

Ckrd(k)rd(l|k)d(ik, il) (8)
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where rd(l|k) = rd(max(1, l−k)) reflects a relative rank discount
between l and k, and d(ik, il) is the cosine similarity between two
items, given by:

d(i, j) =
|Ui ∩Uj|√
|Ui|

√
|Uj|

(9)

such that Ui denotes the users that liked item i, and Uj denotes the
users that liked item j.

5. EXPERIMENTAL EVALUATION
We apply the methodology presented in Section 4 to two differ-

ent scenarios, in order to evaluate our hybrid approach: movie and
music recommendation. For movie recommendation, we used the
MovieLens dataset [27]. This dataset contains 1,000,209 ratings
from 6,040 users on 3,883 movies. For music recommendation,
we used an implicit preference dataset from [9], which consists of
19,150,868 user accesses to music tracks on the website Last.fm1.
This dataset involves 176,948 artists and 992 users, and we con-
sidered the task of recommending artists to users. Mapping the
implicit feedback into user-artist ratings yielded a total of 889,558
ratings, which were used by the algorithms that cannot deal with
implicit feedback, and to separate the dataset into the training and
test setsM and T .

5.1 Recommendation Algorithms
We selected eight recommendation algorithms to provide the base

for our hybrids. To represent latent factor models, we selected
PureSVD with 50 and 150 factors (PureSVD50 and PureSVD150),
described in [12]. These were the only algorithms we used that are
based on explicit feedback. To compute the scores for the items in
the Last.fm dataset, we used the mappings of implicit feedback into
ratings explained in Section 5.3.

As for recommendation algorithms that use implicit feedback,
we used algorithms available in the MyMediaLite package [16].
We used WeightedItemKNN (WIKNN) and WeightedUserKNN
(WUKNN) as representative of neighbourhood models based on
collaborative data [14] (we only used WeightedItemKNN on the
MovieLens dataset, as MyMediaLite’s implementation cannot yet
handle datasets where the number of items is very large, which
is the case in the Last.fm dataset). As a baseline, and to allow
for comparison with [12], we used MyMediaLite’s MostPopular
implementation, which is the same as TopPop in [12]. We also
used WRMF − a weighted matrix factorization method based on
[21, 29], which is very effective for data with implicit feedback.
In order to represent content-based algorithms, we used ItemAt-
tributeKNN(IAKNN), a K-nearest neighbor item-based collabo-
rative filtering using cosine-similarity over the movie genres for
MovieLens (we could not use this method in the Last.fm dataset,
because it does not contain content data). Finally, we used UserAt-
tributeKNN(UAKNN), a K-nearest neighbor user-based collabo-
rative filtering using cosine-similarity over the user attributes, such
as sex, age, etc. (which both datasets provide).

5.2 Hybrid Approaches
As a baseline, we used a voting-based hybrid based on Borda-

Count (BC) which is similar to [30], where each constituent algo-
rithm gives n points to each item i such that n = |R| − pi, where
|R| is the size of the recommendation list and pi is the position
of i in R. We also used STREAM as baseline, a stacking-based
approach with additional meta-features [3]. We used the same ad-
ditional meta-features as [3], namely, the number of items that a

1www.Last.fm

certain user has rated and the number of users that has rated a cer-
tain item (denoted as RM1 and RM2 in [3]). We tried the learn-
ing algorithms proposed in [3], and Linear Regression yielded the
best results, so the results presented for STREAM are generated
using Linear Regression as the meta-learning algorithm. Our last
baseline is the weighted hybrid we proposed in Section 3.1, using
equal weights for each constituent algorithm. We called this base-
line Equal Weights (EW).

As for our genetic approach, we combined all of the the rec-
ommendation algorithms cited in the last subsection. We used
an open-source implementation of SPEA2 [36, 37] from DEAP
[31].We used a two points crossover operator [20], and a uniform
random mutation operator with probability 0.05. SPEA-2 was con-
figured with the following parameters:

Datasets

Parameters Movielens Last.fm

Population Size 100 100
Gene length 8 algorithms 6 algorithms
# of Objectives 3 3
# of Generations 300 800
Mutation Rate 0.2 0.2
Crossover Rate 0.5 0.5

5.3 Results and Discussion
The results achieved by each of the constituent recommendation

algorithms can be seen in Tables 1 and 2. We show the accuracy
results (recall and precision) over different values of N. Since both
EPC(novelty) and EILD(diversity) are rank-sensitive metrics, we
only presented their values for N = 20. There is a clear compro-
mise between accuracy, novelty and diversity of these algorithms.
For the MovieLens dataset (Table 1), the constituent algorithm that
provides the most accurate recommendations is PureSVD50. The
constituent algorithm that provides the most novel recommendation
with an acceptable degree of accuracy is PureSVD150, but its ac-
curacy is much worse than the accuracy obtained by PureSVD50,
and its diversity is much worse than the other algorithms. TopPop
provided the most diverse recommendations, although it performs
significantly worse in accuracy and novelty. It is worth noting that
ItemAttributeKNN is based only on genres, which explains its poor
accuracy results.

On the Last.fm dataset, the constituent algorithm that provides
the most accurate recommendations is WRMF. This is expected, as
Last.fm is originally an implicit feedback dataset, to which WRMF
is more suitable. Once again, PureSVD150 proved its capacity to
suggest novel items, being the algorithm with the most novel rec-
ommendations. WeightedUserKNN proved to be the algorithm that
provided the most diverse recommendations, while maintaining a
reasonable accuracy degree. In this dataset the compromise be-
tween the three objectives is once again illustrated by the fact that
there is no algorithm that dominates the others in every objective.

Regarding the performance of the baselines in the MovieLens
dataset, STREAM performs worse then PureSVD50 on accuracy,
maintaining the same level of novelty and performing better in
terms of diversity. Borda Count performed poorly on accuracy and
reasonably well in terms of novelty and diversity. Equal Weights
performed poorly on accuracy and novelty and well on diversity.
On the Last.fm dataset, STREAM performed slightly worse than
WRMF in accuracy, while maintaining the same level of diversity
and improving slightly on novelty. Once again, Borda Count per-
formed poorly on accuracy and reasonably well on novelty and di-
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Figure 1: Individuals found in the Movielens (left) and Last.fm (right) datasets.

versity. Finally, Equal Weights performed poorly on accuracy and
novelty, while performing well on diversity.

Now, with our evolutionary approach, we could reach any of the
individuals in Figure 1, which represent the accuracy (in this case,
Recall@10) and novelty (EPC@20) of the recommendations in x
and y axes, and diversity (EILD@20) with a color scale. These
graphics show the results in the test set for the individuals that rep-
resented the Pareto frontier in the cross-validation. It is clear that
there is a compromise between the three objectives: the individu-
als with the most novel recommendations provide less accurate and
diverse lists, and so on. This compromise can be adjusted dynami-
cally with little extra cost, since the cost of reaching these individ-
uals is as low as a linear search (for the individual that maximizes a
weighted mean, as described on Section 3.2) over the Pareto fron-
tier individuals’ scores on the cross validation set. The Pareto fron-
tier consists of 1,418 individuals in the MovieLens dataset and of
1,995 individuals in the Last.fm dataset, so a linear search can be
done very quickly. We chose to demonstrate a few of these indi-
viduals in Tables 1 and 2. First, Pareto-Optimal-mean (PO-mean)
represents the individual that optimizes the mean of the three nor-
malized objectives, assuming each of them are equally important.
This would be an option if personalization was not desired, or if the
designers of the recommender systems did not know which com-
bination of the three objectives would result in higher user satis-
faction. However, in a more realistic situation, the recommender
system would most likely want to select different individuals for
different users. We selected as examples the following individuals,
which were found by the process explained in Section 3.2 with the
represented associated weighted vectors:

• PO-acc: [Accuracy:0.85, Novelty:0.1, Diversity:0.05]

• PO-acc2: [Accuracy:0.7, Novelty:0.3, Diversity:0]

• PO-nov: [Accuracy:0.15, Novelty:0.85, Diversity:0]

• PO-div: [Accuracy:0.15, Novelty:0.15, Diversity:0.7]

We compared PO-acc and PO-acc2 with PureSVD50, which is the
stand-alone algorithm with the most accurate recommendations.
Both perform as well as PureSVD50 on accuracy, but PO-acc per-
forms much better on diversity (and equally well on novelty), and
PO-acc2 performs better on novelty while maintaining the diver-
sity level. We compared PO-nov with Pure-SVD150, which pre-
sented the most novel recommendations to the users, with reason-
able accuracy. PO-nov performs slightly better on novelty than

PureSVD150, but performs much better in terms of accuracy, and
slightly on diversity. Finally, we compared PO-div with MostPopu-
lar, the algorithm with the most diverse recommendations. PO-div
loses very slightly on diversity, while improving on accuracy and
novelty. We were able, therefore, to find individuals in the Pareto
frontier that performed close or better than the best algorithms in
each individual objective, but better on the other objectives. Once
again, we could have chosen to compromise more accuracy and
diversity if we desired more novelty, as is shown by Figure 1 (left).

As for the Last.fm dataset, we selected the following individuals:

• PO-acc: [Accuracy:0.7, Novelty:0.3, Diversity:0]

• PO-nov: [Accuracy:0.15, Novelty:0.85, Diversity:0]

• PO-div: [Accuracy:0.45, Novelty:0.05, Diversity:0.5]

For the Last.fm dataset, we compared PO-acc with WRMF, which
is the most accurate stand-alone algorithm on this dataset. PO-acc
is much more accurate than WRMF, while also improving on nov-
elty and maintaining the diversity level. The individual PO-nov
was compared with PureSVD150, and it performed equally well
on accuracy, while delivering a much higher novelty, and only a
slightly worse diversity. PO-div was compared against Weight-
edUserKNN, and it faired equally well on diversity and novelty,
while slightly improving on accuracy. It is worth noticing that the
individual represented by PO-div is the same individual that max-
imizes the mean with equal weight (PO-mean). Once again, we
were able to find interesting individuals in the Pareto frontier, but
we could have reached any of the individuals in Figure 1 (right) by
tweaking the weight value for each objective.

6. CONCLUSIONS
In this paper, we propose a hybridization technique for combin-

ing different recommendation algorithms, following the Strength
Pareto approach. We show that different recommendation algo-
rithms do not perform uniformly well when evaluated in accuracy,
novelty and diversity, but our technique allows for the dynamic ad-
justment of the compromise between these three aspects of user
satisfaction. This can be very useful in different scenarios, one ex-
ample being the personalization of recommendations according to
the users. According to [25], “New users have different needs from
experienced users in a recommender. New users may benefit from
an algorithm which generates highly ratable items, as they need
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Accuracy Novelty Diversity

Algorithm R@1 R@5 R@10 R@20 P@1 P@5 P@10 P@20 EPC@20 EILD@20

C
on

st
itu

en
t

A
lg

or
ith

m
s

PSVD50 † 0.1900 0.4155 0.5402 0.6643 0.1900 0.0831 0.0540 0.0332 0.8070 0.1667

PSVD150 • 0.1237 0.3203 0.4450 0.5658 0.1237 0.0641 0.0445 0.0283 0.8519 0.1375

TopPop � 0.0722 0.2061 0.2895 0.3994 0.0722 0.0412 0.0289 0.0200 0.7079 0.2598

WRMF 0.1513 0.3453 0.4545 0.5674 0.1513 0.0691 0.0455 0.0284 0.7847 0.1993

WIKNN 0.1529 0.3564 0.4624 0.5806 0.1529 0.0713 0.0462 0.0290 0.7744 0.2160

WUKNN 0.1510 0.3364 0.4437 0.5707 0.1510 0.0673 0.0444 0.0285 0.7560 0.2215

UAKNN 0.0614 0.1762 0.2504 0.3387 0.0614 0.0352 0.0250 0.0169 0.7386 0.2270

IAKNN 0.0000 0.0072 0.0105 0.0144 0.0000 0.0014 0.0011 0.0007 0.9723 0.0106

B
as

el
in

es STREAM 0.1792 0.3961 0.5169 0.6426 0.1792 0.0792 0.0517 0.0321 0.8078 0.1914

BC 0.0473 0.1657 0.2639 0.4352 0.0473 0.0331 0.0264 0.0218 0.8210 0.1609

EW 0.1562 0.3574 0.4752 0.5980 0.1562 0.0715 0.0475 0.0299 0.7441 0.2284

O
ur

H
yb

ri
ds

PO-mean † 0.1894 0.3991 0.5176 0.6400 0.1894 0.0798 0.0518 0.0320 0.7700 0.2096

PO-acc † 0.1999 0.4227 0.5432 0.6705 0.1999 0.0845 0.0543 0.0335 0.7977 0.1897

PO-acc2 † 0.1946 0.4188 0.5425 0.6659 0.1946 0.0838 0.0543 0.0333 0.8223 0.1685

PO-nov • 0.1513 0.3725 0.4854 0.6111 0.1513 0.0745 0.0485 0.0306 0.8597 0.1411

PO-div � 0.0820 0.2271 0.3269 0.4470 0.0820 0.0454 0.0327 0.0223 0.7138 0.2563

Table 1: Results for Recommendation Algorithms on the MovieLens dataset, with the three objectives (i.e., accuracy, novelty, and
diversity). The recommender methods variants are grouped into: (i) constituent algorithms, (ii) hybrid baselines, and (iii) our
proposed hybrids. We used the symbols: †, •, 
 to point out our method and the respective baseline. For instance, PSVD150 is the
baseline with respect to the selected PO-nov individual. For each group, the best results for each metric are in bold. Underlined
values means that the selected individual and the respective baseline are statistically different (95%).

to establish trust and rapport with a recommender before taking
advantage of the recommendations it offers.” Therefore, our ap-
proach could be used to provide new users with the most accurate
recommendations as possible, even if the recommendations are not
novel at all - so the users would have items to rate, and build trust
in the system. The costly part of our technique (the evolutionary
algorithm) is performed off-line, and the online cost of choosing an
individual in the pareto frontier and weighting the results for differ-
ent algorithms is very small, since the pareto frontier is comprised
of few individuals.

We performed highly reproducible experiments on public datasets
of implicit and explicit feedback, using open-source implementa-
tions. In our experiments, we demonstrated our technique’s ability
to balance each of the objectives according to the desired compro-
mise, and we showed some examples of reached solutions that are
competitive with the best algorithms according to each objective
and almost always better on the other objectives.
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(95%).
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