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Abstract. Classification aims to assign a data object to its appropriate class,
what is traditionally performed through a small dataset model such as decision
tree. Associative classification is a novel strategy for performing this task where
the model is composed of a particular set of association rules, in which the con-
sequent of each rule (i.e., its right-hand-side) is restricted to the classification
class attribute. Rule generation and rule selection are twomajor issues in as-
sociative classification. Rule generation aims to find a set of association rules
that better describe the entire dataset, while rule selection aims to select, for a
particular case, the best rule among all rules generated. Rule generation and
rule selection techniques dramatically affect the effectiveness of the classifier. In
this paper we propose new techniques for rule generation andrule selection. In
our proposed technique, rules are generated based on the concept of maximal
frequent class itemsets (increasing the size of the rule pattern), and then selected
based on their informative value and on the cost that an errorimply (possibly re-
ducing misclassifications). We validate our techniques using two important real
world problems: spam detection and protein homology detection. Further, we
compare our techniques against other existing ones, ranging from well known
näıve-Bayes to domain-specific classifiers. Experimental results show that our
techniques are able to achieve a significant improvement of 30% in the effective-
ness of the classification.

1. Introduction
Classification is a widely used data mining technique that consists of generating a dataset
model (i.e., a decision tree or a rule set) which can then be used to assign a data ob-
ject (or record) to its appropriate class. Associative classification, which is the sub-
ject of this paper, represents the dataset model by a rule set. Classification generally
involves two phases, training and test. In the training phase the rule set is generated
from the training data, where each rule associates a patternto a class. In the test
phase the generated rule set is used to decide the class that atest data record belongs
to. Traditionally, greedy search techniques such as decision trees [Breiman et al. 1984,
Quinlan 1986], rule learning [Liu et al. 1998, Li et al. 2001,Yin and Han 2003], and
naı̈ve-Bayes [Domingos and Pazzani 2000], are used to generate the rule set. These
greedy techniques generate small rule sets because during the rule generation the over-
lapping between training data records tends to be minimized. However, small rule sets
have some disadvantages:
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1. Rule set utilization: Small rule sets are very sensitive to missing values in the test
data, that is, values that occur in the training data but not in the test data. As a
result, some generated rules are useless during the test phase.

2. Coverage: Small rule sets rely significantly on the default decision, that is, when
there is no rule with a pattern that cover a test data record.

Different from greedy techniques (which may only achieve global optimality
if the problem has a optimal substructure), association rule mining searches glob-
ally for all rules that satisfy some minimum support and minimum confidence con-
straints [Agrawal et al. 1993], thus, it is able to achieve global optimality. For this reason,
integrating classification and association rule mining is thus a suitable alternative for gen-
erating larger rule sets and to overcome the aforementionedproblems. This integration
is calledassociative classification, and it may be done by focusing on a particular subset
of all possible association rules: the rules where the consequent (or right-hand-side) are
restricted to the classification class attribute (class association rules). Rule generation
and rule selection are two major issues in associative classification. Rule generation aims
to find a set of association rules that better describe the entire dataset, while rule selection
aims to select, for sake of classifying a given sample, the best rule among all rules gen-
erated. Recent studies [Liu et al. 1998, Li et al. 2001, Yin and Han 2003] showed that
associative classification is generally more accurate thantraditional classification tech-
niques. However, current algorithms for associative classification still suffer from some
problems:

1. Large rule sets: These algorithms generate very large rule sets during the training
phase, and a large fraction of the generated rules may be useless in the test phase.

2. Small patterns: These algorithms generate rules composed of small patterns (or
itemsets), that is, the itemset implicit in the rule has onlyfew attributes. Rules
derived from small itemsets do not work well because they do not provide enough
information regarding the data object (record) to be classified. Small patterns tend
to be very abstract, while long patterns tend to be very specific.

3. Overfitting and biased classification: When using association rules to classify a
data object, it is possible that more than one rule can be applied. These algorithms
select the best rules based on confidence, but high-confidence rules are very sen-
sitive to noise in the training data, possibly incurring in biased rules.

4. Cost-Sensitive classification: These algorithms are notcost-sensitive, that is, they
are unable to decide, during the test phase, if it is better toclassify or not a data
object based on the cost that a misclassification may imply.

In this paper we propose new techniques for rule generation and rule selection
in associative classification. During the training phase only a representative set of rules
derived frommaximal frequent class itemsetsis generated, making possible the genera-
tion of rules containing more items (or attributes) and, consequently, resulting in more
informative rules. The rule set generated from thosemaximal frequent class rulesmay
be orders of magnitude smaller than the rule set that would begenerated from the com-
plete set of class association rules, but the effectivenessof our technique is guaranteed
by the self-containment property, that is, if a maximal frequent class rule does not apply
to a given sample, the rule can be broken into sub-rules, until a sub-rule can be applied
to that sample (or the default classification is used). Sub-rules are generated on-demand



during the test phase, maximizing the rule set utilization (i.e., the number of useless rules
is reduced). If, during the test phase, more than one rule applies to the same sample, the
best rule among those is selected based first on its size (how informative the rule is) and
then on its confidence (how strong the rule is), reducing biased classifications. Further,
our rule selection technique is able to account for the cost that a classification error may
imply, and, as a consequence, to reduce the number of misclassifications.

The remaining of the paper is organized as follows. In the next section we will
provide necessary background on classification and association rule mining problems, and
then we will discuss existing related work. In Section 3 we will present our techniques
for rule generation and rule selection. In Section 4 we will present experimental results
by applying our techniques to real-world problems, such as spam detection and protein
homology detection. Finally, in Section 5 we will present our conclusions and future work
possibilities.

2. Background and Related Work
In this section we provide preliminary concepts of association rule mining and associative
classification. Further, we also discuss some related work.

2.1. Association Rule Mining

DEFINITION 1. [ITEMSETS] For any setX , its size is the number of elements inX . Let
I denote the set ofn natural numbers{1, 2, . . ., n}. Eachx ∈ I is called an item. A
non-empty subset ofI is called an itemset. The power set ofI, denoted byP(I), is the
set of all possible subsets ofI. An itemset of sizek, X = {x1, x2, . . ., xk} is called a
k-itemset (for convenience we drop set notation and denoteX asx1x2 . . . xk). ForX , Y
∈ P(I) we say thatX containsY if Y ⊆ X . A set (of itemsets)C ⊆ P(I) is called an
itemset collection.

DEFINITION 2. [TRANSACTIONS] A transactionTi is an itemset, wherei is a natural
number called the transaction identifier ortid. A transaction databaseD = {T1, T2, . . .,
Tm}, is a finite set of transactions, with size| D |. The support of an itemsetX in D is
the fraction of transactions inD that containX , given as,σ(X ,D) = |{Ti∈D|X⊆Ti}|

|D|
.

DEFINITION 3. [FREQUENT AND MAXIMAL FREQUENT ITEMSETS] An itemsetX is
frequent ifσ(X ,D) ≥ σmin, whereσmin is a user-specified minimum-support threshold,
with 0 < σmin ≤ 1. A collection of frequent itemsets is denoted asF(σmin,D). A
frequent itemsetX ∈ F(σmin,D) is maximal if it has no frequent superset. A collection
of maximal frequent itemsets is denoted asMF(σmin,D).

LEMMA 1. [Agrawal and Srikant 1994] Any subset of a frequent itemset is frequent:
X ∈ F(σmin,D) andY ⊆ X impliesY ∈ F(σmin,D). Thus, by definition a frequent
itemset must be subset of at least one maximal frequent itemset. �

LEMMA 2. [Gouda and Zaki 2001]MF(σmin,D) is the smallest collection of itemsets
from whichF(σmin,D) can be inferred.�



PROBLEM 1. [M INING (MAXIMAL ) FREQUENT ITEMSETS] Givenσmin and a transac-
tion databaseD, the problem of mining frequent itemsets is to findF(σmin,D). Similarly,
the problem of mining maximal frequent itemsets is to findMF(σmin,D).

EXAMPLE 1. Let us consider the example in Figure 1, whereI = {1,2,3,4,5} and the
figure showsD andP(I). Supposeσmin = 0.4 (40%). F(0.4,D) is composed of the
shaded and bold itemsets, whileMF(0.4,D) is composed only of the bold itemsets.
Note that| MF(0.4,D) | is much smaller than| F(0.4,D) |. A naive approach to find
F(0.4,D) is to first computeσ(X ,D) for eachX ∈ P(I), and then return only those that
σ(X ,D) ≥ 0.4. This approach is inappropriate because:

• If | I | (the dimension) is high, then| P(I) | is huge (i.e.,2|I|).
• If | D | (the size) is large, then computingσ(X ,D) for all X ∈ P(I) is infeasible.

By applying lemma 1 we can significantly improve the search for F(0.4,D). In
Figure 1, once we know that the itemset{34} is not frequent, we do not need to generate
any of its supersets, since they must also be not frequent. This simple pruning trick was
first used in [Agrawal and Srikant 1994] and it greatly reduces the number of candidate
itemsets generated. Several different searches can be applied by using this pruning trick.

Figure 1. Frequent Itemset Mining Example.

ALGORITHM 1. [M INING (MAXIMAL ) FREQUENT ITEMSETS] The algorithm was
presented in [Gouda and Zaki 2001]. It employs a backtrack search to findF(σmin,D)
andMF(σmin,D). A solution is represented as an itemsetX = {x0, x1, . . .}. Each item
xj is chosen from a finitepossible set, Pj . Initially X is empty; it is extended one item
at a time, as the search proceeds. The size ofX is the same as the depth of the corre-
sponding itemset in the search tree. Given ak-candidate itemsetXk = {x0, x1, . . . , xk−1},
the possible values for the next itemxk comes from a subsetVk ⊆ Pk called thecombine
set. Each iteration tries extendingXk with every itemx in Vk. An extension is valid if the
resulting itemsetXk+1 is frequent. IfXk+1 is frequent and it is no subset of any already
known maximal frequent itemset, thenXk+1 is a maximal frequent itemset. The next step
is to extract the new possible set of extensions,Pk+1, which consists only of elements in
Vk that follow x. The new combine set,Vk+1 consists of those elements in the possible



set that produce a frequent itemset when used to extendXk+1. Any item not in the com-
bine set refers to a pruned subtree. The algorithm performs adepth-first traversal of the
search space. When the search finishes,F(σmin,D) andMF(σmin,D) were found. The
computation ofσ(X ,D) is based on the associativity of subsets. LetLD(X ) be thetidset

of X in D (the set oftids in D in whichX has occurred), and thus,| LD(X ) | = π(X ,D).
According to [Zaki et al. 1997],LD(X ) can be obtained by intersecting the tidsets of two
subsets ofX . For example, in Figure 1,LD(123) = {1, 5, 9, 10} andLD(125) = {1, 5, 8,
9, 10}. Consequently,LD(1235) = LD(123) ∩ LD(125) = {1, 5, 9, 10}. | LD(1235) | =
π(1235,D) = 4, and thusσ(1235,D) = 0.4.

EXAMPLE 2. Figure 2 shows how the algorithm works. We used sequence numbers
above each itemset to facilitate the understanding of the backtrack search. First the algo-
rithm process the items, and then it starts a depth-first search for frequent itemsets. For
example, for sequence numbers = 13, the itemset being processed is{124}. Therefore,
the depth isk = 3, andP3 = V3 = {5}. Whens = 15, the algorithm visits the itemset{124}
again, but nowV3 = ∅ and consequently{124} ∈ MF(0.4,D). Although an itemsetX
can be visited more than once,σ(X ,D) is computed only in the first visit.

Figure 2. Basic Algorithm for (Maximal) Frequent Itemset Mi ning.

DEFINITION 4. [ASSOCIATION RULES] An association rule is a rule with the form

X
θ
−→ Y , whereX andY are two itemsets withX ∩Y = ∅, andθ is the confidence of the

rule, which is given by:σ(X∪Y ,D)
σ(X ,D)

.

PROBLEM 2. [GENERATING ASSOCIATION RULES] Given a minimum confidence
thresholdθmin andF(σmin,D), the problem of generating association rules is to find
R(θmin,F(σmin,D)).

2.2. Associative Classification
DEFINITION 5. [DATA OBJECTS, TRAINING AND TEST DATA ] A data objectO is a
transaction inD, with D = Dseen ∪Dunseen, whereDseen is the training data andDunseen

is the test data. IfO is followed by the class attributec (with c ∈{positive, negative}),
thenO ∈ Dseen, otherwiseO ∈ Dunseen.



DEFINITION 6. [(MAXIMAL ) FREQUENT CLASS ITEMSETS] A frequent itemsetX ∈
F(σmin,Dseen) is a class itemset ifc ∈ X , wherec is the class attribute. Similarly, a
maximal frequent itemsetY ∈ MF(σmin,Dseen) is a maximal class itemset ifc ∈ Y .
The set of all frequent class itemsets inDseen is denoted asF(c, σmin,Dseen) (i.e., it is
composed of frequent itemsets that contain the attributec), and similarly, the set of all
maximal frequent class itemsets inDseen is denoted asMF(c, σmin,Dseen).

ALGORITHM 2. [M INING (MAXIMAL ) FREQUENT CLASS ITEMSETS] Algorithm 1
may be easily modified for mining frequent class itemsets. All that need to be done is
to focus the search on itemsets that contain the class attribute c, that is an itemsetX =
{x0, x1, . . .} is only a valid solution ifc ∈ X . As in Algorithm 1, each itemxj is chosen
from a finitepossible set, Pj . Initially X = c; it is extended one item at a time, as the
search proceeds. Any generated itemset that does not contain c is pruned. The process
continues untill all frequent class itemsets are found.

ALGORITHM 3. [M INING ONLY MAXIMAL FREQUENT CLASS ITEMSETS] Algorithm
2 can be easily modified for mining only maximal frequent class itemsets. All that need
to be done is to introduce a maximality pruning [Gouda and Zaki 2001], that is, a subtree
can be pruned if an itemset is subset of an already known maximal frequent itemset.

DEFINITION 7. [(MAXIMAL ) CLASS ASSOCIATION RULES] A class association rule is

a rule with the form{X−c}
θ
−→ c, wherec is the class attribute andX ∈ F(c, σmin,Dseen).

Similarly, a maximal class association rule is a rule with the form{Y − c}
θ
−→ c, wherec

is the class attribute andY ∈ MF(c, σmin,Dseen).

PROBLEM 3. [GENERATING (MAXIMAL ) CLASS ASSOCIATION RULES] The prob-
lem of generating frequent class association rules is to findR(θmin,F(c, σmin,Dseen)).
Similarly, the problem of generating maximal frequent class association rules is
to find R(θmin,MF(c, σmin,Dseen)). Maximal frequent class association rules
have the self-containment property, that is, a frequent class association rule in
R(θmin,F(c, σmin,Dseen)) is a sub-rule of at least one maximal frequent class associ-
ation rule inR(θmin,MF(c, σmin,Dseen)) (this property is due to Lemma 2).

2.3. Related Work

Our work is clearly different from traditional classification algorithms, such as
ID3 [Quinlan 1986], C4.5 [Quinlan 1993], and CART [Breiman et al. 1984], which only
produce small rule sets. Our proposed work is related to associative classification tech-
niques, which was introduced by Liu et al. in [Liu et al. 1998]with the CBA classifica-
tion system. Enhancements were proposed in [Yin and Han 2003] where best rules are
selected based on theOcam’s Razorprinciple, and in [Li et al. 2001] where the classifi-
cation is based on multiple best rules (rather than on one single best rule). Another in-
teresting work on associative classification is presented in [Baralis and Chiusano 2004],
where a technique based on closed frequent itemsets [Zaki and Hsiao 2002] is proposed.
This technique generates rule sets composed of non-redundant rules. Three characteristics



make our work different from the aforementioned ones: (1) our proposed rule generation
technique is based on maximal frequent class rules, (2) our rule selection technique is
based on how much specific the rule is (the size of the rule), and (3) our classification is
cost-sensitive (a classification error has a cost, and different errors have different costs).

There are several algorithms for association rule mining. Algorithm 1 and
Algorithm 2 presented above are related to APRIORI [Agrawal and Srikant 1994],
ECLAT [Zaki et al. 1997] and FP-Growth [Han et al. 2000]. Algorithm3 presented above
is closely related to GENMAX [Gouda and Zaki 2001] and MAX M INER [Bayardo 1998],
however Algorithm 3 performs a search focused just on the maximal frequent class item-
sets (and not on all maximal frequent itemsets).

3. Cost-Sensitive Associative Classification based on Maximal Frequent
Class Itemsets

In this section we present our techniques for rule generation and selection. During rule

generation a rule set composed of rules of the formX
θ
−→ c (whereX is a pattern, or

itemset, inDseen and c is the class attribute) is computed. During rule selection for a
given data objectO, a subset of rules matchingO is extracted and the best rule among
them is selected. We start by presenting a rule generation method based on maximal
frequent class itemsets, and then we present a cost-sensitive rule selection method to
avoid misclassification.

3.1. Rule Generation

Rule generation aims to find a set of representative rules that can accurately de-
scribe/summarize the training data (Dseen). The quality of the rules generated is crucial

for classification purposes. In this context, a ruleX
θ
−→ c has some desirable characteris-

tics:

1. Frequency: A rule must occur a significant number of times in Dseen, otherwise
the rule will be probably useless in the test phase since the rule pattern (i.e., the an-
tecedentX ) may not occur inDunseen (i.e., the probability of occurrence of a rule
pattern inDunseen is related to its frequency inDseen, represented byσ(X ,Dseen)).

2. Statistical strength: A rule must have a high confidence value (i.e.,θ), otherwise
the application of the rule will probably incur in misclassification during the test
phase.

3. Specificity: A rule must carry sufficient information about the specific data object
being analyzed. The size of a rule can quantify how much information it carries.
Very general rules may result in misclassification during the test phase.

A useful rule must have all the three characteristics. For example, rules with high
statistical strength but low frequency are possibly due to noise in the training data, and
they are not desirable rules. Algorithm 2, described in Section 2, can be used to find
F(c, σmin,Dseen), and consequently, to find the rule setR(θmin,F(c, σmin,Dseen)). If
the parametersσmin andθmin are sufficiently high, the generated rules will have enough
frequency and statistical strength (confidence). However,Algorithm 2 also generates too
much general rules without sufficient specificity. This is due to the fact that Algorithm 2
generates small-size class association rules. We overcomethis problem by making use of



the maximal frequent class itemsets, that is, our rule generation technique uses Algorithm
3 to findR(θmin,MF(c, σmin,Dseen)), and this choice has two main advantages:

1. Rule specificity: The space for all frequent class itemsets is often huge. Practical
computational constraints place severe limits on the subspace that can be explored,
and consequently, small-size frequent class itemsets are generated. However, if
the search is focused only on the maximal frequent class itemsets, more rules
with longer sizes may be generated, and the generated rules will carry much more
information about the data objects.

2. Condensed representation: Maximal frequent class rulesare self-contained, that
is they uniquely represent all frequent class rules, that is, smaller (yet informative
enough) sub-rules can be generated from those maximal rules.

Thus, by using Algorithm 3 and findingR(θmin,MF(c, σmin,Dseen)), our rule
generation technique can generate more interesting rules with sufficient frequency, statis-
tical strength and rule specificity.

3.2. Cost-Sensitive Rule Selection

Once the rule setR(θmin,MF(c, σmin,Dseen)) is found, the test phase can begin. Dur-
ing this phase, each data objectO ∈ Dunseen is submitted for classification. For each
data object submitted there is a best rule to be applied. Ruleselection aims to find such
best rule. For each submitted data objectO, our rule selection technique performs the
following steps:

1. Step 1: search the longest ruleX
θ
−→ c ∈ R(θmin,MF(c, σmin,Dseen)), where

X ⊆ O. Go to Step 2.
2. Step 2: if one or more rules withX ⊆ O were found, choose the one with highest

θ. ClassifyO as positive or negative, according toc (the consequent of the chosen
rule) and then return.

3. Step 3: otherwise, if no rule withX ⊆ O was found then break rules of sizek into
sub-rules of sizek − 1. If there is no more rules to be broken then classifyO as
negative (i.e., the default decision) and return, otherwise go to Step 2.

Sub-rules of the formX
θ
−→ c (whereX = {x1, x2, ..., xk}) are generated based

on thek-intersection approach, that is,θ = |L(x1,Dseen)∩L(x2,Dseen)∩...∩L(xk,Dseen)∩L(c,Dseen)|
|L(x1,Dseen)∩L(x2,Dseen)∩...∩L(xk,Dseen)|

.
For this purpose, we maintain the tidsets of frequent 1-itemsets during the test phase. At
the end of the test phase (all data objects in the test data were submitted for classification)
four metrics will be obtained:

• TT : number of positive cases that were correctly classified as positive.
• TF : number of negative cases that were wrongly classified as positive.
• FT : number of positive cases that were wrongly classified as negative.
• FF : number of negative cases that were correctly classified as negative.

It is easy to see thatTT + TF + FT + FF =| Dunseen |, that is, the total number
of data objects inDunseen. These metrics are used to evaluate the effectiveness of the
classification.

The technique presented above tends to find long and strong rules. However, this
technique is not cost-sensitive, that is, it assumes that classification errors have the same



cost. There are two types of misclassification: classify a positive case as negative, or
classify a negative case as positive, respectively represented asTF andFT . Classification
errors may have different costs, for example, in spam detection the majority of the users
can tolerate a certain number of spams classified as legitimate messages, but they do not
tolerate legitimate messages classified as spams. In this case, aTF error is much more
costly than aFT error. In that way, we have three possibilities:

• Correctly classifying a data object (i.e.,TT or FF ) has cost 0.
• Wrongly classifying a positive data object as negative (i.e., FT ) has cost 1.
• Wrongly classifying a negative data object as positive (i.e., TF ) has costλ.

The cost factorλ is specified during the test phase, and given two rulesX
θp

−→

(c = positive) andY
θn−→ (c = negative), a data object is only classified as positive if

θp ≥ λ × θn, otherwise it is classified as negative. Thus, we modified ourrule selection
technique, so that it can be cost-sensitive. Our cost-sensitive rule selection performs the
following steps:

1. Step 1: search the longest ruleX
θp

−→ (c = positive) ∈
R(θmin,MF(c, σmin,Dseen)), whereX ⊆ O. Go to Step 2.

2. Step 2: if one or more positive rules withX ⊆ O were found, choose the one with
highestθp. Go to Step 4.

3. Step 3: otherwise, if no positive rule withX ⊆ O was found then break rules of
sizek into sub-rules of sizek − 1. If there is no more rules to be broken then go
to Step 4, otherwise go to Step 2.

4. Step 4: search the longest ruleY
θn−→ (c = negative) ∈

R(θmin,MF(c, σmin,Dseen)), whereY ⊆ O.
5. Step 5: if one or more negative rules withY ⊆ O were found, choose the one with

highestθn. Go to Step 7.
6. Step 6: otherwise, if no negative rule withY ⊆ O was found then break rules of

sizek into sub-rules of sizek − 1. If there is no more rules to be broken then go
to Step 7, otherwise go to Step 5.

7. Step 7: if there is no positive and no negative rules, classify O as negative and
return. Otherwise, if there is no negative rules thenθn = 1 − θp. Otherwise, if
there is no positive rules thenθp = 1 − θn. Go to Step 8.

8. Step 8: ifθp ≥ λ × θn then classifyO as positive, otherwise classififyO as
negative.

The basic idea behind our cost-sensitive rule selection is to first select the best
positive and negative rules that match the appraised data object, and then quantify how
much better (or worse) is the selected positive rule in relation to the selected negative one.
Then, to be classified as positive, the appraised data objectmust have a positive ruleλ
times stronger (i.e.,θp ≥ λ × θn) than the negative one.

4. Experimental Results
In this section we present experimental results obtained from the application of our clas-
sification techniques to two important real-world problems: spam detection and protein
homology detection. We start with a description of the inputparameters and evaluation
metrics that will be used throughout the experiments. Then,for each application men-
tioned above, we will present the corresponding results.



4.1. Parameters and Evaluation Metrics

During our experiments we basically varied two input parameters: the minimum support
(σmin), and the error cost factor (λ). Values for bothσmin andλ are dependent of the
application scenario. We have also defined some metrics withthe goal of evaluating the
effectiveness of the classification performed using our techniques:

1. Accuracy (Acc): It is the total number of correct classified cases (positive and
negative) divided by the total number of cases, given by:TT+FF

TT+TF+FT+FF
.

2. Precision (Prec): It is the number of correct classified positive cases divided by
the total number of positive classified cases, given byTT

TT+TF
.

3. Recall (Rec): It is the number of correct classified positive cases divided by the
total number of real positive cases, given byTT

TT+FT
.

4. Root Mean Squared Error (RMSE): It is the usual definition of squared error di-
vided by the total number of cases to make the metric independent of dataset size.

It is given by:
√

Pn
1
(T−P )2

n
, wheren = TT + TF + FT + FF , T is the class (0

or 1), andP is the confidence in the classification (values in[0, 1]).
5. Total Cost Ratio (TCR): Given a cost factorλ, TCR expresses how much times it

is better using the classifier than not using it. Greater TCR values indicate better
performance. For TCR< 1, not using the classifier is better. TCR is given by:

TT+FT
λ×TF+FT

.

4.2. Spam Detection

Spams, or more formally unsolicited commercial electronicmessages, are extremely an-
noying to most users, as they waste their time and extend dial-up connections. They also
waste bandwidth, and often expose minors to unsuitable content by advertising porno-
graphic sites. Without appropriate counter-measures spams can eventually undermine the
usability of electronic messages. Technical counter-measures include the development of
spam filters, which can automatically detect a spam message.Classification algorithms
are usually the core of spam filters.

4.2.1. Dataset and Problem Descriptions

The problem is to classify if a given electronic message is spam or legitimate (a message
is a data object). In our case, the classification is based only on the content of the message
(i.e., the words and symbols that compose the message). The training data is composed of
2,893 messages (legitimate and spams). Spams are marked as positive cases, legitimate
messages are negative cases. Spams correspond to 16% of the total number of messages1.
There are both categorical and continuous attributes in this dataset. For a categorical
attribute we assume that all possible values are mapped to a set of consecutive positive
integers. For a continuous attribute we assume that its value ranges is discretized into
3 intervals, and then (similarly to a categorical attribute) the intervals are also mapped
to consecutive positive integers. Spam and legitimate messages were randomly divided
into ten equal sized sets of messages. Then, for each of the ten sets the remaining nine

1This dataset is called LINGSPAM. It is a set of e-mail messages from the linguist list, and it is largely
accepted as the ultimate test collection for spam detectionand allows for comparison between different
approaches. It is publicly available at http://listserv.linguistlist.org/archives/linguist.html.



sets were used as training data before the set was classified.This is the common testing
approach used for small datasets [Kohavi 1995]. The original dataset contains more than
65,000 items (different words or symbols), and therefore, we needed to apply an attribute
selection procedure. We applied 3 different attribute selection procedures, based on the
information gain of each attribute. We selected the 5%, 2% and 1% most significant
attributes, resulting in 3 new different datasets, called LS5, LS2, and LS1.

4.2.2. Results

In this section we present results obtained from the utilization of our classification tech-
niques for spam detection. Figures 3 and 4 show precision andrecall numbers for the
different datasets employed, LS5, LS2 and LS1. A general trend we observed is that
recall values are reduced with increasing values ofσmin (because there are less rules for
higher values ofσmin) and with increasing values ofλ. Precision is not affected sig-
nificantly by σmin variations, but it decreases with lower values ofλ. The best result
overall (precision=0.97 / recall=0.92) was obtained with the LS1 dataset and employing
σmin=0.06 andλ=1. Figure 5 shows accuracy numbers. Clearly, the accuracy decreases
as we increaseλ. This is against expectations, since, as observed earlier,precision shows
an opposite trend. However, the number of false-negatives (i.e., FT ) increases signifi-
cantly for higher values ofλ, reducing the accuracy. This increase of false-positive cases
does not affect precision (according to its definition). Thebest accuracy (0.985) was ob-
tained with the LS1 dataset and employingσmin=0.06 andλ=1. Figure 6 shows TCR
values when varyingσmin andλ. We observed that TCR values are always reduced with
increasing values ofλ. We also observed that TCR values increase for lower values of
σmin, since, for these cases, higher values of precision are obtained.

Table 1 shows a comparison between the results obtained by our associative clas-
sification technique (T1), and the results obtained by two other techniques (T2 and T3)
presented in [Sakkis et al. 2003]. This table shows three observed values (coming from
T1, T2 and T3) for each of the analyzed metrics. The techniqueT2 employs a (memory-
based) classification method based on automata, and the technique T3 is a traditional
naı̈ve-Bayes classifier. Our classification technique (T1)is almost always the best one,
especially in terms of TCR, reaching a value of 9.36, that is,using our classification tech-
nique withσmin=0.06 andλ=1, we achieved results almost 10 times better (in terms of
cost) than not using any classification. This is the best result reported in the literature for
the LINGSPAM benchmark.
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Figure 3. Precision Values for LS5, LS2 and LS1.



 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.14  0.16  0.18  0.2  0.22  0.24  0.26

V
a

lu
e

Minimum Support

Recall − LS5

Cost=1
Cost=9

Cost=999
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.14  0.16  0.18  0.2  0.22  0.24  0.26

V
a

lu
e

Minimum Support

Recall − LS2

Cost=1
Cost=9

Cost=999
 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.05  0.1  0.15  0.2  0.25

V
a

lu
e

Minimum Support

Recall − LS1

Cost=1
Cost=9

Cost=999

Figure 4. Recall Values for LS5, LS2 and LS1.
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Figure 5. Accuracy Values for LS5, LS2 and LS1.
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Figure 6. TCR Values for LS5, LS2 and LS1.

Table 1. Comparison against other Classification Technique s.

λ Rec(T1) Rec(T2) Rec(T3) Prec(T1) Prec(T2) Prec(T3) TCR(T1) TCR(T2) TCR(T3)
1 0.92 0.89 0.82 0.97 0.97 0.99 9.36 7.18 5.41
9 0.83 0.82 0.78 0.99 0.99 0.99 3.96 3.64 3.82

999 0.81 0.60 0.64 0.99 1.00 1.00 3.61 2.49 2.86

4.3. Protein Homology Detection
Proteins play a fundamental role in disease; therefore theyare of great interest to fields
such as pharmacology and genomics. It is well known that proteins have a strong
structure-function relationship, that is, the biochemical function that the protein performs
is strongly related to its structure. This is the motivationof protein homology detection.



4.3.1. Dataset and Problem Descriptions

The problem is to classify if a protein is homologous to a given native sequence (the native
sequence is a data object). The data is grouped into blocks around each native sequence.
The training data is composed of 153 native sequences, and the test data is composed of
150 native sequences. For each native sequence, there is a set of approximately 1,000
protein sequences for which homology detection is needed. Homologous sequences are
marked as positive cases, non-homologous sequences (also called “decoys”) are negative
cases2. The classification is based on 74 attributes that measure match 3.

There are both categorical and continuous attributes in this dataset. For a categori-
cal attribute we assume that all possible values are mapped to a set of consecutive positive
integers. For a continuous attribute we assume that its value ranges is discretized into 6
intervals, and then (similarly to a categorical attribute)the intervals are also mapped to
consecutive positive integers.

4.3.2. Results

In this section we present results obtained from the utilization of our classification tech-
niques for protein homology detection. Figure 7(a) and 7(b)shows precision and recall
numbers obtained. As observed in the spam detection application, recall values decrease
as we increaseσmin andλ. Differently from the observed in the spam detection applica-
tion, precision is significantly affected byσmin variations, and it decreases as we decrease
λ. Figure 7(c) shows accuracy numbers. As occurred in the spamdetection application,
accuracy is reduced with increasing values ofλ. The best result overall (precision=0.95 /
recall=0.47) was obtained by employingσmin=0.005 andλ=1.
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Figure 7. (a) Precision Values on the left, (b) Recall Values on the Middle, and (c)
Accuracy Values on the Right.

Table 2 shows a comparison between the results obtained by our associative clas-
sification technique (T1), and the results obtained by the best 16 of the 102 algorithms

2This dataset was obtained from the KDD Cup 2004 task of protein homology detection. It is publicly
available at http://kodiak.cs.cornell.edu/kddcup/datasets.html.

3If the reader is not familiar with protein matching and structure prediction, it might be helpful to think
of this as a WWW search engine problem. There are 153 queries in the training data, and 150 queries in the
test data. For each query there are about 1,000 returned documents, only a few of the documents are correct
matches for each query. The goal is to classify which of the 1,000 documents best match the query.



that were submitted to the KDD Cup 2004 contest [Caruana et al. 2004]. In the table,
the algorithms are ranked according to the observed RMSE value. Our technique (T1) is
ranked at the eighth position, showing a RMSE value of 0.03832, whenσmin=0.005 and
λ=1. Although our algorithm is not the best one, we believe that its performance was
quite satisfactory, since all other algorithms listed in Table 2 were specifically developed
to perform well in the provided dataset. Thus, we believe that our algorithm is more
generic than those listed in the table.

Table 2. Comparison against other Classification Technique s.
Rank Classifier RMSE Rank Classifier RMSE

1 CT.AC.CN 0.03501 9 Weka 0.03833
2 Rong Pan 0.03541 10 S575 0.03838
3 S587 0.03692 11 S541 0.03847
4 Mario Zille r 0.03766 12 S513 0.03848
5 MEDai/AI Insight 0.03805 13 S539 0.03850
6 S560 0.03826 14 S540 0.03850
7 S591 0.03830 15 PG445 UniDo * 0.03878
8 T1 0.03832 16 S561 0.03900

5. Conclusions and Future Work

In this paper we presented an algorithm for associative classification, which is a clas-
sification technique based on association rules. The novel components of the proposed
algorithm are new techniques for rule generation and rule selection. Our rule generation
technique is based on maximal frequent class rules, what reduces the complexity of the
search for association rules, and make possible the generation of longer (and more infor-
mative) rules. Our rule selection technique is based on how informative and strong a rule
is, and on a cost-sensitive mechanism that reduces misclassification. Experimental results
on real-world applications indicates that the proposed techniques make our algorithm bet-
ter than other generic algorithms (such as automata and naı̈ve-Bayes based algorithms),
and comparable to application-specific (and possibly dataset-specific) algorithms (such
as the presented in the KDD Cup 2004 contest). As part of ongoing and future work
we are evaluating the possibility of applying temporal information, such as sequential
patterns [Zaki 2001], to improve the effectiveness of our algorithm.
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