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Abstract. Classification aims to assign a data object to its appromialass,
what is traditionally performed through a small dataset rabsglich as decision
tree. Associative classification is a novel strategy forfgening this task where
the model is composed of a particular set of associatiors;utewhich the con-
sequent of each rule (i.e., its right-hand-side) is resgricto the classification
class attribute. Rule generation and rule selection are tagjor issues in as-
sociative classification. Rule generation aims to find a $@tssociation rules
that better describe the entire dataset, while rule setectiims to select, for a
particular case, the best rule among all rules generatedleReneration and
rule selection techniques dramatically affect the effestess of the classifier. In
this paper we propose new techniques for rule generatiorratedselection. In
our proposed technique, rules are generated based on theepbiof maximal
frequent class itemsets (increasing the size of the rukepdt and then selected
based on their informative value and on the cost that an emply (possibly re-
ducing misclassifications). We validate our techniquesgisivo important real
world problems: spam detection and protein homology detectFurther, we
compare our techniques against other existing ones, ranfsom well known
naive-Bayes to domain-specific classifiers. Experimentalli®show that our
techniques are able to achieve a significant improveme%f d the effective-
ness of the classification.

1. Introduction

Classification is a widely used data mining technique thasisis of generating a dataset
model (i.e., a decision tree or a rule set) which can then led s assign a data ob-
ject (or record) to its appropriate class. Associative ssfaation, which is the sub-
ject of this paper, represents the dataset model by a rule@essification generally
involves two phases, training and test. In the training phhg rule set is generated
from the training data, where each rule associates a pattem class. In the test
phase the generated rule set is used to decide the class t&ttdata record belongs
to. Traditionally, greedy search techniques such as decisees [Breiman et al. 1984,
Quinlan 1986], rule learning [Liu et al. 1998, Lietal. 2001in and Han 2003], and
naive-Bayes [Domingos and Pazzani 2000], are used to gfendre rule set. These
greedy techniques generate small rule sets because dhemngle generation the over-
lapping between training data records tends to be minimitémivever, small rule sets
have some disadvantages:
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1. Rule set utilization: Small rule sets are very sensitveissing values in the test
data, that is, values that occur in the training data but méhe test data. As a
result, some generated rules are useless during the test.pha

2. Coverage: Small rule sets rely significantly on the defdetision, that is, when
there is no rule with a pattern that cover a test data record.

Different from greedy techniques (which may only achievebgl optimality
if the problem has a optimal substructure), associatioe mining searches glob-
ally for all rules that satisfy some minimum support and mmam confidence con-
straints [Agrawal et al. 1993], thus, it is able to achiewabgll optimality. For this reason,
integrating classification and association rule minindpissta suitable alternative for gen-
erating larger rule sets and to overcome the aforementiprgalems. This integration
is calledassociative classificatigrand it may be done by focusing on a particular subset
of all possible association rules: the rules where the et (or right-hand-side) are
restricted to the classification class attributtags association rul@s Rule generation
and rule selection are two major issues in associativeititzeggon. Rule generation aims
to find a set of association rules that better describe theeatdtaset, while rule selection
aims to select, for sake of classifying a given sample, tls¢ hhde among all rules gen-
erated. Recent studies [Liu et al. 1998, Lietal. 2001, Yid Han 2003] showed that
associative classification is generally more accurate tratitional classification tech-
nigues. However, current algorithms for associative diaasion still suffer from some
problems:

1. Large rule sets: These algorithms generate very largeseik during the training
phase, and a large fraction of the generated rules may besgsalthe test phase.

2. Small patterns: These algorithms generate rules cordpafsemall patterns (or
itemsets), that is, the itemset implicit in the rule has dely attributes. Rules
derived from small itemsets do not work well because theyat@rovide enough
information regarding the data object (record) to be cfeeski Small patterns tend
to be very abstract, while long patterns tend to be very §ipeci

3. Overfitting and biased classification: When using assiociaules to classify a
data object, it is possible that more than one rule can besgpprhese algorithms
select the best rules based on confidence, but high-coné&deies are very sen-
sitive to noise in the training data, possibly incurring iagded rules.

4. Cost-Sensitive classification: These algorithms areost-sensitive, that is, they
are unable to decide, during the test phase, if it is bettelassify or not a data
object based on the cost that a misclassification may imply.

In this paper we propose new techniques for rule generatidnrale selection
in associative classification. During the training phasly arrepresentative set of rules
derived frommaximal frequent class itemse$sgenerated, making possible the genera-
tion of rules containing more items (or attributes) and,samuently, resulting in more
informative rules. The rule set generated from thosimal frequent class ruleray
be orders of magnitude smaller than the rule set that woulgebperated from the com-
plete set of class association rules, but the effectiveagssir technique is guaranteed
by the self-containment property, that is, if a maximal treqt class rule does not apply
to a given sample, the rule can be broken into sub-rules| aistib-rule can be applied
to that sample (or the default classification is used). Suksrare generated on-demand



during the test phase, maximizing the rule set utilizatian,(the number of useless rules
is reduced). If, during the test phase, more than one rulkesp the same sample, the
best rule among those is selected based first on its size (ifownative the rule is) and
then on its confidence (how strong the rule is), reducingdaiadassifications. Further,
our rule selection technique is able to account for the dwtd classification error may
imply, and, as a consequence, to reduce the number of nsgadatons.

The remaining of the paper is organized as follows. In the segtion we will
provide necessary background on classification and asswciale mining problems, and
then we will discuss existing related work. In Section 3 wd piiesent our techniques
for rule generation and rule selection. In Section 4 we wilgent experimental results
by applying our techniques to real-world problems, suchpasrsdetection and protein
homology detection. Finally, in Section 5 we will present conclusions and future work
possibilities.

2. Background and Related Work

In this section we provide preliminary concepts of assammatule mining and associative
classification. Further, we also discuss some related work.

2.1. Association Rule Mining

DEFINITION 1. [ITEMSETY For any sett, its size is the number of elementsih Let

7 denote the set of natural numberg1, 2, ..., n}. Eachz € 7 is called an item. A
non-empty subset of is called an itemset. The power sethfdenoted byP(Z), is the
set of all possible subsets @f An itemset of sizé:, X’ = {zy, 29, ..., 2} is called a
k-itemset (for convenience we drop set notation and defoés z x5 . .. ). For X, Y

€ P(Z) we say thatt contains) if Y C X. A set (of itemsetsy C P(Z) is called an
itemset collection.

DEFINITION 2. [TRANSACTIONS A transactionZ; is an itemset, wheréis a natural
number called the transaction identifiertad. A transaction database = {7, 75, .. .,
7.}, is a finite set of transactions, with sizé |. The support of an itemsét in D is

the fraction of transactions iR that contain¥, given asg (X', D) = UEEEZETI,

DEFINITION 3. [FREQUENT AND MAXIMAL FREQUENTITEMSETY An itemsetY is
frequent ifo (X, D) > o™, wherec™ is a user-specified minimum-support threshold,
with 0 < o™ < 1. A collection of frequent itemsets is denoted A&, D). A
frequent itemsel’ € F (o™, D) is maximal if it has no frequent superset. A collection
of maximal frequent itemsets is denoted/aF (™", D).

LEMMA 1. [Agrawal and Srikant 1994] Any subset of a frequent itemsdrequent:
X € F(o™n, D)andy C X impliesy € F(o™" D). Thus, by definition a frequent
itemset must be subset of at least one maximal frequentdiells

LEMMA 2. [Gouda and Zaki 20011 F (o™, D) is the smallest collection of itemsets
from which (™, D) can be inferredll



PROBLEM 1. [MINING (MAXIMAL ) FREQUENTITEMSETY Giveno™" and a transac-
tion databas®, the problem of mining frequent itemsets is to fiido™"", D). Similarly,
the problem of mining maximal frequent itemsets is to fintiF (™", D).

ExAMPLE 1. Let us consider the example in Figure 1, whére {1,2,3,4,53 and the
figure showsD andP(Z). Supposer™" = 0.4 (40%). F(0.4, D) is composed of the
shaded and bold itemsets, while({ 7 (0.4, D) is composed only of the bold itemsets.
Note that| MF(0.4,D) | is much smaller thah (0.4, D) |. A naive approach to find
F(0.4, D) is to first computer (X', D) for eachX” € P(Z), and then return only those that
o(X,D) > 0.4. This approach is inappropriate because:

e If | T | (the dimension) is high, theiP(1) | is huge (i.e.2*)).
e If | D | (the size) is large, then computingX', D) for all X € P(Z) is infeasible.

By applying lemma 1 we can significantly improve the searchA¢0.4, D). In
Figure 1, once we know that the itemg&4} is not frequent, we do not need to generate
any of its supersets, since they must also be not frequems. sithple pruning trick was
first used in [Agrawal and Srikant 1994] and it greatly reduttee number of candidate
itemsets generated. Several different searches can bhedppglusing this pruning trick.

D

235
35
24

35

235

245
24
245

W O~ h|W I N|=a

235

JERCYRY PRI S U U N U I U N U (NS U (RGN U (R U §

o
o

235

Figure 1. Frequent Itemset Mining Example.

ALGORITHM 1. [MINING (MAXIMAL ) FREQUENT ITEMSETY The algorithm was
presented in [Gouda and Zaki 2001]. It employs a backtraekcketo findF (o™, D)
and M F (o™ D). A solution is represented as an item&et {xq, x4, ...}. Each item

x; is chosen from a finitpossible setP;. Initially X is empty; it is extended one item
at a time, as the search proceeds. The siz& of the same as the depth of the corre-
sponding itemset in the search tree. Givén@andidate itemset), = {zg, x1,..., Tk 1},

the possible values for the next iterp comes from a subset, C P, called thecombine
set Each iteration tries extendinj, with every itemz in V.. An extension is valid if the
resulting itemseft,,, is frequent. IfX},, is frequent and it is no subset of any already
known maximal frequent itemset, thaf ., is a maximal frequent itemset. The next step
Is to extract the new possible set of extensidns,;, which consists only of elements in
V. that follow z. The new combine se¥/,,; consists of those elements in the possible



set that produce a frequent itemset when used to exdgnd Any item not in the com-
bine set refers to a pruned subtree. The algorithm perfordep#h-first traversal of the
search space. When the search finistigs,™", D) and M F (o™, D) were found. The
computation ot (X, D) is based on the associativity of subsets. Lgt ') be thetidset

of X in D (the set oftids in D in which X’ has occurred), and thusLp(X) | =7 (X, D).
According to [Zaki et al. 1997]L»(X) can be obtained by intersecting the tidsets of two
subsets oft’. For example, in Figure 155(123) = {1, 5, 9, 10 and£p(125) = {1, 5, 8,

9, 10}. ConsequentlyLp(1235) = Lp(123) N Lp(125) = {1, 5,9, 1G. | Lp(1235) | =
7(1235, D) = 4, and thugr (1235, D) = 0.4,

EXAMPLE 2. Figure 2 shows how the algorithm works. We used sequencienrs
above each itemset to facilitate the understanding of toktkeck search. First the algo-
rithm process the items, and then it starts a depth-firstkdar frequent itemsets. For
example, for sequence number 13, the itemset being processed i24}. Therefore,
the depth is: = 3, andP; = V; = {5}. Whens = 15, the algorithm visits the itemsgt 24}
again, but now’; = () and consequently124} € MF (0.4, D). Although an itemse&’
can be visited more than onee( X', D) is computed only in the first visit.
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Figure 2. Basic Algorithm for (Maximal) Frequent Itemset Mi ning.

DEFINITION 4. [ASSOCIATION RULES] An association rule is a rule with the form

X LN Y, whereX and) are two itemsets witlk’ N )Y = (), andd is the confidence of the

rule, which is given by”(XW 7)3).

PROBLEM 2. [GENERATING ASSOCIATION RULES] Given a minimum confidence
thresholdd™™ and F(c™™, D), the problem of generating association rules is to find
R(emzn’f‘(o_mzn7p))

2.2. Associative Classification

DEFINITION 5. [DATA OBJECTS TRAINING AND TEST DATA| A data objectO is a
transaction irD, with D = D,..,, U Dynseen, WhereD,,.,, is the training data an®,,,, s,
is the test data. 10 is followed by the class attribute(with ¢ €{positive, negativg),
thenO ¢ D,..,, otherwiseD € D,,,scen-



DEFINITION 6. [(MAXIMAL ) FREQUENT CLASS ITEMSETY A frequent itemseRt’ €
F(o™™ D,..n) is a class itemset if € X, wherec is the class attribute. Similarly, a
maximal frequent itemseY € MF(c™", D,..,) iS @ maximal class itemsetif € ).
The set of all frequent class itemsetsIn..,, is denoted asF(c, 0™, D,..,) (i.e., itis
composed of frequent itemsets that contain the attribytand similarly, the set of all
maximal frequent class itemsetsin,.,, is denoted ad1F(c, 0™ Dycen)-

ALGORITHM 2. [MINING (MAXIMAL ) FREQUENT CLASS ITEMSETY Algorithm 1
may be easily modified for mining frequent class itemsetd.ti#dt need to be done is
to focus the search on itemsets that contain the classwa#ipthat is an itemse&’ =
{zo, 21, ...} is only a valid solution ifc € X. As in Algorithm 1, each item; is chosen
from a finite possible setP;. Initially X = ¢; it is extended one item at a time, as the
search proceeds. Any generated itemset that does notreritapruned. The process
continues untill all frequent class itemsets are found.

ALGORITHM 3. [MINING ONLY MAXIMAL FREQUENTCLASSITEMSETY Algorithm
2 can be easily modified for mining only maximal frequent slasmsets. All that need
to be done is to introduce a maximality pruning [Gouda and 28R1], that is, a subtree
can be pruned if an itemset is subset of an already known nadfigguent itemset.

DEFINITION 7. [(MAXIMAL ) CLASS ASSOCIATIONRULES| A class association rule is
arule with the form{ X —c} 4, ¢, wherec is the class attribute antl € F(c, 0™, Dyeen)-

Similarly, a maximal class association rule is a rule wita tbrm{) — ¢} — ¢, wherec
is the class attribute artd € MF (¢, 0™, Dseen)-

PROBLEM 3. [GENERATING (MAXIMAL ) CLASS ASSOCIATION RULES| The prob-

lem of generating frequent class association rules is toRM"™ ™, F(c, 0™, Dyeen))-
Similarly, the problem of generating maximal frequent slasssociation rules is
to find R(6™", MF(c,c™" Dseen)). Maximal frequent class association rules
have the self-containment property, that is, a frequenssclassociation rule in
R(O™ F(c,0™™ Dyeen)) is @ sub-rule of at least one maximal frequent class associ-
ation rule inR (0™, MF(c,0™", D,..,)) (this property is due to Lemma 2).

2.3. Related Work

Our work is clearly different from traditional classificati algorithms, such as
ID3 [Quinlan 1986], C4.5 [Quinlan 1993], and CART [Breimaraé 1984], which only
produce small rule sets. Our proposed work is related tocgstse classification tech-
niques, which was introduced by Liu et al. in [Liu et al. 1998{h the CBA classifica-
tion system. Enhancements were proposed in [Yin and Han]200&re best rules are
selected based on tl@cam’s Razoprinciple, and in [Li et al. 2001] where the classifi-
cation is based on multiple best rules (rather than on orgdesivest rule). Another in-
teresting work on associative classification is presemg@aralis and Chiusano 2004],
where a technique based on closed frequent itemsets [Zdkisiao 2002] is proposed.
This technique generates rule sets composed of non-redunidies. Three characteristics



make our work different from the aforementioned ones: (I)moposed rule generation
technique is based on maximal frequent class rules, (2) Warselection technique is
based on how much specific the rule is (the size of the rule)(anour classification is
cost-sensitive (a classification error has a cost, andrdifteerrors have different costs).

There are several algorithms for association rule mininglgoAthm 1 and
Algorithm 2 presented above are related terRAORI [Agrawal and Srikant 1994],
ECLAT [Zaki et al. 1997] and FP-Growth [Han et al. 2000]. AlgoritBmpresented above
is closely related to GBNMAX [Gouda and Zaki 2001] and MKMINER [Bayardo 1998],
however Algorithm 3 performs a search focused just on themealXrequent class item-
sets (and not on all maximal frequent itemsets).

3. Cost-Sensitive Associative Classification based on Maxal Frequent
Class Itemsets

In this section we present our techniques for rule generatia selection. During rule

generation a rule set composed of rules of the fo¥m> ¢ (where X is a pattern, or
itemset, inD,..,, andc is the class attribute) is computed. During rule selectmmaf
given data objecO, a subset of rules matchin@ is extracted and the best rule among
them is selected. We start by presenting a rule generatidhaddased on maximal
frequent class itemsets, and then we present a cost-sengite selection method to
avoid misclassification.

3.1. Rule Generation

Rule generation aims to find a set of representative rules ¢ha accurately de-
scribe/summarize the training da@,(.,,). The quality of the rules generated is crucial

. . . 0 . .
for classification purposes. In this context, a rdle~ ¢ has some desirable characteris-
tics:

1. Frequency: A rule must occur a significant number of tinme®|..,,, otherwise
the rule will be probably useless in the test phase sinceutegattern (i.e., the an-
tecedent¥’) may not occur irD,,,...,, (i-€., the probability of occurrence of a rule
pattern inD,,s..., IS related to its frequency iB..,,, represented by (X', Dseen))-

2. Statistical strength: A rule must have a high confidendaev@.e.,f), otherwise
the application of the rule will probably incur in misclassation during the test
phase.

3. Specificity: A rule must carry sufficient information alhdlie specific data object
being analyzed. The size of a rule can quantify how much médion it carries.
Very general rules may result in misclassification durirgtést phase.

A useful rule must have all the three characteristics. Fangle, rules with high
statistical strength but low frequency are possibly duedisain the training data, and
they are not desirable rules. Algorithm 2, described in i8ac2, can be used to find
F(e,0™™ Dyeen), and consequently, to find the rule Set0™", F(c, 0™, Dyeen))- If
the parameters™" andf™" are sufficiently high, the generated rules will have enough
frequency and statistical strength (confidence). HoweMggrithm 2 also generates too
much general rules without sufficient specificity. This i®da the fact that Algorithm 2
generates small-size class association rules. We overttosngroblem by making use of



the maximal frequent class itemsets, that is, our rule getioertechnique uses Algorithm
3to findR(6™", MF(c,™", Dseen)), and this choice has two main advantages:

1. Rule specificity: The space for all frequent class itesgebdften huge. Practical
computational constraints place severe limits on the sadesghat can be explored,
and consequently, small-size frequent class itemsetserergted. However, if
the search is focused only on the maximal frequent classs&&nmore rules
with longer sizes may be generated, and the generated rillesaty much more
information about the data objects.

2. Condensed representation: Maximal frequent class aukeself-contained, that
is they uniquely represent all frequent class rules, thanmller (yet informative
enough) sub-rules can be generated from those maximal rules

Thus, by using Algorithm 3 and findin® (6™, MF (¢, ™", Dscen)), OUr rule
generation technique can generate more interesting rutesufficient frequency, statis-
tical strength and rule specificity.

3.2. Cost-Sensitive Rule Selection

Once the rule seR (6™, MF(c, ™", Dyeer)) is found, the test phase can begin. Dur-
ing this phase, each data obj&tc D, ..., IS Submitted for classification. For each
data object submitted there is a best rule to be applied. saléetion aims to find such
best rule. For each submitted data objégtour rule selection technique performs the
following steps:

1. Step 1. search the longest rite % ¢ € R(O™" MF(c,™™ Dseen)), Where
X C O. Goto Step 2.

2. Step 2: if one or more rules withi C O were found, choose the one with highest
6. ClassifyO as positive or negative, accordingd@he consequent of the chosen
rule) and then return.

3. Step 3: otherwise, if no rule with’ C O was found then break rules of sizento
sub-rules of sizé&: — 1. If there is no more rules to be broken then clasgfas
negative (i.e., the default decision) and return, othexwis to Step 2.

Sub-rules of the fornt’ % ¢ (whereX = {x;, 29, ...,x}) are generated based
on thek-intersection approach, that is= £ ?(E;fg‘ig:;m%(j;gsexfkm%j:gizDm").
For this purpose, we maintain the tidsets of

requent 1gesduring the test phase At
the end of the test phase (all data objects in the test dawsuémitted for classification)
four metrics will be obtained:

T'T: number of positive cases that were correctly classifiecbagipe.
T F: number of negative cases that were wrongly classified atyes
FT: number of positive cases that were wrongly classified aathey
FF: number of negative cases that were correctly classifie@gative.

Itis easy to see th&tT + TF + FT + FF =| Dynseen |, thatis, the total number
of data objects irD,,...... These metrics are used to evaluate the effectiveness of the
classification.

The technique presented above tends to find long and stréesy tdowever, this
technique is not cost-sensitive, that is, it assumes thasilcation errors have the same



cost. There are two types of misclassification: classify sitp@ case as negative, or
classify a negative case as positive, respectively reptesas ' andF'T". Classification
errors may have different costs, for example, in spam detettte majority of the users
can tolerate a certain number of spams classified as legégimassages, but they do not
tolerate legitimate messages classified as spams. In thgs @& F' error is much more
costly than a'T error. In that way, we have three possibilities:

e Correctly classifying a data object (i.€7 or F'F') has cost 0.
e Wrongly classifying a positive data object as negative,(€") has cost 1.
e Wrongly classifying a negative data object as positive,('é¢") has cost\.

The cost factor\ is specified during the test phase, and given two rafes”:
(c = positive) and) R (¢ = negative), a data object is only classified as positive if
0, > X x 0, otherwise it is classified as negative. Thus, we modifiedroler selection
technique, so that it can be cost-sensitive. Our cost#emsule selection performs the
following steps:

Op

1. Step 1: search the longest rul& — (¢ = positive) €
R(O™ MF(c, 0™ Dyeen)), WhereX C O. Go to Step 2.

2. Step 2: if one or more positive rules with C O were found, choose the one with
highest),. Go to Step 4.

3. Step 3: otherwise, if no positive rule with C O was found then break rules of
sizek into sub-rules of sizé& — 1. If there is no more rules to be broken then go
to Step 4, otherwise go to Step 2.

On

4. Step 4: search the longest rul — (¢ = negative) €
R(O™™, MF(c,0™" Dyeen)), Where) C O.

5. Step 5: if one or more negative rules WithC O were found, choose the one with
highestd,,. Go to Step 7.

6. Step 6: otherwise, if no negative rule withC O was found then break rules of
sizek into sub-rules of sizé& — 1. If there is no more rules to be broken then go
to Step 7, otherwise go to Step 5.

7. Step 7: if there is no positive and no negative rules, flag3 as negative and
return. Otherwise, if there is no negative rules tidgn= 1 — 60,. Otherwise, if
there is no positive rules thél) = 1 — 6,,. Go to Step 8.

8. Step 8: ifd, > X x 6, then classifyO as positive, otherwise classifif§) as
negative.

The basic idea behind our cost-sensitive rule selection fggt select the best
positive and negative rules that match the appraised d@atpland then quantify how
much better (or worse) is the selected positive rule inicaleb the selected negative one.
Then, to be classified as positive, the appraised data ojest have a positive rule
times stronger (i.e, > A x 6,,) than the negative one.

4. Experimental Results

In this section we present experimental results obtainau the application of our clas-
sification techniques to two important real-world problersgam detection and protein
homology detection. We start with a description of the inpatameters and evaluation
metrics that will be used throughout the experiments. Thaneach application men-
tioned above, we will present the corresponding results.



4.1. Parameters and Evaluation Metrics

During our experiments we basically varied two input partarse the minimum support
(c™m), and the error cost facton). Values for bothy™ and \ are dependent of the
application scenario. We have also defined some metricsthatigoal of evaluating the
effectiveness of the classification performed using ounriegies:

1. Accuracy (Acc): It is the total number of correct classifsases (positive and
negative) divided by the total number of cases, givengy:- .

2. Precision (Prec): It is the number of correct classifiesitp@ cases divided by
the total number of positive classified cases, give

3. Recall (Rec): It is the number of correct classified pesitases divided by the
total number of real positive cases, givenjy .

4. Root Mean Squared Error (RMSE): It is the usual definitibequared error di-

vided by the total number of cases to make the metric indegreraf dataset size.

Itis given by: \/w, wheren =TT +TF + FT + FF, T is the class (0
or 1), andP is the confidence in the classification (valuegiini]).

5. Total Cost Ratio (TCR): Given a cost factgrTCR expresses how much times it
is better using the classifier than not using it. Greater T@Res indicate better

performance. For TCR: 1, not using the classifier is better. TCR is given by:
TT+FT
)\XT;:+FT'

4.2. Spam Detection

Spams, or more formally unsolicited commercial electrangssages, are extremely an-
noying to most users, as they waste their time and extendigdiabnnections. They also
waste bandwidth, and often expose minors to unsuitablesobiily advertising porno-
graphic sites. Without appropriate counter-measures sgameventually undermine the
usability of electronic messages. Technical counter-nmegsnclude the development of
spam filters, which can automatically detect a spam mesgalgssification algorithms
are usually the core of spam filters.

4.2.1. Dataset and Problem Descriptions

The problem is to classify if a given electronic message @vspr legitimate (a message
is a data object). In our case, the classification is basgdamtihe content of the message
(i.e., the words and symbols that compose the message)rdihmg) data is composed of
2,893 messages (legitimate and spams). Spams are markeditgerases, legitimate
messages are negative cases. Spams correspond to 16%otéthember of messagés
There are both categorical and continuous attributes s1dhtaset. For a categorical
attribute we assume that all possible values are mappeddba sonsecutive positive
integers. For a continuous attribute we assume that iteevanges is discretized into
3 intervals, and then (similarly to a categorical attriutes intervals are also mapped
to consecutive positive integers. Spam and legitimate agesswere randomly divided
into ten equal sized sets of messages. Then, for each ofrireete the remaining nine

1This dataset is callediINGSPAM. It is a set of e-mail messages from the linguist list, and largely
accepted as the ultimate test collection for spam deteetnmhallows for comparison between different
approaches. It is publicly available at http://listsénglistlist.org/archives/linguist.html.



sets were used as training data before the set was clasdifieslis the common testing
approach used for small datasets [Kohavi 1995]. The origiagset contains more than
65,000 items (different words or symbols), and therefore peeded to apply an attribute
selection procedure. We applied 3 different attributecteda procedures, based on the
information gain of each attribute. We selected the 5%, 2% Hb most significant
attributes, resulting in 3 new different datasets, call&b].LS2, and LS1.

4.2.2. Results

In this section we present results obtained from the utibreof our classification tech-
niques for spam detection. Figures 3 and 4 show precisiorrecall numbers for the
different datasets employed, LS5, LS2 and LS1. A generabtwee observed is that
recall values are reduced with increasing values'®f (because there are less rules for
higher values ob™") and with increasing values of. Precision is not affected sig-
nificantly by ¢ variations, but it decreases with lower values)of The best result
overall (precision=0.97 / recall=0.92) was obtained witb £ S1 dataset and employing
o™"=0.06 and\=1. Figure 5 shows accuracy numbers. Clearly, the accuracsedses

as we increasg. This is against expectations, since, as observed egmtemision shows

an opposite trend. However, the number of false-negatives {'1") increases signifi-
cantly for higher values of, reducing the accuracy. This increase of false-positigesa
does not affect precision (according to its definition). Dest accuracy (0.985) was ob-
tained with the LS1 dataset and employin®=0.06 and\=1. Figure 6 shows TCR
values when varying™" and\. We observed that TCR values are always reduced with
increasing values ok. We also observed that TCR values increase for lower valties o
o™, since, for these cases, higher values of precision arénelota

Table 1 shows a comparison between the results obtainedrlaseaciative clas-
sification technique (T1), and the results obtained by tweeotechniques (T2 and T3)
presented in [Sakkis et al. 2003]. This table shows threersbd values (coming from
T1, T2 and T3) for each of the analyzed metrics. The techniuemploys a (memory-
based) classification method based on automata, and theiqaehT3 is a traditional
naive-Bayes classifier. Our classification technique (¥ BImost always the best one,
especially in terms of TCR, reaching a value of 9.36, thais@g our classification tech-
nigue withoc™"=0.06 and\=1, we achieved results almost 10 times better (in terms of
cost) than not using any classification. This is the bestiresported in the literature for
the LINGSPAM benchmark.
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Figure 3. Precision Values for LS5, LS2and LS1.
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Figure 6. TCR Values for LS5, LS2and LS1.
Table 1. Comparison against other Classification Technique S.
A | Rec(T1l)| Rec(T2)| Rec(T3)| Prec(T1)| Prec(T2)| Prec(T3)| TCR(T1) | TCR(T2) | TCR(T3)
1 0.92 0.89 0.82 0.97 0.97 0.99 9.36 7.18 541
9 0.83 0.82 0.78 0.99 0.99 0.99 3.96 3.64 3.82
999 0.81 0.60 0.64 0.99 1.00 1.00 3.61 2.49 2.86

4.3. Protein Homology Detection
Proteins play a fundamental role in disease; therefore dgneyf great interest to fields

such as pharmacology and genomics.

It is well known thateprsthave a strong

structure-function relationship, that is, the biocherhigaction that the protein performs
is strongly related to its structure. This is the motivatdmprotein homology detection.




4.3.1. Dataset and Problem Descriptions

The problemis to classify if a protein is homologous to a gimative sequence (the native
sequence is a data object). The data is grouped into blooksdreach native sequence.
The training data is composed of 153 native sequences, artdshdata is composed of
150 native sequences. For each native sequence, there ti®faggproximately 1,000
protein sequences for which homology detection is needesndibgous sequences are
marked as positive cases, hon-homologous sequences &b ‘@ecoys”) are negative
caseg. The classification is based on 74 attributes that measutehrha

There are both categorical and continuous attributes sdhiiaset. For a categori-
cal attribute we assume that all possible values are mapyeeddt of consecutive positive
integers. For a continuous attribute we assume that iteevalnges is discretized into 6
intervals, and then (similarly to a categorical attribute) intervals are also mapped to
consecutive positive integers.

4.3.2. Results

In this section we present results obtained from the utitbreof our classification tech-
niques for protein homology detection. Figure 7(a) and gtmws precision and recall
numbers obtained. As observed in the spam detection appticaecall values decrease
as we increase™™" and\. Differently from the observed in the spam detection agplic
tion, precision is significantly affected by variations, and it decreases as we decrease
A. Figure 7(c) shows accuracy numbers. As occurred in the gjgection application,
accuracy is reduced with increasing values\oThe best result overall (precision=0.95/
recall=0.47) was obtained by employint"=0.005 and\=1.
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Figure 7. (a) Precision Values on the left, (b) Recall Values on the Middle, and (c)
Accuracy Values on the Right.

Table 2 shows a comparison between the results obtainedrlaseaciative clas-
sification technique (T1), and the results obtained by ttet b& of the 102 algorithms

2This dataset was obtained from the KDD Cup 2004 task of prdteimology detection. It is publicly
available at http://kodiak.cs.cornell.edu/kddcup/dats.html.

3|f the reader is not familiar with protein matching and stue prediction, it might be helpful to think
of this as a WWW search engine problem. There are 153 quertbs training data, and 150 queries in the
test data. For each query there are about 1,000 returnedwmds, only a few of the documents are correct
matches for each query. The goal is to classify which of tB@Q documents best match the query.



that were submitted to the KDD Cup 2004 contest [Caruana €084]. In the table,
the algorithms are ranked according to the observed RMSkev&@ur technique (T1) is
ranked at the eighth position, showing a RMSE value of 0.238%ens""=0.005 and
A=1. Although our algorithm is not the best one, we believe itsaperformance was
quite satisfactory, since all other algorithms listed i[€&2 were specifically developed
to perform well in the provided dataset. Thus, we believe tha algorithm is more
generic than those listed in the table.

Table 2. Comparison against other Classification Technique S.

Rank Classifier RMSE | Rank Classifier RMSE
1 CT.AC.CN 0.03501| 9 Weka 0.03833
2 Rong Pan 0.03541| 10 S575 0.03838
3 S587 0.03692| 11 S541 0.03847
4 Mario Zille r 0.03766| 12 S513 0.03848
5 MEDai/Al Insight | 0.03805| 13 S539 0.03850
6 S560 0.03826| 14 S540 0.03850
7 S591 0.03830| 15 | PG445 UniDo *| 0.03878
8 T1 0.03832| 16 S561 0.03900

5. Conclusions and Future Work

In this paper we presented an algorithm for associativesifieation, which is a clas-
sification technique based on association rules. The n@raponents of the proposed
algorithm are new techniques for rule generation and rdecten. Our rule generation
technique is based on maximal frequent class rules, whatesdthe complexity of the
search for association rules, and make possible the gerecdtionger (and more infor-
mative) rules. Our rule selection technique is based on héevmative and strong a rule
is, and on a cost-sensitive mechanism that reduces migasen. Experimental results
on real-world applications indicates that the proposeldregies make our algorithm bet-
ter than other generic algorithms (such as automata ane-yes based algorithms),
and comparable to application-specific (and possibly eéatssecific) algorithms (such
as the presented in the KDD Cup 2004 contest). As part of eggand future work
we are evaluating the possibility of applying temporal mfation, such as sequential
patterns [Zaki 2001], to improve the effectiveness of ogoathm.
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