Using Mutual Influence
to Improve Recommendations

Aline Bessa, Adriano Veloso, and Nivio Ziviani

Universidade Federal de Minas Gerais
Department of Computer Science, Belo Horizonte, Brazil
{alinebessa,adrianov,nivio}@dcc.ufmg.br

Abstract. In this work we show how items in recommender systems
mutually influence each other’s utility and how it can be explored to
improve recommendations. The way we model mutual influence is cheap
and can be computed without requiring any source of content informa-
tion about either items or users. We propose an algorithm that considers
mutual influence to generate recommendations and analyse it over dif-
ferent recommendation datasets. We compare our algorithm with the
Top — N selection algorithm and obtain gains up to 17% in the utility
of recommendations without affecting their diversity. We also analyse
the scalability of our algorithm and show that it is as applicable for
real-world recommender systems as Top — N.

Keywords: Recommender systems, theory of choice, mutual influence,
collaborative filtering.

1 Introduction

Consumers from widely varying backgrounds are inundated with options that
lead to a situation known as “information overload”, where the presence of too
much information interferes with decision-making processes [I]. To circumvent
it, content providers and electronic retailers have to identify a small yet effective
amount of information that matches users expectations. In this scenario, Recom-
mender Systems have become tools of paramount importance, providing a few
personalized recommendations that intend to suit user needs in a satisfactory
way. One type of such systems, known as Collaborative Filtering [2], generally
works as follows: (i) prediction step - keeps track of consumers known preferences
to predict items that may be interesting to other consumers; (ii) recommendation
step - selects predictions, ranks and recommends them to consumers.
Traditionally, predictions are scores assigned to items with respect to a certain
consumer. The higher the score the higher the compatibility between the items
in question and consumer’s known preferences. It is therefore intuitive to think
that the N items with highest scores should be the ones chosen in the recommen-
dation step. This approach though, known as Top — N recommendation, does
not consider the utility of the recommended list as a whole, focusing exclusively
on individual scores. As we show in this work, items exert a mutual influence on

O. Kurland, M. Lewenstein, and E. Porat (Eds.): SPIRE 2013, LNCS 8214, pp. 1728 2013.
© Springer International Publishing Switzerland 2013

18 A. Bessa, A. Veloso, and N. Ziviani

their utilities, i.e. the quality of an item depends not only on its own score but
also on which other items are presented in the Top — N recommendations.

This work is motivated by the theory of choice of Amos Tversky [3], which
indicates that preference among items depends not only on the items’ specific
features, but also on the presented alternatives. In the context of movies, for in-
stance, it is equivalent to state that an action fan may prefer a mediocre karate
movie over romance titles, but would not interact with this same karate movie
when presented with better action films. We investigate the influence alternatives
exert on each other, and how this information can be used to improve recom-
mendations utility. It could be either embedded on the predictions computation
or weighed right after they are generated in the recommendation step. We here
focus on the recommendation step.

We propose a novel algorithm that incorporates mutual influence to perform
the selection of a set of NV items, which we call GSMI - Greedy Selection based
on Mutual Influence. We conducted a systematic evaluation of GSMI involving
different recommendation scenarios and distinct datasets. In order to evaluate
GSMI, we used the utility metric proposed in [4] and measured diversity using
the framework proposed in [5].

In summary, the main contributions of this work are (i) a cheap way of mod-
elling and computing the mutual influence items exert on each other’s utility,
(ii) a new algorithm that considers mutual influence to select items in the rec-
ommendation step of a collaborative filtering, (iii) a thorough evaluation of its
benefits in recommendation tasks — we compare GSMI with Top — N and ob-
tain significant gains in the utility of recommendations without affecting their
diversity —, (iv) an analysis of the scalability of GSMI, which indicates that the
algorithm is applicable for real-world recommender systems.

This paper is structured as follows. Section 2 discusses previous related work
and connects it to our study. Section 3 outlines some basic concepts that are the
foundations of this work. Section 4 details GSMI and our evaluation methodol-
ogy. Section 5 presents experiments that demonstrate the efficiency and efficacy
of GSMI, taking different datasets into account. Finally, Section 6 details our
conclusions and future work.

2 Related Work

In this section, we present related work in Top — N recommendations, depen-
dencies among items, and learning to rank, as described next.

Top — N Recommendation. The state of the art prediction algorithms for
Top — N recommendations, when explicit feedback is available, are PureSVD
and NNCosNgbr (Non-normalized Cosine Neighborhood) [6]. A Top — N rec-
ommendation step when predictions are generated by these algorithms performs
better than some sophisticated Learning to Rank methods. PureSVD is based
on latent factors, i.e. users and items are modelled as vectors in a same vector
space and the score of user u for item i is predicted via the inner-product between

Using Mutual Influence to Improve Recommendations 19

their corresponding vectors. NNCosNgbr works upon the concept of neighbor-
hood, computing predictions according to feedback of similar users/items. [6] is
related to our work because we use both PureSVD and NNCosNgbr as our pre-
diction algorithms and compare GSMI with Top — N for the recommendation
step.

Dependencies among Items. In 1972, Amos Tversky proposed a model acording
to which a user chooses among options by sets of item aspects — an example would
be {price < $100.00} [3]. We do not assume that items’ features are available and
therefore do not model aspects in our approach, but we do rely on the idea that
user choice depends on all presented alternatives — i.e. such alternatives interfere
with each other’s utility. Another work that relies on Economics principles to
model dependencies among items is that of Wang [7]. Inspired by the Modern
Portfolio Theory in finance, Wang derives a document ranking algorithm that
extends the Probability Ranking Principle by considering both the uncertainty
of relevance predictions and correlations between retrieved items. This work is
the closest to ours.

Learning to Rank. LTR (Learning to Rank) are supervised methods to auto-
matically build ranking models for items [§]. Although we do not generate an
ordering among the items selected in the recommendation step, we do use su-
pervised learning to compute mutual influence and perform selections. An LTR
work that is somewhat close to ours is that of Xiong et al [9]. In an advertise-
ment scenario, they observed that the CTR (Click-Through Rate) of an ad is
often influenced by the other ads shown alongside. Based on it, they designed
a Continuous Conditional Random Field for click prediction focusing on how
ads influence each other. Another work that models influence among items and
explores it to perform an LTR is [10]. In this paper, influences are modelled as
similarities among items and embedded in a latent structured ranking method
afterwards.

3 Basic Concepts

In this work, there are two fundamental sources of evidence that are used to select
which items should be recommended to a certain user: (i) individual scores ¢
generated in the prediction step by either PureSVD or NNCosNgbr, and (ii)
pairwise scores # that quantify mutual influence among items. Both ¢ and 6 are
real values in the interval [0, 1].

The pairwise scores # work in a positive way: the higher they are, the higher
the utility of the items in question when selected to a same recommendation
list. Given items a and b, 6(a,b) should ideally be computed considering only
cases where they are simultaneously selected to recommendation. Unfortunately,
it is not possible to reconstruct the recommendation lists in none of the studied
datasets. As a consequence, it is not possible to know which items were presented
to users together and therefore we compute 6(a,b) considering users historical
data as a whole, as detailed in Section 3.2.

20 A. Bessa, A. Veloso, and N. Ziviani

In this work, we assume that predictions are generated to K items, and then
N, N < K, items must be selected to compose a recommendation list. Typical
values for N are 5 and 10, and depending on the prediction algorithm K can
be equivalent to the total number of items in the dataset [8]. We also assume
that users explicitly give feedback to items, and depending on the system it can
be a rating, a purchase signal (0/1), a click (0/1) etc. Next, we detail how we
compute individual scores ¢, pairwise scores 6, and how they are combined.

3.1 Individual Scores ¢

Individual scores are generated by prediction algorithms that are divided into
two categories: neighborhood-based and model-based [§]. The latter have re-
cently enjoyed much interest due to related outstanding results in the Netflix
competition, a popular event in the recommender systems field that took place
between 2006 and 20091, Nonetheless, neighborhood-based prediction algorithms
usually provide a more concise and intuitive justification for the computed pre-
dictions, and are more stable, being little affected by the addition of users, items,
or ratings []]. The predictors used in this paper are PureSVD (model-based) and
NNCosNgbr (neighborhood-based), both state of the art methods for Top — N
recommendations when explicit feedback is available.
The input for PureSVD is a User x Item matrix M filled up as follows:

(1)

M {numerical feedback, if consumer u gave feedback about item 4,
ui —
0, if not.

PureSVD consists in factorizing M via SVD as M = U x E x Q, where U is
an orthonormal matrix, F is a diagonal matrix with the first v singular values of
M, and @ is also an orthonormal matrix. The prediction of an individual score
¢(i) given a user u is thus given by:

¢(i) = My, x QT x Q; (2)

where M, is the u-th row of M corresponding to user u latent factors, Q7 is
the transpose of @, and @Q); is the i-th row of @) corresponding to item ¢ latent
factors.

NNCosNgbr is a neighborhood model that bases its predictions on similar-
ity relationships among either users or items. Working with items similarities
usually lead to better accuracy rates and more scalability [I1]. In this case, rec-
ommendations can be explained in terms of the items that users have already
interacted with via ratings, purchases, likes etc [11]. Due to these reasons, we fo-
cus on item-based NNCosNgbr. The prediction of an individual score ¢(i) given
a user u is computed as follows:

S() =bui+ Y dij(ru; —buj) (3)

JEDk (u;3)

! mttp://en.wikipedia.org/wiki/Netflix_Prize

http://en.wikipedia.org/wiki/Netflix_Prize

Using Mutual Influence to Improve Recommendations 21

where b,; is a combination of user and item biases as in [12], D¥(u;1) is the set
of k items rated by v that are the most similar to i, d;; is the similarity between
items 7 and j, ry; is an actual feedback given by u to j and b,; is the bias related
to w and j.

Biases are taken into consideration because they mask the fundamental re-
lations between items. Item biases include the fact that certain items tend to
receive better feedback than others. Similarly, user biases include the tendency of
certain users to give better feedback than others. Finally, the similarity among
items, used to compute both Dk(u;i) and d;j, is measured with the adjusted
cosine similarity [6].

3.2 Pairwise Scores 0

The pairwise scores 6(i, j) capture the mutual influence items ¢ and j have on
their own utility. In other words, 6(i, j) quantifies to what extent the selection
of i is correlated with the selection of j and vice-versa. Given that it is not
possible to track at what times ¢ and j were selected together in the studied
datasets, we compute 6(%, j) considering all their co-occurences in the historical
data, regardless of when they were presented to users. A straightforward way of
computing 6(i, j) is via Maximum Likelihood Estimator (MLE), as follows:

(i, j) = 12 (4)
fij
where [;; is the number of consumers that liked ¢ and j and f;; is the number of
consumers that gave feedback to ¢ and j. It turns out that this MLE computation
yields good results, as detailed in Section [Bl
The notion of “liked” can be understood as “clicked”, “received a high rating”,
“purchased”, etc. The problem with computing 0 via Equation M is that most
items do not receive much feedback — i.e., recommendation datasets. As a con-
sequence, using MLE to approximate the value of § can lead to arbitrarily bad
approximations. To make more realistic approximations, one can penalize pairs
of items with a poor support, shrinking the computation with a factor A [6]:
. fij lij
00i.5) = 3 < 7)
Note that Equation [l converges to Equation] when A — 0. The main chal-
lenge in using Equation [0l is to find an adequate value for A.

3.3 Combining Scores

In this work, we combine individual and pairwise scores to select N items out
of K for recommendation. The problem is therefore posed as selecting a set of
items I = {iy,...,in} that maximizes the following utility function:

¢(Za) e(ilvim)
2t X Tp ©)

ia €1 (i1,im)EI?

22 A. Bessa, A. Veloso, and N. Ziviani

where the normalization in both summations is important to keep their contri-
butions fair — i.e., both values will remain in the interval [0, 1].

There are some different ways of obtaining an exact solution to this optimiza-
tion problem. For instance, one can trivially enumerate all N-combinations of
a set with K items and choose the one that sums up to the highest value. It
is also possible to use integer programming to solve it (N P-Hard) [I3]. To the
best of our knowledge, all these techniques are costly and there is no polynomial
algorithm that maximizes this function in an exact way.

4 The GSMI Algorithm

Combining scores to select items for recommendation leads to an intractable op-
timization, as discussed previously. To tackle with this problem under a practical
viewpoint, we propose GSMI, a greedy algorithm that selects N items, one at a
time, taking into account items that were selected previously.

The algorithm receives a set of items I = {iy,...,ir} and their individual
scores {¢(i1),...,6(ik)}, and returns a set R with N selected items, where
N < K. It is described as follows.

Algorithm 1. GSMI Algorithm
1: 4 < argmax ¢(7)
el
R+ {i}
I+ I\ {i}
while |R| < N do

j + argmax Z (a) + Z o(b, 02)7 where R; = RU {j}
jer g IRl , Bl
3 (b,c)eRj

R+ Rj

I I\ {j}
end while
return R

GSMI starts selecting the item that has the best individual score, i. All other
N — 1 selected items are chosen in a way that maximizes the equation in line 5,
where the maximized set is comprised by all items that were already chosen, R,
and the new item itself. The crucial greedy choice of GSMI is selecting the item
with best individual score first.

GSMI runs in polynomial time. The loop in line 4 will be executed exactly
N —1 times. In line 5, an item is chosen out of K — 1 in the worst case; in the
best case, out of K — N + 1 ones. It means that O(K) items need to be analysed
at each time. In line 5, the first summation is performed in O(|R|) time. The
second summation is performed in O(|R|?> x) time, where O(3) is the time
complexity of 8. An upper bound for the time complexity of GSMI is therefore
O(K + |R| x (K x |R|? x 8)) = O(KN?3p), given that |[R| < N.

Using Mutual Influence to Improve Recommendations 23

The time complexity of computing €, O(f), depends on the size of the dataset,
on the maximum number of feedback given by a certain user to the items in
question, and on the used data structures. For each loop iteration, it is possible
to reuse partial summations from the previous iteration, in a way that the total
time complexity is reduced to O(K N?2f3). Besides that, it is possible to optimize
function calls to compute 6 by taking advantage of its symmetry and by using
memoization. Therefore, as we discuss in Section Bl it is simple to speed up
GSMI and make it scalable to big datasets.

It is worth pointing out that GSMI is compatible with any recommender sys-
tem where it is possible to estimate I, its corresponding scores {¢(i1), ..., ¢(ix)},
and approximations for pairwise scores 8. Therefore, the proposed algorithm is a
priori compatible with systems that employ both matrix factorization techniques
and sketching/fingerprinting methods for dealing with big data.

To validate GSMI, we use the explicit feedback users give over items as a util-
ity measurement: the better it is, the more useful the recommendations are [14].
The hypothesis we started investigating can therefore be simply posed as “Does
GSMI select items that receive better feedback when compared to those selected
by Top — N 2”7 For all studied datasets, feedback consists of ratings. To perform
the comparison between GSMI and Top — N we thus measure the average rat-
ing users gave to recommended items, applying 5-fold cross-validation [4]. We
generate individual scores for all (user,item) pairs in the test set and then per-
form items selection using both GSMI and Top — N. The recommendation list
containing items that receive higher ratings is the one that is considered more
useful.

In this work we also compare GSMI and Top — N under a diversity perspec-
tive. It has recently become a consensus that a desirable feature for success-
ful recommender systems is the ability of generating diverse, non-monotonous
recommendations to users [I5]. Diversity is usually defined as the opposite of
similarity, and the most explored approach for measuring it uses content-based
similarity between items [8]. The diversity metric we apply, intra-list distance
(ILD), was proposed by Zhang and Hurley [16] and works as follows:

2
ILD=——- 1 — sim(ig, ;) (7)
|R[(|R] —1) ik,ilezR:,Kk

where R is comprised by all selected items and sim(iy, ;). More details of how
we performed experiments with ILD are given in Section

5 Experiments

In this work, we investigated mutual influence in three different datasets: Movie-
Lens IOOKE, MovieLens 11\4@, and Jester 14. Table [summarizes some of their
characteristics.

2hhttp://www.grouplens.org/system/files/ml-100k.zip
3 http://www.grouplens.org/system/files/ml-1m.zip
4 http://goldberg.berkeley.edu/jester-data/jester-data-1.zip

http://www.grouplens.org/system/files/ml-100k.zip
http://www.grouplens.org/system/files/ml-1m.zip
http://goldberg.berkeley.edu/jester-data/jester-data-1.zip

24 A. Bessa, A. Veloso, and N. Ziviani

Table 1. Succint characterization of the studied datasets

Characteristic MovieLens 100K [MovieLens 1M Jester 1
Domain Movies Movies Jokes
Feedback Ratings (1 - 5) |Ratings (1 - 5)|Ratings (-10.00 - 10.00)
Number of users 943 6,040 24,983
Number of items 1,682 3,900 100

Number of feedback 100,000 1,000,209 1,810,455
Minimum ratings/user 20 20 36

Sparsity rate 0.937 0.958 0.275

Table 2. Average ratings given by users to items recommended by two different
methods: Top — N and GSMI. GSMI — 5, GSMI — 10, and GSMI — 20 correspond
to GSMI selecting N = 5,10,20 items respectively. The average ratings were com-
puted for different values of N using PureSVD and NNCosNgbr as predictors. For
each GSMI/Top — N pair, we performed a t-test over each dataset, and with a 95%
confidence level only the underlined results are not statistically different.

Predictor Method |MovieLens 100K |MovieLens 1M |Jester 1
Top — 5 3.924 4.127 1.292
GSMI — 5 3.974 4.175 1.518
PureSVD Top — 10 3.837 4.004 1.031
GSMI — 10 3.878 4.057 1.188
Top — 20 3.738 3.908 0.892
GSMI — 20 3.765 3.939 0.911
Top — 5 3.821 4.027 2.312
GSMI — 5 3.875 4.096 2.363
NNCosNgbr| Top — 10 3.775 3.928 1.529
GSMI — 10 3.824 3.993 1.589
Top — 20 3.691 3.836 0.939
GSMI — 20 3.726 3.890 0.940

The MovieLens datasets are significantly more sparse than Jester 1. While
in the former users rated at least 20 movies, in the latter users gave feedback
to at least 36% of the jokes. MovieLens 1M is comprised by many more users
and items than MovieLens 100K, and its total amount of ratings is similar to
Jester’s. Finally, while ratings in the MovieLens dataset are discretized and vary
from 1 to 5, users in Jester 1 can assign any real number from -10.00 to 10.00 to
any rated joke.

We compared GSMI with the Top — N approach in order to evaluate how
mutual influence alone can bring up gain to recommender systems. Table
presents results for experiments with N = 5,10, 20. For the MovieLens datasets,
we considered that movies were liked by users if their ratings were equal or
higher than 4; in the case of Jester 1, if they were equal or higher than 5.00.
For all experiments, PureSVD was executed with 50 latent factors, the number
of neighbors in D¥(u;i) in Equation [3 was fixed in 60, and the value of \ for
pairwise scores 6 in Equation Bl was fixed in 0.5.

Using Mutual Influence to Improve Recommendations 25

30
:

MovieLens 100K - PureSVD MovieLens 1M - PureSVD Jester 1 - PureSVD
<- B Top
O GSMI

| Top | Top
O GsMmI O GsMmI
i 5 10 20) 5 10 20) 5 10 20
N N N

MovieLens 100K - NNCosNgbr MovieLens 1M - NNCosNgbr Jester 1 - NNCosNgbr

w = <
| Top = Top B Top
O GsMmI O GSMmI O GSMI
] ﬂ ﬂ el ﬂ ﬂ o I] _—
5 10 20 5 10 20 5 10 20
N N N

Fig. 1. Average running times per validation fold, in seconds, for different combinations
of datasets and predictors, with N = 5,10, 20

3
20 25
L

2
15

1

Running time (s)
10 20 30 40 50 60 70
Running time (s)
10

Running time (s)
5

0
0
0

3 4
40 5
30
L

30

1
20

Running time (s)

10 20

Running time (s)

10

Running time (s)
2

0
0

As shown in Table Bl predictor PureSVD generated better average ratings
for both Top — N and GSMI methods with respect to the MovieLens datasets.
Concerning the Jester 1 dataset, NNCosNgbr performed better. In all cases,
either GSMI produced superior average ratings or was statistically equivalent to
the Top — N results. The obtained gains were up to 17%. Although the difference
between Top — N and GSMI approaches may seem small, it is known that such
differences have a huge impact on recommender systems [I7].

5.1 Efficiency and Scalability of GSMI

GSMI is a greedy algorithm for the maximization problem posed by Equa-
tion [@ It is thus useful to compare it against exact solutions. We implemented
such solutions for the MovieLens 100K dataset, with predictors PureSVD and
NNCosNgbr and N = 5. The computations were carried out via the enumera-
tion of all items combinations and posterior selection of the one that maximized
Equation 6l Nonetheless, such computations took more than 3 hours to be com-
pleted, while GSMI generates results per validation fold in around 70 seconds
in the worst case, as shown in Figure [Tl

Regarding the utility of results, the average ratings obtained with the exact
solutions were 3.984 and 3.895 for PureSVD and NNCosNgbr respectively. Both
results were not statistically different from the corresponding average ratings
obtained with GSMI for N = 5, 3.974 and 3.875, according to a t-test with a 95%

26 A. Bessa, A. Veloso, and N. Ziviani

confidence level. The fact that GSMI for N = 5 generated statistically equivalent
results for the MovieLens 100K dataset is an indicative that it is a good heuristic
to approximate exact solutions. Also, results presented in Table Bl consistently
indicate that GSMI, by embedding mutual influence in its selection strategy, can
improve recommendations utility. As a consequence, it is important to devise
competitive implementations for GSMI that scale in real-time situations.

Although GSMI is polynomial and rather fast, given that values for N are
usually small in real-world scenarios [8], there are some easy and important
optimizations that makes it scalable and competitive in practice. A first im-
provement is to precompute and store all pairwise scores # in a hashtable as a
preprocessing step. This offline computation speeds up the generation of differ-
ent values for Equation [f] by avoiding redundant computations of Equation [l
Another improvement involves the use of memoization to reuse partial summa-
tions in the GSMI algorithm. Figure [illustrates the average computation time
per validation fold for each dataset, varying N and the predictor algorithm. All
experiments were performed in a Pentium Dual-Core 2.0GHz with 2GB RAM.

Results in Figure [l correspond to the average aggregated time for the gener-
ation of all recommendation lists concerning a validation fold. For higher values
of N, the time difference between GSMI and Top — N could increase, but such
analysis is not useful in real-world scenarios because N values are never big in
practice. Therefore, for realistic values of N, GSMI scales well and its average
running times per validation fold are only slightly bigger than those obtained
with Top — N. In spite of that, the time difference for generating a single recom-
mendation list with both methods is irrelevant. Given that in real-world systems
recommendation lists are generated once at a time via the interaction with users,
and GSMI yields better utility results, it is thus a feasible alternative.

5.2 Relation between GSMI and Recommendations Diversity

To investigate the relation between GSMI and recommendations diversity, we
computed the I LD metric, as in Equation 7, for the MovieLens datasets. Movie
similarities were computed via the Jaccard’s similarity over their corresponding
genres, as properly indicated in the datasets. We did not perform such experi-
ments over the Jester 1 dataset because it does not provide any content-based
information. Results for both Top — N and GSMI with respect to predictors
PureSVD and NNCosNgbr are summarized in Table [Bl

According to our experiments, GSMI and Top — N do not generate statis-
tically significant diversity differences in recommendations. This is an evidence
that GSMI is not likely to hurt recommendations diversity — at least when com-
pared to Top — N. It also indicates that considering mutual influence via pairwise
scores f does not imply in either redundant or monotonous recommendations.

6 Conclusions and Future Work

In this work, we investigated how items can interfere with their own utility in
recommendation scenarios. We stated that there is a mutual influence among

Using Mutual Influence to Improve Recommendations 27

Table 3. ILD results for different values of N using PureSVD and NNCosNgbr as
predictors. For each GSMI/Top — N pair, we performed a t-test over each dataset.
With a 95% confidence level, none of the results are statistically different.

Predictor Method |MovieLens 100K |MovieLens 1M
Top — 5 0.8557 0.7459
GSMI — 5 0.8544 0.7557
PureSVD Top — 10 0.8619 0.7591
GSMI — 10 0.8615 0.7660
Top — 20 0.8645 0.7666
GSMI — 20 0.8643 0.7696
Top — 5 0.8649 0.7617
GSMI — 5 0.8652 0.7636
NNCosNgbr| Top — 10 0.8649 0.7694
GSMI — 10 0.8652 0.7709
Top — 20 0.8649 0.7712
GSMI — 20 0.8652 0.7727

them that increases their utilities when simutaneously selected. It is thus pos-
sible to take advantage of these mutual influences to improve recommendation
systems. The main intuition behind this project is that not only individual fea-
tures matter in decision-making processes: the presented set of alternatives as a
whole also plays an important role on it.

We proposed a means of computing such mutual influence, pairwise scores 6,
and an algorithm that incorporates it to improve the recommendation of items,
GSMI. To analyse mutual influence as an isolated evidence, we compared GSMIT
with Top — N, an item selection technique that does not rely upon any type
of signal but sorted individual items scores. These individual scores, namely
¢, were generated by two different state of the art predictors: PureSVD and
NNCosNgbr [6].

We showed that for three distinct datasets — MovieLens 100K, MovieLens 1M,
and Jester 1 — GSMI consistently generated recommendation lists with higher
utility measures, i.e. higher average ratings [14], when compared to Top — N.
We also present evidence that GSMI is easily scalable and therefore useful for
real-world scenarios. Finally, we show that this algorithm does not seem to hurt
recommendations diversity.

Given that we show that mutual influence is an important evidence for recom-
mender systems, we intend to develop LTR algorithms that embed it in a near
future. We also want to investigate exact solutions for our optimization problem
(Equation[@]) that can be feasible in practice, as well as ways of overcoming data
sparsity as a means to compute scores 6 in a more stable fashion. A thorough
assessment of which of all studied algorithms leads to less performance variations
is also planned as future work. Finally, we plan on implementing different base-
lines that also consider some type of influence or dependency among items, such
as Latent Structured Ranking [10] or the mean-variance ranking model proposed
by Wang [7].

28

A. Bessa, A. Veloso, and N. Ziviani

Acknowledgements. This work was partially sponsored the Brazilian Na-
tional Institute of Science and Technology for the Web (grant MCT/CNPq
573871/2008-6), and by the authors’ individual grants and scholarships from
CAPES and CNPq. The first author is also thankful for fruitful discussions with
Google Software Engineer Davi M. J. Barbosa.

References
1. Toffler, A.: Future Shock. Random House (1970)
2. Adomavicius, G., Tuzhilin, A.: Towards the next generation of recommender sys-

10.

11.

12.

13.
14.

15.

16.

17.

tems: A survey of the state-of-the-art and possible extensions. IEEE Transactions
on Knowledge and Data Engineering 17(6), 734-749 (2005)

Tversky, A.: Elimination by aspects: A theory of choice. Psychological Re-
view 79(4), 281-299 (1972)

Passos, A., Gael, J.V., Herbrich, R., Paquet, U.: A penny for your thoughts? the
value of information in recommendation systems. In: NIPS Workshop on Bayesian
Optimization, Experimental Design, and Bandits, pp. 9-14 (2011)

Vargas, S., Castells, P.: Rank and relevance in novelty and diversity metrics for
recommender systems. In: RecSys., pp. 109-116 (2011)

Cremonesi, P., Koren, Y., Turrin, R.: Performance of recommender algorithms on
top-n recommendation tasks. In: RecSys., pp. 39-46 (2010)

Wang, J.: Mean-variance analysis: A new document ranking theory in information
retrieval. In: Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds.) ECIR
2009. LNCS, vol. 5478, pp. 4-16. Springer, Heidelberg (2009)

Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.): Recommender Systems
Handbook. Springer (2011)

Xiong, C., Wang, T., Ding, W., Shen, Y., Liu, T.Y.: Relational click prediction for
sponsored search. In: WSDM, pp. 493-502 (2012)

Weston, J., Blitzer, J.: Latent structured ranking. In: UAI, pp. 903-913 (2012)
Papagelis, M., Plexousakis, D.: Qualitative analysis of user-based and item-based
prediction algorithms for recommendation agents. Engineering Applications of Ar-
tificial Intelligence 18(7), 781-789 (2005)

Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative fil-
tering model. In: SIGKDD, pp. 426-434 (2008)

Nemhauser, G., Wolsey, L.: Integer and combinatorial optimization. Wiley (1988)
Breese, J., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms
for collaborative filtering. In: UAI, pp. 43-52 (1998)

McNee, S.M., Riedl, J., Konstan, J.A.: Being accurate is not enough: how accuracy
metrics have hurt recommender systems. In: SIGCHI, pp. 1097-1101 (2006)
Zhang, M., Hurley, N.: Avoiding monotony: improving the diversity of recommen-
dation lists. In: RecSys., pp. 123-130 (2008)

Bell, R., Koren, Y.: Lessons from the netflix prize challenge. ACM SIGKDD Ex-
plorations Newsletter 9(2) (2007)

	Using Mutual Influence to Improve Recommendations
	Introduction
	Related Work
	Basic Concepts
	Individual Scores
	Pairwise Scores
	Combining Scores

	The GSMI Algorithm
	Experiments
	Efficiency and Scalability of GSMI
	Relation between GSMI and Recommendations Diversity

	Conclusions and Future Work

