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ABSTRACT

Recently, there have been many research efforts aiming to under-
stand fake news phenomena and to identify typical patterns and
features of fake news. Yet, the real discriminating power of these
features is still unknown: some are more general, but others per-
form well only with specific data. In this work, we conduct a highly
exploratory investigation that produced hundreds of thousands of
models from a large and diverse set of features. These models are
unbiased in the sense that their features are randomly chosen from
the pool of available features. While the vast majority of models
are ineffective, we were able to produce a number of models that
yield highly accurate decisions, thus effectively separating fake
news from actual stories. Specifically, we focused our analysis on
models that rank a randomly chosen fake news story higher than a
randomly chosen fact with more than 0.85 probability. For these
models we found a strong link between features and model predic-
tions, showing that some features are clearly tailored for detecting
certain types of fake news, thus evidencing that different combi-
nations of features cover a specific region of the fake news space.
Finally, we present an explanation of factors contributing to model
decisions, thus promoting civic reasoning by complementing our
ability to evaluate digital content and reach warranted conclusions.
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« Human-centered computing — Social media; « Applied com-
puting — Sociology.
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1 INTRODUCTION

More than a decade after their emergence, social media systems
are used by over a third of the world’s population [13]. These
systems have significantly changed the way users interact and
communicate online, spawning a whole new wave of applications
and reshaping existing information ecosystems. In particular, social
media systems have been dramatically changing the way news is
produced, disseminated, and consumed in our society.
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These changes, however, started an actual information war in
the few last years, favoring misinformation campaigns, reducing
the credibility of news outlets in these environments [35], and
potentially affecting news readers opinions on critical matters for
our society. Misinformation, spin, lies and deceit have of course
been around forever, but the emergence of fake news has quickly
evolved into a worldwide phenomenon, and while there are efforts
attempting to better comprehend this phenomenon [14, 20], it is
not surprising that most existing efforts are devoted to detecting
fake news [9, 37, 39, 41]. Typically, most of these efforts reduce the
problem to a classification task, in which news stories are labeled
as fact/fake and supervised learning is then used to separate fact
from fake with a model learned from the data. Fake news detection
gained traction and attention, especially in assisting fact checkers
to identify stories that are worth investigating [17, 28].

Despite the undeniable importance of the existing efforts in
this direction, they are mostly concurrent work, which propose
complementary solutions and features to train a classifier, providing
hints and insights that are rarely or never tested together. Little
is known about the discriminating power of features proposed in
the literature, either individually or when combined with others.
Some may be adequate for pinpointing specific types of fake news,
while others are more general but not sufficiently discriminating.
Moreover, while explaining the decisions made by the proposed
models is central to understand the structure of fake content, this
discussion is often left aside. In this work, we address all of these
issues.

In particular, we want to provide answers to the following ques-
tions. How hard is the detection task? Do we really need all these
features, or should we focus on a smaller set of more representative
features? Is there a trade-off between feature discriminating power
and robustness to pattern variations? Is there a clear link between
features and the type of fake news they can detect?

To answer these questions, we first conduct a systematic survey,
identifying existing features for fake news detection and propos-
ing new ones. This results in almost 200 features to consider. To
implement and evaluate these features, we used a public dataset
recently released by BuzzFeed that was enhanced with Facebook
commentaries on labeled news stories [32]. Since the considered
features may have a variety of complex nonlinear interactions,
we employ a classification algorithm with significant flexibility.
Specifically, we chose a fast and effective learning algorithm called
extreme gradient boosting machines, or simply XGB [7]. Finally,
we performed an unbiased search for XGB models, so that each
model is composed of a set of randomly chosen features. We enu-
merated roughly 300K models, enabling us to perform a unique
macro-to-micro investigation of the considered features.
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Findings: Our analysis unveil the real impact of a sleigh of features
for fake news detection. Particularly, our results show that:

e Our unbiased model exploration reveals how hard is fake
news detection, as only 2.2% of the models achieve a detec-
tion performance higher than 0.85 in terms of the area under
the ROC curve (or simply, AUC);

o We found that among the best models, some features appear
up to five times more often than others;

o We distinguish a small set of features that are not only highly
effective but also contribute the most to increasing the ro-
bustness of the models;

e We place models in a high dimensional space, so that models
that output similar decisions are placed close to each other.
We then cluster the model space, and a centroid analysis
reveals that prototype models are very distinct from each
other. Our cluster analysis by AUC reinforce these results.
For centroid prototypes, we present an explanation of fac-
tors contributing to their decisions. Our findings suggest
that models within different groups separate fake from real
content based on very different underlying reasons.

Additionally, our effort provides other valuable contributions
as we survey a large number of recent and related works and we
attempt to implement all previously explored features to detect fake
news. We also proposed novel features which showed to be useful
for the best models we generated. On the other hand, we emphasize
that this paper is not about proposing the best combination of
features or the best XGB model, but about investigating features’
informativeness and simple models that can be generated from
them, as well as using these models to explain predictions made for
news stories.

The rest of the paper is organized as follows. Section 2 presents
the background, including important definitions, related works
and an overview of the main features for fake news detection pro-
posed in the literature. In Section 3, we describe our experimental
methodology proposed for this work. We then present and discuss
our results and their implications in Section 4. Finally, we present
in Section 5 concluding remarks and directions for future work.

2 BACKGROUND AND RELATED WORK

We begin by providing important definitions used in our work,
then we describe our effort to survey existing works that propose
features for detecting fake news.

2.1 Definitions

Fake news is a topic that still lacks a clear or universally accepted
definition. In this work we adopt the definition of fake news and
fake news detection used in previous works [2, 35].

Definition 2.1. (Fake News) “is a news article that is intentionally
and verifiable false".

Definition 2.2. (Fake News Detection.) Given an unlabeled
piece of news a € A, a model for fake news detection assigns
a score S(a) € [0, 1] indicating the extent to which a is believed to
be fake. For instance, if S(a”) > S(a), a’ is more likely to be fake
than a according to the model. A threshold 7 can be defined such

that the prediction function F : A — {fake, not fake} is

fake if S(a) > r,
not fake otherwise.

F(a) = {

2.2 TFeatures for Fake News Detection

Broadly speaking there are two kinds of efforts to tackle the fake
news problem. The first kind aims at better comprehending the
phenomenon [20, 40]. Particularly, Vosoughi et al. [40] shows that
fake news tends to spread faster than the real news. Lazer et al. [20]
call for an interdisciplinary task force to approach this complex
problem. The second kind of existing efforts comprises those that
propose solutions to the problem or provide insights on how to
detect fake news, i.e. discussing typical patterns that can be used
as features. For instance, Pérez-Rosas et al. [25] conduct a set of
learning experiments to build accurate fake news detectors using
linguistic features. Similarly, Volkova et al. [39] build linguistic
models to classify suspicious and trusted news. Overall, most of
the existing efforts in this space are concurrent work which use
specific data and feature sets to train classifiers without providing
clear guidelines on which features are useful to detect and explain
fake news.

The literature is quite broad if we consider efforts related to in-
formation credibility, rumor detection, and news spread. Next, we
conduct a systematic survey on these efforts aiming to identify the
features proposed by them. Table 1 presents a summary of this sur-
vey along with some of techniques used to extract those features. At
a high-level, we can categorize features explored in previous works
as follows: (i) features extracted from news content (e.g. language
processing techniques) [15, 39, 42, 43]; (ii) features from source
(e.g. reliability and trustworthiness) [21]; and finally (iii) features
extracted from the environment, which usually involves signals
extracted from the social network repercussion and spread [8].

Overall, our work provides contributions that encompass the
two kinds of efforts previously described, since (i) we provide a
better understanding of the fake news phenomena by explaining
how these features are used in the decisions taken by computation
models designed to detect fake news, and (ii) we evaluate the use
of machine learning with different combinations of features. Our
survey on existing features is also an important contribution on its
own.

3 METHODOLOGY

In this section, we describe the dataset used in this work as well
as implementation details for a large set of features for fake news
detection. In addition to features from previous works, we propose
anovel set of features for fake news detection that includes features
that measure text quality. Finally, we describe our experimental
setup and present our framework for quantifying the informative-
ness of features for fake news detection.

3.1 Dataset

Most of the existing efforts to detect fake news are limited by the
data they use. Ideally, to implement all features from previous ef-
forts we would need a dataset that contains for each news story
labeled by specialists, their textual content, information about their
sources, and about the dissemination of these news, particularly



Extracted from...

Feature Set

Techniques mostly used

References

News Content

Language Structures (Syntax)

Sentence-level features, such bag-of-words approaches, “n-grams", part-of-
speech (POS tagging)

[9, 19, 27, 31, 35, 42]

Lexical Features

Character level and word-level features, such as number of words, characters
per word, hashtags, similarity between words, etc

[1,5, 6,15, 18,27, 29, 35, 42, 43]

Moral Foundation Cues

Moral foundation features

(39]

Images and Videos

Indicators of manipulation and image distributions

[16]

Psycholinguistic Cues

Additional signals of persuasive language such as anger, sadness, etc and
indicators of biased language

(15, 19, 31, 39, 40]

Semantic Structure

Word embeddings, “n-grams" extensions, topic models (e.g. latent Dirichlet
allocation (LDA)), contextual informations

(5,8, 9, 12, 31, 41-43]

Subjectivity Cues

Subjectivity score, sentiment analysis, opinion lexicons

27,31, 39]

Environment
(Social Media)

News Source Bias Cues Indicators of bias (e.g. politics), polarization 29]
Credibility and Trustworthiness | Estimation of user’ perception of source credibility
Engagement Number of page views, likes (on Facebook), retweets (on Twitter), etc 6,11, 12, 15, 18, 33, 35, 37, 40]

Network Structure

Friendship network, complex network metrics

[
[
[6, 34, 35]
[
[

6,9, 12, 15, 18, 27, 33-35, 38-40]

Temporal Patterns and Novelty

Time-series, propagation, novelty metrics

[6, 11, 12,19, 33-35, 38, 40]

User’ Information

Users’ profiles and characteristics across individual level and group level
(e.g. their friends and followers)

[6, 15, 19, 27, 29, 33-35, 37, 38, 40]

Table 1: Overview of features for fake news detection presented in previous work.

in social media systems. We use a recently created dataset, named
BuzzFace [32], with almost all of these characteristics. It consists of
2,282 news articles related to the 2016 U.S. election labeled by Buz-
zFeed journalists [36]. The BuzzFace dataset consists of an enriched
version of the one created by BuzzFeed, with over 1.6 million com-
ments associated to the news stories as well shares and reactions
from Facebook users.

The news stories in the dataset are labeled into four categories:
mostly true, accounting to 73% of all news articles, mostly false
(4%), mixture of true and false (11%) and non-factual (12%). For
simplicity, we discarded the non-factual content and merged the
mostly false with the mixture of true and false into one single class,
referred as “fake news” (349 out of 2, 018 stories). The rationale is
that stories that mix true and false facts may represent attempts to
mislead readers. Thus, we focus our analysis into understanding
how features are able to distinguish two classes, true and fake news.

Note: A typical pre-processing step is to separate factual from non-
factual content. This task is easier than classifying factual data as
fake or true since it is not necessary to check the veracity of the
information using external sources. For illustration purposes, we
conduct a small experiment to evaluate the accuracy of XGB [7]
when discriminating factual and non-factual news using the fea-
tures that will be described in Section 3.2. Our simple classifier
performed very well, yielding 0.882+0.024 of AUC. It is possible
to achieve even higher performance levels by choosing features
better tailored for this task. For this reason, this work assumes
that non-factual data was already removed and only factual data is
used as input. The alternative approach is to consider a multi-label
classification problem, but this has the potential to increase the
number of instances that need to be verified by an expert.

3.2 Our Implementation of Features for Fake
News Detection

Next, we briefly describe how we implemented or adapted the
features summarized in Table 1. In total we considered 172 features
for fake news detection.

3.2.1 News Content. We consider as news content not only the
news story but also its headline and any message that was posted

by a news source when releasing it in online social networks. For
news articles embedded in images and videos, we applied image
processing techniques for extracting text shown on them. In to-
tal, we evaluated 141 textual features. The main feature sets are
described next.

Language Structures (SYNT, for syntax). We implemented 31
sentence-level features, including number of words and syllables
per sentence. Features also include indicators of the word categories
(such as noun, verb, adjective). In addition, to evaluate writers’ style
as potential indicators of text quality, we also implemented features
based on text readability [10].

Lexical Features (LEXI). We implemented 59 linguistic features,
including number of words, first-person pronouns, demonstrative
pronouns, verbs, hashtags, all punctuations counts, etc.

Psycholinguistic Cues (PSYC). Linguistic Inquiry and Word Count
(LIWC) [24] is a dictionary-based text mining software. We use its
latest version (2015) to extract 44 features that capture additional
signals of persuasive and biased language.

Semantic Structure (SEMA). We implemented semantic features,
including the toxicity score obtained from Google’s API'. The API
uses machine learning models to quantify the extent to which a
text (or comment, for instance) can be perceived as “toxic". We did
not consider strategies for topic extraction since the dataset used
in this work was built based on news articles about the same topic
or category (i.e. politics).

Subjectivity Cues (SUBJ). Using TextBlob’s API?, we compute
subjectivity and sentiment scores of a text.

3.2.2  News Source. To extract features from news source, we first
parsed all news URLs and extracted the domain information. When
the URL was unavailable, we associated the official URL of news
outlet to news article. Therefore, we extract 8 (eight) indicators of
political bias, credibility and source trustworthiness, and use them
as detailed next. Moreover, in this category, we introduce a new

https://www.perspectiveapi.com/#/
Zhttp://textblob.readthedocs.io/en/dev/
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set composed by 5 (five) features, called domain localization (see
below).

Bias Cues (BIAS). We use the political biases of news outlets from
BuzzFeed dataset as a feature.

Credibility and Trustworthiness (CRED). In this feature set, we
introduce 7 (seven) new features to capture aspects of credibility
(or popularity) and trustworthiness of domains. We collect, using
Facebook’s API3, user engagement metrics of Facebook pages that
published news articles (i.e. page talking about count and page fan
count). Then, we use the Alexa API to get the relative position of
news domain on the Alexa Ranking *. Furthermore, using this same
API, we collect Alexa’s top 500 newspapers. Based on the hypothesis
that some unreliable domains may try to disguise themselves using
domains similar to those of well-known newspapers, we define the
dissimilarity between domains from the Alexa ranking and news
domains in our dataset (measured by the minimum non-zero edit
distance) as features. Last, we use indicators of low credibility of
domains compiled in [34] as features.

Domain Location (DOML). Ever since creating fake news became
a profitable job, some cities have become famous because of resi-
dents who create and disseminate fake news °. In order to exploit
the information that Domain localization could carry, a pipeline was
built to take each news website URL and extract new features, such
as IP, latitude, longitude, city, and country. First, for each domain,
the corresponding IP was extracted using the traceroute Linux com-
mand. Then the ipstack API is used to retrieve the location features.
Although localization information (i.e. IP) has previously been used
in works that exploit bots or spam detection [26], to the best of our
knowledge there are no works that explore this data in fake news
detection context.

3.2.3 Environment (Social Media). As indicators of user engage-
ment and temporal patterns, we use information from Facebook.
Next, we detail the 21 features from this category.

Engagement (ENGA). We use number of likes, shares and com-
ments from Facebook users. Moreover, we compute the number of
comments within intervals from publication time (900, 1800, 2700,
3600, 7200, 14400, 28800, 57600 and 86400 seconds), summing up to
12 features.

Temporal Patterns (TEMP). To capture temporal patterns from
user commenting activities, we compute the rate at which com-
ments are posted for the same time windows defined before.

3.2.4 Novel and Disregarded Features. Despite our efforts to in-
clude all the features described before, a few of them could not be
included for various reasons. First, BuzzFace does not contain in-
formation related to network structure (i.e. Facebook connections).
Additionally, some features, such as those extracted from images
and videos were used in related problems [39], but are out of the
scope of this work as our dataset contains mostly textual data.
More importantly, 19 of the previously described features are
novel. In particular, we proposed all features related to domain,
including IP, latitude, longitude, city, county, and domain credibility.

3https://developers.facebook.com
“https://www.alexa.com
Shttps://www.bbc.com/news/magazine-38168281

We also proposed other features such as toxicity and readability to
assess the writing style of news stories. Later on we show that some
of these features were proven valuable for fake news detection.

3.3 Unbiased Model Generation

The exact approach to assess the real impact of features for fake
news detection would require the exhaustive enumeration of all
possible combinations of features, so that one model is obtained
for each combination in the power set. Obviously, inspecting all
possible subsets of features is computationally prohibitive. Instead,
we sample the model space by randomly selecting the features that
compose a model. More precisely, we begin by enumerating all
possible 1-feature and 2-feature models (172 and 14,706 models,
respectively). Next, we take each of the 2-feature models and in-
clude one new feature chosen uniformly at random, so as to build
3-feature models. This step is repeated until we reach models com-
posed of 20 features (a total of 294,292 models). In each step we
ensure that each feature is included the same number of times and
that no feature appears twice within the same model. This compen-
sates for the smaller number of few-feature models by keeping the
number of models constant regardless of the number of features.

3.3.1 Classification Algorithm. The features we consider may have
a variety of complex nonlinear interactions. Capturing these inter-
actions requires a classification algorithm with significant flexibility.
For this reason, we chose a learning algorithm called gradient boost-
ing machines. The main idea of gradient boosting machines is to
combine multiple models into a stronger one. More specifically,
models are iteratively trained so that each model is trained on the
errors of the previous models, thus giving more importance to the
difficult cases. At each iteration, the errors are computed and a
model is fitted to these errors. Finally, the contribution of each base
model to the final one is found by minimizing the overall error of
the final model. Fitting the base models is computationally chal-
lenging so we used a recent, high performance implementation of
gradient boosting machines, called XGBoost (or simply, XGB) [7].

3.3.2  Evaluation. In order to evaluate how accurate the learned
models are, we employ the standard area under the ROC curve
(AUC [4]), which takes into account the sensitivity-specificity trade-
off. Basically, the AUC is an estimate of the probability that a model
will rank a randomly chosen fake news case higher than a randomly
chosen fact case. The AUC is robust to class imbalance and considers
all possible classification thresholds.

For each model, we performed a 5-fold cross-validation. The
dataset is partitioned into five partitions, out of which four are used
as training data, and the remaining one is used as the validation-
set. The process is then repeated five times with each of the sets
used exactly once as the validation-set, thus producing five results.
Hence, the reported AUC values are averaged over the five runs.
Further, we employ the mean absolute deviation (or simply, MAD)
in order to get a sense of how spread out the AUC values are
through the five validation sets. Therefore, for each model we have
an estimate of its predictive accuracy and variability.



3.4 Feature Importance and Shapley Additive
Explanations

Effective models perform decisions that are usually hard to explain.
However, understanding why a model has made a specific decision
is paramount in any fake news detection application scenario, as it
provides insight into the reasons why the content was considered
to be fake, tooling fact-checkers with the facts that contributed
most to the decision.

The typical approach for explaining the decisions of a model is
based on calculating the impact (or importance) each feature has
on the decision. Feature importance can be defined as the increase
in the model prediction error after feature values are permuted,
since this operation breaks the relationship between the feature
and the outcome. Therefore, a feature is important if permuting its
values increases the model error, because the model relied on the
feature for the correct decision. On the other hand, a feature is not
important if permuting its values keeps the model error unchanged,
because the model ignored the feature for the decision.

Often, however, features interact with each other in many differ-
ent and complex ways in order to perform accurate decisions. Thus,
the feature importance is also given as a function of the interplay
between the features. In this case, Shapley values [22] can be used
to find a fair division scheme that defines how the total importance
should be distributed among the features. In fact, Shapley values
are theoretically optimal and are the unique consistent and locally
accurate attribution values. Unfortunately, Shapley values can be
challenging to compute, and thus we focus on explaining only the
top-most effective models.

4 RESULTS

In this section we describe the results of the experiments designed
to answer our research questions. In Section 4.1, we investigate the
predictive accuracy and variability of the features. In Section 4.2,
we focus only on the best performing models in order to evaluate
models in terms of effectiveness and variability. Then, in Section 4.3,
we cluster the model space according to the features present in each
model, and we construct an investigation to understand the role of
features in the model decisions. Finally, we attempt to explain the
decisions made by some prototype models in Section 4.4.

4.1 Features: Accuracy and Variability

We quantify the predictive accuracy of a feature by considering
all models in which the feature was included. More specifically,
the predictive accuracy of a feature is given as the average AUC
value of all models in which the feature was included. Similarly,
the variability of a feature is given as the average MAD value
of all models in which the feature was included. Figure 1 shows
how features are distributed in terms of predictive accuracy and
variability. Clearly, there is a small number of features for which
the predictive accuracy is significantly higher. Specifically, around
5% of the considered features are included into models in which
the average AUC values are higher than 0.85. The majority of the
features are associated with significantly lower average AUC values.
The same trend is observed when we investigate the distribution
of features in terms of variability. Around 3% of the considered
features are associated with relatively low variability.
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Figure 1: Distribution of features. Left — Predictive accuracy.
Right — Variability.

4.2 Top 10 % Models: Accuracy and Variability

Now we investigate whether relatively simple models (composed by
up to 20 features) can perform consistently well across the dataset.
In order to do so, we take the top 10% models w.r.t. AUC. Among
the best performing models, we are interested in those that exhibit
low variability.

Figure 2 shows a scatter plot of the top 10% models w.r.t AUC,
each represented by a dot. Each dot diameter is proportional to the
ratio between the respective model’s AUC mean and variability.
Cartesian coordinates of each dot center are obtained from the
vector of the probabilities assigned by the model to each fake news
case in the validation set.

0.880

0.875

0.870

0.865

0.860

Figure 2: Each point represents a model. Color indicates
AUC value. Diameter indicates accuracy consistency across
folds (i.e., larger diameter implies lower variability). Prob-
abilities associated to fake news stories by each model are
taken as a vector to compute its 2D t-SNE [23] representa-
tion (i.e., for defining the model’s position in the plot).

First, we note that the mean AUC is in the range [0.855,0.885]
and, therefore, the different diameters are mostly due to AUC’s vari-
ability. We observe the presence of very few models with excellent



performance on average (yellow dots, AUC > 0.88), but with high
variability. On the other hand, there are many models with lower
variability, but with lower average AUC values (medium-sized pur-
ple and blue models, AUC < 0.865). Finally, there are two models
with the good trade-off between performance and variability (pink-
ish dots, AUC =~ 0.87). These cases will be discussed in the next
sections.

To better understand the relationship between features and
model performance, we take the best performing models and com-
pute the prevalence of features. Also, to understand the relationship
between them and AUC variability, we take, from the top perform-
ing models, the 10% with the highest and 10% with the lowest
variability and compute the prevalence of features in these sets.

4.2.1  Accuracy. Considering models with the highest AUC values,
features extracted from the environment (i.e. from social media), are
more frequent (e.g. the number of shares (40%) and reactions count
(29%)). Moreover, features that capture information regarding the
location and credibility of domains (e.g. ranking position of domain
from Social Alexa (39%), page reactions from users on social media
(29%), IP of domain (28%), etc.), are very frequent in this group of
models. Finally, features that capture political bias of news outlet
(i.e. mainstream, left-leaning, and right-leaning (37%)) are quite
prevalent in the best models. On the other hand, character level,
word-level and sentence-level features (e.g. count) are less frequent
in best models (7% of models on average).

4.2.2  Variability. While features from the social media (e.g. share
count (13%)), IP of domain (14%) and semantic structure (e.g. toxic-
ity (13%)) are very frequent in models with low variability, features
from user engagement (from social media) (e.g. number of com-
ments on first 7200 seconds (12%), political bias (12%) and Facebook
page (12%)), occurred more often in models with high variability.
Sentence level-features and Psycholinguistic features are very fre-
quent both in models with high and low variability.

In sum, we conclude that there are many combinations of features
that yield models with high performance and low variability. In the
next section, we investigate whether these models are redundant
(i.e. identify similar sets of fake news) or complementary.

4.3 Clustering the Model Space

In order to understand whether the top 10% models cover different
regions of the space of fake news, we cluster them from binary
vector representations that indicate which features are present in
each model. To cluster these models, we use the standard K-Means
algorithm based on Euclidean distances [3]. To find the optimum
value of K, we use the Silhouette Score [30], which measures, on
average, how tightly grouped all the members in different clusters
are, and select the value of K, for which the Silhouette Score is
the highest. In this work, we use K = 6. The sizes of the resulting
clusters vary from 3,769 to 5,921 (mean 4,908 and std. dev. 703).
Once again, we embed the models in a 2D space based on the
probabilities assigned to fake news cases and color code the models
according to the cluster they belong to. Hence cohesive clusters
indicate that models within the same cluster are better at identifying
specific types of fake news. If this is the case, models that belong
to the same cluster (i.e. share similar features) are expected to be

close to each other in the embedding, indicating that they assign
similar scores to the fake news in the test set. In fact, this is what
we observe in Figure 3. Next, we analyze which types of features
best describe each cluster.

Clusters
o]l 2 3 4 5 6

Figure 3: t-SNE representations [23] of models based on the
scores associated to each fake news in the validation set. Col-
ors indicate clusters found from binary vectors indicating
which features were used in each model. Proximity between
models from the same cluster suggest correlation between
features used and fake news correctly detected.
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Figure 4: Descriptions of clusters in terms of feature sets,
represented as segments. Segment lengths are normalized
R; ; ratios and indicate how much more/less often features
of type t appear in cluster i than in a random null model.

4.3.1 Describing clusters in terms of types of features. When we
focus on the analysis of the top 10% performing models, features no
longer appear with the same frequency. In addition, clusters include
different numbers of models, each of which can include any number
of features. In order to compare the frequency of specific types of
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Figure 5: SHAP summaries for the closest models to each cluster centroid. These violin plots show the impact of each feature
on model output (positive values on x-axis mean increased chance of being fake). Features are color-coded according to its
values (highest: red, lowest: blue), except for Domain and IP, which do not have a meaningful scale. For instance, for Cluster
5’s centroid, high values of reaction_count are associated to positive SHAP values.

features across clusters, we define a (random) null model. This
allows us to determine how much more (less) often than expected
a given feature type appears in a cluster.

Let C; ; be the number of times features of type t appear in mod-
els from cluster i for t € BIAS, CRED, ..., TEMPandi=1,...,6.
Multiple features of the same type are counted multiple times. Also,
let C; = )}; Ci + be the total number of features in cluster i. De-
note by Ny = }}; Ci,; the number of times features of type t ap-
pear among the top 10% performing models. The expectation of
Ci,; if features were assigned to clusters completely at random is
CiN¢ /2. Nt. Therefore, the ratio R; ; = C; +/(CiNt /Y Nt) mea-
sures how much more (less) often features of type t appear in cluster
i than in a random null model.

Figure 4 shows ratios R; ; normalized for each cluster i (i.e. di-
vided by }; R; ;). Normalized ratios allow us to identify which
types of features better describe each cluster. We note that clusters
comprise combinations of features types in different proportions.
All clusters use features from all features types, except for cluster
1, which does not include BIAS features. These features are more
frequent in cluster 5 and less so in cluster 4. CRED features are
very prevalent in clusters 2, 4 and 6, but less used by models in
cluster 5. Finally, DOML features are very prevalent in cluster 1.
Therefore, these observations combined with Figure 3 corroborate
the hypothesis that models generated from different combinations
of features are able to correctly identify different fake news groups.

4.4 Explaining Model Decisions

In this section, we use SHAP [22] to explain why news are classified
as fake or not by representative models of each cluster. SHAP is
short for SHapley Additive exPlanations. It is a unified approach
to interpreting model predictions. As such, SHAP assigns a “force”
or importance value — positive or negative — to each feature in a
particular prediction [22]. The output value (prediction) consists of

the sum of the base value (average prediction over the validation
set) and these forces (closer to 1.0 means more likely to be fake).
In addition, SHAP allows us (i) to summarize the importance of
a feature, and (ii) to associate low/high feature values to an in-
crease/decrease in output values, through color-coded violin plots
built from all predictions.

Representative models of each cluster were selected according
to the following criteria: (1) by centroid proximity, where we select
the closest model to the cluster centroid (Figure 5); and (2) by AUC,
where we select in each cluster the model with the best performance
w.r.t AUC (Figure 6).

Figure 5 shows violin plots of SHAP values for features used by
each of the selected centroid models. Interestingly, we note that the
closest models to the centroids have either one or two features, all
of which come from feature sets DOML, BIAS, ENGA and CRED.

The representative models of clusters 1 and 2 have a single fea-
ture, domain and ip, respectively. In either case, we remove the
feature value color-coding since low/high feature values are not
meaningful in these cases. These plots are very similar, as there
is a close mapping from ips to domains. We found that the three
domains that have a large negative impact (i.e. less likely fake) on
the output value are politico.com, abcnews.go.com and cnn.com.
For models within cluster 3, high page fan counts have large impact
— positive or negative — over predictions. Extremely high values
though, are almost always associated with negative impact, since
popular pages are less likely to share fake news. Large numbers of
shares, however, tend to increase output values. This is consistent
with recent research that shows that fake news are more likely to
be shared [20, 40]. Models within cluster 4 also include number of
shares as a feature and can be interpreted in the same way. Repre-
sentative models of cluster 4 and 5 include categories of political
bias as a feature, which takes on three values: -1 for left-leaning, 0
for mainstream and 1 for right-leaning. As expected, category has a
negative impact on output for mainstream news (purple dots), but
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Figure 7: SHAP results on test cases for representative centroid models of each cluster. Base value (0.926) is the score of an
instance with average feature values. Feature values that increase (decrease) prediction score are shown below red (blue) bars
whose lengths depict the corresponding amount. Output value = base value + length of red bars — length of blue bars.

increases the prediction value if the source exhibits political bias.
Models representing cluster 5 and 6 share number of reactions as
a feature. In the same way as number of shares, higher values of
this feature increase the chances that a piece of news is classified
as fake. Last, the model representing cluster 6 also includes the
ranking position retrieved from Alexa as a feature. As expected,
very low values (top of the ranking) tend to have a large negative
impact on the output.

In Figure 6 we present the SHAP results for the top performing
models w.r.t AUC. Differently from the models closest to the cen-
troids that have one or two features, the clusters in Figure 6 have
much more features. Cluster 1 uses localization and Domain fea-
tures, longitude and ip, which are features proposed in the present
work. Clusters 2 and 3 rank engagement features nearly as the most
influential features. For Clusters 3 and 4 Alexa’s ranking position ap-
pears as one of the most important features, similar to the Centroid
clusters. Cluster 5 and Cluster 6 are a mix of localization, Domain
and Engagement features, which are top-of-the-rank features on
the others clusters. Psycholinguistic cues are shown to be relevant
in all clusters, once they appear in every model. Similar findings
were obtained when analyzing the lowest variability models in each
cluster, where most of them contain Psycholinguistic cues, Domain
and Engagement Features.

Last, focusing on centroid models, we include, for each of the
representative models, examples of news stories that are scored
higher (lower) than average, indicating it is more (less) likely to
be fake. Figure 7 shows SHAP results on different news stories,
which explain the role that each feature had on the decision. For
ethical reasons, we omit the results corresponding to Clusters 1

and 2, which respectively indicate domains and IPs less/more likely
to publish fake news. Figures 7 (a,b) shows that very high page
fan counts decrease the output value, while the effect of share
counts may depend on the former feature. In Figures 7 (c,d) we
observe that news from mainstream media (category 0) tend to
have lower output values, whereas news from politically biased
sources (categories -1 and 1) often receive a positive bump in their
outputs. In Figures 7 (e,f) we observe other examples of category’s
impact and that the number of reactions has a similar behavior as
the number of shares. Finally, in Figures 7 (g,h) we note that being
at the bottom (top) of the Alexa’s ranking has a negative (positive)
impact on the output value.

5 CONCLUDING DISCUSSION

In this work we provide many contributions that are relevant to the
field. First, we survey a large number of recent and related works as
an attempt to implement all potential features to detect fake news.
We proposed novel features, such as those related to the source
domain, which appear within the best models up to five times more
often than other features. Second, our framework reveals how hard
is to detect fake news, as only a small fraction of the models (only
2.2%) achieve a detection performance higher than 0.85 in terms of
AUC. We hope our effort can become a baseline for other solutions
to the same problem.

Finally, our findings suggest that certain types of fake news tend
to be identified by models with specific combinations of features.
As a consequence, different models separate fake stories from real
ones based on very different reasoning. This shows the complexity
of the problem and allow us to understand how hard it is for a



single solution to tackle all forms of fake news stories. As future Companion.

work we plan to categorize the fake news stories as a strategy to [19] Sejeong Kwon, Meeyoung Cha, and Kyomin Jung. 2017. Rumor detection over
varyin%/ltime windows. PLOS ONE 12, 1 (2017).

construct effective and robust ensembles of classifiers. For instance, [20] David MJ Lazer, Matthew A Baum, Yochai Benkler, Adam J Berinsky, Kelly M

in this work we showed the different models of clusters that are Greenbhill, Filippo Menczer, Miriam J Metzger, Brendan Nyhan, Gordon Penny-
. . . cook, David Rothschild, and others. 2018. The science of fake news. Science 359,

made of random combinations of features. This indicates that en- 6380 (2018), 1094-1096,

semble techniques that combine models from different clusters are [21] Yaliang Li, Qi Li, Jing Gao, Lu Su, Bo Zhao, Wei Fan, and Jiawei Han. 2015. On

the discovery of evolving truth. In Proc. of the Int’l Conference on Knowledge
Discovery and Data Mining (KDD).
[22] Scott M Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting Model
ACKNOWLEDGMENTS Predictions. In Proc. of the Neural Information Processing Systems (NIPS), I. Guyon,

U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett

a promising avenue for investigation.

This work was partially supported by the project FAPEMIG-PRONEX- (Eds.). Curran Associates, Inc.
MASWeb, Models, Algorithms and Systems for the Web, process [23] Laurens van c}erf Maa;len alnd Geoffrey Hi}?ton. 20?& V)isualiling Data Using
t-SNE. Journal of machine learning research 9, Nov (2008), 2579-2605.
number APQ-01400-1’ as well as grants from Google’ CNPq’ CAPES, [24] J. W. Pennebaker, M. E. Francis, fnd R. J. Booth. 2001. Linguistic inquiry and
and Fapemig. word count: LIWC 2001. Mahway: Lawrence Erlbaum Associates (2001).
[25] Verénica Pérez-Rosas, Bennett Kleinberg, Alexandra Lefevre, and Rada Mihal-
REFERENCES cea. 2017. Automatic detection of fake news. Proc. of the Int’l Conference on

Computational Linguistics (2017).

[1] Hadeer Ahmed, Issa Traore, and Sherif Saad. 2017. Detection of online fake news [26] Anirudh Ramachandran and Nick Feamster. 2006. Understanding the network-
using N-gram analysis and machine learning techniques. In Int’l Conference on level behavior of spammers. In Proc. of the Conference on Applications, Technologies,
Intelligent, Secure, and Dependable Systems in Distributed and Cloud Environments Architectures, and Protocols for Computer Communications (SIGCOMM,).
(ISDDC). [27] Jacob Ratkiewicz, Michael Conover, Mark R Meiss, Bruno Gongalves, Alessandro

[2] Hunt Allcott and Matthew Gentzkow. 2017. Social media and fake news in the Flammini, and Filippo Menczer. 2011. Detecting and tracking political abuse in
2016 election. Journal of Economic Perspectives 31, 2 (2017), 211-36. social media. In Proc. of the Int’l AAAI Conference on Weblogs and Social (ICWSM).

[3] David Arthur and Sergei Vassilvitskii. 2007. k-means++: The advantages of careful [28] Julio C. S. Reis, André Correia, Fabricio Murai, Adriano Veloso, and Fabricio
seeding. In Proc. of the Annual ACM-SIAM symposium on Discrete Algorithms Benevenuto. 2019. Supervised Learning for Fake News Detection. IEEE Intelligent
(SODA). Society for Industrial and Applied Mathematics. Systems 34, 2 (2019).

[4] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. 1999. Modern information retrieval. [29] Manoel H. Ribeiro, Pedro H. C. Guerra, Wagner Meira Jr., and VirgAnlio Almeida.
Vol. 463. ACM press New York. 2017. "Everything I Disagree With is# FakeNews": Correlating Political Po-

[5] Sreyasee Das Bhattacharjee, Ashit Talukder, and Bala Venkatram Balantrapu. larization and Spread of Misinformation. In Proc. of Data Science + Journalism
2017. Active learning based news veracity detection with feature weighting and Workshop.
deep-shallow fusion. In Proc. of the Int’l Conference on Big Data (Big Data). IEEE. [30] Peter J Rousseeuw. 1987. Silhouettes: a graphical aid to the interpretation and

[6] Carlos Castillo, Marcelo Mendoza, and Barbara Poblete. 2011. Information credi- validation of cluster analysis. Journal of computational and applied mathematics
bility on twitter. In Proc. of the Int’l Conference on World Wide Web (WWW). 20 (1987), 53-65.

[7] Tiangi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system. [31] Victoria Rubin, Niall Conroy, Yimin Chen, and Sarah Cornwell. 2016. Fake news
In Proc. of the Int’l Conference on Knowledge Discovery and Data Mining (KDD). or truth? using satirical cues to detect potentially misleading news. In Proc. of the

[8] Giovanni Luca Ciampaglia, Prashant Shiralkar, Luis M Rocha, Johan Bollen, Workshop on Computational Approaches to Deception Detection (NAACL-HLT).
Filippo Menczer, and Alessandro Flammini. 2015. Computational fact checking [32] Giovanni Santia and Jake Williams. 2018. BuzzFace: A News Veracity Dataset
from knowledge networks. PLOS ONE 10, 6 (2015). with Facebook User Commentary and Egos. In Proc. of the Int’l AAAI Conference

[9] Niall J Conroy, Victoria L Rubin, and Yimin Chen. 2015. Automatic deception on Weblogs and Social (ICWSM).
detection: Methods for finding fake news. In Proc. of the Annual Meeting of the [33] Chengcheng Shao, Giovanni Luca Ciampaglia, Alessandro Flammini, and Filippo
(ASIS&T). Menczer. 2016. Hoaxy: A platform for tracking online misinformation. In Proc. of

[10] Daniel H Dalip, Marcos André Gongalves, Marco Cristo, and Pavel Calado. 2017. the WWW Companion.
A general multiview framework for assessing the quality of collaboratively cre- [34] Chengcheng Shao, Giovanni Luca Ciampaglia, Onur Varol, Kai-Cheng Yang,
ated content on web 2.0. journal of the Association for Information Science and Alessandro Flammini, and Filippo Menczer. 2018. The spread of low-credibility
Technology 68, 2 (2017), 286-308. . content by social bots. Nature communications 9, 1 (2018), 4787.
[11] Samantha Finn, Panagiotis Takis Metaxas, Eni Mustafaraj, Megan O4AZKeefe, [35] Kai Shu, Amy Sliva, Suhang Wang, Jiliang Tang, and Huan Liu. 2017. Fake news
Lindsay Tang, Susan Tang, and Laura Zeng. 2014. TRAILS: A system for monitor- detection on social media: A data mining perspective. ACM SIGKDD Explorations
ing the propagation of rumors on twitter. In Proc. of the Computation + Journalism Newsletter 19, 1 (2017), 22-36.
Conference (C+]). [36] C. Silverman, L. Strapagiel, H. Shaban, E. Hall, , and J. Singer-Vine. 2016. Hy-
[12] Adrien Friggeri, Lada A Adamic, Dean Eckles, and Justin Cheng. 2014. Rumor perpartisan facebook pages are publishing false and misleading information at
Cascades. In Proc. of the Int'l AAAI Conference on Weblogs and Social (ICWSM). an alarming rate. https://www.buzzfeed.com/craigsilverman/partisan-fb-pages-
[13] Kevin Gallagher. 2017. The Social Media Demographics Report: Differences in analysis, Buzzfeed (2016).
age, gender, and income at the top platforms. http://www.businessinsider.com/the- [37] Eugenio Tacchini, Gabriele Ballarin, Marco L Della Vedova, Stefano Moret, and
social-media-demographics-report-2017-8, Business Insider (2017). Luca de Alfaro. 2017. Some like it hoax: Automated fake news detection in social
[14] Jennifer Golbeck, Matthew Mauriello, Brooke Auxier, Keval H Bhanushali, networks. In Proc. of the Workshop on Data Science for Social Good (SoGood).
Christopher Bonk, Mohamed Amine Bouzaghrane, Cody Buntain, Riya Chan- [38] Sebastian Tschiatschek, Adish Singla, Manuel Gomez Rodriguez, Arpit Merchant,
duka, Paul Cheakalos, Jennine B Everett, and others. 2018. Fake News vs Satire: A and Andreas Krause. 2018. Fake News Detection in Social Networks via Crowd
Dataset and Analysis. In Proc. of the Int’l Conference on Web Science (WebScience). Signals. In Proc. of the WWW Companion.
[15] Aditi Gupta, Ponnurangam Kumaraguru, Carlos Castillo, and Patrick Meier. 2014. [39] Svitlana Volkova, Kyle Shaffer, Jin Yea Jang, and Nathan Hodas. 2017. Separating
Tweetcred: Real-time credibility assessment of content on twitter. In Proc. of the facts from fiction: Linguistic models to classify suspicious and trusted news posts
Int’l Conference on Social Informatics (SocInfo). on twitter. In Proc. of the Annual Meeting of the ACL.
[16] Zhiwei Jin, Juan Cao, Yongdong Zhang, Jianshe Zhou, and Qi Tian. 2017. Novel [40] Soroush Vosoughi, Deb Roy, and Sinan Aral. 2018. The spread of true and false
visual and statistical image features for microblogs news verification. IEEE news online. Science 359, 6380 (2018), 1146-1151.
Transactions on Multimedia 19, 3 (2017), 598-608. [41] William Yang Wang. 2017. "Liar, Liar Pants on Fire": A New Benchmark Dataset
[17] Jooyeon Kim, Behzad Tabibian, Alice Oh, Bernhard Schélkopf, and Manuel for Fake News Detection. In Proc. of the Annual Meeting of the ACL.
Gomez-Rodriguez. 2018. Leveraging the crowd to detect and reduce the spread [42] Wei Wei and Xiaojun Wan. 2017. Learning to identify ambiguous and misleading
of fake news and misinformation. In Proc. of the Int’l Conference on Web Search news headlines. In Proc. of the Int’l Joint Conference on Al (IJCAI).
and Data Mining (WSDM). [43] Zhe Zhao, Paul Resnick, and Qiaozhu Mei. 2015. Enquiring minds: Early detection
[18] Srijan Kumar, Robert West, and Jure Leskovec. 2016. Disinformation on the web: of rumors in social media from enquiry posts. In Proc. of the WWW Companion.

Impact, characteristics, and detection of wikipedia hoaxes. In Proc. of the WWW



	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Definitions
	2.2 Features for Fake News Detection

	3 Methodology
	3.1 Dataset
	3.2  Our Implementation of Features for Fake News Detection
	3.3 Unbiased Model Generation
	3.4 Feature Importance and Shapley Additive Explanations

	4 Results
	4.1 Features: Accuracy and Variability
	4.2 Top 10 % Models: Accuracy and Variability
	4.3 Clustering the Model Space
	4.4 Explaining Model Decisions

	5 Concluding Discussion
	Acknowledgments
	References

