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Resumo

Neste trabalho, nós avaliamos de forma abrangente o impacto e potêncial que o apren-

dizado profundo de representações alternativas tem enquanto aprimorador de resulta-

dos em tarefas de ordenação de documentos. Nós utilizamos autoencoders empilhados

para criar um conjunto de centenas de representações alternativas de diversas bases de

dados, e as avaliamos sob a ótica do desempenho de diversos algoritmos tradicionais

de aprendizado de ordenação de documentos. Em outras palavras, procuramos saber

o quão fácil ou dificíl é aprimorar a representação dos dados, usando autoencoders,

que esses algoritmos utilizam em suas tarefas de aprendizado, e o quão melhores tais

representações podem ser. Utilizamos o autoencoder para percorrer o domínio de repre-

sentações possíveis de forma uniforme, de modo a, também, procurar entender o quão

útil o autoencoder é para tal tarefa. Vemos em nossas análises que é possível, embora

difícil, aprimorar a representação dos dados de forma relevante, obtendo resultados

superiores ao estado da arte nas tarefas de ordenação de documentos. Vemos também

que há conjuntos de hiperparâmetros do autoencoder que tendem a gerar resultados

melhores.

Palavras-chave: Aprendizado de Máquina, Recuperação de Informação, Representa-

ções, Aprendizado de Ordenação de Documentos.
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Abstract

In this dissertation, we evaluate thoroughly the impact and potential of deep learning

alternative representations as a way to improve results in Learning to Rank tasks. We

use stacked autoencoders to create hundreds of alternative representations of several

databases, and evaluate those under the prism of their impact in the performance of

several traditional Learning to Rank algorithms. In other words, we ask how easy or

hard it is to improve the representation of Learning to Rank data using autoencoders,

and how better can these representations be. We use the autoencoder to uniformily

walk the domain of possible representations, so to know as well how useful can the

autoencoder be for such task as well. We see in our analysis that it is possible, although

difficult, to improve the databases representations in a relevant way, obtaining results

that surpass state-of-the-art performances of the traditional ranking algorithms. We

see, as well, that there are autoencoder hyperparameter sets that tend to generate

better results.

Keywords: Machine Learning, Information Retrieval, Representations, Learning to

Rank.
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Resumo Estendido

Introdução

Nesta seção falamos acerca do problema que enfrentamos e de sua relevância no mundo

de hoje. Falamos sobre o estado atual da indústria, sobre onde estamos e sobre quais

contribuições nos propomos a fazer.

Revisão Bibliográfica e Conceitos

Aqui discutimos longamente acerca do que existe na literatura em seleção de features,

problema associado ao que pretendemos fazer, e do que há em Ordenação de Docu-

mentos, área onde nos propomos a atuar. Falamos acerca do que é o autoencoder e

como o utilizaremos para solucionar o problema observado.

Aprendizado de Representações

Discorre-se aqui acerca da forma com que utilizaremos o autoencoder para atuar sobre

o problema proposto, e o que esperamos descobrir.

Experimentos

Nesta seção, delineamos o conjunto de hiperparâmetros que utilizamos em nossos ex-

perimentos, e enumeramos os algoritmos de aprendizado de ordenação que utilizamos

como avaliação. Em seguida nós discorremos acerca dos resultados que tivemos, de

forma geral e específica: base por base, algoritmo por algoritmo, métrica de qualidade

por métrica de qualidade. Fazemos então um apanhado de todas as nossas conclusões

e discutimos acerca de perguntas advindas destas.
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Conclusões

Aqui há a conclusão desta dissertação, com um resumo de tudo que fizemos e ampla

discussão acerca de trabalhos futuros em potencial.
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Capítulo 1

Introdução

Nós vivemos na era da informação. Com o advento das redes sociais, avanço da tec-

nologia computacional e uma quantidade cada vez maior de sensores espalhados pelo

mundo, temos como maior desafio a extração de informações relevantes desse universo

de dados. Existem dados em excesso: temos várias formas de quantificar e modelar

cada problema, e capacidade de processar petabytes em relativamente pouco tempo. O

problema surge, entretanto, da maneira como se faz a análise das descobertas: existem

dados relevantes, dados redundantes e muito ruído, e em tamanha quantidade que sa-

ber a priori o que levar em consideração é uma tarefa em muitos casos inviável. Criar

modelos eficientes que representam com precisão o que se quer é um desafio não trivial

[2, 29], e muitas vezes tentativas do tipo caem na maldição da dimensionalidade: como

são dados demais sendo levados em consideração, é difícil separar o bom do ruim e o

resultado final acaba severamente comprometido.

Por outro lado, saber separar razoavelmente bem esse joio do trigo é o que via-

bilizou a existência de tantos negócios nas últimas décadas. É possível encontrar em

contextos como vendas, publicidade, redes sociais, criação de conteúdo, e em inúmeros

outros, problemas resolvidos e soluções aprimoradas pela análise inteligente de infor-

mações. Num contexto de busca na web, por exemplo, ordenar sites por relevância

sempre foi um desafio crucial para tornar uma ferramenta de busca útil para o usuário.

O algoritmo de pagerank [31], nesse contexto, ajudou a melhorar tal ordenação de res-

postas analisando a maneira como os sites se interligavam através de hiperlinks. Esse

é um exemplo típico de extração de informação útil, o dito mapa de links, de um mar

de dados, todo o conteúdo dos sites da web. Viu-se, aí, uma relação entre o número

de “conexões” que um site tinha com os demais com o tanto que ele seria útil para o

usuário. O resultado foi uma grande melhora na obtenção de informação relevante para

o usuário. Ao longo dos últimos 50 anos os estudos em Recuperação de Informação

1
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levaram à criação de diversas métricas que estimam, com maior ou menor precisão, a

relevância de um documento para uma consulta utilizando um conjunto de palavras

chave, sendo TF-IDF [38] e BM25 [37] as mais importantes dentre várias. O conjunto

dessas métricas de relevância extraídas de um documento é denominado metadados do

documento.

Dentre as inúmeras formas de se fazer análise de dados de todo tipo que surgiram

nas últimas décadas, temos o Aprendizado de Máquina. Arthur Samuel definiu essa

área, em 1959, como sendo capaz de “dar aos computadores a habilidade de aprenderem

sem serem explicitamente programados” [42]. A idéia básica por trás disso é analisar

uma grande massa de dados em busca de padrões extraíveis que contribuam para um

determinado tipo de análise, seja esta uma classificação, um agrupamento de entidades

semelhantes, ou alguma outra coisa.

Learning to Rank é a área do Aprendizado de Máquina que estuda o uso das

tais técnicas para se classificar um conjunto de documentos por ordem de relevância.

Dados e metadados de grandes conjuntos de documentos são submetidos a uma aná-

lise de padrões que busca encontrar informações que, de forma explícita ou implícita,

levem à determinação do grau de relevância que um dado documento tem para uma

determinada consulta do usuário. Muitos trabalhos em Learning to Rank são volta-

dos para a criação ou o aprimoramento de tais algoritmos de ordenação de respostas

[6, 8, 36, 43, 48, 50], tendo como foco a busca por maneiras melhores de se extrair

informações dos metadados. Em outras palavras, esses algoritmos buscam encontrar

uma relação preditiva entre os metadados e a relevância de um documento.

Tendo isso em mente, surge o questionamento acerca da maldição da dimensiona-

lidade: será que, havendo uma quantidade tão abundante de metadados, não existe nas

bases de dados muito ruído que, ao invés de ajudar os algoritmos de ordenação de res-

postas, os atrapalha? A pré-seleção de metadados de documentos para uso otimizado

nos algoritmos de ordenação de respostas, ou seleção de atributos, vem sendo usada

há vários anos com sucesso para se aprimorar os resultados apresentados pelos algorit-

mos de ordenação de respostas. Trabalhos anteriores comprovam [20] que atributos em

excesso podem atrabalhar a geração de resultados em análises de dados, uma vez que

elas podem ser redundantes ou acrescentar pouca informação, resultando numa análise

de padrões mais limitada. Fazer a seleção de atributos, no entanto, é um processo

custoso que demanda cuidadosa análise da natureza dos dados em questão. Por mais

que exista muito estudo acerca das melhores formas de se analisar os metadados das

bases de dados de Learning to Rank, há espaço para estudos acerca do aprimoramento

dos atributos que tais algoritmos usam.

Neste trabalho, nós utilizamos técnicas de aprendizado de representações para
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fazer uma seleção automática de atributos de Learning to Rank. Isto é: nós propomos

a utilização de técnicas de aprendizado de máquina para, de forma automática, criarmos

representações melhores dos metadados das bases de dados de Learning to Rank. Nosso

intuito foi analisar o potencial dessas técnicas enquanto aprimoradoras de resultados

de ordenação de respostas e, mais do que isso, mostrar de que forma os diferentes

algoritmos de ordenação de respostas são afetados por tais mudanças.

1.1 Objetivos

Nós utilizamos diversas variações de um tipo de rede neural, denominado autoencoder,

para gerar um grande número de representações de várias bases de dados de Learn to

Rank e avaliamos o desempenho dos algoritmos de ordenação de respostas tradicionais

da área quando executados sobre essas novas bases que geramos, e comparamos tal

desempenho com o das bases originais. Nós mostramos que há um conjunto reestrito

de configurações de autoencoder capaz de gerar representações boas dos metadados,

e que este conjunto é comum a todas as bases de dados estudadas. Vemos também

que cada algoritmo de ordenação de respostas reage às novas representações de formas

diferentes: uns tem o resultado muito aprimorado para a maior parte das bases, e

outros tem melhora menor, e em menos bases. Vemos, por fim, que a diferença de

desempenho dos algoritmos de ordenação de respostas é minimizada na medida em

que as representações das bases melhoram. Ou seja, nós mostramos que: (1) é difícil,

porém possível, melhorar a representação das bases de dados de Learning to Rank

utilizando autoencoders, (2) há uma faixa estreita de parâmetros da rede onde, para

as diversas bases estudadas, essa melhora ocorre e, (3) se a representação da bases de

dados for boa o bastante, os diferentes algoritmos de ordenação de respostas tendem a

ter desempenho semelhante.

1.2 Organização

No capítulo 2 nós exploramos os estudos em Aprendizado de Representações e em

Learning to Rank que evidenciam o potencial do caminho que optamos por seguir. No

capítulo 3 nós detalhamos a nossa contribuição, com a descrição da abordagem que

que tivemos para a análise do problema. No capítulo 4 nós analisamos os resultados

dos nossos experimentos, e no capítulo 5 nós apresentamos nossas conclusões.





Capítulo 2

Revisão Bibliográfica e Conceitos

2.1 Revisão Bibliográfica

A seleção de atributos é usada há algum tempo como forma de buscar melhorias nos

resultados dos algoritmos de ranking, com resultados que indicam seu grande poten-

cial [19]. O excesso de atributos pode contribuir para a piora dos resultados dos algo-

ritmos de ordenação de respostas, seja pelo acréscimo de ruído das mesmas, pela redun-

dância, ou pelo fato delas ocasionarem em overfitting, fenomeno que ocorre quando,

num algoritmo de aprendizado, uma rede se adequa bem demais a um conjunto de

treino, perdendo generalidade. As técnicas de seleção de atributos geralmente estão

englobadas em 3 grupos: filter, wrapper e embedded. O método de filter computa

um escore para cada atributo separadamente, e utiliza as melhores. O wrapper usa

um algoritmo de busca para explorar o espaço de possibilidades dos subconjuntos de

atributos, para então estimar a qualidade de cada grupo usando apenas os atributos

deste no processo de aprendizado. Já os métodos embbeded são técnicas integradas no

processo de aprendizado [20].

O algoritmo GAS, proposto em 2007 [19], é um algoritmo guloso que seleciona

os atributos baseado na maximização da relevância e minimização da similaridade com

os atributos escolhidas anteriormente. Tal algoritmo foi melhorado, com obteção de

resultados ainda melhores, usando seleção por pares ou grupos de atributos [20]. Já

Hua et. al. [22] criaram uma técnica onde o k-means é usado para agregar atributos

similares, de modo que depois o atributo mais relevante de cada conjunto é escolhido.

Outro algoritmo [33] usa árvores de regressão num algorimo guloso. Algoritmos em-

bedded como [25, 26] selecionam atributos e constroem o modelo de ranking no mesmo

momento.

Indo além da mera seleção de atributos, há a possibilidade de transformação

5
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das atributos. Ao contrário da seleção de atributos, onde o objetivo é identificar um

subconjunto de atributos que tenha eficácia comparável ou superior ao uso de todos

os atributos, a idéia central por trás da transformação de atributos é criar atributos

melhores pra representar os dados de entrada, usando os atributos originais como base.

Em [14, 15], os autores propuseram uma abordagem onde dados não-classificados são

utilizados papara se derivar padrões relevantes que geram novos atributos [39]. De

modo semelhante, em [34] os autores propuseram o uso de tal abordagem para se fazer

o aprendizado de funções de ranking. A intuição que descreve tal idéia é a de que

busca-se obter dados de preferência pareados usando-se regras associativas a partir de

dados de teste não classificados.

Técnicas de aprendizado de máquina já foram usadas para a transformação de

atributos, como em reconhecimento de imagens [9, 21], apesar de pouco em Seleção

de Atributos para Learning to Rank [1]. Em [41], uma rede convolucional é usada

para criar novas representações de textos entrados, em busca de uma ordenação de

respostas mais eficiente em Learning to Rank. Ao contrário dos algoritmos de seleção

de atributos, no entanto, ainda há pouco estudo na área de transformação de atributos,

apesar de forte evidência que indica que a forma com que os dados são apresentados

pode influenciar enormemente o sucesso de um algoritmo [17].

2.2 Conceitos

Em 1996, foi proposta [30] uma técnica de representação comprimida de imagens, feita

através da minimização do erro de reconstrução da imagem com uso de uma rede neural

de dimensionalidade reduzida. Ou seja: busca-se reconstruir uma imagem da melhor

forma possível utilizando uma quantidade de dados reduzida, quando comparada com

a imagem original. Tal representação é construída com um autoencoder, uma rede

neural construída para reconstruir os dados entrados utilizando como base uma ou mais

camadas intermediárias com dimensionalidade reduzida. Essa técnica vem evoluindo

com o passar do tempo [9], e vem mostrando resultados muito promissores [1, 21, 24].

Um autoencoder, em resumo, é uma rede neural formada por dois componentes:

um codificador (encoder) e um decodificador(decoder). O codificador recebe a entrada

x = {x1, x2, . . . , xn
} e a mapeia para a representação oculta y = {y1, y2, . . . , ym}, que

é dada por:

y = σ(Wx+ b) (2.1)

onde b é o valor do bias, W é a matriz de pesos e σ simplesmente representa uma

sigmóide que opera sobre cada elemento.
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A’ B’ C’ D’ E’ F’ G’ H’ I’

Figura 2.1. Um autoencoder.

x W → σ

encoder

y
W ′ → σ

decoder

z
L(x, z)

Figura 2.2. Aprendendo representações alternativas com um autoencoder

A representação oculta, ou latente, y é então mapeada para os dados de entrada

originais, x, usando-se um autoencoder que é dado por:

z = σ(W ′y + b′) (2.2)

onde b′ são os valores e bias e W ′ é a matriz de pesos. No nosso contexto, W ′ não é

necessáriamente a matriz transposta de W .

Autoencoders não supervisionados usam backpropagation para minimizar o erro

de reconstrução, dado por:

L(x, z) = ||x− z||2 (2.3)

onde as entradas com baixo erro de reconstrução são associadas com probabilidades

maiores P (x). Assim, os atributos de um autoencoder são produzidos num processo

de maximização de P (x).

A figura 2.2 mostra uma ilustração conceitual de um autoencoder. Muitos auto-

encoders podem ser empilhados e treinados em sequência − uma vez que um autoenco-
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der inferior é treinado, o próximo autoencoder é treinado computando a representação

oculta gerada pelo autoencoder inferior. A idéia é que cada autoencoder trabalha sobre

a representação do autoencoder inferior, produzindo resultados de abstração cada vez

maiores, por ser composto por mais operações. É possível também adicionar-se ruído

aos dados de entrada do autoencoder [47]. Especificamente, a entrada x é corrompida

com ruído, mas o autoencoder é treinado para recuperar a entrada original. Ao treinar

para, na prática, desfazer o processo de corrompimento, a representação oculta y que

o autoencoder gera se torna robusta a pequenas mudanças na entrada, que por meno-

res que sejam poderiam impactar os resultados [13]. A junção desses três estilos de

autoencoder resulta no chamado stacked denoising autoencoder.

A forma de treino do autoencoder pode ser não supervisionada, supervisionada

ou semi-supervisionada. No treino não supervisionado, o autoencoder funciona na sua

forma “padrão”: ele, para cada dado que ele recebe de entrada, tenta aprender a re-

construir tais dados na camada de saída utilizando como base os dados da camada

intermediária. Uma representação x, ou seja, é comparada com a representação x′

gerada, tendo-se como base a camada intermediária, e busca-se minimizar esse erro

de reconstrução. No treino supervisionado, por outro lado, é acrescentada sobre este

treino uma camada extra de feedback: cada modelo, após ser recriado, deve ser asso-

ciado pela rede a uma classe específica, previamente definida. Ao invés, portanto, de

uma representação x ser associada a uma representação reconstruída x′ somente, ela

é associada a um conjunto de probabilidades P (x), que representam a probabilidade

da entrada pertencer a uma classe específica. A cada iteração deste treino busca-se

minimizar o erro de classificação da rede, de forma que a etapa de minimização de

erro de reconstrução é somente parte do processo de criação da rede. Autoencoders

semi-supervisionados geralmente são construídos com uma mistura das duas técnicas

anteriores.

A Recuperação de Informação é a área que estuda, entre outras coisas, técnicas

de ranqueamento de documentos em grandes bases de dados e na web. Ao longo

dos últimos 50 anos os estudos da área levaram à criação de diversas métricas que

representam, com maior ou menor precisão, a relevância de um documento para uma

consulta que utiliza um conjunto de palavras chave, sendo TF-IDF [38] e BM25 [37]

as mais importantes dentre várias. No contexto de buscas na web, medidas como

PageRank [31] aprimoram ainda mais os resultados. A web tem bilhões de páginas, e

dada a quantidade de dados disponíveis e o acesso cada vez mais fácil a alto poder de

processamento, há cerca de dez anos tecnologias de Aprendizado de Máquina vem sendo

usadas em pesquisas voltadas para Recuperação de Informação, numa área denominada

“Learning to Rank”.
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Uma grande quantidade de algoritmos de ranking automático vem sendo pro-

posta, com divergências nas técnicas de ranking utilizadas e métricas de sucesso [28].

Tradicionalmente, em Recuperação de Informação, existem diversas formas de se deter-

minar quais documentos tem maior relevância, e as métricas convêncionais se dividem

em duas categorias:

As métricas denominadas Query Dependent, ou “dependentes da consulta”, são

aquelas cuja avaliação depende não só do documento em si, mas de sua relação com

a consulta do usuário. Isso significa, naturalmente, que cada par consulta-documento

produz um resultado diferente. TF-IDF [38] e BM25 [37] são as métricas mais tradicio-

nais dessa área. No TF-IDF, a TF, a frequência do termo, é dada pelo número de vezes

que o termo aparece no documento sendo avaliado, num valor normalizado. O IDF, a

frequência invertida dos termos nos documentos, cresce em valor na medida em que o

documento aparece em menos documentos. Isto é: quanto mais rara for a presença do

termo da coleção de documentos, maior a relevância. O valor do TF-IDF é computado

para cada um dos termos da consulta. O resultado final dessa análise é um número

que representa a relevância do documento para aquela consulta, onde quanto maior,

melhor.

O BM25, por sua vez, é toda uma família de métricas composta por variações

de uma fórmula base comum. Ele é uma métrica probabilistica de relevância de um

documento para uma determinada consulta, que usa os próprios TF e IDF em sua

fórmula, assim como outros parâmetros estáticos obtidos empiricamente. Além destas

e outras, temos métricas Query Independent, isto é, independentes de consulta, que

buscam definir a relevância de um documento baseadas na sua importância própria.

A mais famosa destas é o PageRank [31], que mede a probabilidade de um usuário,

clicando em links aleatóriamente, acessar uma determinada página na web.

Em bases de dados de Learning to Rank, cada par consulta-documento está as-

sociada a uma métrica de relevância, que pode tanto ser binária (1 para relevante, 0

para irrelevante) quanto gradualizada (por exemplo, 2 é ’muito relevante’, 1 é ’possí-

velmente relevante’ e 0 é ’irrelevante’). Muitas vezes os documentos associados a uma

mesma query são organizados em pares e enumera-se, para cada par, qual é o docu-

mento mais relevante. Diversas métricas foram propostas para se avaliar um algoritmo

de ordenação de respostas de R.I., comparando seus resultados com uma benchmark

classificada manualmente por seres humanos. Dentre elas temos Mean Reciprocal Rank

(MRR), Mean Average Precision (MAP), (Normalized) Discounted Cumulative Gain,

Rank Correlation (RC), entre outras.

Em Aprendizado de Máquina, geralmente definem-se: o espaço de entrada, onde

se encontram os objetos a serem analisados, na forma de vetores de atributos; o espaço
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de saída, composto por categorias discretas ou números reais e o espaço de hipóteses,

que contém os conjuntos de funções e vetores que operam sobre o espaço de entrada

e retornam valores para o espaço de saída. Em Learning to Rank, os documentos são

costumeiramente representados por conjuntos de atributos que refletem a relevância

de um documento para aquela consulta. Os valores produzidos de BM25, TF-IDF e

Pagerank são atributos típicos. A capacidade de se combinar múltiplos atributos numa

única análise é uma grande vantagem de Learning to Rank. [28]

A maior parte dos algoritmos de Learning to Rank pode ser inclusa em uma

de três categorias: abordagem por pontos, por pares ou por listas. Na abordagem

por pontos, a entrada é o vetor de atributos de um único documento, e a saída é a

relevância daquele documento. Algoritmos desse estilo incluem o CRR[40], McRank

[27] e o Prankster [10]. Na abordagem por pares, a entrada inclui o vetor de atributos

de dois documentos, e a saída contém a informação de qual dos dois é mais relevante

(valores {1, -1}. Exemplos de algoritmos do tipo são Rankboost [18] e RankRLS [32].

Por fim, na abordagem por listas, a entrada contém todo um grupo de documentos

associados com uma determinada consulta, e a saída consiste nos graus de relevância

de cada documento, ou numa lista ordenada dos documentos. Exemplos são o ListNet

[7], AdaRank [51] e o SoftRank [44].

O BRM [12] é um ranker que trabalha unindo diversos rankers menores para

melhorar seus resultados, numa forma de boosting semelhante ao que o Rankboost faz.

Foram comparados 87 algoritmos [43] de ranking em Learning to Rank sob a ótica de

uma métrica chamada Normalized Winning Number, que valoriza os algoritmos que,

para determinadas base de dados, tiveram desempenho melhor que mais rivais. Foram

tidos como melhores, apesar de certas limitações da métrica, os algoritmos ListNet,

SmoothRank, FenchelRank, FSMRank and LRUF. Considerando somente a métrica

MAP, o melhor algoritmo foi o LAC-MR-OR [45].

No contexto de Learning to Rank, a coleção do LETOR [35] foi proposta como

benchmark para algoritmos de área. Ela oferece dois datasets: o Gov, composto pelos

textos coletados de páginas com domínio .gov nos Estados Unidos em 2003 e 2004. Após

poda dos resultados, elas foram divididas em consultas de três naturezas distintas: topic

distillation (TD), homepage finding (HP), e named page finding (NP). Há um dataset

por tipo de consulta por ano, ou seja, seis datasets. Além disso há o OHSUMED,

composto por um compilado de artigos médicos publicados em journals, coletados

entre 1987 a 1991. Por se tratar de uma coleção de sites, o dataset Gov possui nos

atributos de cada documento valores Query Independent. Os datasets são, préviamente,

divididos em 5 folds e em bases de treino, teste e validação. A benchmark do LETOR

é tida como uma das mais completas [43] e robustas da área.
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Ainda existem inúmeros problemas em aberto a serem tratados na área [8], prin-

cipalmente quando se considera o uso dos algoritmos em produção em mecanismos de

busca comerciais. Um problema óbvio que se evidencia é o do tempo de execução:

apesar do treino poder ser feito offline, o tempo de avaliação de um conjunto de docu-

mentos não pode exceder, em situações reais, 50 milisegundos, e muitos dos algoritmos

atuais ultrapassam em muito esse valor. Balancear o ganho em performance com a

perda de precisão, portanto, é um problema de relevância. Outro problema se revela

na robustez de um mecanismo de busca: numa situação real se espera que o algoritmo

de ordenação de respostas seja aprimorado constantemente, entretanto é preciso que

os resultados apresentados não mudem de forma radical. Mostra-se necessário o desen-

volvimento de uma métrica que avalie essa robustez do algoritmo. Uma métrica que se

apresenta consiste na medida da probabilidade de um par de vizinhos em rank trocar

de lugar num novo resultado de algoritmo. Essa métrica, embora promissora, requer

estudos mais aprofundados: a presença de ruído numa base de treino, por exemplo,

pode levar à sobreimportância de certos fatores irrelevantes, o que gera pequenas trocas

de posição uma reação em cadeia que prejudica seriamente a robustez de um algoritmo.

2.3 Nossa Abordagem

O nosso trabalho se propõe a estudar o potencial que a transformação de atributos tem

em Learning to Rank. Essa área, ainda pouco explorada, tem seu potencial exibido

quando vemos a melhora que a seleção de atributos trás para algoritmos clássicos de

ordenação. A transformação de atributos tem por trás de si uma idéia semelhante

à da seleção: assim como ela, a idéia é utilizar as informações que os atributos tem

da melhor maneira possível. Ao contrário da seleção, no entanto, não se descarta

nenhuma informação por completo. Há potencial de uso, grande ou pequeno, de todas

as atributos num processo de transformação, e isso evidencia a redução em perda de

informação que podemos ter.

A pergunta que fazemos é: “A transformação de atributos, em Learning to Rank,

pode melhorar resultados dos algoritmos de ordenação de respostas clássicos?”. Opta-

mos por usar o autoencoder, uma rede neural que faz tais transformações com excelentes

resultados. Fizemos um extenso estudo dos efeitos que a variação nas representações

geradas pelos autoencoders tem sobre os resultados dos algoritmos clássicos de orde-

nação. Descobrimos insights sobre o potencial que o autoencoder tem para tal tarefa,

incluindo qual faixa de parâmetros estáticos do mesmo tem o potencial de trazer melho-

res resultados. Mas, além disso, mostramos o tanto que a transformação de atributos
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pode impactar, positivamente, os algoritmos de ordenação de respostas, superando o

estado da arte com nossas representações em vários casos.



Capítulo 3

Aprendizado de Representações

Neste trabalho, utilizamos autoencoders para criar representações em dimensionali-

dade reduzida de uma base de atributos de documentos, sendo estes atributos um

subconjunto das diversas métricas de relevância já estabelecidas em Recuperação de

Informação. Propõe-se que o uso de tais representações aprimorará os resultados dos

algoritmos de ranqueamento tradicionais, uma vez que a representação ideal minimi-

zará ruídos na informação e maximizará a importância das medições mais relevantes,

de forma implícita. Para os experimentos e análise dos resultados foi utilizada como

teste base a LETOR [35], uma base de dados para benchmarks em Learning to Rank.

A criação de modelos tem um alto custo computacional, sendo de grande relevância,

portanto, compreender o que influencia o desempenho, na ordenação de respostas, da

representação gerada por um autoencoder. A descoberta de um padrão no conjunto de

parâmetros bons, ou a simples delimitação do quão fácil ou difícil é encontrar um bom

conjunto de parâmetros é de grande relevância caso o autoencoder se apresente como

viável para a melhora dos resultados dos desempenhos dos algoritmos.

Mais do que simplesmente buscar novas representações, no entanto, este traba-

lho estuda o comportamento do autoencoder enquanto gerador de representações para

Learning to Rank, além do potencial da transformação de atributos, ou criação de

representações, enquanto fator de aprimoramento dos resultados da ordenação de res-

postas. Para cada base de dados foi feito processamento com uma grande quantidade

de autoencoders, cujos hiperparâmetros foram variados uniformemente sobre o espaço

total de hiperparâmetros. Assim, diversas novas representações de cada base de dados

foram feitas. Tendo como base de qualidade do desempenho da representação gerada

por cada autoencoder nos algoritmos de ordenação de respostas, são ainda objetivos

deste trabalho: entender o quão fácil ou difícil é gerar representações de qualidade;

quais parâmetros estáticos do autoencoder exercem maior influência sobre a qualidade

13



14 Capítulo 3. Aprendizado de Representações

da representação; buscar propriedades comuns que os autoencoders de qualidade de

cada base tenham, de modo a encontrar propriedades em potencial que, para um con-

texto de Learning to Rank, estejam associadas à melhora de resultados.

A B C D E F G H I

Figura 3.1. Um stacked autoencoder.

Afim de melhor compreendermos os efeitos do autoencoder sobre os algoritmos de

Learning to Rank, nós exploramos uma fração de seu espaço de parâmetros estáticos

de maneira uniforme, para gerar diversos autoencoders diferentes. Nós exploramos,

nesse intuito, os seguintes parâmetros estáticos de stacked denoising autoencoders:

quantidade de ruído inserido e número total de nós de cada rede. Ambos têm grande

relevância na performance da rede e no tempo de execução de uma série de autoenco-

ders. A maneira como exploramos tal espaço variou conforme a base que estudávamos.

Buscamos explorar uma fração razoável do espaço de parâmetros. Se uma base tem,

por exemplo, 70 atributos, a exploramos de 10 em 10 atributos, ou se seja, de 10 para

20 nós, de 20 para 30, e assim por diante. Além disso, optou-se pelo uso de autoenco-

ders piramidais, ou seja, autoencoders que se empilham em camadas progressivamente

menores que a camada anterior. Faz-se isso porque espera-se que exista redundância

nos atributos das bases de dados: havendo uma correlação entre atributos modelável

de forma não linear, há possibilidade de se reduzir a dimensionalidade dos dados sem

perder informação, coisa que o autoencoder piramidal, efetivamente, faz.
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Experimentos

4.1 Abordagem Experimental

Conforme dito anteriormente, a base de dados do LETOR [35] possui dois conjuntos

de dados: o OHSUMED, composto por um compilado de artigos médicos publicados

em journals, coletados entre 1987 a 1991, e o Gov, oriúndo de páginas .gov dos Es-

tados Unidos em 2003 e 2004. O conjunto Gov é dividido em grupos de consultas de

três naturezas distintas: topic distillation (TD), homepage finding (HP), e named page

finding (NP)). Os grupos de consultas TD buscam encontrar uma lista de pontos de

entrada para bons websites dedicados a um tópico específico. Os grupos de consultas

HP buscam retornar a homepage específica buscada na consulta, e os grupos de consul-

tas NP procuram páginas cujos nomes são idênticos aos da consulta em questão. Para

estas duas últimas, HP e NP, falando de forma geral, só existe uma resposta correta

para cada consulta. Há, no total, um grupo de consultas de cada tipo (HP, NP e TD)

para cada ano (2003 e 2004), ou seja, seis grupos de consulta na base Gov: HP2003,

HP2004, NP2003, NP2004, TD2003, TD2004.

Os grupos de consultas são compostos por triplas <atributos do documento; con-

sulta; taxa de relevância do documento para a consulta> Todas as triplas foram previ-

amente classificadas por avaliadores humanos como irrelevantes (0), relevantes (1), no

caso das bases Gov, e nada relevantes (0), pouco relevantes (1), muito relevantes (2)

no caso da OHSUMED. Os grupos de consultas são, préviamente, divididos em 5 folds

de bases de treino, teste e validação. Cada fold de cada grupo foi processada por 120

configurações diferentes de autoencoder. Os parâmetros variados foram 2: o número

de níveis do autoencoder e o número de nós em suas camadas. O parâmetro ruído foi

estudado em uma análise mais aprofundada, feita com a base OHSUMED.

Como consequência de nossa exploração uniforme do espaço amostral, houve de-

15
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sigualdade na distribuição de autoencoders por número total de nós. Ou seja, enquanto

os autoencoders com número total de nós igual a 40 foram quatro (configurações (40),

(30)(10), (20)(20), (20)(10)(10)), os autoencoders com, por exemplo, 120 nós no total,

foram dez. A distribuição de quantidade de autoencoders por configuração se vê na

figura 4.1.
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Figura 4.1. Distribuição dos parâmetros de configuração dos autoencoders apli-
cados à base OHSUMED (1) e idem para a GOV (2). Para a GOV, somente
autoencoders de três camadas são exibidos aqui.

A distribuição exibida em 4.1 se repete para os autoencoders com duas camadas.

Assim sendo, tivemos 7 autoencoders de uma camada, 28 de duas camadas e 85 de três

camadas, totalizando 120 autoencoders, no caso da base Gov. Para os autoencoders

aplicados à OHSUMED tal situação se repete. No caso dela, optamos por fazer um

experimento menos abrangente e mais denso no espaço de parâmetros. Variamos a

quantidade de nós por camada de 5 em 5 e de 20 a 55, uma vez que a base possui 44

atributos. Fixamos também o número de camadas em 3, para estudarmos as repre-

sentações mais abstratas. Ou seja: nosso menor autoencoder estava parametrizado em

(20)(20)(20) e o maior em (55)(55)(55). Além disso, cada autoencoder foi utilizado

numa versão sem a aplicação de ruído e outra numa versão com. Assim, tivemos um

total de 1525 autoencoders. A distribuição dos mesmos conforme número total de nós

é exibida no gráfico 4.1. Para cada base GOV, dados que foram criadadas 120 con-

figurações de autoencoder diferentes, foram geradas 600 representações de dados, 120

para cada uma das 5 folds de cada uma das seis bases de dados, totalizando 3600 re-

presentações. Para a base OHSUMED, de forma análoga, tivemos 1525 representações

geradas para cada uma das cinco folds, num total de 7625 representações das bases.

A forma de criação dos modelos transformados das bases de dados foi a mesma

para todas as configurações de autoencoders estudadas. Nós utilizamos uma abordagem

semi-supervisionada: o arquivo de treino, o maior, primeiramente, é utilizado pelo au-
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toencoder numa fase de treinamento não supervisionado, onde ele busca simplesmente

minimizar o erro de reconstrução da rede. Após isso há uma fase supervisionada, onde

um ajuste fino é feito através do arquivo de validação e testes da rede [16, 46].

4.2 Análise dos Resultados

Nós executamos oito algoritmos de ordenação de respostas em Learning to Rank sobre

as nossas representações e avaliamos o desempenho das mesmas. Tais algoritmos são

utilizados em outras benchmarks da área, como a do próprio LETOR, e estão entre os

melhores que existem na literatura. Os algoritmos utilizados são implementados pela

biblioteca RankLib [11]. Os algoritmos escolhidos são o Rankboost[18], RankNet[5],

Mart, Lambdamart[49], Listnet [7], Adarank [51], Regression L2 e Random Forests

[4]. Nós avaliamos o desempenho de cada um deles sob a ótica das métricas MAP

e NDCG@10 [23] para todas as representações, ou, transformações, criadas com os

autoencoders. O desempenho de todas essas representações foi comparado com o de-

sempenho do algoritmo executado sobre a base inalterada, sendo esta então a nossa

baseline.

Os experimentos, isto é, a geração e ordenação de respostas das representações,

foram feitos numa máquina com Ubuntu 14.04.2 LTS, Intel(R) Core 7-5820k CPU @

3.30GHz, GPU Tesla K40c com 12GB de memória e 32GB de memória RAM. O sis-

tema utilizado foi desenvolvido em Python, utilizando-se o Theano [3]. Foram geradas

representações para as sete bases de dados do LETOR [35]: OHSUMED, TD2003,

NP2003, HP2003, TD2004, NP2004, HP2004. Todas as baselines foram executadas na

própria máquina, conforme os parâmetros ditos no site do LETOR. Fora a variação do

número de nós de cada camada da rede e do número de neurônios, os outros parâmetros

estáticos do autoencoder foram fixados em: pré-treino: taxa de aprendizado 0.01, 15

épocas; finetunning: taxa de aprendizado 0.1, 10000 épocas. A função de ativação foi

a sigmóide.

Nas tabelas 4.1 e 4.2, nós apresentamos e analisamos os resultados obtidos: mos-

tramos em histogramas o quão difícil é gerar representações eficazes para as bases de

dados em Learning to Rank. Vemos, numa tabela à parte, o quanto que conseguimos

melhorar os resultados das baselines e, nos casos onde não houve melhora, o quanto nos

aproximamos dela. A tabela evidencia como as transformações dos dados diminuiram

a diferença de desempenho entre os diversos algoritmos. Vê-se também que cada algo-

ritmo de ordenação de respostas tem seus resultados aprimorados para bases diferentes,

evidenciando que representações melhores podem, também, mitigar as deficiências que
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Tabela 4.1. Variação dos melhores resultados obtidos para cada algoritmo em
cada base quando comparados com os da baseline, na métrica MAP

HP2003 HP2004 NP2003 NP2004 TD2003 TD2004 OHSUMED

Regression 0,0502 0,1307 -0,029 0,0621 -0,0107 -0,0257 0,0215

Ranknet -0,0199 -0,0823 -0,0312 -0,1468 0,0160 0,0065 0,0108

Adarank -0,0363 0,0125 -0,0575 0,0688 -0,0069 0,0033 0,0086

Rankboost 0,0062 0,0433 -0,0045 0,0631 0,0393 -0,0317 -0,0024

Listnet -0,0351 0,1553 0,0318 -0,0217 0,0280 0,0132 0,0114

Mart -0,0265 0,0779 -0,0325 0,0592 0,0510 0,0056 0,0157

Lambdamart 0,0031 0,0046 -0,0046 0,0873 0,0282 -0,0421 0,0067

Random forests -0,0081 -0,0235 0,0074 0,0035 -0,0142 -0,0435 0,0077

Tabela 4.2. Variação dos melhores resultados obtidos para cada algoritmo em
cada base quando comparados com os da baseline, na métrica NDCG@10

HP2003 HP2004 NP2003 NP2004 TD2003 TD2004 OHSUMED

Regression 0,0582 0,141 -0,02 0,0495 -0,0136 -0,0224 0,0298

Ranknet -0,0184 -0,1495 -0,0185 -0,0232 0,0027 0,0198 0,02

Adarank -0,0172 0,045 -0,0056 0,0733 0,0276 0,0248 0,0078

Rankboost 0,0069 0,0297 0,006 0,0346 0,0454 -0,0335 0,0224

Listnet 0,0363 -0,1069 -0,014 0,1351 0,0282 0,0095 0,0184

Mart -0,0297 0,0858 -0,0182 0,0483 0,0529 0,0058 0,0196

Lambdamart 0,0054 0,0657 -0,0075 0,1583 -0,0045 0,0058 0,0185

Random forests -0,002 0,0437 -0,0287 0,0184 -0,0301 -0,047 0,0105

esses algoritmos possam vir a ter.

Fazemos ainda uma análise da influência que o parâmetro estático número to-

tal de nós do autoencoder tem sobre o desempenho das representações, com dados

apresentados tanto nos histogramas quanto em tabelas numéricas. Para esta análise,

verificamos a influência que tal parâmetro exerce sobre os resultados de cada algoritmo,

de cada base de dados e de cada métrica de avaliação separadamente. Os resultados

são visualizáveis de duas formas: (1) através dos histogramas, onde a altura das barras

representa a quantidade de autoencoders em uma determinada faixa de escore (métrica

MAP ou NDCG@10) e a cor das barras representa o quanto cada faixa de parâmetros

(número total de nós) prevaleceu em cada faixa de escore; (2) uma tabela, onde vemos

qual é a distribuição esperada de autoencoders para cada faixa de parâmetros (0 a

30 nós, 30 a 60, e assim por diante) e como cada faixa se saiu na prática. Ambas as

visualizações mostram, no fim das contas, se há alguma faixa de número total de nós
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que tende a ter resultados melhores que o esperado.

Abaixo, as análises de desempenho foram subdivididas por métrica, base, algo-

ritmo e análise geral. Para cada caso, nós agregamos todos os resultados relativos

ao objeto em análise e buscamos ver se houve prevalência de algum conjunto de con-

figurações entre os melhores resultados, em relação a uma distribuição uniforme dos

resultados, conforme a quantidade de autoencoders em cada faixa de parâmetros (ver

Figura 4.1). Para a métrica MAP, por exemplo, todas as bases GOV e algoritmos

executados na métrica MAP foram agregados, e a análise tem por objetivo mostrar se

o parâmetro analisado se destaca entre os melhores independente de qual algoritmo ou

base GOV foi usada, na média. Como a base de dados OHSUMED é, além de estudada

com um número muito maior de autoencoders, diferente da GOV em seus atributos e

número de atributos, as análises agregadas não a incluíram. Suas análises são vistas

à parte. A base GOV, ressalte-se, possui 64 atributos, enquanto as bases OHSUMED

possuem 44.

4.3 Análise por métrica

Nesta sessão nós vemos se há alguma faixa de parâmetros, isto é, de número total de

nós, tende a ter mais resultados bons do que se esperaria numa distribuição uniforme.

Fazemos a mesma análise, contemplando a base OHSUMED, para duas taxas de ruído:

0% e 30%. Uma taxa de ruído de 30% indica que 30% dos dados da entrada serão

corrompidos antes do treino da rede.

4.3.1 MAP

Vemos na Tabela 4.3 que a faixa de nós totais de 120 a 180 teve sutil prevalência entre

os melhores resultados, sendo mais frequentes ali do que se esperaria de um resultado

distribuído uniformemente. Tal resultado agrega todos os algoritmos executados sobre

todas as bases GOV, sendo, portanto, bastante robusto: quanto mais resultados agre-

gados, mais relevante é o que eles mostram. A taxa de corrupção, por sua vez, não

apresentou diferenciais relevantes na busca por melhores resultados.
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Tabela 4.3. Desempenho dos autoencoders por número total de nós.

No. de Nós Totais (Grupos) Distribuição esperada .10 ao topo .00 a .15

0.0 a 30.0 2.4% 2.26% 2.64%

30.0 a 60.0 9.87% 8.53% 12.24%

60.0 a 90.0 20.22% 18.7% 22.91%

90.0 a 120.0 25.26% 25.24% 25.31%

120.0 a 150.0 22.78% 23.56% 21.39%

150.0 a 180.0 13.54% 14.75% 11.4%

180.0 a 210.0 5.08% 5.99% 3.48%

210.0 a 240.0 0.85% 0.97% 0.64%

No. Combinações Estudadas 5664 3621 2043

Tabela 4.4. Desempenho dos autoencoders por nível de corrupção, contem-
plando somente a base OHSUMED.

Nível de ruído nos dados Distribuição esperada .10 ao topo .00 a .15

0.0 50.01% 49.76% 54.31%

0.3 49.99% 50.24% 45.69%

No. Combinações Estudadas 12537 11841 696
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4.3.2 NDCG@10

Na Tabela 4.5 é claro que houve prevalência na faixa de resultados de 120 a 180 nós,

havendo indicação clara que os autoencoders com essas características tenderam a dar

resultados melhores que os demais. A taxa de corrupção não apresentou diferenciais

relevantes na busca por melhores resultados.

Tabela 4.5. Desempenho dos autoencoders por numero total de nós. A coluna

do meio representa o conjunto dos autoencoders que ficaram a uma distância
de 10 pontos percentuais, no máximo, do melhor resultado obtido para algum
algoritmo, considerando a metrica NDCG@10, e a coluna da direita os autoen-
coders que ficaram abaixo disso. A coluna da esquerda mostra a distribuição
dos autoencoders de acordo com seu número total de nós.

No. de Nós Totais (Grupos) Distribuição esperada .10 ao topo .00 a .15

0.0 a 30.0 2.4% 2.22% 2.89%

30.0 a 60.0 9.85% 8.62% 13.21%

60.0 a 90.0 20.14% 18.95% 23.41%

90.0 a 120.0 25.34% 25.27% 25.51%

120.0 a 150.0 22.81% 23.51% 20.91%

150.0 a 180.0 13.52% 14.82% 9.99%

180.0 a 210.0 5.08% 5.72% 3.35%

210.0 a 240.0 0.85% 0.89% 0.72%

No. Combinações Estudadas 5664 4143 1521

Tabela 4.6. Desempenho dos autoencoders por nível de corrupção, contem-
plando somente a base OHSUMED. A coluna do meio representa o conjunto
dos autoencoders que ficaram a uma distância de 10 pontos percentuais, no má-
ximo, do melhor resultado obtido para algum algoritmo na métrica NDCG@10,
e a coluna da direita os autoencoders que ficaram abaixo disso. A coluna

da esquerda mostra a distribuição dos autoencoders de acordo com seu número
total de nós.

Nível de ruído nos dados Distribuição esperada .10 ao topo .00 a .15

0.0 50.02% 49.63% 51.14%

0.3 49.98% 50.37% 48.86%

No. Combinações Estudadas 12537 9301 3236
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4.3.3 Sumário

É possível ver, conforme os resultados mostram, que os resultados não exibem variação

relevante de padrão por métrica. Ambas favoreceram as faixas de 120 a 180 nós totais,

os resultados dessas faixas estando presentes aí em 1 ponto percentual acima da distri-

buição base. Isso são significa que essa faixa seja boa em qualquer caso em Learning

to Rank, isto resta ver na análise mais aprofundada, feita abaixo.

Para ambas as métricas a taxa de corrupção não se mostrou como diferencial

relevante na busca por melhores resultados. O que vemos, em suma, é que como não

há variação nos padrões encontrados por métrica, a métrica utilizada não influencia no

desempenho que uma faixa de nós totais tem sobre os resultados dos algoritmos.

4.4 Análise por base de dados

Vimos nas Tabelas 4.3 e 4.5 que a faixa de 30 a 90 nós de autoencoders apresentou os

melhores resultados, considerando o agregado de todos os algoritmos executados em

todas as bases GOV para tais métricas. Abaixo, buscamos ver se o padrão se repete

quanto analisamos os resultados de cada base de dados separadamente. Ou seja: uma

vez que vemos que os resultados de cada média tem clara tendência, buscamos ver se

essa tendência é geral ou se limita a somente parte dos resultados.

4.4.1 Gov - HP

Na base HP, busca-se por uma URL específica em meio às páginas da base de dados: a

URL da homepage de uma página buscada na consulta. A tabela 4.7 mostra uma sutil

prevalência de resultados bons na mesma faixa exibida na análise por métrica, a de 120

a 180 nós totais. Tal prevalência segue da linha da que se viu nos resultados exibidos por

métrica: nessa faixa, os autoencoders estiveram presentes entre os melhores resultados

um ponto percentual a mais do que se esperaria numa distribuição uniforme.
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Tabela 4.7. Desempenho dos autoencoders por número total de nós. A coluna

do meio representa o conjunto dos autoencoders que ficaram a uma distância
de 10 pontos percentuais, no máximo, do melhor resultado obtido para algum
algoritmo sobre a base HP, e a coluna da direita os autoencoders que ficaram
abaixo disso. A coluna da esquerda mostra a distribuição dos autoencoders de
acordo com seu número total de nós.

No. de Nós Totais (Grupos) Distribuição esperada .10 ao topo .00 a .15

0.0 a 30.0 2.38% 2.26% 3.42%

30.0 a 60.0 9.8% 8.52% 20.29%

60.0 a 90.0 20.26% 19.1% 29.83%

90.0 a 120.0 25.29% 25.66% 22.25%

120.0 a 150.0 22.78% 23.61% 15.89%

150.0 a 180.0 13.56% 14.46% 6.11%

180.0 a 210.0 5.08% 5.49% 1.71%

210.0 a 240.0 0.85% 0.89% 0.49%

No. Combinações Estudadas 3776 3367 409
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4.4.2 Gov - NP

Na base NP, busca-se pela página cujo título é semelhante ou igual ao buscado. Temos

aqui resultamos semelhantes aos da base HP, em faixa prevalente e força: a faixa de

120 a 180 nós esteve presente entre os melhores resultados com uma frequência de 1

ponto percentual acima do que seria esperado. Ou seja: apesar de somente 13.5%

dos autoencoders estarem na faixa de 150 a 180 nós, eles representaram 15.1% dos

resultados bons.

Tabela 4.8. Desempenho dos autoencoders por número total de nós. A coluna

do meio representa o conjunto dos autoencoders que ficaram a uma distância
de 10 pontos percentuais, no máximo, do melhor resultado obtido para algum
algoritmo sobre a base NP, e a coluna da direita os autoencoders que ficaram
abaixo disso. A coluna da esquerda mostra a distribuição dos autoencoders de
acordo com seu número total de nós.

No. de Nós Totais (Grupos) Distribuição esperada .10 ao topo .00 a .15

0.0 a 30.0 2.38% 2.21% 3.47%

30.0 a 60.0 9.9% 8.32% 19.85%

60.0 a 90.0 20.02% 18.02% 32.56%

90.0 a 120.0 25.34% 25.42% 24.86%

120.0 a 150.0 22.85% 24.1% 15.03%

150.0 a 180.0 13.56% 15.11% 3.85%

180.0 a 210.0 5.08% 5.83% 0.39%

210.0 a 240.0 0.85% 0.98% 0.00%

No. Combinações Estudadas 3776 3257 519
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4.4.3 Gov - TD

Aqui o padrão visto até então se altera. Há prevalência sutil entre os autoencoders

que possuem 150 a 210 nós. Aqui é importante ressaltar que a base de dados TD é

substancialmente mais difícil de se analisar do que as demais: vemos isso nos resultados

de suas baselines que tem suas pontuações em MAP e NDCG@10 muito abaixo das

das bases HP e NP, ambas com resultados muito mais próximos. A base TD busca

encontrar bons pontos de entrada para um determinado tema buscado na consulta, algo,

é possível argumentar, muito mais subjetivo do que encontrar uma URL buscada ou

um site cujo título é o que se buscou. Para autoencoders, essa diferença nos resultados

indica que a melhora que novas representações oferecem estão condicionadas à natureza

da base estudada, ou seja, suas características internas.

Tabela 4.9. Desempenho dos autoencoders por número total de nós. A coluna

do meio representa o conjunto dos autoencoders que ficaram a uma distância
de 10 pontos percentuais, no máximo, do melhor resultado obtido para algum
algoritmo na base TD, e a coluna da direita os autoencoders que ficaram abaixo
disso. A coluna da esquerda mostra a distribuição dos autoencoders de acordo
com seu número total de nós.

No. de Nós Totais (Grupos) Distribuição esperada .10 ao topo .00 a .15

0.0 a 30.0 2.44% 2.28% 2.5%

30.0 a 60.0 9.88% 9.47% 10.05%

60.0 a 90.0 20.26% 20.35% 20.22%

90.0 a 120.0 25.26% 23.6% 25.99%

120.0 a 150.0 22.75% 21.67% 23.22%

150.0 a 180.0 13.48% 14.82% 12.9%

180.0 a 210.0 5.08% 6.93% 4.29%

210.0 a 240.0 0.85% 0.88% 0.83%

No. Combinações Estudadas 3776 1140 2636
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4.4.4 Ohsumed

Vemos que a base OHSUMED, por ter sido mais estudada, possui resultados muito mais

robustos que os apresentados nas bases GOV. Aqui, os resultados dos autoencoders na

faixa de 90 a 120 nós apresentam somente uma leve melhora em relação à distribuição

uniforme, na casa de um ponto percentuais. Os resultados da faixa de 120 a 150 nós

apresentam uma melhora mais relevante, na casa de 3 pontos percentuais. Ressalte-se

que, tanto por ter uma quantidade menor de atributos que as bases GOV quanto por

ter uma natureza de dados diferente (os textos não são websites, mas artigos médicos),

as características da base OHSUMED diferem muito das outras e, entretanto, ela segue

a tendência percebida nas análises gerais da base GOV, com foco nas métricas.

Tabela 4.10. Desempenho dos autoencoders por número total de nós. A coluna

do meio representa o conjunto dos autoencoders que ficaram a uma distância de
10 pontos percentuais, no máximo, do melhor resultado obtido para algum al-
goritmo sobre a base OHSUMED, e a coluna da direita os autoencoders que
ficaram abaixo disso. A coluna da esquerda mostra a distribuição dos autoen-
coders de acordo com seu numero total de nós.

No. de Nós Totais (Grupos) Distribuição esperada .10 ao topo .00 a .15

0.0 a 30.0 0.89% 0.85% 0.91%

30.0 a 60.0 12.11% 10.75% 12.73%

60.0 a 90.0 39.85% 35.46% 41.87%

90.0 a 120.0 37.38% 38.47% 36.88%

120.0 a 150.0 9.44% 13.48% 7.59%

150.0 a 180.0 0.32% 0.98% 0.02%

No. Combinações Estudadas 25074 7876 17198



4.5. Análise por algoritmo 27

4.4.5 Sumário

Vemos aqui que, enquanto as bases HP e NP apresentaram resultados semelhantes, com

leve favorecimento das faixas de parâmetros de 120 a 180 nós totais, a base OHSUMED

apresentou um favorecimento semelhante na faixa de 90 a 120 nós totais e mais robusto

na faixa de 120 a 150 nós. A base TD mostrou favorecimento na faixa de 150 a 210 nós.

Isso mostra que a base de dados analisada, por mais que possua atributos iguais (no

caso de HP, NP e TD) influencia de formas diferentes o desempenho que determinada

faixa de nós tem sobre os resultados dos algoritmos. A base de dados utilizada é,

portanto, um fator de alguma relevância na hora de se determinar quais autoencoders

utilizar para aprimorar seus resultados.

4.5 Análise por algoritmo

Abaixo, analisamos os resultados agregados por algoritmo, independente de métrica ou

base de dados GOV utilizada, e mostramos os gráficos de cada resultado, separados por

métrica e base de dados. Nos referimos constantemente à Tabela 4.1 para comparar o

desempenho de cada algoritmo com as baselines. Mais do que analisar os autoencoders

de acordo com seu número total de nós ou taxa de corrupção, aqui nós buscamos ver

como o resultado de cada algoritmo melhorou, ou não, com auxílio dos autoencoders.

Temos, portanto, dois tipos de informação sendo analisadas: (1) os autoencoders

de qual faixa de nós/taxa de corrupção ofereceram os melhores resultados para esse

algoritmo? (2) tais resultados foram suficientes para superar a baseline, isto é, a exe-

cução dos algoritmos sobre a base de dados inalterada, ou os autoencoders conseguem

se aproximar do resultado base, mas sempre piorando-o?

As imagens 4.2 a 4.17 agregam os histogramas que mostram como cada grupo de

autoencoders se comportou pra cada conjunto de dados, métrica e algoritmo. O eixo

x de cada gráfico representa as faixas de desempenho do algoritmo em questão para a

métrica em questão. O eixo y mostra a quantidade de autoencoders em uma determi-

nada faixa desempenho. As cores de cada barra separam os grupos de autoencoders,

de acordo com seu número total de nós. A linha vermelha de cada gráfico representa

o desempenho da baseline.

4.5.1 Adarank

O Adarank é um algoritmo de boosting [51] que cria repetidamente ’ordenadores fracos’

e os combina linearmente para fazer predições. Parte do seu processo de treino envolve
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a minimização de uma função de perda exponencial que foi definida diretamente sobre

as métricas MAP e NDCG. Em seus gráficos podemos analisar o efeito das represen-

tações criadas pelos autoencoders sobre ele. A Tabela 4.1 e os gráficos mostram que

as representações resultaram em ganhos de desempenho pouco expressivo para quase

todas as bases. As bases HP2003 e NP2003 tiveram perda expressiva de desempenho,

da ordem de 4 a 6 pontos percentuais. Na base NP2004 obteve-se um ganho expressivo

de desemepenho, de quase 7 pontos percentuais sobre a baseline.

Tabela 4.11. Desempenho dos autoencoders por número total de nós. A coluna

do meio representa o conjunto dos autoencoders que ficaram a uma distância de
10 pontos percentuais, no máximo, do melhor resultado obtido para o algoritmo
Adarank, e a coluna da direita os autoencoders que ficaram abaixo disso. A
coluna da esquerda mostra a distribuicao dos autoencoders de acordo com
seu número total de nós, ou seja: 10,1% dos autoencoders que analisaram a
base GOV tem entre 30 e 60 nós, no total. A tabela mostra, no entanto, que
15% dos autoencoders no grupo dos piores tinham entre 30 e 60 nós, enquanto
somente 8,23% dos mlehores autoencoders estavam nessa faixa de nós. Ou seja,
os autoencoders desta faixa de nós totais tenderam a dar resultados piores que a
média.

No. de Nós Totais (Grupos) Distribuição esperada .10 ao topo .00 a .15

0,0 a 30,0 2,26% 1,59% 4,32%

30,0 a 60,0 10,1% 8,23% 15,85%

60,0 a 90,0 20,2% 19,55% 22,19%

90,0 a 120,0 25,21% 24,04% 28,82%

120,0 a 150,0 22,81% 23,67% 20,17%

150,0 a 180,0 13,49% 15,15% 8,36%

180,0 a 210,0 5,08% 6,64% 0,29%

210,0 a 240,0 0,85% 1,12% 0,00%

No. Combinações Estudadas 1416 1069 347

É possível observar nos gráficos da Figura 4.2 que há grande variação no desem-

penho que as novas representações proporcionaram. O desempenho das representações

varia de quase nulo a moderadamente inferior à baseline, com conjuntos de cinco repre-

sentações ou menos obtendo desempenho próximo à baseline ou superior à mesma. Na

métrica NDCG, com resultados apresentados na Figura 4.3, a variação é muito menor,

mas o desempenho segue o mesmo padrão.

A Tabela 4.11 mostra que, agregando todos esses resultados, a faixa de nós totais

de 120 a 210 nós apresentaram melhoras, com cerca de 1-1.5 ponto percentual de
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Tabela 4.12. Desempenho dos autoencoders por nível de corrupção, contem-
plando somente a base OHSUMED. A coluna do meio representa o conjunto dos
autoencoders que ficaram a uma distância de 10 pontos percentuais, no máximo,
do melhor resultado obtido para o algoritmo adarank, e a coluna da direita

os autoencoders que ficaram abaixo disso. A coluna da esquerda mostra a
distribuição dos autoencoders de acordo com seu número total de nós.

Nível de ruído nos dados Distribuição esperada .10 ao topo .00 a .15

0.0 50.0% 46.09% 68.41%

0.3 50.0% 53.91% 31.59%

No. Combinações Estudadas 2948 2432 516

aumento, em todos os casos. Vemos, assim, que os resultados para o algoritmo Adarank,

como um todo, seguiram o padrão de favorecerem a faixa de nós entre 120 a 180,

estendendo essa faixa para a faixa de 180 a 210 nós. O aprimoramento em relação à

baseline foi expressivo somente para a base NP2004, e nas restantes a variação obtida

foi irrelevante. No caso das taxas de corrupção, 53.9% dos resultados bons possuiam

taxa de corrupção 0.3, contra um percentual de resultados bons esperado de 50%.
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Figura 4.2. Adarank - Desempenho para a métrica MAP na base GOV. As cores
das barras indicam a faixa de parâmetros daquele autoencoder, numa divisão por
número total de nós. A linha vermelha representa a baseline para cada caso.
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Figura 4.3. Adarank - Desempenho para a métrica NDCG@10 na base GOV.
As cores das barras indicam a faixa de parâmetros daquele autoencoder, numa
divisão por número total de nós. A linha vermelha representa a baseline para
cada caso.
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4.5.2 Rankboost

O Rankboost [18] é um algoritmo que, de forma similar ao AdaRank, combina diver-

sos ordenadores mais fracos para obter um bom resultado. A Tabela 4.1 mostra que

o Rankboost teve ganho expressivo de desempenho para as bases HP2004, NP2004,

TD2003, na faixa de 4 a 6 pontos percentuais. Para as demais bases, teve-se uma

variação de desempenho irrelevante.

Tabela 4.13. Desempenho dos autoencoders por número total de nós. A coluna

do meio representa o conjunto dos autoencoders que ficaram a uma distância de
10 pontos percentuais, no máximo, do melhor resultado obtido para o algoritmo
Rankboost, e a coluna da direita os autoencoders que ficaram abaixo disso. A
coluna da esquerda mostra a distribuição dos autoencoders de acordo com seu
número total de nós.

No. de Nós Totais (Grupos) Distribuição esperada .10 ao topo .00 a .15

0.0 a 30.0 2.12% 1.31% 4.58%

30.0 a 60.0 10.17% 9.47% 12.32%

60.0 a 90.0 20.34% 20.71% 19.2%

90.0 a 120.0 25.42% 25.87% 24.07%

120.0 a 150.0 22.53% 22.02% 24.07%

150.0 a 180.0 13.49% 13.87% 12.32%

180.0 a 210.0 5.08% 5.81% 2.87%

210.0 a 240.0 0.85% 0.94% 0.57%

No. Combinações Estudadas 1416 1067 349

Tabela 4.14. Desempenho dos autoencoders por nível de corrupção, contem-
plando somente a base OHSUMED. A coluna do meio representa o conjunto
dos autoencoders que ficaram a uma distância de 10 pontos percentuais, no má-
ximo, do melhor resultado obtido para o algoritmo rankboost, e a coluna da

direita os autoencoders que ficaram abaixo disso. A coluna da esquerda mos-
tra a distribuição dos autoencoders de acordo com seu número total de nós.

Nível de ruído nos dados Distribuição esperada .10 ao topo .00 a .15

0.0 50.0% 48.85% 69.05%

0.3 50.0% 51.15% 30.95%

No. Combinações Estudadas 2948 2780 168

Vemos, ao contrário do que ocorreu com o algoritmo Adarank, que os resultados

para o Rankboost variaram bem menos em desempenho. Entretanto, da mesma forma
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que aquele, os autoencoders que apresentaram resultados melhores que as baselines

foram pouco numerosos em todos os casos.

A Tabela 4.13 mostra que nenhuma taxa de nós total prevaleceu entre os me-

lhores resultados. Em relação às taxas de corrupção, a taxa de 0.3 ficou 1.15% ponto

percentual acima do esperado, um indicativo fraco de superioridade de tal taxa sobre

a outra.
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Figura 4.4. Rankboost - Desempenho para a métrica MAP na base GOV. As
cores das barras indicam a faixa de parâmetros daquele autoencoder, numa divisão
por número total de nós. A linha vermelha representa a baseline.
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Figura 4.5. Rankboost - Desempenho para a métrica NDCG@10 na base GOV.
As cores das barras indicam a faixa de parâmetros daquele autoencoder, numa
divisão por número total de nós. A linha vermelha representa a baseline.
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4.5.3 Listnet

O Listnet é um algoritmo que classifica os dados utilizando um modelo probabilistico

de função de perda numa abordagem por listas, que busca classificar os documentos

dividindo-os por grupos, de acordo com suas consultas, e juntando os resultados. As

bases HP2003 e NP2004 exibiram perda de desempenho, na faixa de 2 a 3 pontos

percentuais; A base NP2003 e TD2003 tiveram leve aumento de desempenho, na faixa

de 1.5 a 3 pontos percentuais. A base HP2004 teve uma subida muito grande de

desempenho, subindo em 15.5 pontos percentuais.

Tabela 4.15. Desempenho dos autoencoders por número total de nós. A coluna

do meio representa o conjunto dos autoencoders que ficaram a uma distância de
10 pontos percentuais, no máximo, do melhor resultado obtido para o algoritmo
Listnet, e a coluna da direita os autoencoders que ficaram abaixo disso. A
coluna da esquerda mostra a distribuição dos autoencoders de acordo com seu
número total de nós.

No. de Nós Totais (Grupos) Distribuição esperada .10 ao topo .00 a .15

0.0 a 30.0 2.54% 2.6% 2.43%

30.0 a 60.0 9.96% 8.93% 12.14%

60.0 a 90.0 20.13% 17.76% 25.17%

90.0 a 120.0 25.14% 24.4% 26.71%

120.0 a 150.0 22.74% 23.99% 20.09%

150.0 a 180.0 13.56% 15.37% 9.71%

180.0 a 210.0 5.08% 6.02% 3.09%

210.0 a 240.0 0.85% 0.93% 0.66%

No. Combinações Estudadas 1416 963 453

Os gráficos, das Figuras 4.6 e 4.7, exibem grande variação de resultados para a

bases HP2004 e menos nas demais. Novamente, poucos são os resultados que superam

a baseline, sendo o base HP2004 do MAP e a NP2004 do NDCG os grandes destaques.

Aqui novamente vemos o destaque sutil entre as melhores representações nas

faixas de 120 a 210 nós totais. Nenhuma taxa de corrupção prevaleceu entre os melhores

resultados.



4.5. Análise por algoritmo 37

Tabela 4.16. Desempenho dos autoencoders por nível de corrupção, contem-
plando somente a base OHSUMED. A coluna do meio representa o conjunto
dos autoencoders que ficaram a uma distância de 10 pontos percentuais, no má-
ximo, do melhor resultado obtido para o algoritmo listnet, e a coluna da direita

os autoencoders que ficaram abaixo disso. A coluna da esquerda mostra a
distribuição dos autoencoders de acordo com seu número total de nós.

Nível de ruído nos dados Distribuição esperada .10 ao topo .00 a .15

0.0 50.0% 49.97% 50.03%

0.3 50.0% 50.03% 49.97%

No. Combinações Estudadas 2948 1475 1473
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Figura 4.6. Listnet - Desempenho para a métrica MAP na base GOV. As cores
das barras indicam a faixa de parâmetros daquele autoencoder, numa divisão por
número total de nós. A lista vermelha representa a baseline.
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Figura 4.7. Listnet - Desempenho para a métrica NDCG@10 na base GOV.
As cores das barras indicam a faixa de parâmetros daquele autoencoder, numa
divisão por número total de nós. A lista vermelha representa a baseline.
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4.5.4 Ranknet

O algoritmo Ranknet aplica, par a par nas entradas da base de dados, uma rede

neuronal de ordenação de respostas associada a uma função de custo probabilistica

para treiná-la. Aqui, vemos perdas grandes de desempenho, em relação à baseline, nas

bases HP e NP, sem mudança expressiva de desempenho nas outras bases.

Tabela 4.17. Desempenho dos autoencoders por número total de nós. A coluna

do meio representa o conjunto dos autoencoders que ficaram a uma distância de
10 pontos percentuais, no máximo, do melhor resultado obtido para o algoritmo
Ranknet, e a coluna da direita os autoencoders que ficaram abaixo disso. A
coluna da esquerda mostra a distribuição dos autoencoders de acordo com seu
número total de nós.

No. de Nós Totais (Grupos) Distribuição esperada .10 ao topo .00 a .15

0.0 a 30.0 2.47% 2.52% 2.38%

30.0 a 60.0 9.96% 9.66% 10.5%

60.0 a 90.0 20.2% 18.22% 23.76%

90.0 a 120.0 25.07% 24.7% 25.74%

120.0 a 150.0 22.88% 23.6% 21.58%

150.0 a 180.0 13.49% 14.82% 11.09%

180.0 a 210.0 5.08% 5.6% 4.16%

210.0 a 240.0 0.85% 0.88% 0.79%

No. Combinações Estudadas 1416 911 505

Tabela 4.18. Desempenho dos autoencoders por nível de corrupção, contem-
plando somente a base OHSUMED. A coluna do meio representa o conjunto
dos autoencoders que ficaram a uma distância de 10 pontos percentuais, no má-
ximo, do melhor resultado obtido para o algoritmo ranknet, e a coluna da di-

reita os autoencoders que ficaram abaixo disso. A coluna da esquerda mostra
a distribuição dos autoencoders de acordo com seu número total de nós.

Nível de ruído nos dados Distribuição esperada .10 ao topo .00 a .15

0.0 50.0% 49.8% 50.2%

0.3 50.0% 50.2% 49.8%

No. Combinações Estudadas 2948 1480 1468

Novamente vemos aqui uma variação clara nos resultados gerados pelo autoen-

coder, para ambas as métricas, sem padrão claro visível. Dentre as configurações de
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melhor desempenho, houve leve destaque para as configurações de 120 a 180 nós, so-

mente. Nenhuma taxa de corrupção prevaleceu entre os melhores resultados aqui.
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Figura 4.8. Ranknet - Desempenho para a metrica MAP na base GOV. As cores
das barras indicam a faixa de parâmetros daquele autoencoder, numa divisão por
número total de nós.
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Figura 4.9. Ranknet - Desempenho para a métrica NDCG@10 na base GOV.
As cores das barras indicam a faixa de parâmetros daquele autoencoder, numa
divisão por número total de nós.
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4.5.5 Regression

A regressão é um dos algoritmos mais clássicos e simples que existem para tarefas de

aprendizado de máquina. Vemos na Tabela 4.1 que o algoritmo obtém grandes ganhos

de desempenho para as bases HP e NP2004, com as bases NP2003 e TD variando

negativamente em menor escala e a OHSUMED variando positivamente, também em

menor escala.

Tabela 4.19. Desempenho dos autoencoders por número total de nos. A coluna

do meio representa o conjunto dos autoencoders que ficaram a uma distância de
10 pontos percentuais, no máximo, do melhor resultado obtido para o algoritmo
Regression L2, e a coluna da direita os autoencoders que ficaram abaixo disso.
A coluna da esquerda mostra a distribuição dos autoencoders de acordo com
seu número total de nos.

No. de Nós Totais (Grupos) Distribuição esperada .10 ao topo .00 a .15

0.0 a 30.0 2.47% 2.36% 3.45%

30.0 a 60.0 10.1% 9.44% 15.86%

60.0 a 90.0 19.77% 20.54% 13.1%

90.0 a 120.0 25.42% 25.65% 23.45%

120.0 a 150.0 22.74% 22.27% 26.9%

150.0 a 180.0 13.56% 13.45% 14.48%

180.0 a 210.0 5.08% 5.51% 1.38%

210.0 a 240.0 0.85% 0.79% 1.38%

No. Combinações Estudadas 1416 1271 145

Tabela 4.20. Desempenho dos autoencoders por nível de corrupção, contem-
plando somente a base OHSUMED. A coluna do meio representa o conjunto
dos autoencoders que ficaram a uma distância de 10 pontos percentuais, no má-
ximo, do melhor resultado obtido para o algoritmo regression, e a coluna da

direita os autoencoders que ficaram abaixo disso. A coluna da esquerda mos-
tra a distribuição dos autoencoders de acordo com seu número total de nós.

Nível de ruído nos dados Distribuição esperada .10 ao topo .00 a .15

0.0 50.0% 51.54% 29.32%

0.3 50.0% 48.46% 70.68%

No. Combinações Estudadas 4438 4131 307

O desempenho das representações seguiu conforme a distribuição esperada, como
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evidencia a Tabela 4.19. A taxa de corrupção de 0.0 prevaleceu levemente sobre a taxa

de 0.3.
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Figura 4.10. Regression - Desempenho na base GOV para a métrica MAP.
As cores das barras indicam a faixa de parametros daquele autoencoder, numa
divisão por número total de nós.
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Figura 4.11. Regression - Desempenho na base GOV para a métrica NDCG@10.
As cores das barras indicam a faixa de parametros daquele autoencoder, numa
divisão por número total de nós.
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4.5.6 Random Forests

Para o algoritmo Random Forests, vemos variações negativas fracas para as bases

TD2004 e HP2004, e variações insignificantes pra as demais bases de dados. Vemos

aqui novamente a tendência dos melhores resultados estarem na faixa de 120 a 210

nós totais, e é possível observar nas Figuras 4.12 e 4.13 que a variação nos resultados

foi bem pequena: o desempenho dos autoencoders se concentrou em poucas faixas de

resultados. Nenhuma taxa de corrupção prevaleceu entre os melhores resultados aqui.

Tabela 4.21. Desempenho dos autoencoders por numero total de nós. A coluna

do meio representa o conjunto dos autoencoders que ficaram a uma distância de
10 pontos percentuais, no máximo, do melhor resultado obtido para o algoritmo
Random Forests, e a coluna da direita os autoencoders que ficaram abaixo
disso. A coluna da esquerda mostra a distribuição dos autoencoders de acordo
com seu número total de nós.

No. de Nós Totais (Grupos) Distribuição esperada .10 ao topo .00 a .15

0.0 a 30.0 2.4% 2.29% 2.56%

30.0 a 60.0 9.46% 7.83% 11.77%

60.0 a 90.0 20.34% 17.59% 24.23%

90.0 a 120.0 25.42% 25.42% 25.43%

120.0 a 150.0 22.88% 24.34% 20.82%

150.0 a 180.0 13.56% 15.54% 10.75%

180.0 a 210.0 5.08% 6.02% 3.75%

210.0 a 240.0 0.85% 0.96% 0.68%

No. Combinações Estudadas 1416 830 586

Tabela 4.22. Desempenho dos autoencoders por nível de corrupção, contem-
plando somente a base OHSUMED. A coluna do meio representa o conjunto
dos autoencoders que ficaram a uma distância de 10 pontos percentuais, no má-
ximo, do melhor resultado obtido para o algoritmo Random Forests, e a coluna

da direita os autoencoders que ficaram abaixo disso. A coluna da esquerda

mostra a distribuição dos autoencoders de acordo com seu número total de nós.

Nível de ruído nos dados Distribuição esperada .10 ao topo

0.0 50.03% 50.03%

0.3 49.97% 49.97%

No. Combinações Estudadas 2948 2948
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Figura 4.12. Random Forests - Desempenho para a métrica MAP na base GOV.
As cores das barras indicam a faixa de parâmetros daquele autoencoder, numa
divisão por número total de nós.
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Figura 4.13. Random Forests - Desempenho para a métrica NDCG@10 na base
GOV. As cores das barras indicam a faixa de parâmetros daquele autoencoder,
numa divisão por número total de nós.
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4.5.7 Mart

Houve variação positiva em relação à baseline, de 5 a 7 pontos percentuais, nas bases

HP2004, NP2004 e TD2003. Nas bases HP2003 e NP2003 houve leve variação negativa,

de 2.5 a 3 pontos percentuais. Além disso, não houve grande variação nos resultados,

e a tendência de concentração dos melhores autoencoders se manteve na faixa de 120

a 180 nós. Nenhuma taxa de corrupção prevaleceu entre os melhores resultados aqui.

Tabela 4.23. Desempenho dos autoencoders por número total de nós. A coluna

do meio representa o conjunto dos autoencoders que ficaram a uma distância de
10 pontos percentuais, no máximo, do melhor resultado obtido para o algoritmo
Mart, e a coluna da direita os autoencoders que ficaram abaixo disso. A coluna

da esquerda mostra a distribuição dos autoencoders de acordo com seu número
total de nós.

No. de Nós Totais (Grupos) Distribuição esperada .10 ao topo .00 a .15

0.0 a 30.0 2.54% 3.02% 1.87%

30.0 a 60.0 9.6% 7.85% 12.07%

60.0 a 90.0 20.2% 18.0% 23.3%

90.0 a 120.0 25.28% 26.45% 23.64%

120.0 a 150.0 22.88% 24.03% 21.26%

150.0 a 180.0 13.56% 14.61% 12.07%

180.0 a 210.0 5.08% 5.31% 4.76%

210.0 a 240.0 0.85% 0.72% 1.02%

No. Combinações Estudadas 1416 828 588

Tabela 4.24. Desempenho dos autoencoders por nível de corrupção, contem-
plando somente a base OHSUMED. A coluna do meio representa o conjunto
dos autoencoders que ficaram a uma distância de 10 pontos percentuais, no má-
ximo, do melhor resultado obtido para o algoritmo mart, e a coluna da direita

os autoencoders que ficaram abaixo disso. A coluna da esquerda mostra a
distribuição dos autoencoders de acordo com seu número total de nós.

Nível de ruído nos dados Distribuição esperada .10 ao topo

0.0 50.07% 50.07%

0.3 49.93% 49.93%

No. Combinações Estudadas 2948 2948
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Figura 4.14. Mart - Desempenho para a métrica MAP na base GOV. As cores
das barras indicam a faixa de parâmetros daquele autoencoder, numa divisão por
número total de nós.
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Figura 4.15. Mart - Desempenho para a métrica NDCG@10 na base GOV.
As cores das barras indicam a faixa de parâmetros daquele autoencoder, numa
divisão por número total de nós.
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4.5.8 Lambdamart

Houve variação fortemente positiva, de 8 pontos percentuais, na base NP2004; fra-

camente positiva na base TD2003 e negativa na base TD2004, na faixa de 4 pontos

percentuais. Não houve grande variação nos resultados dos autoencoders. Houve con-

centração maior que a esperada de bons resultados na faixa de 120 a 180 nós totais.

Nenhuma taxa de corrupção prevaleceu entre os melhores resultados aqui.

Tabela 4.25. Desempenho dos autoencoders por número total de nós. A coluna

do meio representa o conjunto dos autoencoders que ficaram a uma distância de
10 pontos percentuais, no máximo, do melhor resultado obtido para o algoritmo
Lambdamart, e a coluna da direita os autoencoders que ficaram abaixo disso.
A coluna da esquerda mostra a distribuição dos autoencoders de acordo com
seu número total de nós.

No. de Nós Totais (Grupos) Distribuição esperada .10 ao topo .00 a .15

0.0 a 30.0 2.4% 2.55% 2.2%

30.0 a 60.0 9.53% 6.42% 13.87%

60.0 a 90.0 20.27% 16.85% 25.04%

90.0 a 120.0 25.42% 25.7% 25.04%

120.0 a 150.0 22.88% 25.33% 19.46%

150.0 a 180.0 13.56% 16.24% 9.81%

180.0 a 210.0 5.08% 5.82% 4.06%

210.0 a 240.0 0.85% 1.09% 0.51%

No. Combinações Estudadas 1416 825 591

Tabela 4.26. Desempenho dos autoencoders por nível de corrupção, contem-
plando somente a base OHSUMED. A coluna do meio representa o conjunto
dos autoencoders que ficaram a uma distância de 10 pontos percentuais, no má-
ximo, do melhor resultado obtido para o algoritmo lambdamart, e a coluna da

direita os autoencoders que ficaram abaixo disso. A coluna da esquerda mos-
tra a distribuição dos autoencoders de acordo com seu número total de nós.

Nível de ruído nos dados Distribuição esperada .10 ao topo

0.0 50.03% 50.03%

0.3 49.97% 49.97%

No. Combinações Estudadas 2948 2948
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Figura 4.16. Lambdamart - Desempenho para a métrica MAP, na base GOV.
As cores das barras indicam a faixa de parâmetros daquele autoencoder, numa
divisão por número total de nós.
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Figura 4.17. Lambdamart - Desempenho para a métrica NDCG@10, na base
GOV. As cores das barras indicam a faixa de parâmetros daquele autoencoder,
numa divisão por número total de nós.
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4.6 Sumário

Para a base GOV, 120 autoencoders diferentes geraram representações cuja qualidade

foi aferida por oito algoritmos de ordenação de respostas. A análise dos resultados trás

uma série de conclusões interessantes:

Tabela 4.27. Desempenho dos autoencoders por numero total de nós. A coluna

do meio representa o conjunto dos autoencoders que ficaram a uma distância
de 10 pontos percentuais, no máximo, do melhor resultado obtido para algum
algoritmo, e a coluna da direita os autoencoders que ficaram abaixo disso. A
coluna da esquerda mostra a distribuição dos autoencoders de acordo com seu
número total de nós.

No. de Nós Totais (Grupos) Distribuição esperada .10 ao topo .00 a .15

0.0 a 30.0 2.4% 2.24% 2.75%

30.0 a 60.0 9.86% 8.58% 12.65%

60.0 a 90.0 20.18% 18.83% 23.12%

90.0 a 120.0 25.3% 25.26% 25.39%

120.0 a 150.0 22.79% 23.53% 21.18%

150.0 a 180.0 13.53% 14.79% 10.8%

180.0 a 210.0 5.08% 5.85% 3.42%

210.0 a 240.0 0.85% 0.93% 0.67%

No. Combinações Estudadas 11328 7764 3564

Tabela 4.28. Desempenho dos autoencoders por nível de corrupção, contem-
plando somente a base OHSUMED. A coluna do meio representa o conjunto
dos autoencoders que ficaram a uma distância de 10 pontos percentuais, no má-
ximo, do melhor resultado obtido para algum algoritmo, e a coluna da direita

os autoencoders que ficaram abaixo disso. A coluna da esquerda mostra a
distribuição dos autoencoders de acordo com seu número total de nós.

Nível de ruído nos dados Distribuição esperada .10 ao topo .00 a .15

0.0 50.02% 49.7% 51.7%

0.3 49.98% 50.3% 48.3%

No. Combinações Estudadas 25074 21142 3932

1. O parâmetro “Número de Nós Total” tem faixas que tendem a apre-

sentar resultados melhores, mas qualquer faixa pode dar resultados
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ruins: Para cada resultado de ordenação de respostas há um espectro de resul-

tados que vai de números muito ruins a números muito bons. Todas as faixas de

“números de nós totais” estudadas obtiveram resultados que, consistentemente,

estavam distribuídas ao longo de todo o espectro de resultados possíveis. Ou

seja: nenhuma quantidade de nós totais é imune a resultados ruins. Qualquer

valor que se escolha para esse parâmetro do autoencoder está sujeito a resultados

insatisfatórios. Há, entretanto, uma clara tendência de se encontrar resultados

melhores numa faixa específica de valores para esses parâmetros. Isso significa

que escolher uma faixa específica de valores para o número de nós total não dá

garantia de bons resultados, mas certamente aumenta suas chances de encontrar

bons resultados.

2. Há leve tendência de se encontrar os melhores resultados na faixa de

autoencoders com 120 a 180 nós totais: Na grande maioria das análises,

vemos que a faixa de 120 a 180 nós totais tendeu a apresentar bons resultados.

Tal tendência, embora não absoluta, não foi influenciada de forma relevante pela

métrica estudada, e foi levemente influenciada pelo algoritmo estudado. Na base

GOV, fosse a base HP, NP ou TD, os resultados se mantiveram consistentes, e

variou de forma relevante no caso da base OHSUMED. Dentre todos os algo-

ritmos estudados essa tendência de resultados se apresentou, exceção feita aos

algoritmos Regression e Rankboost, onde não houve tendência de apresentação

de melhores resultados em nenhuma faixa. Nos algoritmos Adarank, Listnet e

Random Forests, a faixa de 180 a 210 nós seguiu tendência similar. Quase todas

as bases de dados estudadas também apresentaram essa tendência, exceção feita

à base de dados TD, uma base notóriamente difícil de se classificar, onde a ten-

dência se restringiu à faixa de 150 a 210 nós. Vemos, em suma, que independente

de métrica, base de dados ou algoritmo, é possível afirmar com razoável segurança

que a faixa de nós entre 120 e 180 tende a apresentar os melhores resultados.

3. É muito difícil, mas possível, melhorar o resultado dos algoritmos para

algumas bases de dados: Não houve algoritmo que obteve melhora ou piora

em relação à baseline para todas as bases de dados estudadas. E, em todos os

casos onde houve, a quantidade de representações que superaram a da baseline

foi muito pequena, ainda que a quantidade de representações quase boas possa

ter sido por vezes, bem grande. Isso mostra que melhorar, para determinado

algoritmo e determinada base, uma representação utilizando um autoencoder é

bem difícil - o que ressalta a importância de se ter bons parâmetros estáticos de

autoencoder para limitar o seu espaço de busca por configurações boas.
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4. As novas representações das bases de dados influenciam cada algo-

ritmo de maneira diferente: Observamos que, enquanto os algoritmos Ada-

rank, Rankboost, Listnet, Ranknet e Regression tiveram desempenhos muito

variáveis sobre as representações, os algoritmos Random Forests, Mart e Lamb-

damart variaram muito menos. As representações oferecem os mesmos dados

codificados para todos os algoritmos, mas a maneira como cada um lida com eles

varia muito. Para vários, algumas representações simplesmente perdem muita

informação, enquanto para outros é possível tratar todos os casos de forma muito

mais semelhante. Cada algoritmo, em suma, reage aos dados apresentados de

maneira diferente.

5. Não há garantia de que uma representação específica de base de dados

terá resultados semelhantes para todos os algoritmos: Isso decorre da

conclusão do item acima. Uma mesma representação gerada por um autoencoder

pode oferecer uma melhora razoável para um algoritmo e uma piora significativa

para outro. A eficácia das representações está intrínsicamente ligada ao algoritmo

que a utiliza.

6. A métrica utilizada, seja MAP ou NDCG@10, não influencia no de-

sempenho das representações na ordenação: Vimos que, para o parâmetro

estático “Número de Nós Total”, a tendência de onde se encontrar os melhores

resultados foi práticamente a mesma. Isso indica que a escolha da métrica não

afeta o desempenho do algoritmo ou da representação que ele utiliza.

7. Inserir ruído nos autoencoders não melhorou os resultados: Salvo ex-

ceções, onde a tendência de melhora foi sutil e variou, na maior parte dos casos

nenhuma taxa de corrupção apresentou tendência de ter resultados melhores.

Ou seja: as representações alternativas criadas neste trabalho para aprimorar

tarefas de Learning to Rank se mostraram ao mesmo tempo promissoras e de

difícil trato. Embora seja difícil, cada algoritmo apresentou melhora relevante

em algum dos seus resultados, quando executado sobre as representações cria-

das. O parâmetro “Número de Nós Total” apresentou tendência de dar melhores

resultados quando na faixa de 120 a 150 nós totais - isso para todas as bases

de dados, sejam elas as bases GOV, de 44 atributos, ou a base OHSUMED, de

64 atributos. A base GOV repetiu tal tendência para a faixa de 150 a 180, e a

base OHSUMED a repetiu para a faixa de 90 a 120 nós totais. A métrica de

avaliação não influencia no desempenho das representações, e tanto as bases de

dados quando os algoritmos, por si só, influenciam pouco tal tendência.
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Além disso, vemos que o fator mais crucial para se determinar o potencial de

melhora de uma representação criada por autoencoder é o par algoritmo-base

de dados. Cada par interage de maneira única com as representações: uma

mesma representação pode ser boa para um e ruim para outro. Isso mostra

que, mais do que simplesmente melhorar as bases de dados de forma geral, as

representações agem adaptando uma base de dados a um algoritmo, e isso gera

resultados positivos.

Vemos, portanto, que o aprimoramento das bases de dados, o estudo de seus

atributos e de suas representações resulta numa melhora de desempenho que,

por vezes, reduz a diferença de desempenho de dois algoritmos muito diferentes.

Disso, conclue-se que quanto melhor uma base de dados for, menos relevante o

algoritmo de ordenação de respostas tende a ser. O estudo das bases de dados, e

não mais dos algoritmos de ordenação de respostas, mostra-se interessante como

forma de buscar superar o atual estado da arte em ordenamento de documentos.
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Conclusão e Trabalhos Futuros

Neste trabalho, nós estudamos o aprendizado de representações para tarefas de ordena-

ção de respostas. Nós utilizamos Stacked Autoencoders para gerar diferentes represen-

tações de uma base de dados referência e analisamos a forma como tais representações

influenciavam os resultados de algoritmos de ordenamento de documentos tradicionais.

Estudamos ainda se um parâmetro estático dos autoencoders, o número de nós to-

tal, teria uma faixa paramétrica limitada onde melhores resultados de representações

tenderiam a se apresentar.

Nós observamos que o aprendizado de representações das bases de dados é uma

forma difícil, mas muito eficaz, de se melhorar os resultados apresentados pelos algo-

ritmos de ordenação de respostas. Vemos que boas representações de bases de dados

reduzem a diferença de desempenho entre algoritmos vastamente diferentes, o que in-

dica que, se uma base de dados for boa o surficiente, o algoritmo de ordenamento

utilizado importa pouco na obtenção de um ótimo desempenho.

Mostramos ainda que, embora os autoencoders sejam uma forma difícil de se

conseguir representações melhores das bases de dados, há uma faixa de nós totais

que, nas bases observadas, tendeu a apresentar os melhores resultados. Observamos

que diferentes pares algoritmo-base de dados obtém desempenhos variáveis sobre uma

mesma representação, o que indica que tais representações funcionam mais como uma

forma de adaptar uma base de dados a um algoritmo do que como forma geral de

melhorar as bases como um todo. Ou seja: a inclusão de uma etapa de tratamento

dos dados em algorimos de ordenamento é uma forma de se melhorar resultados que

se apresenta muito promissora.

Diversas perguntas surgiram dos resultados analisados, que se apresentam como

boas linhas de trabalhos futuros. Vemos que cada par algoritmo-base de dados reage às

mesmas representações de formas diferentes. Surgem então as perguntas: que fatores
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determinam essa reação? É possível delimitar um conjunto de parâmetros bons para o

autoencoder para diferentes pares? Aqui, estudamos também que o parâmetro “Número

de nós total” tem uma faixa que apresenta melhores resultados. Outros parâmetros

estáticos do autoencoder podem ser estudados de forma semelhante, como corrupção ou

largura. Quanto mais delimitada a faixa que pode trazer melhores resultados for, mais

interessante o autoencoder se apresenta, enquanto forma de melhorar os resultados dos

algoritmos de ordenação de respostas. Vemos ainda tais parâmetros do autoencoder

não possuem tendências absolutas: diferentes bases de dados e algoritmos apresentam

tendências por vezes divergentes às gerais. Porque isso ocorre?

Em suma, este trabalho mostra que aprimorar as bases de dados é uma forma

muito promissora de se melhorar os resultados dos algoritmos de ordenamento, em opo-

sição a simplesmente aprimorar o algoritmo de ordenação de respostas em si. Vemos

que o autoencoder é uma forma boa de trazer tais melhoras, havendo faixas de parâ-

metros que claramente trazem melhores resultados. Diversas questões aqui levantadas

se apresentam como boas linhas para trabalhos futuros.
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