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Resumo

Reconhecimento de emoção através da fala é um ponto chave na direção da inteligên-
cia emocional em interações homem-máquina avançadas. Identificar emoções na fala
humana requer aprender descritores que sejam robustos e discriminativos entre os mais
diversos domínios, estes que se distinguem em termos de idioma, espontaneidade da
fala, condições de gravação do áudio, além dos tipos de emoções expressas. Isso descreve
um cenário de aprendizado que as distribuições disjuntas de descritores e rótulos estão
sujeitas a divergências substanciais entre domínios. Neste trabalho, propomos uma ar-
quitetura profunda que explora em conjunto uma rede convolucional para extração de
descritores compartilhados entre domínios e uma rede recorrente LSTM (Long Short-
Term Memory) para classificar emoções usando descritores específicos de domínio. Uti-
lizamos descritores genéricos para permitir a adaptação de modelos a partir de vários
domínios de origem, dada a espacidade de dados de fala e o fato de que os domínios
alvo apresentam poucos dados rotulados. Um extenso experimento entre os datasets
nos mais variados domínios revela que descritores genéricos proveem ganhos entre 4.3%
e 78.6% no reconhecimento de emoção em fala. Nós avaliamos várias abordagens para
adaptação de um domínio em outro e realizamos um estudo de ablação para entender
quais domínios de origem mais contribuem para a efetividade geral no reconhecimento
de emoção para um domínio alvo. Para entender a diferença na efetividade entre
domínios e emoções, nós analisamos a divergência entre eles para entender melhor as
razões pelas quais o processo de adaptação ao domínio alvo não é efetivo quando alguns
outros domínios estão na base de dados fonte.
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Abstract

Emotion recognition from speech is one of the key steps towards emotional intelligence
in advanced human-machine interaction. Identifying emotions in human speech re-
quires learning features that are robust and discriminative across diverse domains that
differ in terms of language, spontaneity of speech, recording conditions, and types of
emotions. This corresponds to a learning scenario in which the joint distributions of
features and labels may change substantially across domains. In this paper, we propose
a deep architecture that jointly exploits a convolutional network for extracting domain-
shared features and a long short-term memory network for classifying emotions using
domain-specific features. We use transferable features to enable model adaptation from
multiple source domains, given the sparseness of speech emotion data and the fact that
target domains are short of labeled data. A comprehensive cross-corpora experiment
with diverse speech emotion domains reveals that transferable features provide gains
ranging from 4.3% to 78.6% in speech emotion recognition. We evaluate several do-
main adaptation approaches, and we perform an ablation study to understand which
source domains add the most to the overall recognition effectiveness for a given target
domain. In addition, to understand the effectiveness difference between domains and
emotions, we analyze the divergence among them to understand better the reasons why
adaptation process to the target domain is uneffectiveness when some other domains
are in the source dataset.
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Chapter 1

Introduction

Humans are increasingly interacting with machines via speech, which is an important
impetus for studying the vocal channel of emotional expression. Applications of an
interface capable of assessing emotional states from human voice are numerous and
diverse, including communication systems for vocally-impaired individuals, call centers,
lie detection, airport security, and realistic interaction with empathy. The aim of
this work is the development of models capable of recognizing people’s emotions from
recorded voice, also known as emotion recognition from speech.

Most emotional states involve physiological reactions, which in turn modify dif-
ferent aspects of the voice production process [Juslin and Laukka, 2003]. Emotions
produce changes in respiration and an increase in muscle tension, which influence the
vibration of the vocal folds and vocal tract shape, thus affecting the acoustic character-
istics of the speech. When someone is in a state of anger, fear or joy, the sympathetic
nervous system is aroused, the heart rate and blood pressure increase, the mouth be-
comes dry and there are occasional muscle tremors. As a result, speech is loud, fast
and enunciated with strong high frequency energy. Sadness, by contrast, is associated
with a low, hesitant, and lacking in energy speech [Oudeyer, 2003].

While there is considerable evidence that speech features can differentiate emo-
tional states [Deng et al., 2014a; Wöllmer et al., 2013; Stuhlsatz et al., 2011], the way in
which physiological reactions translate into speech features may vary greatly depend-
ing on specific factors such as acoustic signal conditions, speakers, spoken languages,
linguistic content, and type of emotion (e.g., acted, elicited, or naturalistic) [Drolet
et al., 2012]. Since each possible combination of such factors may define a specific
domain, emotion recognition from speech becomes particularly challenging because it
is unclear which speech features are the most effective for each domain. Also, it is chal-
lenging to train an emotion recognition system exclusively for the target domain due
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2 Chapter 1. Introduction

to unavailability of sufficient labeled data which limits the exploration of the feature
space. Fortunately, there are potentially shared or local invariant features that shape
emotions in different domains, thus transfer learning may alleviate the data demands.

It is performed an ablation domain analysis in order to elucidate the benefits
of incorporating multi-domain data into the final recognition model. It is showed
that even small amounts of multi-domain data used for adaptation can significantly
improve recognition effectiveness, while domain discrepancy poses serious issues to
effective model adaptation. Also, the effectiveness of the different feature transference
approaches varies greatly depending on the factors that define the target domain. In
addition, to elucidate divergence among datasets and emotions, it is also performed a
brief analysis to evaluate the divergence among them. As result, it is reported gains
that vary from 4.3% to 78.6%, depending on the target domain and feature transference
approach.

1.1 Contributions

In this work, we propose a deep architecture for speech emotion recognition composed of
a convolutional neural network (CNN) to extract domain-shared features from multi-
domain data, and a long short-term memory network (LSTM) that is fed with the
extracted domain-shared features for emotion prediction and uses a limited amount of
target-domain data.

The main contributions in this work are:

1. the blending of a CNN with a LSTM to exploit both spatial and temporal in-
formation of speech features for improving emotion recognition. That is, while
the CNN extracts spatial features of varying abstract levels, the LSTM employs
contextual information in order to model how emotions evolve over time;

2. It is discussed several feature transference approaches in our deep architecture.
Such feature transference approaches differ in terms of the choice of which layers
to freeze or tune, and whether or not target domain data are used during pre-
training;

3. We conducted rigorous experiments using six standard speech emotion datasets
that correspond to different domains. Recognition models are trained using dif-
ferent transference approaches;

4. Experimental results show that our network is capable to learn and transfer the
learng featuresfrom one domain to other.
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1.2 Text Organization

The remainder of this thesis is organized as follows. Chapter 2 presents the background
and relevant related works on acoustic features, concerns in audios, transfer learning
and domain adaptation, and feature learning. In Chapter 3 we describe the proposed
multi-domain networks. In Chapter 4 we describe the datasets used in the experiments,
its characterization, as well as the data pre-processing step by step. In Chapter 5 we
present, discuss and analyse empirical and subjectively the results of our multi-domain
network. In addition we also present an ablation domain analysis. In Chapter 6 we
analyse the divergence among datasets and emotions to elucidate and give support for
results presented in 5. And finally, Chapter 7 shows conclusions of this work.





Chapter 2

Background and Related Work

In this chapter we describe the importance of emotion recognition and present the main
approaches to classify emotions in audio. In Section 2.1, we present the introduction
for emotion recognition in audio and its importance. In Section 2.2, the idea of feature
engineering for emotion recognition using well known audio features. In Section 2.3,
we present concerns related to data. In Section 2.4, we present the main idea of this
work that is transfer the learning from some domains to a specific domain to minimize
the concerns presented in Section 2.3. In Section 2.5, the concept of feature learning
for emotion recognition in audio is presented. As additional analysis, in Section 2.6, we
show how the divergence between domains can be estimated. Finally, in Section 2.7,
we show the main differences between this work and the works aforementioned.

2.1 Emotion Recognition

Research on the recognition of emotional expressions in voices is of great academic in-
terest in psychology [Velten, 1968; Banziger et al., 2009], neurosciences [Tanaka et al.,
2010; Stienen et al., 2011; Spreckelmeyer et al., 2009; Johnstone et al., 2006] and affec-
tive computing [Marchi et al., 2016; Schuller et al., 2015; Deng et al., 2014a; Wöllmer
et al., 2013]. A number of researchers investigated acoustic correlates of emotions from
human speech. In one of the first studies [Williams and Stevens, 1972], the authors
identify parameters in the speech that reflect the emotional state of a speaker. They
found that anger, fear, and sorrow situations tend to produce characteristic differences
in contour of fundamental frequency, average speech spectrum, temporal characteris-
tics, precision of articulation, and waveform regularity of successive glottal pulses.

5



6 Chapter 2. Background and Related Work

2.2 Features

There are studies on how acoustic correlates of emotions from speech are transformed
into features for supervised learning algorithms. In [Koolagudi and Rao, 2012; Ra-
makrishnan and Emary, 2013], the authors provide reviews on a wide range of features
employed for emotion recognition from speech. In [Nogueiras et al., 2001], the authors
present an approach based on hidden semi-continuous Markov models, which are built
using specific energy and pitch features. In [Koolagudi et al., 2012], the authors em-
ploy mel frequency cepstral coefficients (MFCCs) as features for a Gaussian mixture
model classifier. A similar MFCC model was proposed in [Koolagudi et al., 2010] and
features related to speaking rate are also explored to categorize the emotions. In [Rao
et al., 2013], the authors propose speech prosody and related acoustic features for the
recognition of emotion. Methods for emotion recognition from speech relying on long-
term global prosodic features were developed. In [Batliner et al., 2011], the authors
describe seven acoustic and four linguistic types of features, from which they found the
most important ones, and also discuss the mutual influence of acoustics and linguistics.
In [Schuller et al., 2009a], the authors introduce string kernels as a novel solution in
the field.

2.3 Data Concerns

Background noise, varying recording levels, and acoustic properties of the environment,
and how these issues impact speech emotion recognition systems are discussed in [Eyben
et al., 2012]. More serious concerns about data used for emotion recognition from
speech were presented in [Schuller et al., 2015], where the authors discuss issues related
to the overestimation of the accuracy of emotion recognition systems, since experiments
are usually performed on acted data (rather than on spontaneous data). Concerns
with experiments performed on acted data were also discussed in [Seppi et al., 2008].
Alternatively, more realistic acted data were recently presented in [Busso et al., 2017].

2.4 Transfer Learning and Domain Adaptation

Since speech data are usually captured from different scenarios, it is often observed
a significant performance degradation due to the inherent mismatch between training
and test set. Thus, domain adaptation is a relevant topic in emotion recognition
from speech. In [Yosinski et al., 2014], the authors provide a detailed analysis on
how transferable are features in deep neural networks. They found that initializing a
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network with transferred features from almost any number of layers can produce a boost
to generalization that lingers even after fine-tuning to the target dataset. In [Zhang
et al., 2016a], the authors explore a multi-task framework in which speech or song
are jointly leveraged in emotion recognition in a cross-corpus setting. In [Song et al.,
2016], the authors show that training and test data used for system development usually
tend to be similar as far as recording conditions, noise overlay, language, and types of
emotions are concerned. The authors conclude that a cross-corpus evaluation would
provide a more realistic view of the recognition performance. In [Huang et al., 2017], the
authors propose a feature transfer approach using a deep architecture called PCANet,
which extracts both the domain-shared and the domain-specific latent features, leading
to significant effectiveness improvements. In [Mao et al., 2016], the authors propose
a two-layer network, so that the parameters within the second layer are imposed the
common priors between the related classes, so that the classes with few labeled data
in target domain can borrow knowledge from the related classes in source domain.
In [Deng et al., 2014b], the authors present a feature transfer learning method using
denoising autoencoders [Vincent et al., 2008] to build high order sub-spaces of the
source and target corpora, where features in the source domain are transferred to the
target domain by a specific neural network. Similarly, in [Deng et al., 2014a], the
authors employ a denoising autoencoder as a domain adaptation method. In this case,
prior knowledge learned from a target set is used to regularize the training on a source
set. In [Abdel-Wahab and Busso, 2015], the authors propose a supervised domain
adaptation approach which can improve the speech emotion recognition performance
in the presence of mismatched training and testing conditions. Finally, in [Deng et al.,
2013] the authors propose feature transfer learning based on sparse autoencoders. Their
approach consists of learning a representation using a single-layer autoencoder, and
then applying a linear SVM using the learned representation.

2.5 Feature Learning

Deep neural networks were already used for emotion recognition from speech.
In [Stuhlsatz et al., 2011], the authors propose a generalized discriminant analysis
using deep neural networks. They show that low-dimensional features capture hidden
information from the acoustic features leading to significant gains compared with typ-
ical SVMs. In [Deng et al., 2017], the authors assume a scenario where speech data
are obtained from different devices and varied recording conditions. As a result, data
are typically highly dissimilar in terms of acoustic signal conditions. They evaluate the
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use of denoising autoencoders [Vincent et al., 2008] to minimize this data mismatch
problem. In [Han et al., 2014], the authors propose the use of deep neural networks to
extract high level features from raw recorded voice. The network outperforms SVMs
using hand-crafted features. In [Kim et al., 2013], the authors employ deep belief
networks and their results suggest that learning high-order non-linear relationships us-
ing these networks is an effective approach for emotion recognition. In [Zhang et al.,
2016b], the authors employ a feature enhancement method based on an autoencoder
with LSTMs, for robust emotion recognition from speech. The enhanced features are
then used by SVMs. In [Huang et al., 2014], the authors propose to learn salient features
for speech emotion recognition using CNNs. The network is learned in two stages. In
the first stage, unlabeled samples are used to learn local invariant features using sparse
autoencoders with reconstruction penalization. In the second step, these features are
used as the input to a feature extractor. In [Xue et al., 2015], the authors introduce
an approach to separate emotion-specific features from general and less discriminative
ones. They employ an unsupervised feature learning framework to extract rough fea-
tures. Then these rough features are further fed into a semi-supervised feature learning
framework. In this phase, efforts are made to disentangle the emotion-specific features
and some other features by using a novel loss function, which combines reconstruction
penalty, orthogonal penalty, discriminative penalty and verification penalty.

2.6 Divergence Analysis

Divergence analysis has been applied in some scenarios to measure how different are
two or more parameters, where parameter can be time series, clusters, and data dis-
tribution. Kullback-Leibler (KL) divergence has been used in several works for this
purpose. In [Helén and Virtanen, 2007, 2009], KL divergence is used to estimate how
similar are audios in an audio query problem. In [Huang, 2008], KL divergence is
used as similarity metric among documents in a clustering process. An SVM using the
KL divergence between single Gaussians was able to classify 84% of songs correctly
in [Mandel and Ellis, 2005]. In [Socher et al., 2011], KL divergence is used to evaluate
the model’s ability to predict sentiment distributions, in other words, to evaluate how
similar or divergent are two distributions. In [Nisius et al., 2009], an approach for
Fingerprint Reduction is proposed in the basis of KL divergence analysis of bit distri-
butions. In Study on Gesture-Sound Similarity, KL divergence is used to measure how
much one signal can be explained by the other [Caramiaux et al., 2010]. KL divergence
is also used in Non-negative spectrogram factorization (NSF) in [Parry and Essa, 2007].
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KL divergence has been also used in dimension reduction where data distribution in
high dimension must have the same distribution in low dimension as presented in [der
Maaten and Hinton, 2008]. Gao et al. [2011] present an application of KL divergence
more similar with that used in our work that is analyse how divergent are datasets to
each other. The authors propose an adjustment in model when the test dataset has a
different distribution related to train dataset. To get this, a transfer learning framework
for latent variable model is proposed which can utilize the distance (or divergence) of
the two datasets to modify the parameters of the obtained latent variable model. So
they do not need to rebuild the model and only adjust the parameters according to the
divergence, which will adopt different datasets.

2.7 Our Work

The main differences between this work and aforementioned works are: (i) we consider
diverse domain adaptation approaches using CNN and LSTM features, (ii) we perform
a domain ablation analysis which reveals the relative value of different domains, (iii)
we perform domain blending, that is, we not just transfer features from one domain to
another, but we produce generic features using data from multiple domains simultane-
ously. Further, we investigated the best freezing/tuning cut-off for each target domain.
Finally, to understand and give a better support for conclusions, (iv) a divergence
analysis is performed among datasets and emotions.





Chapter 3

Multi-domain Network

In this chapter we propose a multi-domain network with the objective of learning
features for speech emotion recognition in a wild scenario with many domains.

The task of learning to recognize emotions from speech is defined as follows. We
have as input the training set (referred to as D), which consists of a set of records of
the form < a, e >, where a is an audio sample (i.e., an emotional episode) and e is the
corresponding emotion being expressed. Emotions draw their values from a discrete
set of possibilities, such as sadness, fear, happiness, surprise, and anger. The training
set is used to construct a model which relates features within the audio samples to the
corresponding emotions. The test set (referred to as T ) consists of records < a, ? >

for which only the audio sample a is available, while the corresponding emotion e is
unknown. The model learned from the training set D is used to produce estimations
of the emotions expressed on audio samples in the test set T .

We consider a learning scenario in which audio samples and their corresponding
emotion labels are drawn from different generating distributions. For instance, some
audio samples may be obtained from acted speech while other audio samples are ob-
tained from spontaneous speech. The process that produces audio samples may also
differ in terms of factors such as recording conditions, spoken language, and linguistic
content. A specific combination of these factors defines a domain. Speech emotion
recognition is a domain-specific problem, that is, a recognition model learned from
one domain is likely to fail when tested against data from another domain [Ben-David
et al., 2010]. As a result, real application systems usually require labeled data from
multiple domains, guaranteeing an acceptable performance for different domains. How-
ever, each domain has a very limited amount of labels due to the high cost to create
large-scale labeled datasets for domain-specific speech emotion recognition. Feature
transferability is thus an appealing way to alleviate the demands for domain-specific

11
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wave file

Convolutional and pooling layers with non-linearities
Extracting features

Combining
features

fully connected
output

Figure 3.1: Multi-Domain Network architecture for learning transferable features. Con-
volutional layers are followed by a layer that combines features extracted by convolu-
tional layers. In addition, there is a dropout layer as regularizer after each convolutional
and combiner feature layer. Different feature transference approaches are designed us-
ing this architecture.

labels. Thus, for domains that are short of labeled data transferable features enable
model adaptation from multiple domains.

3.1 Network Architectures

The general idea is first extracts generic features from multi-domain data (or domain-
shared features) which are then used to produce domain-specific and highly discrimi-
native features. The architecture combines a deep hierarchical spatial feature extractor
with a model that can learn to recognize and synthesize temporal dynamics of emo-
tions, as illustrated in Figure 3.1. The network works by passing each audio sample
through a feature transformation to produce a fixed-length vector representation. Af-
ter that, spatial features are computed for the audio input, and then a layer captures
how emotions evolve over time.

The next two sections introduce our deep architectures: convolutions with fully
connected layers and convolutions with LSTM followed by a fully connected layer.

3.1.1 Convolutions combined with a fully connected layer

The network receives a 54,000 dimensional input representing audio samples. It has
four hidden layers, including two uni-dimensional convolutional layers followed by two
fully connected layers. The convolutional layers apply kernels with 128 dimensions,
combined with ReLUs and a dropout level of 0.30. The first fully connected layer
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Figure 3.2: In this Multi-Domain Network architecture for learning transferable fea-
tures, a Fully-Connected layer is used as feature combiner extracted by Convolutional
layers. In this illustration, the convolutional layers already include non-linearities and,
thus, a convolutional layer actually represents two layers.

receives 128 dimensional inputs, which are then flattened into a single 256 dimensional
output, and returns one 1000 dimensional vector output followed by hyperbolic tangent
activation. The next fully connected layer is composed of 6 units. Again, a dropout
level of 0.30 is applied, as illustrated in Figure 3.2. The final classification layer employs
a softmax cross-entropy loss and thus the minimization problem is given as:

min
1

n

n∑
i=1

J(θ(xi), yi)

where J is the cross-entropy loss function and θ(xi) is the conditional probability that
the network assigns xi to emotion label yi. The network is trained by the AdaDelta
method, and six emotions are considered, namely: anger, disgust, fear, happiness,
sadness, and surprise. The network architecture is substantially smaller than others
commonly used. We also evaluated deeper networks, but the resulting models showed
to be less accurate and learning becomes significantly slower.

3.1.2 Convolutions combined with a LSTM layer

This architecture is similar to that presented in 3.1.1, differences are after convolutions
only. The first layer after convolutions is a LSTM that receives 128 dimensional inputs,
and returns two 500 dimensional vector outputs which are then flattened into a single
1,000 dimensional output. The next fully connected layer is composed of 6 units and
are combined with the hyperbolic tangent activation. Again, a dropout level of 0.30 is
applied, as illustrated in Figure 3.3.
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Figure 3.3: In this Multi-Domain Network architecture for learning transferable fea-
tures, a Long Short-Time Memory (LSTM) layer is used as feature combiner extracted
by Convolutional layers. In this illustration, the convolutional layers already include
non-linearities and, thus, a convolutional layer actually represents two layers.

3.2 Feature Transferability

We assume the presence of few labeled audio samples in the target domain, hence a
direct adaption to the target domain via fine-tuning is prone to overfitting. We also as-
sume that the training set is composed of audio samples belonging to different domains,
and we can explicitly split D into n different domains, that is, D = d1, d2, . . . , dn. Thus,
the goal of our deep architecture is to train a multi-domain network to differentiate emo-
tions based on input audios associated with multiple domains. Although audio samples
associated with a given domain di may be better represented by specific features, there
still exist some common features that permeate all other domains. Examples of such
low-level features may include pitch, derivative of pitch, energy, derivative of energy,
duration of speech segments, among others.

3.2.1 Transference Approaches

The main intuition that we exploit for feature transferability is that the features must
eventually transits from general to specific along our deep architecture, and feature
transferability drops significantly in higher layers with increasing domain discrep-
ancy [Yosinski et al., 2014]. In other words, the features computed in higher layers
must depend greatly on a specific domain di, and recognition effectiveness suffers if
di is discrepant from the target domain. Since we are dealing with many domains si-
multaneously, we also considered multiple transference approaches, which are detailed
next:
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A1: no fine-tuning is performed, which means that the pre-trained model is used
to recognize emotions.

A2: no layer is kept frozen during fine-tuning, which means that errors are back-
propagated through the entire network during fine-tuning.

A3: only the first convolutional layer is kept frozen during fine-tuning.

A4: both convolutional layers are kept frozen during fine-tuning.

A5: convolutional and LSTM layers are kept frozen during fine-tuning. That is,
errors are back-propagated only thought the fully-connected layers during fine-
tuning.

A6: only the first convolutional layer is kept frozen during fine-tuning. All other
layers have their weights randomly initialized for fine-tuning.

A7: both convolutional layers are kept frozen during fine-tuning. All other layers
have their weights randomly initialized for fine-tuning.

A8: convolutional and LSTM layers are kept frozen during fine-tuning. Weights
in fully-connected layers are randomly initialized for fine-tuning.

Further, these transference approaches are applied considering different scenarios:

• S1: target domain data are used during pre-training and fine-tuning.

• S2: target domain data are used exclusively during fine-tuning.





Chapter 4

Datasets and Domains

Our analysis is carried on six datasets which differ mainly in terms of language, number
of speakers, number of emotions and spontaneity of speech. The details about each
dataset are:

• AFEW [Dhall et al., 2012]: The Acted Facial Expressions In The Wild dataset
contains segments from 37 movies in English. The movies have been chosen
keeping in mind the need for different realistic scenarios and large age range of
subjects to be captured.

• Emo-DB [Burkhardt et al., 2005]: The Berlin Emotional Speech dataset features
actors speaking emotionally defined sentences. The dataset contains emotional
sentences from 10 different actors and ten different texts.

• EMOVO [Costantini et al., 2014]: The dataset consists of sentences recorded by
six professional actors. Each speaker reads fourteen Italian sentences expressing
different emotions.

• eNTERFACE [Martin et al., 2006]: The dataset consists of recordings of naive
subjects from fourteen nations speaking pre-defined spoken content in English.
The subjects listened to six successive short stories eliciting a particular emotion.

• IEMOCAP [Busso et al., 2008]: The Interactive Emotional Dyadic Motion Cap-
ture dataset features ten actors performing improvisations in English, specifically
selected to elicit emotional expressions. Each sentence is labeled by at least three
human annotators.

17
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• RML1: The dataset contains audiovisual emotional expression samples that were
collected at Ryerson Multimedia Lab. The RML emotion database is language
and cultural background independent. The audio samples were collected from
eight human subjects, speaking six different languages (English, Mandarin, Urdu,
Punjabi, Persian, Italian). Different accents of English and Chinese were also
included.

Table 4.1 presents a summary of the datasets with general information like age,
language, and number of samples.

Dataset/Domain Age Language Emotion Gender Recording Sampling rate # samples

AFEW children/adults English natural balanced movies 48kHz 1,156
Emo-DB adults German acted balanced studio 16kHz 535
EMOVO adults Italian acted balanced studio 48kHz 588
eNTERFACE adults English induced unbalanced normal 16kHz 1,292
IEMOCAP adults English acted balanced studio 48kHz 10,039
RML adults many induced balanced studio 22kHz 720

Table 4.1: Summary by datasets.

4.1 Preprocessings

All datasets were normalized to cover the same emotional states. Specifically, we focus
on the well-known six emotions [Cowie and Cornelius, 2003]: anger, disgust, fear,
happiness, sadness, and surprise. Beyound that, only audio with at least two and at
most six seconds of duration were selected.

4.1.1 Audio files

For this work, all audio files were preprocessed in two steps: normalizing wave files and
preparing data for the models.

1. Normalizing wave files:

• they were transformed to have only one channel of data, in other words,
stereo into mono audios and

• downrated to 9kHz. Thus, are used 9k integers to represent one second of
audio.

2. Input for model:
1http://www.rml.ryerson.ca/rml-emotion-database.html

http://www.rml.ryerson.ca/rml-emotion-database.html


4.2. Final dataset after pre-processings 19

• for each audio, the values are normalized between 0 and 1.

• as audios do not have the same duration, padding was applied so that audios
with different durations have representations with the same size, so all audios
are represented by 54k (e.g. 9k by second x 6 seconds = 54k) values between
0 and 1.

• time values are standardized so that they are centered around 0 with a
standard deviation of 1, as illustrated in Figure 4.1.

(a)→ (b)

↑ (c)

54.000 dimensions

Figure 4.1: Preprocessing before using in models

4.2 Final dataset after pre-processings

In this section, we present a summarization of the final dataset used in this work.
Firstly, we have in the Table 4.2 a summary of the datasets after all preprocessings.

It is clear the dataset is unbalanced. For instance IEMOCAP and eNTERFACE together

Dataset Emotions Sampling rate # samples Weight Duration(sec)

AFEW all 9kHz 568 12.19% 3.05±0.82
Emo-DB *surprise 9kHz 287 6.16% 3.12±0.90
EMOVO *happiness 9kHz 336 7.21% 3.33±1.01
eNTERFACE all 9kHz 1,047 22.48% 3.05±0.77
IEMOCAP all 9kHz 1,770 38.00% 3.56±1.10
RML all 9kHz 650 13.95% 4.95±0.64

*does not contain that emotion

Table 4.2: Summary of the datasets

comprise over 60% of the full dataset. Emo-DB and EMOVO together are less than 14% and
they do not contain surprise and happiness emotion, respectively. In addition, RML has an
audio average duration 1 second greater than that of other datasets.

On the other hand when we take a look by emotion, this discrepancy is smaller. It still
is unbalanced, anger and sadness comprise over 50% of the full dataset. Disgust, fear and
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surprise are balanced among them with 10% each. In average, the duration is almost the
same among emotions, as presented in Table 4.3.

Emotion # samples Weight Duration(sec)

Anger 1,310 28.12% 3.50±1.04
Disgust 467 10.03% 3.62±1.17
Fear 470 10.09% 3.48±1.10
Happiness 802 17.22% 3.46±1.11
Sadness 1,143 24.54% 3.65±1.14
Surprise 466 10.00% 3.44±1.11

Table 4.3: Summary of the emotions

In table 4.4 we analysis the emotion weight by dataset. We can see that half of datasets
are balanced by emotion(e.g. EMOVO, eNTERFACE, RML). IEMOCAP is the worst case
with anger and sadness representing almost 75% of samples, as presented in Table 4.4.

Emotion AFEW Emo-DB EMOVO eNTERFACE IEMOCAP RML

Anger 22.40% 34.49% 19.05% 19.68% 39.55% 17.38%
Disgust 14.29% 14.98% 22.92% 15.95% 0.11% 14.92%
Fear 10.41% 13.94% 18.15% 16.91% 1.24% 17.08%
Happiness 18.87% 18.12% 0.00% 15.38% 20.73% 17.69%
Sadness 22.57% 18.47% 19.64% 16.43% 35.37% 15.08%
Surprise 11.46% 0.00% 20.24% 15.66% 2.99% 17.85%

Table 4.4: % of each emotion by dataset

Beyond concerns presented in section 2, we saw in this section additional challanges
for our domain adaptation approach like unbalanced distribution among datasets (Table 4.2),
emotions (Table 4.3), and among emotions inside datasets (Table 4.4).
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Experimental Results

In this chapter, we present the baselines used to evaluate our multi-domain network for speech
emotion recognition. Then we discuss our evaluation procedure and report the results of our
multi-domain network.

In particular, our experiments aim to answer the following research questions:

RQ1 How effective is the blend of CNN with LSTM networks for speech emotion recog-
nition in multi-domain scenario for training and test? How do the learned features
compare against hand-crafted features?

RQ2 Which feature transference approach is more appropriate to each target domain?

RQ3 Which domain characteristics affect the most the accuracy of the model?

RQ4 How effective is our multi-domain with a defined target compared with other
models?

5.1 Baselines

We considered the following methods in order to provide baseline comparison:

• SVM with Interspeech 2010 features (SVM−IS): the 1,582 acoustic features proposed
in [Schuller et al., 2010] are fed into an SVM with RBF kernel [Schuller et al., 2009b].
The hyper-parameters of the SVM are chosen by cross-validation. The main objective
of using this baseline is to answer RQ1 and RQ4. Although this baseline is not recent,
it is a strong baseline. For instance, in RML dataset it get 75.00% of accuracy against
68.57% from [Ooi et al., 2014] and in Emo-DB 84.7% against 85.6% from [Huang et al.,
2016].

21
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• Training on Target (TT): a model CNN+LSTM is trained using only the target domain
data. No source domain data are used. The main objective of using this baseline is to
assess the benefits of the different feature transference approaches.

5.2 Setup

We implemented our architecture using Keras [Chollet, 2015] and Theano [Bergstra et al.,
2011] as backend. The measure used to evaluate the recognition effectiveness of our models is
the standard Unweighted Average Recall (UAR),1 as presented in [Schuller et al., 2009b]. We
conducted five-fold cross validation where datasets are arranged into five folds with approxi-
mately the same number of audio samples each. At each run, four folds are used as training
set and the remaining fold is used as test set. The results reported are the average of the
five runs, and are used to assess the overall discrimination performance of the models. To
ensure the relevance of the results, we assess the statistical significance of our measurements
by means of a pairwise t-test [Sakai, 2014] with p−value ≤ 0.05.

5.3 Results and Discussion

In this section present experimental results that answer the four research questions presented
at the beginning of this chapter.

5.3.1 Blending of CNN and LSTM networks

The first experiment is concerned with RQ1. We present a comparison between SVM−IS
trained with Interspeech 2010 features and our deep architecture was trained with raw audio.
We considered deep architectures with Fully Connected and other with LSTM layer to assess
the impact of using both spatial and sequential features. Table 5.1 shows UAR numbers for the
different models. For this experiment, no domain adaptation is performed. Instead, samples
from all datasets were used for training and testing the models using five-fold cross-validation.
On average, the CNN+LSTM model provides UAR numbers that are statistically superior
than the numbers provided by SVM−IS and CNN+FC models (which are statistically equiv-
alent on average), except for the dataset AFEW. Thus, the features learned by CNN+LSTM
architecture lead to significantly raised UAR numbers. Still in the same experiment, Table 5.2
shows UAR numbers related to emotion for different models, we can note some emotions are
harder to classify than others. For instance, Anger and Sadness are the easiest.

1The UAR metric is the sum of the recalls per class divided by the number of classes.
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5.3.2 Feature Transference

The next set of experiments is devoted to answer RQ2. We evaluate diverse feature trans-
ference approaches. Table 5.3 and 5.4 show UAR numbers when our architecture is trained
using solely target domain data (TT). Therefore, if the target domain is short on labeled
data, the model will probably suffer from overfitting. The table also shows the gains obtained
by each feature transference approach relatively to TT. That is, we investigated the best
freezing/tuning cut-off for each target domain. On average, the best performing transference
approach is S1−A2, which uses target domain data during pre-training and fine-tuning and
no layer is kept frozen during fine-tuning. Further, gains tend to decrease as more layers
are kept frozen during fine-tuning. However, due the high variance in results for each target
dataset, the best approach varies greatly depending on the target domain. There are some
reasons for that like domain divergence and weight dataset(i.e., domain). A better analysis
on that is provided in Chapter 6.

Considering AFEW as the target domain, the best transference approaches are S1−A1,
S1−A4, and S1−A7. Usually, using target domain data during pre-training is very beneficial,
except for EMOVO for which the best performer was S2−A3. Fine-tuning is extremely im-
portant in all cases, specially if target domain data are not used during pre-training. Gains
for IEMOCAP are significantly lower than the gains obtained for other domains. Notice that
IEMOCAP is the largest dataset, and thus TT achieves very high UAR numbers, which are
hard to surpass with domain adaptation. For RML, the best transference approaches are those
that freeze less layers. This is because RML is composed of highly diverse languages. Thus,
freezing layers will only work if target domain data are used during pre-training. Otherwise,
freezing layers would be clearly detrimental to domain adaptation. It is also important to
mention that for each target domain, many feature transference approaches lead to significant
improvements.

Dataset SVM−IS CNN+FC CNN+LSTM

AFEW .333 .344 .338
Emo-DB .645 .622 .659
EMOVO .411 .440 .459
eNTERFACE .456 .419 .454
IEMOCAP .719 .673 .684
RML .482 .581 .631

Table 5.1: UAR numbers related to datasets for different models. No domain adapta-
tion is performed.
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Dataset SVM−IS CNN+FC CNN+LSTM

Anger .817 .733 .758
Disgust .172 .294 .286
Fear .261 .304 .357
Happiness .359 .316 .328
Sadness .783 .775 .773
Surprise .277 .325 .324

Table 5.2: UAR numbers related to emotions for different models. No domain adapta-
tion is performed.

UAR Gains over TT - S1
Target TT A1 A2 A3 A4 A5 A6 A7 A8

AFEW .288 .121 .101 .047 .120 .115 .045 .121 .116
Emo-DB .614 .047 .117 .088 .051 .052 .102 .057 .086
EMOVO .518 -.095 .053 .014 -.061 -.089 -.071 .034 .014
eNTERF .441 .032 .133 .114 .061 .032 .153 .087 .045
IEMOCAP .682 .004 .004 -.002 -.009 -.003 .003 .017 .017
RML .623 -.014 .032 .041 .005 -.002 .073 .035 .028
Average − .016 .073 .050 .028 .017 .051 .058 .053
Std. − .072 .051 .044 .063 .068 .078 .039 .041

Table 5.3: Different feature transference approaches for scenario S1. Numbers in bold
indicate the highest gains for each target domain considering scenarios S1 and S2.

UAR Gains over TT - S2
Target TT A1 A2 A3 A4 A5 A6 A7 A8

AFEW .288 .042 .015 .024 .052 .019 .007 .103 .029
Emo-DB .614 -.365 .093 .064 .083 .050 .068 .065 .083
EMOVO .518 -.372 .093 .109 -.060 -.041 -.044 .008 -.017
eNTERF .441 -.353 .027 -.015 -.016 -.034 .002 -.026 -.037
IEMOCAP .682 -.363 .003 -.015 -.016 -.034 .003 -.026 -.035
RML .623 -.518 .074 .062 -.085 -.145 .054 -.087 -.143
Average − -.321 .051 .038 -.007 -.031 .015 .006 -.020
Std. − .188 .041 .049 .064 .067 .040 .069 .076

Table 5.4: Different feature transference approaches for scenario S2. Numbers in bold
indicate the highest gains for each target domain considering scenarios S1 and S2.

5.3.3 Characteristics that affects the accuracy of the model

The next set of experiments is devoted to answer RQ3. Table 5.5 shows UAR numbers
obtained with a domain ablation analysis. More specifically, the table shows UAR numbers
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obtained by different feature transference approaches after excluding one of the source domains
from the pre-training. This enables us to grasp the domain characteristics that affect the most
the effectiveness of our multi-domain network.

The reference UAR value (All) is given by the model built using data from all domains.
We first analyze scenario S1, in which target domain data are used during pre-training and
fine-tuning. As can be seen, in almost all cases it is better removing one of the source
domains from pre-training. Using AFEW data during pre-training is highly detrimental in
all cases. The probable explanation is that the AFEW domain is highly discrepant from
all other domains. Similarly, IEMOCAP data are highly detrimental for AFEW, Emo-DB,
eNTERFACE and RML target domains. IEMOCAP data are also very discrepant from
other domains. Removing out-of-domain data from pre-training is not beneficial only for
S1−A1 when RML is the target domain. The probable explanation is that only RML has
many languages, so as more diversity in pre-training as better for recognize emotions in a
dataset with a diversity of languages. Another support for this explanation is that for Emo-
DB (German dataset) and EMOVO (Italian dataset) accuracies are the smallest. Thus, we
conclude that if target domain data are used during pre-training, it is detrimental to have
out-of-domain data during pre-training, specially if out-of-domain data are highly discrepant
from the target domain data.

Very different trends are observed when we analyze scenario S2. In this case, target
domain data are used exclusively during fine-tuning, and therefore we may expect that out-
of-domain data used during pre-training are less discrepant. Using IEMOCAP data during
pre-training is highly beneficial. This is probable due to the size of IEMOCAP dataset. This is
also a probable explanation for the robustness when removing specific out-of-domain datasets
when IEMOCAP is the target domain. The RML domain seems to benefit the most from
out-of-domain data. In general, we conclude that if target domain data are not included
during pre-training, it is beneficial to have out-of-domain data during pre-training, even if
out-of-domain data are highly discrepant from the target domain data.

5.3.4 Our multi-domain network with a well defined target

The last set of experiments is concerned with RQ4, that is, to assess the effectiveness of
our multi-domain network when compared with state-of-the-art solutions for speech emotion
recognition focused only one dataset. Table 5.6 shows UAR numbers obtained by SVM-IS.
Different from Table 5.1, now the comparison are in results achieved training SVM-IS using
only samples from the target dataset. The table also shows UAR numbers obtained by our
multi-domain network. As can be seen, our multi-domain network outperformed SVM-IS in
all target domains considered in the study. Gains are statistically significant, and range from
4.3% to 78.6%, depending on the target domain.

The second highest gain is 18.4% indicating an outlier behavior for AFEW but this has
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UAR numbers
S1 S2

Target Source A1 A2 A3 A4 A1 A2 A3 A4

AFEW All .323 .317 .301 .322 .300 .292 .295 .303
− Emo-DB .356↑ .440↑ .469↑ .517↑ .304↑ .306↑ .299↑ .283↓
− EMOVO .380↑ .442↑ .473↑ .561↑ .307↑ .289• .262↓ .322↑
− eNTERFACE .390↑ .464↑ .487↑ .566↑ .284↓ .291• .269↓ .314↑
− IEMOCAP .315• .514↑ .572↑ .625↑ .237↓ .272↓ .280↓ .275↓
− RML .366↑ .424↑ .487↑ .539↑ .314↑ .298↑ .287↓ .332↑

Emo-DB All .643 .685 .668 .645 .389 .671 .653 .665
− AFEW .725↑ .830↑ .835↑ .843↑ .397↑ .652↓ .644↓ .648↓
− EMOVO .688↑ .792↑ .789↑ .786↑ .382↓ .667• .658• .638↓
− eNTERFACE .689↑ .775↑ .780↑ .767↑ .393• .620↓ .668↑ .662•
− IEMOCAP .798↑ .856↑ .840↑ .824↑ .372↓ .653↓ .639↓ .660↓
− RML .692↑ .762↑ .748↑ .778↑ .401↑ .655↓ .658↑ .683↑

EMOVO All .469 .545 .525 .496 .325 .566 .574 .487
− AFEW .635↑ .691↑ .716↑ .735↑ .332↑ .542↓ .571• .547↑

− Emo-DB .566↑ .664↑ .675↑ .664↑ .320• .567• .549↓ .528↑
− eNTERFACE .566↑ .655↑ .671↑ .695↑ .334↑ .595↑ .561↓ .543↑

− IEMOCAP .619↑ .634↑ .641↑ .696↑ .351↑ .506↓ .495↓ .498↑
− RML .544↑ .631↑ .648↑ .611↑ .309↓ .560• .563↓ .547↑

eNTERFACE All .455 .500 .491 .468 .247 .484 .499 .395
− AFEW .645↑ .694↑ .721↑ .737↑ .238↓ .492↑ .490↓ .397•

− Emo-DB .538↑ .602↑ .642↑ .644↑ .231↓ .499↑ .482↓ .391•

− EMOVO .632↑ .652↑ .654↑ .681↑ .248• .476↓ .477↓ .375↓
− IEMOCAP .749↑ .696↑ .711↑ .751↑ .244• .481• .483↓ .381↓
− RML .624↑ .625↑ .639↑ .674↑ .233↓ .471↓ .472↓ 384↓

IEMOCAP All .685 .685 .681 .676 .441 .684 .672 .671
− AFEW .780↑ .762↑ .771↑ .783↑ .470↑ .688• .671• .656↓
− Emo-DB .739↑ .722↑ .737↑ .741↑ .435↓ .686• .669• .649↓
− EMOVO .756↑ .746↑ .751↑ .762↑ .456↑ .686• .680↑ .665•

− eNTERFACE .765↑ .740↑ .755↑ .772↑ .427↓ .680• .683↑ .667•

− RML .755↑ .735↑ .746↑ .764↑ .459↑ .671↓ .681↑ .659↓

RML All .615 .643 .649 .626 .301 .669 .662 .570
− AFEW .461↓ .733↑ .760↑ .738↑ .318↑ .656↓ .644↓ .562↓
− Emo-DB .485↓ .690↑ .687↑ .655↑ .297• .650↓ .664• .543↓
− EMOVO .475↓ .696↑ .721↑ .675↑ .287↓ .653↓ .653↓ .555↓
− eNTERFACE .453↓ .729↑ .717↑ .705↑ .302• .648↓ .660• .557↓
− IEMOCAP .543↓ .743↑ .748↑ .695↑ .298• .656↓ .656↓ .533↓

Table 5.5: Domain ablation analysis. The table shows UAR numbers after excluding
a domain from the pre-training, so a low UAR number indicates that an important
domain was removed from pre-training. Symbol ↑ indicates that UAR has raised
significantly. Symbol • indicates that UAR has not changed significantly. Symbol ↓
indicates that UAR has dropped significantly. We omitted UAR numbers for A5 to A8
in order to avoid cutter. Highest UAR numbers for each feature transference approach
are highlighted in bold.
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Target SVM-IS CNN+LSTM Gain

AFEW .350 .625 .786
Emo-DB .797 .856 .074
EMOVO .692 .735 .062
eNTERFACE .634 .751 .184
IEMOCAP .751 .783 .043
RML .721 .760 .054

Table 5.6: UAR numbers for SVM-IS and CNN+LSTM with a specific target.

a quick explanation. The work of [Schuller et al., 2010] assumes an audio without noising and
AFEW is a dataset composed of audio segments extracted from movies, thus this is not a
good scenario for feature extraction. In addition, this shows that our multi-domain network
is not so sensitive for noise in audio.





Chapter 6

Divergence Analysis

The first part of this chapter tries to explain why some emotions are easier than others in a
classification process. In addition, to understand why some datasets have a positive and others
a negative impact, the second part of this chapter is focused on analysis how divergent are
datasets to each other. For both parts, it is used the KL divergence presented in Section 2.6.

6.1 Emotions

In this section, we want to analyse how divergent the signals in raw audio are among emotions.
To get this, the following approach was applied: we calcutate the KL divergence for each audio
time frame in pairs of emotions in a scheme of one emotion against the others. Thus, we will
have six graphs showing how much divergent one emotion is in regard the others. Note that
with this approach, the size of each emotion dataset is not a problem because we are analysing
the signal distribution over time and the divergence calculated is between these distributions.

6.1.1 Pre-processing

Firstly, it is applied the same pre-processing as described in Section 4.1. Then, to calculate
the KL divergence between the emotions A and B, the following steps are applied:

1. For each time frame, considering only samples from the emotions A and B, get the
smallest and highest value.

2. Split this interval into 10 blocks equally spaced.

3. For each sample from each emotion, separately, it is checked in which block the value
fits into. We count plus one for that block.

After these steps, for each time frame in each emotion we have a vector of size 10
representing an accounting of how many emotions fit into each range of values. Finally, the
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KL divergence is calculated for each time step between emotions A and B resulting in a vector
of size 54.000 positions.

6.1.2 Analysis

To analyse the divergence among emotions over time, we plot a graph for each emotion
showing the divergence of other emotions in regards to it. The Figures 6.1-6.6 are the graphs
for emotions anger, disgust, fear, happiness, sadness, and surprise, respectively.
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Figure 6.1 Divergence related to Anger emo-
tion
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Figure 6.2 Divergence related to Disgust emo-
tion
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Figure 6.3 Divergence related to Fear emo-
tion
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emotion
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Figure 6.5 Divergence related to Sadness
emotion
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Figure 6.6 Divergence related to Surprise
emotion

It is easy to realize that there are some emotions that are equally divergent in regards
to other emotions. For example, Anger, Figure 6.1, and Sadness, Figure 6.5, are equally
divergent to the other emotions over time, in addition, they have a low divergence to each
other. The same analysis is applied between Disgust, Figure 6.2, and Fear, Figure 6.3. In
addition, Anger and Sadness have similar divergence hehavior over time in regards to Disgust
and Fear, the same is applied to Disgust and Fear.

Analysing emotions Happiness, Figure 6.4, and Surprise, Figure 6.6, we note Happiness
is much divergent in regards to Disgust, Fear, and Surprise in the end of audios. In addition,
we note the same behavior for Surprise in all other emotions.

The above analysis seem to have connection with results obtained in Table 5.2. In our
experiments, for all models, the emotions Anger and Sadness were the easiest to recognize.
This result meet the above analysis that claims Anger and Sadness have similar divergence
and behavior related to the other emotions. It is important to note when two emotions have
low divergence to each other this does not mean they have similar signal values, but they have
similar signal value distribution over time. For instance, lets suppose emotion A has always
high amplitude signal over time and emotion B has always low amplitude. As they have the
same behavior over time, they have low divergence between them. KL divergence returns
how much information we lost if emotion B distribution is used to estimate the emotion
A distribution. With this explanation, now this result makes more sense, since Anger and
Sadness are too different to each other for humans.

6.2 Datasets

In this section, the purpose is to analyse the divergence among datasets. The first approach
was to analyse it as we do in Section 6.1, but unfortunately taking a look in graphs, we
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can only clain that datasets are so much divergent to each other. For this reason, another
approach was attempted.

The new approach is to calculate the KL divergence in regards to emotion distribution
by dataset or scenario.

6.2.1 Analysis

Based on the Table 5.5, the Table 6.1 was generated. For now, the values representing diver-
gence between source and target. The field pair represents divergence between removed and
target dataset, S1 and S2 represent divergence between source and target dataset. From this
table, we are going to analyse results from different views to answer the following questions:

1. What are the most divergent datasets? Are there any explanation for this?

2. Are there some relationship between divergence and weight dataset?

3. Are there some straight relationship between paired divergence and scenario diver-
gence(i.e., S1 and S2)?

4. As we have an unbalanced source dataset, in regards of emotion distribution, can this
divergence analysis explain some experimental results?

To answer the first question, for all target scenarios, the two datasets most divergent
are Emo-DB and EMOVO. The main reason is they do not have any sample of Surprise and
Happiness emotions, respectively, as previously presented in Table 4.2. Thus, it is hard to
use any of them to approximate the emotion distribution of any other dataset.

For the second question, as can there are interaction between weight dataset and paired
divergence, we isolate only scenarios where target dataset were removed from S1, so we analyse
the impact between S1 and S2 because the divergence between target and the removed dataset
is zero. The Figure 6.7 shows divergence increases as the weight of removed dataset increases.
Based on this figure, we can see a linear relationship between these factors. On the other
hand, this seems to have a limit because for IEMOCAP dataset that represents 38% we can
note a trending for not increasing linearly. Since ideal scenarios are those with many datasets,
so weights larger than this are not common for our purpose.

For the third question, we have in Figure 6.8 for each dataset a graph showing the
variance of divergence that it causes for all targets. We decided for this view because it removes
the weight factor from each graph. All datasets could be able to have negative variance(i.e.,
when this dataset is removed, the divergence between source and target datasets is lower) for
at least one target dataset, i.e., for all datasets it is not a good idea to have all other datasets
in source. We also can note that there is a trend where variance of divergence descrease
when paired divergence increases. It is important to note that there are other factors that
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KL divergence Impact
Target Source Weight Pair S1 S2 S2/S1 S1/All-S1 S2/All-S2

AFEW All 0.0169• 0.0221• 31.21%•
− Emo-DB .062• 3.4872 0.0173 0.0233 34.58% 2.55%• 5.19%•
− EMOVO .072 5.8745 0.0249 0.0338 35.85% 47.82% 53.04%
− eNTERFACE .225 0.0374• 0.0418 0.0608 45.62% 147.81% 175.03%
− IEMOCAP .380 0.8199 0.0241 0.0370 53.55% 42.92% 67.25%
− RML .140 0.0515 0.0303 0.0419 38.12% 79.79% 89.26%

Emo-DB All 0.1324 0.1437• 8.53%•
− AFEW .122 0.1523• 0.1329 0.1463 10.06% 0.37% 1.79%
− EMOVO .072• 5.8437 0.1322 0.1454 9.96% -0.18%• 1.13%
− eNTERFACE .225 0.2087 0.1397 0.1587 13.55% 5.50% 10.37%
− IEMOCAP .380 0.8775 0.1829 0.2100 14.82% 38.11% 46.11%
− RML .140 0.2504 0.1303• 0.1446 11.00% -1.63% 0.61%•

EMOVO All 0.3207 0.3655 13.97%•
− AFEW .122 0.2662 0.3320 0.3879 16.82% 3.54% 6.13%
− Emo-DB .062• 6.4584 0.3197 0.3679 15.09% -0.32% 0.66%
− eNTERFACE .225 0.1768• 0.4057 0.4952 22.06% 26.50% 35.48%
− IEMOCAP .380 1.8363 0.1782• 0.2069• 16.11% -44.42•% -43.38%•
− RML .140 0.2042 0.3653 0.4321 18.26% 13.93% 18.22%

eNTERFACE All 0.0779 0.1366 75.37%•
− AFEW .122 0.0393 0.0863 0.1673 93.91% 10.76% 22.47%
− Emo-DB .062• 4.8119 0.0783 0.1440 83.87% 0.54% 5.41%
− EMOVO .072 4.7225 0.0996 0.1889 89.74% 27.86% 38.34%
− IEMOCAP .380 1.1807 0.0024• 0.0059• 147.49% -96.94%• -95.68%•
− RML .140 0.0054• 0.1114 0.2259 102.88% 42.99% 65.42%

IEMOCAP All 0.2355 0.4716 100.26%•
− AFEW .122 0.3311• 0.2241 0.5117 128.32% -4.84% 8.50%
− Emo-DB .062• 1.1681 0.2349 0.5030 114.13% -0.26% 6.65%
− EMOVO .072 7.0094 0.2081 0.4475 115.01% -11.62% -5.11%
− eNTERFACE .225 0.5217 0.1721• 0.4453• 158.77% -26.94%• -5.59%•
− RML .140 0.5680 0.1969 0.4494 128.27% -16.41% -4.72%

RML All 0.1002 0.1383 38.04%•
− AFEW .122 0.0538 0.1095 0.1591 45.31% 9.28% 15.04%
− Emo-DB .062• 5.5137 0.0989 0.1394 40.97% -1.31% 0.78%
− EMOVO .072 5.4586 0.1217 0.1753 43.96% 21.54% 26.75%
− eNTERFACE .225 0.0054• 0.1637 0.2610 59.51% 63.38% 88.80%
− IEMOCAP .380 1.1953 0.0133• 0.0222• 67.70% -86.76%• -83.91%•

Table 6.1: KL divergence ablation analysis. The highest value for each column and
target is highlighted in bold. Symbol • indicates the lowest value.
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Figure 6.7: % of variance in KL divergence with std. deviation when target dataset is
removed from source dataset

influence the Variance of Divergence beyond Weight of removed dataset like paired divergence
in regards to signal audio distribution.

To answer the last question, we are going to try explain some results obtained in Chap-
ter 5, more specifically in Table 5.5, using some insights that we had answering aforementioned
questions. In this case, we are going to analysis only scenario S1-A3 and S1-A4 where tar-
get dataset is present in source and pre-trained convolutions and/or LSTMs are freezed in
fine-tuning, i.e., the features learnt in pre-training are not modified in fine-tuning process. In
addition, for paired divergence we are also going to ignore Emo-DB and EMOVO datasets
because they present a high paired divergence just because they do not have all six emotions.
This will not affect directly our analysis since they are small datasets in pre-training phase.

For AFEW dataset, the best result occurs when IEMOCAP is not present in source
dataset for both scenarios. IEMOCAP is the most divergent dataset in regards to AFEW
beyond being the largest dataset in source, thus it impacts negativaly the features learnt in
Convolutions and LSTM layers for the target dataset. In addition, it has the smallest impact
when removed from source.

If we apply the same criteria in EMOVO, the best result would be removing IEMOCAP
but in experiments the best was removing AFEW. Although IEMOCAP has the highest
divergence in regards to EMOVO and results in a negative impact, it represents the largest
dataset in source. Thus smaller source can suffer from overfitting and features learnt in
pre-training may not fit well to EMOVO.

When we analyse eNTERFACE and RML, we see a match between divergence analysis
and experimental results since the best result is removing IEMOCAP to both. This time, even
IEMOCAP representing the largest dataset in source, when it is removed, the source reduces
its divergence in almost 87% and 97%, having divergence close to zero, for eNTERFACE and
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Figure 6.8: Variance of divergence for each removed dataset in all target scenarios
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RML respectively. Probably this new divergence between source and target compensates the
reduce of pre-training dataset.

In IEMOCAP dataset we see that previous insights make sense for it, but the best result
in experiments occurs when AFEW is removed. If we do not take in account of AFEW, the
previous analysis fit perfectly here. Probably, another factor (e.g., divergence over raw data
or over audio recording condition since AFEW is a natural dataset and IEMOCAP is an acted
dataset) makes AFEW the best dataset to be removed from source.



Chapter 7

Conclusion

Automatically recognizing human emotions from speech is currently one of the most challeng-
ing tasks in the field of affective computing. In solving this task we are often in the situation
that we have a large collection of labeled out-of-domain data but truly desire a model that
performs well in a target domain which is short on labeled data.

To deal with this situation we proposed a deep architecture which implements a multi-
domain network. More specifically, the architecture is a blend of CNN with LSTM networks
that extracts spatial and sequential features from raw audio. In order to evaluate different
feature transference approaches, we investigated the best freezing/tuning cut-off for each
target domain. We also investigated whether it is beneficial to use target domain data during
pre-training.

We performed a comprehensive experiment using six domains, which may differ in terms
of language, emotions, amount of labels, and recording conditions. Our feature transference
approaches provide gains that range from 4.3% to 78.6% when compared with feature extrac-
tion approaches for speech emotion recognition beyond being more robust to natural audios
as noted in AFEW.

Due to the wide range of gain, we also performed a divergence analysis over emotions
and later over datasets to get evidences that helped us to explain some experimental results
in ablation. As result of this analysis, we found out there is a strong trade-off between
paired divergence and the weight of removed dataset, i.e., sometimes even with high paired
divergence the result is better with that dataset because it represents a large dataset in source,
the opposite is also true.
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