
EXTENDENDO MODELOS MARKOVIANOS

USANDO DESCIDA DE GRADIENTE

ANDRE LLOYD DWIGHT PERLEE HARDER

EXTENDENDO MODELOS MARKOVIANOS

USANDO DESCIDA DE GRADIENTE

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação
do Instituto de Ciências Exatas da Univer-
sidade Federal de Minas Gerais como req-
uisito parcial para a obtenção do grau de
Mestre em Ciência da Computação.

Orientador: Adriano Alonso Veloso

Belo Horizonte

Março de 2017

ANDRE LLOYD DWIGHT PERLEE HARDER

EXTENDING MARKOV MODELS THROUGH

GRADIENT DESCENT OPTIMIZATION

Dissertation presented to the Graduate
Program in Computer Science of the Fed-
eral University of Minas Gerais in partial
fulfillment of the requirements for the de-
gree of Master in Computer Science.

Advisor: Adriano Alonso Veloso

Belo Horizonte

March 2017

c© 2017, Andre Lloyd Dwight Perlee Harder.
Todos os direitos reservados.

Harder, Andre Lloyd Dwight Perlee

D1234p Extending Markov Models through Gradient
Descent Optimization / Andre Lloyd Dwight Perlee
Harder. — Belo Horizonte, 2017

xxiv, 108 f. : il. ; 29cm

Dissertação (mestrado) — Federal University of
Minas Gerais

Orientador: Adriano Alonso Veloso

1. Machine Learning. 2. Markov Models. 3. Neural
Networks. I. Título.

CDU 519.6*82.10

[Folha de Aprovação]
Quando a secretaria do Curso fornecer esta folha,

ela deve ser digitalizada e armazenada no disco em formato gráfico.

Se você estiver usando o pdflatex,
armazene o arquivo preferencialmente em formato PNG

(o formato JPEG é pior neste caso).

Se você estiver usando o latex (não o pdflatex),
terá que converter o arquivo gráfico para o formato EPS.

Em seguida, acrescente a opção approval={nome do arquivo}
ao comando \ppgccufmg.

Se a imagem da folha de aprovação precisar ser ajustada, use:
approval=[ajuste][escala]{nome do arquivo}

onde ajuste é uma distância para deslocar a imagem para baixo
e escala é um fator de escala para a imagem. Por exemplo:

approval=[-2cm][0.9]{nome do arquivo}
desloca a imagem 2cm para cima e a escala em 90%.

Dedicuum cest laborae a quelquis personatum que ajudorat a facirelo.

ix

Acknowledgments

Agradeço aos prótons por serem tão positivos, aos nêutrons pela sua neutralidade e
aos elétrons pela sua carga.

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure
dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt
mollit anim id est laborum.

Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium do-
loremque laudantium, totam rem aperiam, eaque ipsa quae ab illo inventore veritatis
et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem
quia voluptas sit aspernatur aut odit aut fugit, sed quia consequuntur magni dolores
eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam est, qui dolorem ip-
sum quia dolor sit amet, consectetur, adipisci velit, sed quia non numquam eius modi
tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim
ad minima veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam,
nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure reprehenderit qui
in ea voluptate velit esse quam nihil molestiae consequatur, vel illum qui dolorem eum
fugiat quo voluptas nulla pariatur?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis prae-
sentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi
sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt
mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et
expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque
nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas as-
sumenda est, omnis dolor repellendus. Temporibus autem quibusdam et aut officiis
debitis aut rerum necessitatibus saepe eveniet ut et voluptates repudiandae sint et mo-
lestiae non recusandae. Itaque earum rerum hic tenetur a sapiente delectus, ut aut

xi

reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores
repellat.

xii

“Truth and lie are opposite things.”
(Unknown)

xiii

Resumo

O estudo de sequências de eventos e séries temporais se encontra no cerne do pensa-
mento científico, tal que a meta principal de uma grande parcela de nossas empreitadas
intelectuais se sumariza em prever, explicar, ou modelar esse tipo de fenômeno, que se
instancia no mundo por via de series de, por exemplo, eventos climáticos, linguagem,
observações empíricas, e ações motoras. Um grupo de métodos que tem sido exitoso em
modelar séries e sequências são os Modelos Markovianos de tempo e estado discreto.
Estes modelos oferecem um ferramental variado, podendo ser empregados em tarefas
como predição, explanação e simulação, às custas de uma modelagem mais simplificada
do mundo. O uso destes modelos, no entanto, vem acompanhado de dificuldades em
adequar-los a contextos específicos: A criação de estados semanticamente úteis, e novas
estratégias para expressar a função de transição tradicionalmente requerem alterações
complexas sobre otimizadores como o algoritmo de Baum Welch.

Neste trabalho, hipotetizamos que a otimização por via de Descida de Gradiente
é um substituto eficaz para formas mais tradicionais de se otimizar Cadeias de Markov
discretas. Ademais, acreditamos que o uso de tais técnicas permitirá uma maior flex-
ibilidade ao usuário na definição da semântica dos estados e do modelo de transição.
Para esse fim, desenvolvemos uma estratégia para obter otimizadores de descida de
gradiente para essa classe de modelos, que validamos por via de comparações objetivas
e subjetivas com a saída obtida pelo algoritmo Baum-Welch. Em seguida, propomos
dois modelos práticos que objetivam demonstrar a flexibilidade do novo otimizador.
O primeiro utiliza um modelo hibrido de Rede Convolucional/Modelo Markoviano na
classificação de dígitos do MNIST, enquanto o segundo ilustra um modelo de transição
mais complexo, hierárquico, que trata dados multi-dimensionais e multi-escala, o qual
validamos sobre histogramas de temperatura e da operação de um servidor. Nossos re-
sultados mostram que descida de gradiente é um método viável para otimizar Modelos
Markovianos Discretos, e que o modelo resultante é altamente flexível.

Palavras-chave: Modelos Markovianos, Descida de Gradiente, Aprendizado de Máquina.

xv

Abstract

The study of sequences of events and time series has been at the heart of scientific rea-
soning since its conception, as ultimately the goal of many of our intellectual endeavors
is to predict, explain or model these phenomenon, which can be as diverse as a series
of weather patterns, language, empirical observations or motor actions. One group of
methods that have been successfully employed in modeling series of events are discrete-
state and time Markov Models. These models offer a wide variety of tools for tasks
such as prediction, explanation and simulation, at the cost of a more simplified model
of the world. A significant downside of using this class of models, however, can be the
effort required to adapt them to a desired context: The development of useful state
semantics and novel strategies for expressing the transition model traditionally requires
unreasonably complex adaptations to optimizers such as the Baum Welch algorithm.

In our work, we posit that Gradient Descent optimization can be used as an
effective substitute for more traditional forms of optimizing discrete-time and state
Markov Models. Furthermore, we believe that doing so affords users a greater flexibility
in defining state semantics and transition models. To this end, we devise a strategy
for mechanically obtaining a Gradient Descent Optimizer for discrete-time and state
Markov Models, which we then scrutinize by comparing it objectively and subjectively
to models obtained through the Baum-Welch algorithm. Next, we propose two practical
models which aim to demonstrate the flexibility attained through the use of a Gradient
Descent Optimizer. The first uses a hybrid Convolutional Neural Network/Markov
Model classifier to achieve digit classification on MNIST, while the second illustrates
a more complex, hierarchical transition model aimed at multidimensional and multi-
timescale data, which we validate on a temperature histogram and on values from
the operation of a server. Our results show that Gradient Descent is indeed a viable
method for optimizing discrete-state and time Markov Models, and that the resulting
models are highly flexible.

Palavras-chave: Markov Models, Gradient Descent, Machine Learning.

xvii

List of Figures

2.1 Example 3-state Markov Model . 10
2.2 Example Hidden Markov Model . 11
2.3 Bigram output example . 13
2.4 Information flow graph for the Perceptron 26
2.5 Information flow graph for the Multilayer Perceptron 29

3.1 Weekday traffic example . 45
3.2 Simple weekday traffic Markov Chain . 45
3.3 Simple weekday traffic Markov Chain simulation outputs 45
3.4 Ring Markov Chain for traffic modeling . 46
3.5 Weekend traffic example . 47

4.1 Simple Markov Chain example . 59
4.2 Ambiguous Markov Chain example . 59
4.3 Simple HMM example . 61
4.4 Example Ring Markov Model . 61
4.5 Simple Markov Chain GD/BW likelihood results 63
4.6 Ambiguous Markov Chain GD/BW likelihood results 63
4.7 Simple HMM GD/BW likelihood results 63
4.8 Large Random HMM GD/BW likelihood results 64
4.9 Chain HMM GD/BW likelihood results 64
4.10 Local minima example . 65
4.11 Examples from MNIST dataset . 67
4.12 Visual Markov Model likelihood × iteration 69
4.13 Visual Markov Model likelihood comparison 69
4.14 Temperature histogram dataset example 72
4.15 CPU and RAM histogram dataset example 73
4.16 Multilayer Perceptron implemented in our Domain Specific Language . . . 76

xix

4.17 Hidden Markov Model implemented in our Domain Specific Language . . . 77
4.18 Log likelihood results on the temperature data 80
4.19 Log likelihood results on the CPU data . 80
4.20 Log likelihood results on the RAM data 81
4.21 Temperature distributions predicted by the SMM 82
4.22 Temperature distributions predicted by the HMM 84
4.23 Multi-series likelihood comparison . 85

xx

List of Tables

4.1 Large Random HMM example . 60
4.2 Optimizer parameters used in training our Gradient Descent/Baum Welch

comparison tests . 62
4.3 SMM experimental parameters . 74

xxi

Contents

Acknowledgments xi

Resumo xv

Abstract xvii

List of Figures xix

List of Tables xxi

1 Introduction 1
1.1 Statement . 3
1.2 Objective . 4
1.3 Specific objectives . 4
1.4 Challenges and contributions . 5
1.5 Structure . 6

2 Background 7
2.1 Markov Models . 7

2.1.1 Mathematical Formulation of the Markov Chain 8
2.1.2 Mathematical Formulation of the Hidden Markov Model 10
2.1.3 Predicting the future . 12
2.1.4 Simulating new data . 13
2.1.5 External data . 13
2.1.6 The Baum Welch algorithm . 18

2.2 Gradient Descent Optimization . 20
2.2.1 Artificial Neural Networks . 24
2.2.2 Automatic differentiation . 30

3 Extending Markov Models Through Gradient Descent 33

xxiii

3.1 Gradient Descent Formulation . 34
3.2 Proposed Models . 41

3.2.1 Co-Optimized Visual Markov Model 41
3.2.2 Stacked Markov Model . 44

4 Experiments 57
4.1 Effectiveness of Gradient Descent Optimization on Markov Models . . . 57

4.1.1 Setup . 58
4.1.2 Results . 62

4.2 Digit Classification . 66
4.2.1 Setup . 67
4.2.2 Results . 68

4.3 Stacked Markov Model . 70
4.3.1 Setup . 71
4.3.2 Results . 79

5 Conclusions and Future Work 87
5.1 Future Work . 88

Bibliography 91

Appendix A SMM Formulation 95

xxiv

Chapter 1

Introduction

The study of causality and, more generally, sequences of events, has arguably been at
the heart of scientific reasoning and understanding since their very beginnings. Physics,
for example, aims to model the natural world through the lens of mathematics in such
a way that a repeatable sequence of actions will yield a consistent set of consequences;
On the other side of the spectrum, Psychology and Sociology attempt to do the same in
the fields of human life and society, by formulating models that, given some sequence
of events, result in a particular set of observations. The crucial role which causal
sequences have played in our understanding of the world is far from arbitrary: From
a utilitarian perspective, understanding the past and present only serve a purpose in
so much as doing so enables us to shape our actions in the future, and thus, to the
extent that knowledge of the future is achievable and useful, the only way to go about
attaining it is by constructing these sequences of events, and coupling known past
occurrences to possible future outcomes.

It is impossible, however, to reason about sequences without also addressing the
elements which comprise them. Newton’s laws of motion, for instance, while effective
in establishing a sequence of cause and effect with an infinitely large range of applica-
tions, rely on less sequence-oriented concepts such as mass, velocity, acceleration and
energy; Similarly, the kind of behavioral relationships modeled in Pavlovian condition-
ing also requires base-concept definitions, albeit of a more complex nature, such as
what constitutes a conditioning stimuli, and what qualifies as conditioned behavior.
While in many cases these elements can be defined in a mostly objective way – such as
the concept of mass – it is often the case that a more subjective and intuitive approach
must be taken – such as the concept of “conditioned behavior” in psychology, or “severe
structural damage” in civil engineering.

Historically, in order to conceptualize these more subjective elements, we have

1

2 Chapter 1. Introduction

relied on our innate processing abilities and intuition, however, this paradigm has
been shifting over the past few decades. Factors such as the exponential growth of
computing power, the availability of massive amounts of free data, and a renaissance
in the understanding of algorithms have lead to both a demand and solutions for
machine-based pattern recognition applications to problems which are subjective in
nature. Instances of these kinds of systems have become ubiquitous. For example, it
was estimated that, in the third quarter of 2014, spam accounted for an average of
68% of all email messages (a total of 56 billion messages per day)[Kohavi, 2014], and,
on a daily basis, over 3.5 billion Google searches continue to be made, with most users
receiving acceptable results, selected from a database of over 30 trillion pages[gst, 2016].
In both of these cases, even though the task is largely a subjective one – who, after all,
can say unambiguously what is and isn’t spam, or what is a good result for a search
query – users see satisfactory results operating on scales ‘which would be impossible
to achieve manually through human labor.

In these instances and others, the identification of base elements is sufficient for
completing the task, but this is not always the case. In particular, contexts where the
base elements may be ambiguously defined, deriving part of their meaning from their
relationship with the sequence, pose a significant challenge. Consider, for instance,
the task of visually tracking a person through video: At some angles, the person may
be clearly identifiable (perhaps their face is showing), at others, it may be hard to
distinguish between them and someone else (the person might be turned around, for
example). In cases such as this, knowledge may be spread out over time, requiring some
form of data-integration in order to establish the desired outcome[Saxena et al., 2008]
(in the given example, this might be the challenge of establishing reasonable patterns
of motion for a person – hardly a simple task in its own right – and then joining the
resulting probabilities with those extracted from each position of each frame in order
to come up with a reasonable guess as to where the person is in at each moment in
time).

The approaches to solving the problem of modeling sequences of non-trivial ob-
servations, such as the above, can be generally grouped into two camps, which we will
refer to as two-stage and single-stage models. In two-stage models, one attempts to
model the identification of the basic elements through some kind of supervised classi-
fier, and then separately devise a sequence model – often probabilistic in nature. There
are many advantages to this kind of approach, for instance, it allows the task to be
broken down into sub-tasks (namely the derivation of the observation and sequence
models), which can then also make use of expert knowledge when being developed (for
example, an expert in facial recognition might apply his skills as needed in doing the

1.1. Statement 3

facial recognition portion of a person-tracking system, whereas a computer graphics
professional might be able to use his skills to develop a model for movement).

These same advantages can however become limitations, as expert knowledge
may be imprecise, and a lack of cross-discipline understanding and integration may
lead to severe performance penalties at the point where the models are joined. These
difficulties lead to the second set of approaches, single-stage models, which fully reject
the separation of these two components. In these models, such as Recurrent Neural
Networks (RNNs)[Pearlmutter, 1995], both the local and temporal aspects of the data
are treated homogeneously, which, while effective in eliminating performance losses
across domains, often comes at the cost of interpretability and allowing the inclusion
of insight from experts, for example. In spite of this, methods in this group have gained
much ground in the last decade, but they still are far from fully replacing the more
traditional two-stage systems in use to this day.

In light of these two fundamentally different approaches to sequence modeling,
each with different strengths and weaknesses, the question which arises – and which
motivates this thesis – is whether there is a way to bridge the gap between two- and
single-stage models. Objectively, what this thesis attempts to do is to demonstrate
that one can design two-stage sequence models, but then use optimization techniques
from single-stage models to eliminate the performance losses from having independent
modules, in particular, this is demonstrated for Markov Models, one of the more pop-
ular sequence modeling techniques used in the temporal portion of two-stage models,
and Gradient Descent-optimized models, such as Neural Networks, which have been
shown to be effective in a wide range of classificatory applications.

1.1 Statement

Many sequence-based machine-learning models are defined as two-part systems,
wherein first sequence elements are identified, and then, separately, the sequential
nature of the data is addressed. We posit that the segregation of models into these
two parts can lead to performance losses, but that these losses can be minimized by
joining them in a single optimization process. In this dissertation, we derive this joint-
optimization process for the broad class of Markov-Model-based sequence optimizers,
and explore a few of its ramifications for this class of models.

4 Chapter 1. Introduction

1.2 Objective

The goal of this work is to demonstrate that the utility and effectiveness of Markov
Model-based sequence analysis methods can be improved through the use of Gradient
Descent optimization. To this end, we derive and implement the Gradient Descent
optimizer for Markov Models, which in turn allows for much richer model designs, and
for its use and conjoint optimization with other Gradient Descent-optimizable methods,
such as Neural Networks and linear models.

With this tool in hand, we aim to validate the hypothesis that Markov Models can
retain many of their desirable properties, such as interpretability, use as a predictive
method, simulation and data denoising, while simultaneously making use of/being used
in Gradient Descent-based methods, such as Neural Networks and linear models. We
posit that the classificatory power of these latter methods can be conjoint with the
usefulness of the former in a more effective and broader way by conjointly optimizing
these components.

1.3 Specific objectives

Less generally, the specific objectives we pursued in this work are as follows:

• To study and understand concepts related to parameter optimization, specifi-
cally, using the methods of Gradient Descent optimization and the Baum Welch
algorithm, as well as come to an understanding of other relevant forms of opti-
mization, and what their strengths and weaknesses are with respect to our area
of interest;

• To validate the effectiveness of Gradient Descent Optimization as a competi-
tive method for optimizing discrete Markov Models, exploring what advantages
and/or disadvantages this technique has over more traditional Markov Model
optimizers;

• To study and improve upon traditional techniques of automatic differentiation,
with the goal of facilitating model design and prototyping;

• To illustrate the flexibility Gradient Descent Optimization affords to the develop-
ment of Markov Models by designing a set of novel Markov Models which perform
interesting tasks, and then quantify and compare their performance with those
of more traditional methods.

1.4. Challenges and contributions 5

1.4 Challenges and contributions

The challenges and contributions of this work are as follows:

• A Gradient Descent model for Markov Models: One of the principal chal-
lenges of this project was in developing a way of expressing a Markov Model’s
parameters in such a way that Gradient Descent Optimization would be effective
on it. Many parameter formulations, objective functions and gradient manipu-
lations were attempted before coming up with with the relatively simple model
presented here. These difficulties were initially compounded by the having to
manually recalculate and then re-implement all the gradients, though this bar-
rier was eventually resolved through the use of automatic differentiation.

• A flexible, yet efficient method for automatic differentiation: We aimed
in this thesis to make the design process for Markov Models flexible. This in
turn required a method for easily expressing novel designs that also eliminated
the significant effort of constructing its optimizer. While the available automatic
differentiation libraries are exceedingly efficient, they require users to reformulate
their thought process to work with tensors, making the already difficult process
of model conception even harder. With this in mind, we invested a significant
portion of our efforts into designing an imperative programming language which
would be more natural for its users, while still producing a reasonably efficient
optimizer. The resulting language supports full optimization for complex fea-
tures such as recursion, for loops, if conditionals, methods and classes, multiple
assignments to the same variable, C++ inlining, as well as other features. We
also implemented Hessian-Free optimization in the compiler, which, as far as we
know, is the first time this has been implemented in a fully automatic system.
Sadly, the convexity constraints of this form of second order optimization made
it impractical for general use.

• Adding contextual knowledge to Markov Models: One of the main draw-
backs of using Markov Models is their lack of memory (as all context information
must be inferred from the model being in some specific state). We devised a
way of dealing with this without fundamentally changing how these models work
through the use of multiple Markov Chains operating at different time scales. De-
veloping this model was difficult, however, as obtaining an actionable likelihood
expression which expressed our desired structure was not trivial.

6 Chapter 1. Introduction

• Allowing Markov Models to utilize visual data directly: One of the con-
tributions of our work is in the development of the Visual Markov Model, which
uses a Convolutional Neural Network[LeCun et al., 1998a] to do the bulk of the
image analysis, before moving onto the sequence operations inherent to Markov
Models. Dealing with visual data has been a challenge for Markov Models, as
manually devising visual feature detectors is difficult and time consuming. Here,
however, we were able to construct the visual features automatically, by conjointly
optimizing the Markov Model and the Convolutional Network at its base.

1.5 Structure

The remainder of this dissertation is structured as follows: Chapter 2 details the con-
cepts and related works needed to understand and contextualize our thesis, namely
those of Markov Models and Gradient Descent; Chapter 3 details our method for opti-
mizing Markov Models, and proposes two novel forms of Markov Models whose aim is
to illustrate the flexibility of the proposed mode of optimization; Chapter 4 details the
experiments we conducted, as well as their results; And finally, Chapter 5 concludes
this dissertation, reviewing what was done as well as detailing several avenues for future
research.

Chapter 2

Background

2.1 Markov Models

Several common methods for modeling sequences and time series fall under the category
of Markov ModelsMurphy [2012]. These methods are often employed due to their ease
of understanding, interpretability, parametrization from data, and versatility. While
an exceedingly large diversity exists within these kinds of models, several key principles
are generally shared between them, which is what allows us to generalize our results
over the larger set of models used in the literature. Broadly speaking, this class of
models can be categorized as discrete-state and -time probabilistic time-series models
which assume the validity of the Markov property on the system which they model, a
definition which we will now expand on:

In referring to probabilistic discrete-state models, we refer to methods which,
at any given time, represent the state of the environment being modeled as some
distribution of probabilities over a countable set of possible contexts, or states. While
many real-world environments have an uncountably large set of possible states (caused,
for instance, by the presence of real-valued variables), in practice, slicing the space into
discrete configurations can often be sufficiently precise, especially when accompanied
by the use of probability distributions, which, by spreading out probabilities over many
similar states, can at times counter the approximation errors incurred by discretizing
the environment.

The manner in which the probabilistic distribution over these states evolves,
however, has yet to be addressed, and it is at this point that both discrete-time and
the Markov property from our definition come into play. The Markov property[Murphy,
2012], named after the eponymous mathematician Andrey Markov, who studied the
field in the mid-20th century, simply states that the probability distribution over future

7

8 Chapter 2. Background

states can be fully determined using only knowledge of the present state distribution,
not requiring any knowledge of the distribution at any point before it, or even knowing
when precisely the present is. If we also accept as a premise that time can be reduced
to a countable sequence of moments, then it follows that if we can establish rules for
transitioning between the distribution at time t and the distribution at time t + 1,
these rules will be applicable at any time t ∈ T , and can thus be used to predict the
distribution arbitrarily far into the future, as well as having other useful properties,
examples of which are addressed in Sections 2.1.3, 2.1.4 and 2.1.5.

Finally, putting everything together, that is, joining the assumptions of discrete-
state and -time modelability with the Markov property, we come to a more compre-
hensive classification of the Markov Models which are dealt with in this work: These
methods first assume that their environments can be discretized, both in time and
semantically into states, without significant degradation of performance. Then, these
methods overlay a probability distribution over these states, and attempt to model
the way that these state probability distributions evolve from one moment to the next
through some set of rules. Examples of models which typically fall under this category
are Markov Chains (MC), Hidden Markov Models (HMM)[Murphy, 2012] and Hierar-
chical Markov Models[Fine et al., 1998]. Other examples for which the results of this
thesis remain accurate, but which take only a subset of these properties are Latent
Dirichlet Allocation[Blei et al., 2003] and n-gram models[Brown et al., 1992]. Many
other examples exist, and a few will be discussed in more detail later in this thesis.

In this section we will begin by deriving the mathematical formulation behind
two of the more popular forms of Markov Models, the Markov Chain and the Hidden
Markov Model (Sections 2.1.1 and 2.1.2). Following this, we will demonstrate three
of the many useful operations which can be done in this kind of model: Prediction
(Section 2.1.3), Simulation (Section 2.1.4), and External data analysis (Section 2.1.5).
Finally, we conclude with an overview of the Baum Welch algorithm for obtaining
HMM transition matrices from observed data (Section 2.1.6).

2.1.1 Mathematical Formulation of the Markov Chain

In its most basic form, a Markov Chain can be defined by a finite set of states si ∈ S,
and a set of initial- and transition-probabilities over these states, which describe how
the probabilities of these states start, and then change from one moment to the next.
Mathematically, we introduce the following notation:

2.1. Markov Models 9

si : The state i of the model world

si ∈ S : All the states in the model world

s
(t)
i : The world at time t is in state i (an event)

(2.1)

By construction, we define that two of these events cannot be true simultaneously,
as the world can only be in one state at a time. This is to say that:

P [s
(t)
i] : The probability of being in state i at time t

P [S(t)] =

P [s
(t)
i] if s(t)

i ∧ ¬s
(t)
j ∀ j 6= i

0 otherwise

(2.2)

We can then define transition probabilities P [s
(t+1)
j |s(t)

i] on top of these events,
representing the probability of the world evolving from state i to j in one time step.
This allows us to define the probability of being in a particular state in the future given
only the present state distribution.

P [s
(t+1)
i |s(t)

j] : Transition probability (defined by the model)

P [s
(t+1)
i] =

∑
∀S(t)

P [s
(t+1)
i |S(t)]P [S(t)]

=
∑
j∈|S|

P [s
(t+1)
i |s(t)

j]P [s
(t)
j]

P [s
(0)
i] : Initial state-probability distribution (defined by the model)

(2.3)

Note that, in the above, we use the definition from Equation 2.2 to eliminate all
S(t) where more than one s(t)

i is active, as these have probability 0. Note also that,
if the number of states in the Markov Model is finite, we can use Equation 2.3 to
iteratively compute S(t+1) in its entirety, which can in turn then be used to calculate
S(t+2), and so on (more details on this in Section 2.1.3). Graphically, this model is
often represented in a manner such as seen and explained in Figure 2.1.

10 Chapter 2. Background

s00.1 s1 0.6

0.8

0.4

s2

0.3

0.1
0.7

Figure 2.1. A Markov Chain with 3 states, represented as nodes, and transition
probabilities P [s

(t+1)
i |s(t)

j], represented as weighted directed edges from i to j. At
each moment, a single state is active; Which state will be active in the next time
step depends entirely on which state is currently active, and is uniformly sampled
from its transition probabilities.

2.1.2 Mathematical Formulation of the Hidden Markov Model

The use of purely Markov Chain approaches, such as delimited in Section 2.1.1, is
associated with difficulties such as how to divide the world into a finite set of states,
and then how to determine which state the world is in at a given moment. This sort of
problem is particularly common when treating real-world data, be that a sequence of
words taken from a sentence, a series of stock values (or any other kind of data where
the true state of the world might be obscured at times by interfering variables), or
where there may be no clear designation on how the world should be organized into
states.

The solution proposed by Hidden Markov Models (HMM) is to assume that, while
behind the scenes the world still operates on a Markov Chain whose states are “hidden”,
or latent, we can observe evidence of the hidden state of the world through imprecise
observations. In essence, what the HMM proposes is that what we can observe are only
the results of the world being in these particular states, which not only may be variable
so as to account for noise, but may also be real-valued and ambiguous, allowing for us
to organize the internal states of the model more freely.

Specifically, the Hidden Markov Model (HMM) attempts to model these latent
states by separating the observed data from the model’s states, associating each new
input x(t) ∈ X with each state si through a conditional probability. Philosophically,
what the Hidden Markov Model assumes is that, when the world is in state si, some
event occurs which will stochastically sample some new observation x(t) from the set of
all possible observations U with some distribution assigned to si. Thus, the observations
seen in the world depend solely on the hidden state of the world at that present moment
– another assumption of the Markov property – a fact which can also allow us to infer

2.1. Markov Models 11

which hidden state the model is in based on real world data (see Section 2.1.5).

Mathematically, the HMM expands on the Markov Chain equations (Equation
2.4) with the addition of the observation conditional probability:

x ∈ U : One possible observation within the set of all possible observations

x(t) ∈ X : The observation at time t within the set of all observed values

P [x|si] : Probability of observing x in state si

P [x(t)|s(t)
i] = P [x(t)|si] ∀ t

P [x(t)] =
∑
si∈S

P [x(t)|s(t)
i]P [s

(t)
i]

(2.4)

Graphically, Figure 2.2 exemplifies a customary representation of a Hidden
Markov Model.

s00.6 s1 0.1

0.4

0.9

a

0.5 0.2

b

0.4 0.7

c

0.1 0.1

Figure 2.2. A Hidden Markov Model with two hidden states s0 and s1 represent-
ing the world, and a, b and c, the three possible observations of this hidden world.
As is the case with the Markov Chain, the current state of the model evolves by
picking one of the states at each time step, based on the previous state and its
transition probabilities. Different from a Markov Chain, however, the state of the
model is not assumed to be observable. Instead, we observe a, b or c, and assert
that the probability of seeing them when in each state is given by the dotted
edges (e.g.: the probability of observing b when in state s0 is 0.4). From this we
can try and infer the true state of the model (for example, observing b is a good
indication that the model might be in state s1.

12 Chapter 2. Background

2.1.3 Predicting the future

Motivated by our general desire for anticipating the future, many applications for
sequence models involve prediction. This is a difficult task in nearly any real-world
scenario, however, as there are often many unexpected variables which, when put
together, can change the observable world in significant and unpredictable ways.

One class of methods which are particularly prone to this sort of unpredictability
are next-element classification algorithms – In these cases, a model is built which,
given some portion of a series, predicts what the next element of that series will be.
While effective in predicting a single time step in the future, reusing this predicted
element as an input for predicting the next element ignores scenarios where more than
one outcome is possible at a given moment, as well as allowing for inaccuracies in the
model to become compounded at every step, with no indication that this is occurring.

Markov Models, on account of their probabilistic representation of the world, offer
a uniquely effective way of solving this problem. Put simply, Markov Models avoid the
issues associated with making a single prediction by maintaining an entire distribution
over the state-space, thus taking into account variability in possible outcomes, and
minimizing the problems associated with compounding predictive mistakes by allowing
inaccuracies to be expressed as an increased vagueness in the predicted state probability
distribution.

In order to compute a Markov Model’s prediction, all that is needed is to ap-
ply Equation 2.3 iteratively. For instance, assuming that we have a distribution
{P [s

(t)
i] ∀si ∈ S}, we can use this equation to compute {P [s

(t+1)
i] ∀si ∈ S}; then,

to obtain {P [s
(t+2)
i] ∀si ∈ S}, we can reapply the same equation, only this time taking

the previous distribution, {P [s
(t+1)
i]∀si ∈ S]}, as input (recalling that we only need the

previous distribution since we assume the Markov property).
Using this method, one can predict arbitrarily far into the future. Over time,

however, the uncertainties associated with ambiguous state transitions – that is, when
a single state can transition to two or more other states with non-zero probability
– build up, rendering less punctual distributions. This is to say that very certain
predictions (such as assigning a high probability for one particular state at a given
moment) will often become diluted after a larger number of iterations, reflecting the
overall uncertainty inherent in compounding the inaccuracies of multiple predictions1.

Other algorithms exist that can predict the future state-probability distributions
in Markov Chains more efficiently, as well as others which can calculate the distribution

1The opposite effect can more rarely be observed if the system is convergent in nature. In cases
such as these, the further in the future one goes, the more likely it is for the system to be in a particular
state.

2.1. Markov Models 13

And Metheg-Ammah took and travel unto her beautiful land.
By of one curse in marvelous riches is lost to riches.
What shall findeth given mine blade?

Figure 2.3. A few sentences generated using a bigram model, a particular sub-
case of Markov Models, can be seen above. While somewhat sensible, particularly
when observing words pair by pair, the finer points of syntax are lost on account of
textual data not strictly following the Markov property, which, when compounded
over larger sentences, leads to confusing, at times even humorous constructions.

after an arbitrarily long period of time (referred to in the literature as the stationary,
or ergodic distribution)[Murphy, 2012]. While useful in many contexts and certainly
applicable to the results of this thesis, this is not the focus of our work, and thus will
not be discussed further.

2.1.4 Simulating new data

Generative sequence models have their uses in many contexts, ranging from chat-
bots[Hutchens and Alder, 1998][Graves, 2013] to music generation[Paiement et al.,
2005]. In cases where the data being modeled strictly obeys the Markov property,
Markov Models can generate good quality results. When this is not the case, however,
the generated sequences can seem nonsensical, or even be gibberish. Take, for instance,
the bigram model from natural language processing; The bigram model can be seen
as a trivial Markov Chain where each word is a state. While useful in applications
such as spam detection, it is difficult for bigram models to adhere to the finer points
of syntax. For example, [Macedo, 2016] generated text samples using a bigram model
derived from the King James Bible, producing results such as seen in Figure 2.3.

Considerations about the adequacy of the Markov Property in one scenario or
another, simulation can be achieved in Markov Chains by, at each iteration, sampling
a new value for s(t+1)

i from the {P [s
(t+1)
j |s(t)

i] ∀sj ∈ S} distribution. In a Hidden Markov
Model, in addition to using this process for simulating the hidden Markov Chain, an
observation must also be sampled from its respective distribution. This process can be
repeated indefinitely in order to obtain arbitrarily long sequences. Algorithms 1 and 2
detail this process in pseudocode for Markov Chains and Hidden Markov Models.

2.1.5 External data

The methods presented thus far assume that a great deal of information about the state
of the model is already known, namely the probability distribution over the state-space.

14 Chapter 2. Background

function sampleMarkovChain(startingState, count, TransitionProb[][])
currentState← startingState
sequence← []
while count > 0 do

sequence← sequence+ [currentState]
currentState← sample(TransitionProb[currentState])
count← count− 1

end while
return sequence

end function
Algorithm 1: Simulates a Markov Chain for a specified number of iterations. The
sample function receives an array of transition weights, and randomly picks one of the
indices with probability proportional to its value in the array.

function sampleHMM(startingState, count, TransitionProb[][], obsModel[])
states← sampleMarkovChain(startingState, count, TransitionProb)
observations← []
for all s ∈ states do

observations← observations+ [sample(obsModel[s])]
end for
return observations

end function
Algorithm 2: Simulates a Hidden Markov Model by first simulating its Markov Chain,
and then generating the associated observations.

In applications where only the external data is given, however, these values must be
deduced. Another interesting issue which is associated with this is that of model
adequacy: Just how well does the particular Markov Model actually represent some
particular set of data? An effective answer to this question will not only aid us in
choosing between different possible models, but it also happens to create a framework
for optimization (which we discuss in Section 3.1).

First off, let us elaborate on how external data can influence the state-probability
vector. In the case of a pure Markov Chain, this probability vector is trivially deducible
from the input, which appears as a sequence of states and can be converted to a
sequence of distributions by taking a hot-one encoding of the state-sequence. In the
case of the HMM, however, determining P [s

(t)
i |X] is less trivial.

In the general case, P [s
(t)
i |X] can be obtained in an HMM using the forward-

backward algorithm (a more in depth explanation of this algorithm can be seen in
[Devijver, 1985]), however, for the sake of prediction and model adequacy, it turns
out that it is only necessary to compute P [s

(t)
i |x(0) . . . x(t)] – the state distribution

immediately after all the observations have ended – which we now do:

2.1. Markov Models 15

First, from our assumption of the Markov property, we can state that any two
observations are independent, so long as the occurrence of one of the intermediate
states is defined:

P [x(t0), x(t1)|s(t)
i] = P [x(t0)|s(t)

i]P [x(t1)|s(t)
i] ∀ t0 ≤ t ≤ t1 ∧ t0 6= t1

P [x(0) . . . x(t)|s(t)
i] = P [x(0) . . . x(t−1)|s(t)

i]P [x(t)|s(t)
i] (2.5)

Using this, we isolate x(t) from x(0) . . . x(t−1) in P [s
(t)
i |x(0) . . . x(t)] using two appli-

cations of the Bayes theorem:

P [s
(t)
i |x(0) . . . x(t)] =

P [x(0) . . . x(t)|s(t)
i]P [s

(t)
i]

P [x(0) . . . x(t)]

=
P [x(0) . . . x(t−1)|s(t)

i]P [x(t)|s(t)
i]P [s

(t)
i]

P [x(0) . . . x(t)]

=

(
P [s

(t)
i |x

(0)...x(t−1)]P [x(0)...x(t−1)]

P [s
(t)
i]

)
P [x(t)|s(t)

i]P [s
(t)
i]

P [x(0) . . . x(t)]

=
P [s

(t)
i |x(0) . . . x(t−1)]P [x(0) . . . x(t−1)]P [x(t)|s(t)

i]

P [x(0) . . . x(t)]

(2.6)

Now, using the fact that the probability distribution over all states must add up
to 1, we can remove the pure observation probabilities (e.g.: P [x(0)...x(t)]) in order to
obtain a more computable value:

1 =
∑
s
(t)
i ∈S

P [s
(t)
i |x(0) . . . x(t)]

=
∑
s
(t)
i ∈S

P [s
(t)
i |x(0) . . . x(t−1)]P [x(0) . . . x(t−1)]P [x(t)|s(t)

i]

P [x(0) . . . x(t)]

=

(
P [x(0) . . . x(t−1)]

P [x(0) . . . x(t)]

) ∑
s
(t)
i ∈S

P [s
(t)
i |x(0) . . . x(t−1)]P [x(t)|s(t)

i]

(2.7)

16 Chapter 2. Background

P [s
(t)
i |x(0) . . . x(t)] =

P [s
(t)
i |x(0) . . . x(t)]∑

s
(t)
j ∈S

P [s
(t)
j |x(0) . . . x(t)]

=
P [s

(t)
i |x(0) . . . x(t−1)]P [x(t)|s(t)

i]∑
s
(t)
j ∈S

P [s
(t)
j |x(0) . . . x(t−1)]P [x(t)|s(t)

j]

(2.8)

Finally, we show that P [s
(t)
i |x(0) . . . x(t−1)] can be defined recursively in function

of P [s
(t−1)
j |x(0) . . . x(t−1)]:

P [s
(t)
i |x(0) . . . x(t−1)] =

∑
s
(t−1)
j ∈S

P [s
(t)
i |s

(t−1)
j , x(0) . . . x(t−1)]P [s

(t−1)
j |x(0) . . . x(t−1)]

=
∑

s
(t−1)
j ∈S

P [s
(t)
i |s

(t−1)
j]P [s

(t−1)
j |x(0) . . . x(t−1)]

(2.9)

Putting Equations 2.8 and 2.9 together, we get:

P [s
(t)
i |x(0) . . . x(t)] =

P [x(t)|s(t)
i]
∑

s
(t−1)
j ∈S P [s

(t)
i |s

(t−1)
j]P [s

(t−1)
j |x(0) . . . x(t−1)]∑

s
(t)
j ∈S

P [x(t)|s(t)
j]
∑

s
(t−1)
k ∈S P [s

(t)
j |s

(t−1)
k]P [s

(t−1)
k |x(0) . . . x(t−1)]

(2.10)

Since P [s
(t)
i |s

(t−1)
j] is the state transition probability, given by the model, and

P [x(t)|s(t)
i] is the observation model, also given, all terms in Equations 2.10 are defined

either by the model or by recursion, and thus, using this, it follows that if we can
compute the probability distribution at t, we can also compute it at t + 1. Since the
probability distribution at time t = 0 is given by the model, this in turn allows for us
to compute values of this type for an arbitrarily long sequence.

The above result, referred to in the literature as the forward algorithm, is impor-
tant for several reasons: First, it allows us to compute the state-probability distribution
at the end of the observed data, which is the basis for prediction (as seen in Section
2.1.3), but also, and perhaps more importantly, it is one of the components needed to
quantify how well the model represents the provided data (which we will use in Section
3.1 to derive our optimization routine).

2.1. Markov Models 17

While there are many ways we could go about measuring how well a model can
represent data, one method which stands out is the notion of likelihood. In probability,
the term likelihood is employed with respect to some specific set of data and a model,
and it represents the probability assigned by the model for that particular data oc-
curring in its world. Likelihood can be a good way of measuring and comparing the
adequacy of models since, if one model assigns a much greater probability to some
collection of samples than another model, then that is an indication that the former
better represents the example data.

For example, consider two different models for coin tosses, one which assumes
the coin will land on each side roughly evenly, and another which gives a 3/4 chance
for landing on heads, and a 1/4 chance for landing on tails. Now suppose that, in
flipping a particular coin 100 times we got a specific sequence of heads and tails, and
ended up with 81 heads and 19 tails. This scenario is possible in both models, however
the first one will give a probability of 0.5100 ≈ 7.9 ∗ 10−31 for that particular sequence,
whereas the second model will give a probability of 0.75810.519 ≈ 1.4∗10−16 for the same
sequence. The second model is a million billion times more likely to have generated
that particular series of tosses, and indeed is a better fit for the data (since having such
an exceedingly large disparity between heads and tails wouldn’t be expected from an
unbiased coin).

In the case of the Markov Chain, observations appear as a sequence of states.
The likelihood function can be computed on top of these values by comparing the
expected distribution achieved by applying the model on the previous given state, and
comparing it with the new one (that is, by computing how likely it would have been for
a sampling process of the Markov Chain to have produced that particular sequence):

o(t) ∈ O : Observed state indices sequence

[o(t) = i]↔ s
(t)
i

L = P [O|Model] = P [o(0) . . . o(T)]

= P [o(0)]× P [o(1)|o(0)]× P [o(2)|o(0), o(1)]× · · · × P [o(t)|o(0) . . . o(t−1)]

= P [o(0)]
T∏
t=1

P [o(t)|o(0) . . . o(t−1)] = P [s
(0)

o(0)
]
T∏
t=1

P [s
(t)

o(t)
|s(0)

o(0)
. . . s

(t)

o(t−1)]

= P [s
(0)

o(0)
]
T∏
t=1

P [s
(t)

o(t)
|s(t)

o(t−1)]

(2.11)

18 Chapter 2. Background

All terms in Equation 2.11 are either given by the model, or received as inputs.
The likelihood derivation for the HMM is similar:

L = P [X|Model]

= P [x(0) . . . x(T)]

= P [x(0)]× P [x(1)|x(0)]× P [x(2)|x(0), x(1)]× · · · × P [x(t)|x(0) . . . x(t−1)]

= P [x(0)]
T∏
t=1

P [x(t)|x(0) . . . x(t−1)]

=

∑
s
(0)
i ∈S

P [x(0)|s(0)
i]P [s

(0)
i]

 T∏
t=1

∑
s
(t)
i ∈S

P [x(t)|s(t)
i , x

(0) . . . x(t−1)]P [s
(t)
i |x(0) . . . x(t−1)]

=

∑
s
(0)
i ∈S

P [x(0)|s(0)
i]P [s

(0)
i]

 T∏
t=1

∑
s
(t)
i ∈S

P [x(t)|s(t)
i]P [s

(t)
i |x(0) . . . x(t−1)]

(2.12)

Where the P [s
(t)
i |x(0) . . . x(t−1)] term in Equation 2.12 can be computed recursively

by Equation 2.10. The remainder of the terms in the equation are given by the model.
Note that log-likelihood (denoted by l = logL), is generally preferred over likeli-

hood as it improves readability (i.e., comparing −3 and −4 is easier to compare visually
than 0.001 and 0.0001) and generally has better numerical stability, on account of the
limited precision of floating point numbers (an IEEE754 32 bit float[iee, 1985] will un-
derflow for likelihoods less than ≈ 1.18×10−38, which occur frequently). For operations
such as optimization, transforming into the log-domain is harmless, as the log func-
tion in the domain of L (L ∈ [0, 1] → logL ∈ [−∞, 0]) is bijective and monotonically
increasing, meaning one can always retrieve L from l, and that an optimizer which
maximizes l also maximizes L.

2.1.6 The Baum Welch algorithm

Up until now, the discussion has revolved around the background and utilization of
pre-defined Markov Models for assorted tasks. But what of cases where only the data
is known, from which a model must be derived? Cases such as this are perhaps the
most common use-case for this sort of method, as it is rarely the case that a problem

2.1. Markov Models 19

presents itself as a fully-defined Markov Model. Expanding on the discussion from
Section 2.1.5, in which we illustrated that it is not sufficient that a model can explain
some set of data, but rather that it must also exhibit a good likelihood estimation of
it, we discuss in this section the means by which the parameters of Markov Chains and
Hidden Markov Models can be obtained through the Baum Welch algorithm.

Discovered in the late 1960s by Leonard E. Baum and Lloyd R. Welch, the Baum
Welch algorithm[Baum et al., 1970] is an extension of the Expectation-Maximization
algorithm[Moon, 1996] which iteratively alters the parameters of an HMM by jump-
ing between local maximas of a proxy to log-likelihood. While it doesn’t guarantee
convergence to the optimal solution, it can very quickly and very effectively find good
solutions, and, as such, is widely used as the de-facto means of building Hidden Markov
Models (although also being extensible to Markov Chains through the use of a restricted
observation model).

A more detailed look into how the algorithm is derived can be seen in [Tu, 2015],
however, the outline of the steps involved in coming up with it are as follows:

1. Establish the proxy function which, when optimized will also optimize the log
likelihood, but that also facilitates derivation in the following steps

2. Come up with an analytic expression of the proxy function’s value over the ob-
servation and state model

3. Insert Lagrange multipliers where applicable (in observations and state proba-
bilities) to ensure that the gradient of the proxy function is 0 only when the
restraints that probability distributions must sum to one are true

4. Calculate the gradient of the altered proxy function w.r.t each parameter

5. Equal the gradients to zero – in order to find the maxima – and then solve
the resulting system nonlinear equations in order to find the equation for local
maxima.

The end result of the above process will be a formula which depends on the current
configuration of the model (initial probabilities, transition weights and observation
distribution function), and which, when computed, will return a point which has a
superior likelihood to the present position, and is a local maxima with respect to the
current parameters.

While this algorithm is highly useful in the context of HMMs, it is ill suited for
the purposes of our thesis. For instance, even within Hidden Markov Models, the com-
plexity involved in extending the Baum Welch algorithm to other observation models

20 Chapter 2. Background

is non-trivial, and can even be impossible (if, in doing so, one bumps into an system
of equations which can’t be solved analytically, such as when using Neural Networks
as inputs); Furthermore, without significant changes, the Baum Welch algorithm is re-
stricted to optimizing likelihood as its objective function, restricting the use of HMMs
to their current context; Finally, it is the goal of this thesis to not only deal with
HMMs, but also the much broader class of Markov Models, for which constructing a
derivation of the expectation-maximization algorithm may not yet exist, and would
be unreasonable to expect the average user of these methods to attempt to create one
every time he or she attempted to mix Markov Models with other methods in a novel
way. With this in mind, we move onto Section 2.2, where we propose Gradient Descent
Optimization as a solution to these problems.

2.2 Gradient Descent Optimization

In the context of machine learning, function optimization plays a key role in allowing
the data scientist to focus on the underlying architecture and structure of the processing
involved, rather than the specific parameters associated with his or her particular task.
Take, for instance, the process of trying to create a computational model which can
identify if a given picture contains a chair or not. In this task, a data scientist might
think of a wooden chair, and conceive that it might contain a large set of specific angles,
representing the angles between its legs, the back support and the seat. Then, he or she
might design a feature detector to look for these angles within the image at particular
locations. While this strategy may be ultimately effective, the true difficulty for these
kinds of tasks arises in the details, such as, in this example, what precise locations
should be examined for the given features, what kinds of angles are to be expected,
and what to do with backgrounds which might contain additional, yet irrelevant, angles.

In order to deal with these details, any specific numeric parameters must first
be established. Rather than giving this tedious, often humanly impossible task to
the data scientist, a function optimizer is usually employed which, when given some
goal/objective/error function, will then find a good fit for the parameters of the model
which maximizes it (in the case of the chair problem, this could be to maximize the
number of correctly classified example images).

A first approach to this problem is the Hill Climbing algorithmRussell and Norvig
[1995], which is described in Algorithm 3. While useful in many applications, one of
the drawbacks of this approach is the computational complexity involved in having
to repeat this process for every single parameter in the model numerous times, as

2.2. Gradient Descent Optimization 21

function hillClimb(X, iters, params, stepSizes, stepDecay, objFun)
objV al←objFun(params, X)
while iters > 0 do

for all i ∈ |params| do
candA← {params[0..i− 1], params[i] + stepSizes[i], params[i+ 1...]}
objV alA←objFun(candA, X)
candB ← {params[0..i− 1], params[i]− stepSizes[i], params[i+ 1...]}
objV alB ←objFun(candB, X)
if objV alA > objV al then

params← candA
objV al← objV alA

end if
if objV alB > objV al then

params← candB
objV al← objV alB

end if
end for
stepSizes← stepDecay × stepSizes
iters← iters− 1

end while
return params

end function
Algorithm 3: Example of the Hill Climbing algorithm, an algorithm whose goal is
to find the set of parameters which maximizes the objective function. It does this by
sequentially varying each parameter, and checking if, after the change, the final solution
improved. If it did, it then takes that to be the new value of the parameter, otherwise,
nothing changes. In this case, the algorithm stops when a fixed number of iterations has
elapsed. Other variants of the algorithm change the way candidate parametrizations
are constructed, what the stopping conditions are, or introduce methods for handling
multiple instances of input, but the general principles remain the same. Note that the
algorithm can trivially altered so it minimizes the objective function by flipping the
sign on objFun.

both the total parameter and iteration counts may number in the tens of thousands,
therefore requiring an exceedingly large number of iterations before completion. A
faster approach would be to find a way to simultaneously measure how changes in each
parameter would affect the objective function, and this is precisely where the Gradient
Descent algorithm comes in.

In its essence, the gradient is a way of measuring how changes in one value affect
another, dependent amount. Consequently, Gradient Descent requires an analytical
formula for calculating the gradient of the objective function with respect to each
parameter, which it then uses to construct an algorithm which iteratively increments

22 Chapter 2. Background

function gradientDescent(X, iters, params, α, αDecay, ∇objFun)
while iters > 0 do

grad←∇objFun(X, params)
params← params− α× grad
α← α× αDecay

end while
return params

end function
Algorithm 4: Example of the Gradient Descent algorithm. Similar to the Hill Climb-
ing algorithm (Algorithm 3), the Gradient Descent algorithm aims to find the set of
parameters which optimizes the objective function. In contrast with the Hill Climb-
ing algorithm, however, the algorithm computes the direction of improvement for all
parameters simultaneously, and then updates all of them accordingly. The example
illustrates minimization of the objective function, however maximization can also be
achieved by flipping the sign on the objective function or on the params update step.
Many variants of the Gradient Descent algorithm exist, which mainly change how the
weight update step occurs, or what to do if there are multiple instances of input. Note
that, similar to the Hill Climbing algorithm, the Gradient Descent algorithm can be
turned into the Gradient Ascent algorithm, which maximizes its objective function,
merely by flipping the sign on ∇objFun.

the parameters of a model, in proportion to the magnitude of the current gradient,
with the goal of minimizing (or maximizing) the objective function. The method and
reasoning behind how this algorithm works is detailed in Algorithm 4, however, a
useful analogy is that of a marble on a hilly surface: If the marble’s position on the
surface represents the current set of parameters being optimized, and the height of
this surface at any point is the objective function, the algorithm loosely describes the
rolling movement the marble will take going from a random starting position towards
lower and lower points, traveling faster in directions which are steeper, and eventually
settling down once it’s fallen into some hole or divot.

The Gradient Descent algorithm isn’t perfect, however. In addition to being
limited to derivable functions, it has many flaws, for example, it is not guaranteed to
find the optimal solution, since, like the Hill Climbing algorithm, it can get stuck in
local optima, where any changes within the local neighborhood in the parameter space
would lead to a worsening of the objective function, even if beyond this neighborhood
there might be a more optimal configuration (in the analogy of the marble, the marble
has settled in some pit on the surface from where it can’t get out, but which also isn’t
the absolute lowest point). Unlike in the Hill Climbing algorithm, Gradient Descent
is not guaranteed to always improve its solution from iteration to iteration, since the
gradient is only a measure of how the function changes locally, but its movement is

2.2. Gradient Descent Optimization 23

done in steps. Finally, convergence can also be slow using this method, if, for example,
small changes in a parameter only affects the objective function a tiny amount, but
very large changes could lead to significant improvements, in which case the value will
slowly crawl to where it should be (again, in the marble analogy, it may be rolling
down a very slight hill, and, even if the hill is very deep, it may still take a long time
to get there on account of it not being very steep).

In spite of these difficulties, the Gradient Descent algorithm has been extensively
used in many different methods, perhaps most famously within the context of Neural
Networks (see Section 2.2.1). There are many reasons for this, such as the fact that it
works on many more kinds of problems than other forms of optimization (for example,
linear and Hessian optimization, which both require convexity constraints[Martens and
Sutskever, 2012]), however, we argue that the main reason for this is the chain rule,
which allows one to calculate the gradient of an appropriate objective function with
relative ease, and introduces inherent modularity to the solutions obtained through
these means.

f(x) = g(h(x))

δf

δx
=

δ

δx
g(h(x))

=
δg

δh

δh

δx

f ′(x) = g′(h(x))h′(x)

(2.13)

f(x, y) = g(h(x, y))

δf

δx
=
δg

δh

δh

δx
δf

δy
=
δg

δh

δh

δy

(2.14)

The chain rule, shown in Equation 2.13, allows for us to split the gradient com-
putation into independent components. For example, consider some objective function
f(g(h(p))) which depends on the enclosed parameter p. In order to calculate the gra-
dient δf

δp
we would only need to calculate δf

δg
, δg
δh
, and δh

δp
. While intuitively this may

seem even more complex, after all, we are calculating three derivatives instead of one,

24 Chapter 2. Background

the three functions might individually be relatively simple to derive, whereas the ex-
pression as a whole might be less more complicated. Furthermore, this modularization
can significantly reduce computational effort, such as in Equation 2.14, where the term
δg
δh

appears in both δf
δx

and δf
δy
, needing, therefore, to only be calculated once.

The modular property of Gradient Descent is arguably the foundation which has
allowed for and explains the popularity of large Neural Network libraries. Unlike in
more traditional machine learning methods, the aforementioned properties permit that,
if the data scientist chooses to create a novel model which is more suited for his or
her context, he can do so by mashing together computational units (representing more
basic arithmetic operations), with little regard to how an optimizer his design will be
made (as the library knows how to construct one from its basic operations). This in
turn frees the data scientist to focus on finding an appropriate model for his or her
context, and allows the library designers to come up with more efficient optimizers, a
wider range of arithmetic operations, and better computational resource management
algorithms.

Considering the prominent position Neural Networks exhibit within the class of
Gradient Descent-optimized models, we will examine, in the remainder of this section,
precisely how these networks are constructed (Section 2.2.1). Then, in conclusion, we
have Section 2.2.2, where we explore how modern Neural Network libraries are able
to leverage Gradient Descent in order to autonomously construct optimizers for new
models – an exceedingly relevant component of this project, as they offer a means to
facilitate the interaction of Markov Models and other Gradient Descent methods, such
as Neural Networks, without requiring specialist knowledge from the user.

2.2.1 Artificial Neural Networks

The notion of an artificial neural network was first proposed by McCulloch and Pitts in
1943, and was designed as a form of bio-inspired computation, inspired by early insights
into the human visual processing system. Since then, however, the biological nature
of this technique gradually waned in importance, as researchers realized the versatility
inherent in this kind of model. Early on, one of the main motivators for the use of
artificial Neural Networks was their ability to deal with novel sources of data with fewer
requirements for complex feature engineering. Furthermore, artificial Neural Networks
were one of the first models that could deal with nonlinear classification tasks.

In their essence, artificial neural networks are generally built out of two main
components, named neurons and weights, which serve as analogies for neurons and
synapses in the brain. In these kinds of models, neurons achieve activation through

2.2. Gradient Descent Optimization 25

some means, which in turn affects the ability of other neurons, to which they are
linked via weights, to also achieve activation. Information is input into the network by
inducing activity in one set of neurons, and is extracted by reading out the activation
pattern of some set of neurons after some number of iterations. The network’s output
is then evaluated in some, the results of which often being used to alter the parameters
of the network so it will perform better in the future.

While these general principles tend to be the same across the many different kinds
of Neural Networks, the specific means by which a neuron can affect another one’s
ability to activate/fire varies. A full review of the different kinds of neural networks
goes beyond the scope of this thesis – and indeed, many forms of neural networks don’t
even use Gradient Descent for their optimization routines – thus, we will focus on the
Perceptron family of neural networks, as they are the most relevant to our thesis and
to the contemporary machine learning community in general.

In the Perceptron family of neural networks[Bishop, 2007], neurons accumulate
a real valued charge which is used in conjunction with the synaptic weights, the main
parameters of the model, in order to alter the charge of other neighbors to which the
present neuron is connected. The simplest member of this family is the Perceptron
itself, which is comprised of a single neuron, and one weight for each of its real-valued
inputs. The mathematics for the Perceptron are shown in Equation 2.15.

xi ∈ X : Collection of inputs

wi ∈ W : Collection of real-valued weights, one for each input

b : Real valued bias parameter

s(X) = b+
∑
i

wixi

out = a(s(X))

(2.15)

As seen in Equation 2.15, the sum of the neuron’s weighted inputs s(X) is used
in a(s), referred to in the literature as its activation function, to compute the output
of the model. a(s) is defined to be some non-linearity (such as a sigmoid, arc-tangent,
or relu function), and, except for the bias parameter b, is the only difference between
this model and linear regression. Before we can construct an optimizer for this model,
however, one must first establish an objective function. For example, if the Perceptron
is being used in regression, one possible objective function could be to minimize the

26 Chapter 2. Background

square error (seen in Equation 2.16).

y : expected output for some input X

err = (y − out)2
(2.16)

w0

x0

w1

x1

...

wD

xD

[W ·X]0

[W ·X]1

...

[W ·X]D

s a out

y

err

Figure 2.4. Information flow between inputs (orange), parameters (red), and
calculated outputs (blue) in a Perceptron. The specific operations at each node
are given by Equation 2.15. Different objective functions may yield to different
graph configurations to the right of the output.

Using the chain rule (Equation 2.13), we can derive the gradient for the Per-
ceptron function w.r.t. its parameters. While in this case the derivative is relatively
simple, it will be useful in the future, when models become more complex, to build a
graph, such as seen in Figure 2.4, in order to understand the relations between each
term being calculated. In this graph, an edge is created whenever a symbol is used in
the definition of another, going from used to user2. We can use this graph to determine
what partial derivatives are needed, and in what order they need to be computed:

The gradient of the objective/error function with respect to a node ni, δerr
δni

is
the sum of the gradients of the objective function with respect to each of the nodes nj
which use ni as a symbol, multiplied by their partial derivative δnj

δni
. That is:

2In the case of recursive definitions where values are updated on further iterations (such as RNNs)
a new instance of the node must be created each time its value is changed.

2.2. Gradient Descent Optimization 27

δerr

δni
=
∑
j

δerr

δnj

δnj
δni

(2.17)

Where j is the set of all nodes pointed to by ni in the information flow graph. The
order by which partial derivatives must be calculated is also given by the graph, and can
be taken to be the reverse order in which the terms were originally calculated, or, more
generally, any order whereby the gradient with respect to the nodes pointed to by the
current node have been calculated before its own gradient calculation takes place. Using
this, we calculate the gradients for a Perceptron with a squared error minimization
objective function and a sigmoid activation function (that is, a(s) = 1

1+e−s
):

δerr

δout
= −2(y − out)

δout

δa
= 1

δa

δs
=

1

1− e−s

(
1− 1

1− e−s

)
δs

δb
= 1

δs

δwi
= xi

(2.18)

δerr

δout
= −2(y − out)

δerr

δa
=
δerr

δout
δerr

δs
=

(
δerr

δa

)(
1

1− e−s

(
1− 1

1− e−s

))
δerr

δb
=
δerr

δs
δerr

δwi
=

(
δerr

δs

)
xi

(2.19)

28 Chapter 2. Background

δerr

δwi
=
δerr

δout
× δout

δa
× δa

δs
× δs

δwi

= −2(y − out)× 1× 1

1− e−s
(1− 1

1− e−s
)× 1

= −2(y − out)
(

1

1− e−s

)(
1− 1

1− e−s

) (2.20)

Equation 2.18 shows the partial derivatives which need to be computed in order to
compute Equation 2.19, which gives the gradient of the objective function with respect
to each parameter. Equation 2.20 summarizes these results in a single symbolic formula,
however, in practice, a complete symbolic equation such as seen there is rarely derived,
as it can result in redundant calculations and is generally unnecessary.

A more complex member of the Perceptron family is the Multilayer Perceptron
(MLP)[Bishop, 2007]. The main feature it introduces is the number of computational
units used: While in the Perceptron a single neuron is utilized, the Multilayer Percep-
tron uses multiple neurons, organized into layers, where the outputs of one layer serve
as inputs to the next layer. The equations for it are similar to those for the Perceptron,
only now they are vectorized by the layer index and the index of the neuron within the
layer:

xi ∈ X : Collection of inputs

wlij ∈ W : Real-valued weight from neuron i of layer l to neuron j of layer l + 1

bli : Real valued bias of neuron i of layer l

a0
i = xi

sli = bli +
∑
j

wl−1
ji a

l−1
j

ali = a(slj)

out = [aLi ∀i]
(2.21)

Note that now out can be a vector instead of a scalar. We follow a similar
procedure as before, and derive the information flow graph in Figure 2.5, followed by
the partial and full gradient computations in Equations 2.22 and 2.23.

2.2. Gradient Descent Optimization 29

x0

x1

...

xD

W 0
0

W 0
1

W 0
D0

b0
0

b0
1

b0
D0

s0
0

s0
1

s0
D0

a0
0

a0
1

a0
D0

...

W 1
0

W 1
1

W 1
D1

b1
0

b1
1

b1
D1

s1
0

s1
1

s1
D1

a1
0

a1
1

a1
D1

...

. . .

. . .

. . .

WL
0

WL
1

WL
DL

bL0

bL1

bLDL

sL0

sL1

sLDL

aL0

aL1

aLDL

...

out0

out1

outDL

...

err

Figure 2.5. Information flow in a Multilayer Perceptron. The diagram’s style
is the same as in Figure 2.4, however, in the interest of legibility, the individual
weight scalars wli0, w

l
i1, . . . , w

l
iDl

were grouped into W l
i .

δerr

δaLi
=

δerr

δouti

δali
δsli

= a′(slj)

δsli
δbli

= 1

δsli
δal−1

j

= wl−1
ji

δsli
δwl−1

ji

= al−1
j

(2.22)

30 Chapter 2. Background

δerr

δaLi
=

δerr

δouti
δerr

δsli
=

(
δerr

δali

)
a′(slj)

δerr

δbli
=
δerr

δsli
δerr

δal−1
j

=
∑
i

(
δerr

δsli

)
wl−1
ji

δerr

δwl−1
ji

=

(
δerr

δsli

)
al−1
j

(2.23)

Equations 2.22 and 2.23 compute the gradient for the MLP in much the same
manner as was done for the Perceptron. Of import are the differences pertaining to
δerr

δal−1
j

, where a summation must be introduced since we now have that a single compo-

nent, al−1
j , is used as a symbol in multiple other functions (as seen in the information

flow graph, Figure 2.5), as well as the omission of δerr
δouti

and a′(slj), as these were re-
spectively exemplified by the squared-error and sigmoid functions in the Perceptron
example, whereas here they have been left as placeholders.

Other members of the Perceptron family include Recurrent Neural Net-
works[Pearlmutter, 1995], Convolutional Neural Networks[LeCun et al., 1998a] and
Autoencoders[Bengio et al., 2009]. While each of these models has its own uses and
peculiarities, and variations on how the gradient is used do exist – be that imple-
mentation, scaling, initialization or stopping procedures – the process described here
for obtaining a functional optimizer for an arbitrary model utilizing Gradient Descent
stands, giving credence to the interoperability of these kinds of models, as well as their
simplicity of use from the perspective of the data-scientist, so long as he can relegate
the gradient computation to a library.

2.2.2 Automatic differentiation

As outlined in the beginning of this section (and further exemplified in Section 2.2.1),
the process for deriving a Gradient Descent optimizer from a model specification is rela-
tively simple given a comfortable understanding of the calculus and methods involved.
While “simple”, requiring this particular skill-set from the average data scientist, or
even enthusiast who just wants do design a machine learning algorithm to model their
problem, however, is hardly reasonable. To this end, the notion of automatic dif-

2.2. Gradient Descent Optimization 31

ferentiation[Baydin et al., 2015] was proposed, which aims to automate the already
mechanical process of computing the numerical derivative of a function.

The general principles behind automatic differentiation are those already seen in
this section: One uses the chain rule (Equation 2.13) to calculate the partial derivatives
of the model (such as was done for the Perceptron and MLP in Equations 2.18 and
2.22), and then combines these as needed in order to produce the desired gradient. The
specific way in which this is done varies, however, with the two main methods being
referred to as forward and reverse mode automatic differentiation.

Reverse mode automatic differentiation follows the progression utilized in Section
2.2.1: In order to calculate δf

δx
in f(g(h(x))), for example, one first calculates δf

δg
, which

is then multiplied by δg
δh
, which is then finally multiplied by δh

δx
. The “reverse” term is

added to the name of this algorithm in reference to the order in which computations
are done, following the reverse order in which calculations were performed in the first
place. The main drawback of this method is the need to recall the partial derivatives in
reverse order, which often requires recomputation and/or the storage of intermediate
results (in the example, one would need to store or recompute h′(x), g′(h(x)) and
f ′(g(h(x)))).

One way to avoid the problem of recomputing partial derivatives is to utilize
forward mode automatic differentiation. In this method, instead of propagating the
gradient backwards from the error source, it is instead initiated when the parameters
are defined, and then updated as the calculation evolves. For example, once again
using δf

δx
in f(g(h(x))) as our target, forward mode automatic differentiation would

start with δx
δx

= 1, and then multiply that value in sequence by δh
δx
, δg
δh
, and δf

δg
. The

advantage of not needing to recall the partial derivatives occurs since one can calculate
the partial derivative with respect to the variable (x in this case) at the same time each
computation of the model is being done, at which point all the information needed is
already available.

Forward mode automatic differentiation is not without its drawbacks, however,
as the computational effort required to compute the gradient scales linearly with the
number of parameters. This occurs since every node must keep track of its gradient with
respect to every parameter, unlike in reverse mode where the gradients are only split off
on a parameter basis when that leaf is reached while traversing the computation graph.
A similar penalty is incurred with reverse mode automatic differentiation in the case
of multiple objective functions, though such is not the case in most machine learning
algorithms, as even when there are multiple objective functions one desires to combine
them somehow, not derive different models to maximize each of them separately.

There are several approaches for implementing automatic differentiation. On one

32 Chapter 2. Background

side, Neural Network libraries such as TensorFlow [Abadi et al., 2016], Theano[Bergstra
et al., 2011] and Torch[Collobert et al., 2002] rely on the pre-coding of hundreds of
complex tensor operations (such as matrix and dot products, mass applications of
specific functions, and even convolution), with pre-coded gradient calculations. The
advantages here are two-fold: first, the use of block operations allows for function-level
parallelism to be tailored to each specific operation, facilitating, for instance, the use
of GPUs, and second, the increased complexity of each operation reduces the total
number of operations required, granting library designers’ handmade optimizations of
each operation a greater overall significance.

On the other side, automatic differentiation can be implemented on a more gran-
ular level, as was implemented for the purpose of this thesis. In this paradigm, only a
handful of operations and their gradients need to be encoded, and the user has more
liberty to design their functions, unimpeded by the lack of some specific complex op-
eration which the library designers deemed unnecessary. The drawback, of course, is
efficiency, as the entire burden of optimization falls on to the automatic differentia-
tion implementation, which has yet to surpass the human level-efficacy of handmade
tensor operations. Effective parallelism becomes a significant issue here, as automatic
parallelization is itself an active area of research in general [Banerjee et al., 1993].

Considering the positive and negative aspects of both of these implementation
paradigms, we made use of both techniques in this thesis. We found tensor-based
approaches useful in dealing with simpler concepts, as they provided more speed, and
then, in order to prototype more complex models where a tensor-based approach would
be cumbersome, we made use of our own Domain Specific Language.

Chapter 3

Extending Markov Models Through
Gradient Descent

As outlined in Chapter 1, we posit in this thesis that the use of Gradient Descent in
the context of Markov Models can be a means for extending the usability of this kind
of method. In particular, we claim that, by using Gradient Descent optimization, one
can co-optimize the observation function along side the transition model, leading to a
more diverse set of observation functions, and, additionally, better sequence-oriented
architectures for this category of methods. In this chapter, we explore the means
by which we intend to demonstrate these statements, and, in so doing, show that
Gradient Descent, as applied to Markov Models, is both an effective optimizer and
yields a versatile set of tools.

In order to accomplish this, we first derive and examine the Gradient Descent
formulation for a Hidden Markov Model (Section 3.1). While ultimately we make use
automatic differentiation to construct our optimizers, manually constructing an opti-
mizer is an important exercise not only from a chronological perspective – as building
the optimizer manually was the first step taken in the direction of this thesis – but
is also necessary for understanding how to define these models in such a way that
automatic differentiation can effectively operate on this class of models.

Next we define two novel uses for Markov Models, whose aim is to showcase the
versatility of models constructed out of the union of Markov Models and Gradient
Descent. The first example, Section 3.2.1, is a visual data classifier which uses con-
volutional layers as its basis, but relies on a Markov Model’s likelihood estimation to
come up with the classification. The second example, Section 3.2.2, stacks multiple
layers of Markov Models, employing the sequence-likelihood given by one model as
an observation for another. This solves some of some of the limitations of standard

33

34 Chapter 3. Extending Markov Models Through Gradient Descent

HMMs, and allows us to model more complex behavior in time series using this kind
of method.

3.1 Gradient Descent Formulation

Markov Models, as discussed in Section 2.1, make use of a set of parameters in order to
establish the probabilities of a transition occurring between one state and another at
one moment in time (P [s

(t+1)
i |s(t)

j]), as well as a set of initial probabilities ({P [s
(0
i] ∀i}).

Furthermore, as seen in Section 2.1.5, we can use the statistical quantity likelihood as a
metric for how well a model represents some set of real data. Combining the concepts
of likelihood, the existence of real-valued model parameters, and the Gradient De-
scent optimization techniques discussed in Section 2.2, we can formulate optimization
strategies for Markov Models.

Generally speaking, in order to optimize the performance of a Markov Model on
some set of set of real data using Gradient Descent, we start with a random set of
parameters, which we then iteratively improve upon using the Gradient Descent algo-
rithm, Algorithm 4. Specifically, we utilize Gradient Ascent, as we wish to maximize
the likelihood of the model over the data. Since a likelihood function is generally easy
to compute in Markov Models, this strategy can generally be applied to all members of
the family, however, for the sake of brevity, we will only manually derive the Gradient
Descent optimizer for the HMM, leaving derivations of further models to automatic
differentiation (which functions as detailed in Section 2.2.2).

To begin, our first step in establishing a Gradient Descent optimizer for the
Hidden Markov Model is to formulate some set of equations which, when computed in
sequence, will give us the total likelihood of the model for the given data. For this we
can rely on Equation 2.12, from which we construct Algorithm 5, which computes the
log-likelihood of a HMM with respect to some data.

Next, in Equation 3.1, we compute the derivatives of each term from Algorithm
5, which we then use to construct Algorithm 6. Algorithm 6 is constructed by reversing
the control flow of Algorithm 5, and then replacing each term with its gradient expres-
sions (as computed in Equation 3.1). Note that exactly reversing the control flow is
sufficient for ensuring that each node’s children’s gradients are always computed before
their own, and, when coupled with making all gradient expressions incremental (e.g.:
δerr
δf
← δerr

δf
+ δerr

δg
δg
δf
), allows for a completely mechanistic (albeit at times inefficient)

method for computing the gradients.

3.1. Gradient Descent Formulation 35

function logLikelihoodHMM(X, P (0), Pij, observationProb[])
q(0..0) ← P (0)

for all t from 0 to |X| − 1 do
o(t) ← { observationProb[i](X(t)) ∀i}
p(0..t) ← q(0..t) ◦ o(t)

α(t) ←
∑

i p
(0..t)
i

q(0..t+1) ← (α(t))−1p(0..t) · Pij
end for
return l←

∑
t logα(t)

end function
Algorithm 5: Computes the log-likelihood of a given sequence for a Hidden Markov
Model. For clarification, observationProb[i](X(t)) is a function, associated with state
i which gives P [X(t)|si], a ◦ b is the pairwise product between two vectors, and α is a
normalization factor used for numerical stability (otherwise, p(0..t) risks underflowing).

δerr

δP
(0)
i

=
δerr

δq
(0..0)
i

δerr

δobservationProb[i]
=
∑
t

δerr

δo
(t)
i

δerr

δo
(t)
i

=
δerr

δp(0..t)
q

(0..t)
i

δerr

δq
(t)
i

=
δerr

δp(0..t)
o

(0..t)
i

δerr

δp
(0..t)
i

=
δerr

δα(t)
+ (α(t))−1

(∑
j

Pij
δerr

δq
(0..t+1)
j

)
δerr

δα(t)
= (α(t))−1 δerr

δl
− (α(t))−2

(
δerr

δq(0..t+1)
·
(
p(0..t) · Pij

))
δerr

δPij
=
∑
t

(α(t))−1p
(0..t)
i

δerr

δq
(0..t+1)
j

(3.1)

Algorithms 5 and 6 can be used together so as to compute the likelihood and gra-
dient of a set of parameters over some data. This can be done by running the likelihood
computation (Algorithm 5), and then running the gradient computation (Algorithm
6) taking δerr

δl
to be −1 (any constant will do here, with the magnitude scaling all δerr

δ∗

terms, and the sign determining whether we will maximize or minimize likelihood).
Finally, with gradients in hand, the next step would be to run the parameter update
step (as described in the Gradient Descent Algorithm, Algorithm 4).

A challenge which appears at this point are the co-dependencies between model

36 Chapter 3. Extending Markov Models Through Gradient Descent

parameters, namely that they all must represent valid probability distributions. These
restrictions are summarized in Equation 3.2 (we assume for now that observationProb
is constructed so as to be a valid probability distribution. Later in this section we will
discuss what that entails)

P
(0)
i ∈ [0, 1] ∀i

Pij ∈ [0, 1] ∀i, j∑
i

P
(0)
i = 1∑

j

Pij = 1 ∀i

(3.2)

There are several methods which can be employed in order to ensure the restric-
tions posed in Equation 3.2 hold. The Baum Welch algorithm (Section 2.1.6), for
example, uses Lagrange multipliers in order to ensure that local minima exist only if
the restrictions are met, and then jumps between these minima by setting parameters
accordingly. This, however, cannot be applied here due to Gradient Descent, which
allows for parameters to not always be at a local minima (meaning that, when not in
these states, we potentially have invalid probability distributions); Another approach is
to fix parameters after the application of the gradient through some form of normaliza-
tion (e.g.: by adding a constant factor to all values so they all exceed 0 and then scaling
them so they sum to 1). Care must be taken when devising these kinds of methods, as
manipulating the gradient or values directly often has unintended consequences.

A more organic solution, which was adopted in our formulation, is shown in Equa-
tions 3.3 and 3.4. In it, instead of manually fixing the gradient or values, we redefine
the model’s parameters in function of a set of restrictionless real-valued parameters,
which by construction retain the desired restrictions. In summary, our method entails
using real valued parameters (w ∈ [−∞,∞]), which are squared (w2 ∈ [0,∞]), and
then normalized so their sum is 1, thus representing a valid distribution.

W
(0)
i ∈ R ∀i

P
(0)
i =

(
W

(0)
i

)2

+ ε∑
j

((
W

(0)
j

)2

+ ε

) (3.3)

3.1. Gradient Descent Formulation 37

function LogLikelihoodHMMGradient(δerr
δl

, {PARTIALS})
for all t from |X| − 1 to 0 do

δerr
δα(t) ← (α(t))−1 δerr

δl

end for
for all t from |X| − 1 to 0 do

δerr
δα(t) ← δerr

δα(t) − (α(t))−2
(

δerr
δq(0..t+1) ·

(
p(0..t) · Pij

))
for all i do

δerr

δp
(0..t)
i

← (α(t))−1

(∑
j Pij

δerr

δq
(0..t+1)
j

)
for all j do

δerr
δPij
← δerr

δPij
+ (α(t))−1p

(0..t)
i

δerr

δq
(0..t+1)
j

end for
end for
for all i do

δerr

δp
(0..t)
i

← δerr

δp
(0..t)
i

+ δerr
δα(t)

end for
for all i do

δerr

δo
(t)
i

← δerr
δp(0..t)

q
(0..t)
i

δerr

δq
(t)
i

← δerr
δp(0..t)

o
(0..t)
i

end for
for all i do

δerr
δobservationProb[i]

← δerr
δobservationProb[i]

+ δerr

δo
(t)
i

end for
end for
for all i do

δerr

δP
(0)
i

← δerr

δq
(0..0)
i

end for
return { δerr

δP
(0)
i

, δerr
δPij

, δerr
δobservationProb[i]

}
end function

Algorithm 6: Computes the gradient of the likelihood with respect to each parameter
for a Hidden Markov Model. It receives as input the gradient with respect to its output,
δerr
δl

, and a set of partial derivatives {PARTIALS} (the terms which are multiplied by
δerr
δ∗ terms). The partial derivatives (calculated in Equation 3.1) all depend on terms
computed in the logLikelihoodHMM method (Algorithm 5). Note that here we assume
that any symbol that has not yet been declared has the value 0. The above portrayal
may not represent the most efficient design, as improvements, such as grouping the
bodies of similar loops, may be more compact, however it does illustrate that the
gradient can be obtained from a rather straight-forward transformation.

38 Chapter 3. Extending Markov Models Through Gradient Descent

Wij ∈ R ∀i, j

Pij =
W 2
ij + ε∑

k (W 2
ik + ε)

(3.4)

While the squaring and normalizing alone is sufficient to create a valid probability
distribution, the addition of a small constant ε (e.g.: ε = 10−5) is needed to ensure
that probabilities are never exactly equal to zero. As seen in the gradient computation,
Equation 3.5, δerr

δw
is scaled by w, meaning that, in the event that w = 0, the optimizer

will be in a rut and will never alter its value. Furthermore, a probability mistakenly
taken to be zero leads to a log-likelihood of −∞, which in turn propagates to the
gradients which also become ∞, −∞ or nan. Zero-probabilities should be avoided in
this kind of optimization, and indeed, requiring non-zero probabilities is generally not
a problem as a true zero-probability can be inferred in an optimized model by finding
w values which have been minimized to 0 (or very close to it).

wi ∈ R ∀i

pi =
w2
i + ε∑

j

(
w2
j + ε

)
δerr

δwi
=
∑
k

δerr

δpk

δpk
δwi

=
2wi∑

j

(
w2
j + ε

) (δerr
δpi

)
+
∑
k

(
δerr

δpk

)− 2wi (w
2
k + ε)(∑

j

(
w2
j + ε

))2


=

(
2wi∑

j

(
w2
j + ε

))((δerr
δpi

)
−
∑
k

pk

(
δerr

δpk

))
(3.5)

Finally, on the matter of the restrictions on the observation probabilities, there
are a couple points to be detailed. Firstly, it is important to note that the techniques
used for ensuring that parameters form valid probability distributions can also be
applied to observation functions which define a distribution over a finite number of
values. While useful in many applications (and indeed the main use of Hidden Markov
Models), the restrictions imposed by requiring that observationProb always returns a
strict probability distribution over the set of states are limiting, and can often have
unintended consequences.

3.1. Gradient Descent Formulation 39

Take, for instance, a Hidden Markov Model which is attempting to model R2 data
using a set of Bivariate Normal distributions. In this hypothetical setup, each state has
one Bivariate Normal distribution associated with it, however, since density functions
don’t return valid probability distributions, we attempt to make it valid by dividing
the density function of each state by the total sum of all density functions (that is,
P [X(t)|si] = pdfi(X

(t))∑
j pdfj(X

(t))
, where pdfi is the distribution’s density function). Intuitively,

one might expect that, upon optimizing this model on some data, the distributions
will move to cluster around the points, mimicking their pattern in 2D space (as one
might see in a Gaussian mixture model), however, this is not the case. What indeed
happens is that, due to normalization, there is no incentive for the mean value of the
distribution to approximate the centroids of the clusters, as points get assigned higher
probabilities with each state based solely on their relative distance from each of the
means1. Consequently, the mean’s of the distributions will often fly off into infinity,
in opposite directions, which, while still ever-improving state-probability distributions,
leads to nonsensical, and often ineffective models.

An informative solution to this problem is to simply drop the normalization term.
Upon doing so, the Bivariate Normal Distributions can no longer move away from the
centroids of the data without a significant penalty to the objective function. The only
real consequence of this change is that the objective function of our Markov Model now
no longer represents a true likelihood value, defined as the probability of the observed
sequence having originated from the model. In this case, the change in semantics is
analogous to how the probability density at some point differs semantically from the
more conventional notion of event probability.

More generally, we can allow for the observation probability function to be rather
flexible, so long as one is willing to discard the interpretability of the objective func-
tion being a true likelihood value. Aside from permitting the performance comparison
between distinct probabilistic models, maintaining proper likelihood semantics is un-
necessary for most applications of Markov Models such as prediction, error correction,
simulation and classification. We summarize the minimal requirements for the array
returned by the observation function observationProb needed to ensure successful op-
timization of a Markov Model using our optimization method:

• All items in the array must be non-negative: Since the array is being used in place
of the state observation probability distribution (P [X(t)|si]), its values multiply
with those of the current state probabilities in order to update them (since, as

1In particular, points closer with respect to their mahalanobis distance d to the means of each
state are assigned exponentially higher probabilities, as the Bivariate Normal distribution’s density
function is proportional to e−d2

40 Chapter 3. Extending Markov Models Through Gradient Descent

seen in Equation 2.12, P [s
(t)
i |X(0) . . . X(t)] ∝ P [s

(t)
i |X(0) . . . X(t−1)]P [X(t)|si]). A

negative value here would yield a nonsensical “negative probability”

• At least one value in the array must be non-zero: A fully zero array must be
avoided, as it stops the model by permanently making all future state probability
distributions zero (this is undefined behavior, as it creates a paradox between
the assumption that the world is always in one of the model’s states, and the
observation that it isn’t in any of them)

• There is no means for the optimizer to perversely increase the values of the array
in order to infinitely increase the objective function: If there is no trade-off in
the way parameters are used to compose the values of the array, then the opti-
mizer may attempt to simply maximize these values, as they scale linearly with
the objective function. This problem mainly expresses itself through eventual
numerical stability problems, as values run towards infinity, but its aim to capi-
talize on the effects of the runaway phenomenon can also come at the cost of a
coherent transition model which actually represents the data (that is, by ignoring
the particularities of the data and simply aiming to maximize the array’s values).

While the above restrictions do preclude the use of some techniques (such as
non-normalized linear regression and relu activation functions, both of which can learn
to become independently infinite), methods such as probability density and distribu-
tion functions, and soft-max and sigmoid activation functions are all feasible solutions
(given reasonable assumptions about their implementation). Note that in the case of
probability densities, so long as the data being analyzed indeed follows a continuous
distribution (where the probability of any two points being in the exact same place is
zero), there will always be a downside to the model assigning excessive probabilities to
one region, as doing so implies in reducing it in another. In many cases, softmax and
softmin can be used as a means to ensure parameters don’t become infinitely large or
small (i.e.: setting a minimum standard deviation in a Gaussian to deal with occasional
point-distributions), though the model cannot rely exclusively on these limitations (as
a poorly designed model will simply learn to saturate parameters at their limit values).

In conclusion, we have illustrated our mechanistic method for obtaining a Gradi-
ent Descent optimizer for Markov Models through the example of the Hidden Markov
Model. We have detailed a few particularities pertaining to how to describe the model
parameters in a way that ensures that the probability distributions being modeled are
valid, and presented an extension to how the observation function can be designed that
allows for it to be more flexibly used, at the cost of the interpretability of the objective

3.2. Proposed Models 41

function. The techniques detailed here can be carried out on other models through
automatic differentiation, as indeed is the case for the models in Section 3.2, so long as
an algorithm for computing the likelihood function can be devised (such as Algorithm
5 was for a HMM).

3.2 Proposed Models

3.2.1 Co-Optimized Visual Markov Model

In Section 3.1 we discussed how Gradient Descent optimization could be utilized to co-
optimize more complex observation functions. Here, we propose a model which makes
use of this property by extending the visual computation abilities of Convolutional
Neural Networks to Hidden Markov Models.

Traditionally, computer graphics have not been a common area of application for
Hidden Markov Models. The reason behind this lies in part due to the high dimen-
sionality and structure of this kind of data, which make it difficult to establish a useful
observation function. In particular, image data often has complicated properties such
as invariance towards translation and rotation (e.g.: An orange in an image is still
an orange if we move it about and rotate it), and a vast number of real valued data
points (representing multi-channel colors over a wide grid of pixels). Defining a method
which makes use of these properties while simultaneously being able to be co-optimized
by traditional optimization techniques for Markov Models is nearly impossible (to the
knowledge of this author, no such cases are known to exist), which consequently has
lead to the adoption of two-stage solutions, where a model better equipped to deal
with visual data is trained to extract visual features, which are then fed into a Markov
Model. The development of the model to extract these visual features, however, is
often complex and laborious, often negating any advantages one might have had in
using a Markov Model in the first place.

Convolutional Neural Networks (CNNs), on the other hand, are especially de-
signed for this kind of information, being able to take advantage of the structures
inherent in images by defining its parameters in small, 2D windows, which are then
reused over the entirety of the image. The use of shared weights has the effect of
increasing the generalization ability of the model, as a feature developed for one part
of the image get applied to its entirety. Furthermore, parameter reuse can reduce the
total number of parameters, which in turn reduces the need for training data, and can
help mitigate overfitting and excessive use of computational resources. CNNs, aren’t,
however, sequence models, and as such can not perform sequence-based tasks.

42 Chapter 3. Extending Markov Models Through Gradient Descent

While video-data analysis would be obvious choice to demonstrate the effective-
ness of combining these two classes of models, we will instead opt for static image
analysis on account of its manageability and less stringent computational requirements.
Nonetheless, the model we propose here can be extended to this form of data without
too much difficulty.

To begin, a first step in defining any Markov Model is defining what the semantics
of the states will be. In the case of image data, one possible approach – which aligns
itself well with more traditional uses of Markov Models and visual data – is to define
states as evidence of some event having occurred in the image as a whole (e.g.: a
state which means that “the image contains an apple”). While this is a perfectly valid
approach in many scenarios, we are more interested in how Markov Models can actually
aid in image analysis. A more interesting model starts to emerge if, in addition to
representing some feature, each state of our Markov Model also represents a position
in the image (that is, each state represents an (x × y × feature) 3-tuple). In this
conception, a path through a set of states represents a collection of image features
which were recognized in specific positions of the image.

We can improve this model by borrowing the concept of weight sharing from
CNNs, and transpose the same transition models between states of equal features and
relative positions (i.e.: the probability of transitioning from s0,2,f0 = (0 × 3 × f0) to
s2,3,f1 is equal to that from s4,5,f0 to s6,6,f1). This has the effect of granting position
invariance to our model, as a path which represents some concept in one part of the
image will also represent the same concept in another part of it, should the path be
transposed.

Using shared weights helps to reduce the total number of parameters in the model,
but we are still left with N4F 2 transitions (where the image is assumed to be N ×N ,
with a total of F features, making a total of N2F states, all of which connect to each
other). To address this issue we simplify our transition model and define that instead of
having one parameter per transition, transitions are defined jointly, with each feature
being associated with a Bivariate Normal projected towards some relative position
in the image. Now, for example, after recognizing some feature at s0,2,f0 , we would
define our new distribution over S as being a normalized Gaussian centered around
x = 0 + µx,f0.

While there are many uses for such a model, we employ it here on the task of clas-
sification. By constructing multiple transition models, each of which has presumably
learned to recognize different relevant features within the image (e.g.: one model has
transition models adapted to finding and following the curvature of a banana, whereas
another checks for the shape of an apple), we can compare the likelihoods of the dif-

3.2. Proposed Models 43

ferent models on an unlabeled image, and come up with a measure of how well the
image represents the concept codified by each transition model, relative to the others
(picking, for example, the highest likelihood as our guess).

We now formalize this model in a step by step way, defining the associated equa-
tions as we go, so as to remove any ambiguities in our description:

1. The convolutional and pooling layers of the CNN are run, resulting in a 3D matrix
of values, one for each feature map and position;

2. The values for the feature maps are normalized, forming a state probability dis-
tribution (Equation 3.6);

3. The initial state probabilities and transition models are computed from our Gaus-
sian parameters (Equation 3.7);

4. For some number of iterations, we first apply the observation probabilities to the
state probabilities (which begins as the initial state probability distribution), and
then propagate them using the transition model we defined (Equation 3.8)

5. Having iterated a few times, the total likelihood of the model is computed by
summing up the probabilities left in all states (Equation 3.9);

ci,j,f : The CNN’s output for feature f at position (i, j)

oi,j,f =
cx,y,f∑

∀x′,y′,f ′ cx′,y′,f ′

(3.6)

g[µx,µy ,σx,σy ,ρ,N](i, j) = e
−(1−ρ2)−1

(
(x−µx)2

σ2x
− 2ρ(x−µx)(y−µy)

σ2x
+

(y−µy)2

σ2y

)
| [x, y] =

2[i, j]−N
N

G[µx,µy ,σx,σy ,ρ,N](i, j) =
g[µx,µy ,σx,σy ,ρ,N](i, j)∑
∀i,j g[µx,µy ,σx,σy ,ρ,N](i, j)

P [s
(0)
i,j,f] = G[µf0,x,µf0,y ,σf0,x,σf0,y ,ρf0,N](i, j)

P [s
(t+1)
k,l,g |s

(t)
i,j,f] =

(
1

N

)
G[µf,x,µf,y ,σf,x,σf,y ,ρf ,N](k − i, l − j)

(3.7)

P [s
(0)
i,j,f |obs] = P [s

(0)
i,j,f]

P [s
(t+1)
i,j,f |obs] =

∑
k,l,g

P [s
(t+1)
i,j,f |s

(t)
k,l,g]P [s

(t)
k,l,g|obs]ok,l,g

(3.8)

44 Chapter 3. Extending Markov Models Through Gradient Descent

L(t) =
∑
∀k,l,g

P [s
(t)
i,j,f |obs] (3.9)

Note that the model can be extended to deal with video data by simply changing
oi,j,f in Equation 3.6 to be frame specific (which in turn requires running the convo-
lutional layers on each frame of video), and then using the appropriate o(t)

i,j,f in the
conditional probability expression (Equation 3.8). Doing so, however, requires exten-
sive computational resources.

3.2.2 Stacked Markov Model

In contrast to Section 3.2.1, where we propose a model that illustrates the versatility of
a Markov Model’s observation functions when coupled with Gradient Descent, here we
aim to illustrate that this kind of methodology also allows us to be more creative with
the types of Markov Models we can design, which in turn allows us to address some of
the classical hurdles faced by more traditional models such as HMMs. We will start by
illustrating a scenario, and will then propose a novel Markov Model which addresses
some of the problems that a more traditional approach encounters.

Consider the task of developing a Markov Chain for the half-hourly traffic of a
single street. Suppose that we are interested in knowing only if there is either light
traffic, or heavy traffic, and that a typical day looks something like Figure 3.1. For the
sake of our analysis, we decide to model this scenario with a Markov Chain, which isn’t
unreasonable, as traffic generally follows the Markov Principle (in that future traffic is
usually conditionally independent of previous traffic, given the traffic in the present),
has patterns (such as times of day which usually have more traffic), but is ultimately
stochastic (as there can be variations in daily pattern, such as accidents or a road
blockage).

A first approach to modeling this problem would be to assign each scenario with
a single state in the model, with the 4 transition probabilities representing the street
remaining in light or heavy traffic, or switching between these two states. We illustrate
this model in Figure 3.2. While this approach works, and can be used for many desirable
things (such as predicting what the traffic will be in an hour), it doesn’t particularly
grasp the nuances of traffic flow, and as such has difficulties predicting too far into the
future. Furthermore, a simulation of this Markov Chain yields outputs such as Figure
3.3, which aren’t particularly realistic, completely disregarding facts such as the traffic
spikes at 8 AM and 6 PM.

3.2. Proposed Models 45

00
h0
0m

02
h3
0m

05
h0
0m

07
h3
0m

10
h0
0m

12
h3
0m

15
h0
0m

17
h3
0m

20
h0
0m

22
h3
0m

23
h3
0m

Time of day

Tr
affi

c
D
en
si
ty

Figure 3.1. Examples of typical traffic for a weekday on our hypothetical street.
Traffic is densest at 8AM and 6PM and surrounding times, with occasional spikes
outside this window.

H

0.67

L

0.86

0.33

0.14

Figure 3.2. Markov Chain which aims to model the weekday traffic of Figure
3.1.

00
h0
0m

02
h3
0m

05
h0
0m

07
h3
0m

10
h0
0m

12
h3
0m

15
h0
0m

17
h3
0m

20
h0
0m

22
h3
0m

23
h3
0m

Time of day

Tr
affi

c
D
en
si
ty

Figure 3.3. Traffic pattern sampled from the simple traffic model shown in
Figure 3.2

46 Chapter 3. Extending Markov Models Through Gradient Descent

L

H

L

H

L

H

L

H

. . .

. . .

L

H

L

H

L

H

00h00m 00h30m 01h00m 01h30m 22h30m 23h00m 23h30m

Figure 3.4. Ring Markov Chain for traffic modeling; We represent only two
observations, low- and heavy-traffic, but define one state for each half-hour mark
in the day in a ring (not shown: the states at 23h30 connect to those at 00h00m).

The reason our simple Markov Chain failed to capture the details of traffic on
the street is the fact that Markov Models have no memory, or, more precisely, they
store no data beyond what can be inferred from the state they’re currently in. A two-
state system such as we proposed stores only one bit of data, and that’s not enough
to remember the time of day. More states, however, allow for more data, which leads
us to our second approach: Instead of only designating low and high traffic, we add
states representing low and high traffic at specific times of day, which we serially link
up in a ring, such as shown in Figure 3.4.

The ring model captures the daily traffic patterns reasonably well, and, as needed,
allows for variations due to anomalies. This would be perfect if it were not for Saturday
and Sunday. Suppose that weekend traffic on this street resembles that of Figure 3.5.
On these days our ring model for weekdays fails miserably. A naive solution would
be to simply expand our ring with a state for every half hour in the week – instead
of every half hour of the day as was previously the case – but this quickly starts
becoming nonviable, as the number of states explodes, going from 96 to 672. Even
more distressing would be to try and model variations which occur on the scale of
months, such as children from a hypothetical school on this street being on summer
vacation (and thus reducing traffic spikes). Maintaining a large number of states is not
only computationally expensive, but it can also be expensive in terms of data, as an
optimizer attempting to obtain the transition probabilities of a given state would be
forced to rely solely on the data from its specific time of day and moment within the
week, being unable to use examples from other days to aid its understanding.

An insight which can help solve this problem is the idea of abstraction. If we
construct two higher order events, one for weekday-traffic and another for weekend-
traffic, each an instance of the aforementioned ring model, then capturing the variations
of daily traffic patterns throughout the week would be as picking the correct ring model
between the weekend- and weekday-traffic models. We can ensure we always make the
correct choice by creating yet another ring model, only this time with 14 states (one for

3.2. Proposed Models 47

00
h0
0m

02
h3
0m

05
h0
0m

07
h3
0m

10
h0
0m

12
h3
0m

15
h0
0m

17
h3
0m

20
h0
0m

22
h3
0m

23
h3
0m

Time of day

Tr
affi

c
D
en
si
ty

Figure 3.5. Examples of typical traffic for a weekend on our hypothetical street.
Traffic is rarely dense, but when it is, it is more likely to be so in the late morning
and early afternoon.

each of weekend- and weekday-traffic models we wish to chose from, on each day of the
week). In fact, what if instead of a single model for our days of the week we also created
models for other kinds of weeks, for instance, vacation-week and long-weekend-week,
and then chose between them using an even higher order markov chain; This leads us
to a recursive definition, from which we can begin formalizing our model.

We refer to this collection of layered Markov Chains and transition models as a
Stacked Markov Model (SMM). In the SMM, each state is associated with a unique
transition model for the Markov Chain in the layer below it (just as how the weekday-
traffic state defines a set of transitions between a series of low- and heavy-traffic states).
The active state in layer l + 1 defines the transition model for layer l, however it does
not uniquely define the transition models for layers l − 1 and lower, as these depend
only on the state in layer l (which is shared by all sates in layer l+ 1; In our example,
this is analogous to how vacation-week alters the transition between weekday- and
weekend-traffic, but doesn’t redefine the transitions these states themselves impose on
low- and heavy-traffic). As a consequence of our structure, each layer l represents a
wider timescale than the layer beneath it, with a single iteration of layer l requiring
some number of iterations of layer l− 1 (which we will refer to as ∆l). We define more

48 Chapter 3. Extending Markov Models Through Gradient Descent

formal notation for this model in Equation 3.10.

layer l : Set of states Sl used in all Markov Chains of layer l

s
(tl)
l.i : State i of layer l is active at iteration tl of layer l

Ml.i : Set of transition models used for layer l − 1 when state sl.i is active

∆l : Number of iterations layer l runs for an iteration of layer l + 1

tl = tl+1∆l : Relationships between iterations of adjacent layers

(3.10)

At the base of the SMM the observation model semantics remain the same as
for a Markov Chain or a Hidden Markov Model (following the guidelines put forth in
Section 3.1). For a higher layer l, we recursively define that the probability of observing
some state s(tl)

l.i is the likelihood of the its transition model Ml.i over the observations
of layer l − 1. We express this mathematically in Equation 3.11.

obs(s
(t0)
0.i) = P [s

(t0)
0.i |X(t0)]

obs(s
(tl)
l.i) = P [obs(S

(tl∆l)
l−1) . . . obs(S

((tl+1)∆l−1)
l−1)|Ml.i]

(3.11)

Note that the set of observation functions obs(Sl) may not represent a valid
probability distribution in layers 1 and above, as they don’t add up to 1. This isn’t as
much of a problem as it might seem, however, as the distributions obey the guidelines
set forth in Section 3.1, and normalization can be used here without side effects.

The final component needed to define the model is how the initial probabilities
are defined (in our example, this would appear, for example, as a choice as to how
we would define traffic at the start of a weeday-traffic day, or what kind of day we
expect to start a vacation-week). The simplest approach here would be to specify some
initial probability vector P [S

(0)
l] for each transition model Ml.i, and then reinitialize

the state-probability vector every time each Markov Chain initiates the first of its ∆l

iterations (for example, defining that weekday-traffic weeks start out at midnight with
a probability of 0.05 of heavy-traffic, and 0.95 for low-traffic). This model has some
computational advantages when computing the model’s state probabilities given data,
such as the fact that, in this approach, the data X can be split into windows of size
∆0, whose likelihoods are independently computed for each transition model given by
layer 1, yielding obs(S(t)

1) ∀t, which in turn could be windowed into blocks of size ∆1,
and so on – the independence in this case allowing for parallelism.

3.2. Proposed Models 49

While this is a solution that works, we can do better: Suppose, for example,
that while inferring the state distributions over some data, some state has a near 1
probability at the end of a set of ∆l iterations (P [s

(tl)
l.i |X] ≈ 1), and that all transition

modelsMl+1.j ∀j dictate that the transition to some state sl.k occurs with near certainty
(P [s

(t+1)
l.k |s

(t)
l.i] ≈ 1). In this case, it makes no sense to completely reset the probability

distribution P [S
(tl+1)
l], which would completely ignores the fact that sl.k is the most

likely next event. Instead, we can define a single initial probability distribution for
each layer, and then attempt to create an inference rule which defines the new initial
probability distribution at the start of each iteration. Equations 3.12 and 3.13 illustrate
the aforementioned “simplest approach” and one of the inference rules we utilized.

P
(0)
l+1.i : Distribution for layer l whenever tl mod ∆l = 0.

P [s
(tl+1)
l.i |S(tl)

l , s
(tl+1)
l+1.m] =

P
(0)
l+1.i[i], if tl + 1 mod ∆l = 0∑
j P [s

(tl)
l.j |s

(tl+1)
l+1.m]M

(tl)
l+1.m[j, i] otherwise

(3.12)

P [s
(tl+1)
l.i |S(tl)

l , s
(tl+1)
l+1.m] =


∑

n P [s
(tl+1)
l+1.n]

∑
j P [s

(tl)
l.j |s

(tl+1)
l+1.m]M

(tl)
l+1.n[j, i], if tl + 1 mod ∆l = 0∑

j P [s
(tl)
l.j]M

(tl)
l+1.m[j, i] otherwise

(3.13)

At this point we have finished defining the intuition and formalism behind the
SMM. However, before moving on to its uses and parametrization, a qualitative ex-
ample of the model’s architecture in relation to an example may be useful to for the
reader to solidify some of the finer details of the model. Let us, therefore, recall our
traffic modeling problem from before. In this scenario, the SMM we construct might
hypothetically have 3 layers:

• layer 0 has two states, representing S0 = {heavy-traffic, light-traffic}. Being the
base layer, it defines no transition models, and every iteration of the Markov
Chain at this layer is associated with a single observation of traffic;

• layer 1 is composed of S1 = {work-day, non-work-day}, each of which defines a
unique set of ∆0 = 48 transition models between the two states of layer 0 (heavy-
and light-traffic, forming a total of 96 transition models). We choose ∆0 = 48 on
account of this being the number of half-hours in a day, which allows us to split
our traffic observations into windows of 1 day, and use a unique transition model
for each state of layer 1 and each half hour of the day.

50 Chapter 3. Extending Markov Models Through Gradient Descent

• layer 2 is composed of S2 = {work-week, vacation-week, early-weekend, extended-weekend},
and, since each state represents a week, and each iteration of layer 1 spans a
day, a week is then given by ∆1 = 7 transition models, instantiated by each of
its 4 states.

Using this example we can also illustrate the reasoning behind the observation
function of each state being the likelihood of its transition model over its inferior layer
(Equation 3.11). Suppose we send to our algorithm the traffic pattern of a normal
week, starting on a Monday. For the first 5 days, obs(S1) will be much greater for
the work-day state than for the non-work-day state (as it should be), a pattern which
is reversed on the last 2 days. This happens because obs(S1) is computed using a
likelihood calculation, which, as discussed in Section 2.1.5, is exponentially greater
when a model adequately represents its inputs. Now, when computing the observation
function for layer 2, we see that states such as vacation-week and early-weekend all
propose transition models with low likelihood, given that their transition models expect
the observations of layer 1 to be in some order with more than two non-work-day
observations. Again, the correct state, work-week, has the highest likelihood, and
is the clear winner given the observations, thus demonstrating that our observation
function is able to capture our intended abstractions.

In the remainder of this section, we will exemplify how the SMM retains some of
the desirable properties we associate with Markov Models, such as simulation (Section
3.2.2.1) and prediction (Section 3.2.2.2), before we move on to its likelihood computa-
tion and parametric optimization (Section 3.2.2.3), which allows us to use the model
in practice. Finally, we end our discussion on the SMM with a slight extension, which
permits it to deal with multi-dimensional data (Section 3.2.2.4).

3.2.2.1 Simulation

In Section 2.1.4 we discussed the simulation of Markov Chains and Hidden Markov
Models. In this section, we discuss the relatively straightforward extension of these
techniques to the SMM.

As outlined in the introduction to this section, the SMM operates as a set of
stacked Markov Chains, where the states of layer l + 1 define a transition model for
the states at layer l. We can look at this model from a generative perspective, where
whenever a state sl+1.i is selected at some layer l + 1, the Markov Chain of layer l is
recursively initialized and iterated using the associated transition model Ml+1.i for ∆l

iterations. We detail this method in Algorithm 7.

3.2. Proposed Models 51

function simulateSMM(layer, Sparent)
Scurr ← Sparent.sample0()
for all i from 0 to ∆layer do

if layer > 0 then
simulateSMM(layer−1, Scurr)

else
emitObservation(Scurr)

end if
Scurr ← Sparent.TransitionModel.sample(scurr)

end for
end function

Algorithm 7: Recursively simulates an SMM. To start the process, a state must be
picked from the top layer. Arbitrarily large sequences can be achieved by if we consider
∆L =∞ (where L is the number of layers in the model)

The simulation algorithm (Algorithm 7) expresses the initial probability distribu-
tion through the sample0 function, whose semantics depend on the specific inference
rules used. The probabilistic inference rules (such as Equation 3.12 and Equation 3.13)
can be made into a sampling function by simply applying these rules at the point
described in the algorithm, and then sampling uniformly from the resulting P [S

(t)
l]

distribution, using the obtained value as the new starting state.

3.2.2.2 Prediction

Similar to Markov Chains, a SMM can also be used to make probabilistic predictions
arbitrarily far into the future. The mechanism whereby this is achieved is similar to
that of a HMM, with the main complicating factor being the fact that now we are
dealing with multiple layers of Markov Chains, each of which has its own probability
distribution.

Before delving into the mathematics for prediction within this model, it is in-
sightful to recall the relationship between simulation and prediction. The simulation
of an SMM, as discussed in Section 3.2.2.1, is a stochastic, generative process which
generates samples according to the expected outcome of a starting distribution. This
process could in theory be used to make increasingly accurate predictions by making
numerous simulations, and then compiling statistics on the resulting data. Naturally,
this method is inefficient, but it does set the scene for what we might expect to see from
the mathematics: First, the hierarchical nature of the generative process is entirely top-
down, which is to say that the choice in states at upper levels is not influenced by the
choice in states at lower levels (rather the reverse is true); Second, that the sampling
process for a layer l − 1 does not depend on the state that is active in layer l + 1, so

52 Chapter 3. Extending Markov Models Through Gradient Descent

long as some state in layer l is chosen.

With these considerations in mind, we can confidently deduce the equations for
prediction using our model, as is done in Equation 3.14, where we assume that the
probability distributions are known at each layer at their respective iterations tl, for
which we compute the distribution of the states in the model for the next time step.

P [s
(tl+1)
l.i |s(tl+1)

l+1.m] =

inference rule, if tl + 1 mod ∆l = 0∑
j P [s

(tl+1)
l.i |s(tl)

l.j , s
(tl+1)
l+1.m]P [s

(tl)
l.j |s

(tl+1)
l+1.m] otherwise

P [s
(tL+1)
L.i] =

∑
j

P [s
(tL)
L.j]P [sL.i|sL.j] (Markov Chain prediction for top layer L)

P [s
(tl+1)
l.i] =

∑
m

P [s
(tl+1)
l.i |s(tl+1)

l+1.m]P [s
(tl+1)
l+1.m]

(3.14)

Note that with Equation 3.14 we can compute predictions P [s
(tl+1)
l.i] for any layer

(including the observable layer), recursively in function of the predictions of higher
layers and the previous conditional state probability distribution (with exception of
the top layer, which has no higher layer, and is defined in the same way as a Markov
Chain). The conditional state probability P [s

(tl+1)
l.i |s(tl+1)

l+1.m] must initially be given as in-
puts, however future values can be computed recursively through the given expression.
Should the observation function of the base layer be indirect (such as in a HMM), then
in order to predict actual observations an additional step would be needed, identical
to what is already done in a HMM.

3.2.2.3 Likelihood and Optimization

As discussed in Sections 2.1.5 and 3.1, likelihood encapsulates the stochastic nature
of Markov Models, and as such is both appropriate and sufficient for optimizing this
class of models through Gradient Descent. We aim here, therefore, to express the way
in which likelihood is calculated for the SMM.

By construction, the SMM was designed as a set of layered Markov Chains, each
acting like a HMM which receives the likelihood of a window of observations of the lower
adjacent layer as its observation function. This design makes the likelihood calculation
relatively straightforward, since we already know how to calculate the likelihood for
a Hidden Markov Model (see Section 2.1.5). We begin in Equation 3.15 by breaking

3.2. Proposed Models 53

down the likelihood function into a set of conditional probabilities:

L = P [x(0), x(1), . . . , x(T)|Model]

= P [x(0)]P [x(1)|x(0)]P [x(2)|x(0), x(1)] . . . P [x(Y)|x(0), . . . , x(T−1)]

= P [x(0)]
T∏
t=1

P [x(i)|x(0) . . . x(t−1)]

=

(∑
i

P [x(0)|s(0)
0.i]P [s

(0)
0.i]

)
T∏
t=1

(∑
i

P [x(i)|s(t)
0.i, x

(0) . . . x(t−1)]P [s
(t)
0.i|x(0) . . . x(t−1)]

)

=

(∑
i

P [x(0)|s(0)
0.i]P [s

(0)
0.i]

)
T∏
t=1

(∑
i

P [x(i)|s(t)
0.i]P [s

(t)
0.i|x(0) . . . x(t−1)]

)
(3.15)

Next, in Equation 3.16, we recursively define the conditional probabilities in a
manner similar to what was done for Hidden Markov Models (Equation 2.12). This
equation is also very similar to the SMM’s prediction equation (Equation 3.14), differing
only in that the state probability distribution is weighted by the observation function
at each iteration (again, this being by design).

o
(t)
l.i =

P [x(t)|s(t)
0.i], if l = 0

P [o
∆l−1tl
l−1 . . . o

((∆l−1+1)tl−1)
l−1 |s(t)

l.i] otherwise

P [s
(tl+1)
l.i |s(tl+1)

l+1.m, {x
(0...tl)}] =

inference rule, if tl + 1 mod ∆l = 0∑
j P [s

(tl+1)
l.i |s(tl)

l.j , s
(tl+1)
l+1.m]P [s

(tl)
l.j |s

(tl+1)
l+1.m, {x(0...tl)}] otherwise

P [s
(tl)
l.j |s

(tl+1)
l+1.m, {x

(0...tl)}] =
o

(tl)
l.j P [s

(tl)
l.j |s

(tl+1)
l+1.m, {x(0...tl−1)}]∑

k o
(tl)
l.k P [s

(tl)
l.j |s

(tl+1)
l+1.m, {x(0...tl−1)}]

P [s
(tl+1)
l.i |{x(0...tl−1)}] =

∑
m

P [s
(tl+1)
l.i |s(tl+1)

l+1.m, {x
(0...tl−1)}]P [s

(tl+1)
l+1.m, {x

(0...tl−1)}]

(3.16)

Using Equations 3.15 and 3.16, we can construct an algorithm that computes
the likelihood of a given set of inputs with respect to the model, for which we can
consequently use automatic Gradient Descent to come up with an optimizer (this being
a clear case where automatic Gradient Descent is needed, as computing the gradients
by hand can be a monumental task for a model such as this). We show the complete
code for the SMM in Appendix A, as written in our Domain Specific Language.

54 Chapter 3. Extending Markov Models Through Gradient Descent

3.2.2.4 Multidimensional Data

So far, the justification for using a SMM has been on the basis that it could drastically
reduce the number of states required to represent context information. A small exten-
sion can be made to the model, however, that would also allow it to have a similar
effect on multidimensional data.

Consider if, in our original street traffic example, we now have a set of light/heavy
traffic histograms for a number of streets, and we now wish to create a conjoint weekday-
traffic model for all of them. One approach would be to separate each histogram into
its own model, and then process them independently. In contexts where the traffic
on these roads are completely unrelated this would indeed be the correct solution,
however, it is likely that traffic on one street will affect another one (e.g.: build-up on
a main avenue might cause traffic to also build up on the in-flowing roads).

A naive approach to solving this would be to simply join all the possible states
of each street into a single set of unified states, each representing some configuration
of light and heavy traffic for each street in the set. The trouble here is that with n

streets we end up with 2n states, which not only becomes computationally intractable
for Markov Chain computations, but also requires impossibly large amounts of data in
order to infer the transitions within the model.

While having this large number of states may be needed in extreme cases, this is
rare in practice. Consider, for example, the task of modeling a neighborhood comprised
of 2 main avenues and some 15 streets. The naive approach would have us create over
131 thousand states, each with a full set of probabilities to each other state. This would
allow for each traffic pattern to have radically different effects on traffic everywhere
else, however, in practice, phenomenon such as this are more local. Our hypothetical
neighborhood might only have 4 main behaviors, representing each of the two avenues
being either full or free (when each of the avenues is full, for example, traffic on some
subset of the streets associated with the full avenue might also get backed up).

We can use the SMM to solve this problem by abstracting the notion that a
certain set of streets all tend to have heavy traffic together in a higher level state, in
effect creating a mechanism for storing and sharing context information between each
street’s models. In our example scenario, this could be accomplished by creating a
model such as the following:

• layer 0 is a collection of sets of states, where each set is comprised of S0 =

{heavy-traffic, light-traffic}, much like before, and there is one set of states for
each street we are modeling

3.2. Proposed Models 55

• layer 1 is a set of states, representing all-ok, ave-1-blocked, ave-2-blocked, and
both-blocked, spanning ∆0 = 4 steps of layer 0 (2 hours in real time). Each state
of layer 1 defines a unique transition model for each of the sets of states and times
of layer 0, forming a total of 4(layer 1 states)× 4(∆0) transition models.

• layer 2 is equivalent to layer 1 in the previous example, changing ∆1 = 12.

• layer 3 is identical to layer 2 in the previous example.

Mathematically, the main change this extension causes is in defining the observa-
tion function for the layers which have more than one child (whose states, consequently,
now each define a different transition model for each child layer). We define the new
observation function in Equation 3.17.

o
(t)
l.i =

P [x(t)|s(t)
0.i], if l = 0∏

c∈Children P [o∆ctl
c . . . o

((∆c+1)tl−1)
c |s(t)

l.i] otherwise
(3.17)

The choice in defining the observation function in the manner described in Equa-
tion 3.17 as the product of the likelihoods on all the child layer’s likelihoods is on
account of the independence of the children’s series, which is especially evident when
looking at the model from a generative perspective. In this perspective, we define that
higher level states define the order in which patterns of states at lower layers will oc-
cur, which in turn means that if multiple series are to be generated, they are done so
independently of one another, disregarding what was done in any of the other series
other than their direct parents. This has the consequence of making the probability
of their joint observation also independent, a fact which we exemplify for a layer with
two children in Equation 3.18.

o(tl)
a : Observations of layer l’s child layer a from ∆atl for ∆a iterations

o
(tl)
b : Observations of layer l’s child layer b from ∆btl for ∆b iterations

o(tl)
a |= o

(tl)
b |s

(tl)
l.i : (by the independence of the generation method of each series)

o
(tl)
l.i = P [o(tl)

a , o
(tl)
b |s

(tl)
l.i]

= P [o(tl)
a |s

(tl)
l.i]P [o

(tl)
b |s

(tl)
l.i]

(3.18)

Finally, it is interesting to note that, while in our traffic example we defined a
set of series for each street with equal ∆ values and heights, completely different data

56 Chapter 3. Extending Markov Models Through Gradient Descent

sources with different scales can, in practice, be merged in this manner, with the model
forming a tree of layers – a rather flexible design.

Chapter 4

Experiments

In this chapter we describe the experiments and results which we use to defend the
hypotheses of our thesis. These are, namely, that Gradient Descent optimization is an
effective optimizer for Markov Models, and that its use allows for a greater flexibility
and ease in how a user can define and use discrete Markov Models. Consequently, our
experiment design aims to define objective and subjective metrics for effectiveness and
flexibility, and then measure these values in relevant scenarios.

The remainder of this chapter is structured as follows: In Section 4.1 we ex-
plore the use of Gradient Descent optimization on Markov Models, specifically, Hidden
Markov Models. Our goal here is to demonstrate that, while somewhat more com-
putationally expensive, Gradient Descent optimization can be an effective tool for
optimizing this class of models when compared to more traditional methods; In Sec-
tion 4.2 we propose a digit classification task using the model we introduced in Section
3.2.1. The aim of this section is to demonstrate the flexibility of the observation func-
tion, a Convolutional Neural Network in this case; Finally, Section 4.3 explores the
Stacked Markov Model, proposed in Section 3.2.2 in the context of Temperature, CPU
and Memory histogram modeling, aiming to illustrate flexibility in defining transition
models and state semantics using our methodology.

4.1 Effectiveness of Gradient Descent Optimization

on Markov Models

Central to our thesis is the notion that Discrete Markov Models can be effectively op-
timized using Gradient Descent Optimization. This claim is not trivial, since Gradient
Descent optimization has several downsides, such as slow convergence rates, elevated

57

58 Chapter 4. Experiments

computational complexity, and convergence to local minima (all previously discussed
in Section 2.2). Since we cannot obtain a comparative measure of performance in a
vacuum, we present a set of experiments which aim to demonstrate the effectiveness
of the Gradient Descent optimizer on Hidden Markov Models in particular, for which
the Baum Welch algorithm has been the well established state of the art optimizer for
decades.

In order to guide our analysis, we pose the following research questions:

• Can Gradient Descent optimization obtain an adequate Markov Model
from data?: A basic requirement for the validity of our hypotheses is that the
models generated adequately represent the data.

• How does Gradient Descent optimization compare to more conven-
tional methods?: While it is not our goal to exceed the performance of opti-
mizers specialized on HMMs, it is useful to understand how it compares to more
traditional approaches in order to justify its use.

We support our claims in these matters by comparing the likelihoods obtained
by our model with those obtained by the Baum Welch optimizer, the optimal solution,
and randomized Hidden Markov Models.

4.1.1 Setup

The task set forth in these experiments is to construct the best possible HMM given
a sequence of inputs. In order to eliminate questions related to the adequacy of these
sequences for this class of models (such as whether the data indeed follows the Markov
Property), we synthesize our own data through the simulation of HMMs of our choosing.
We chose 5 unique models, each of which represents a different set of difficulties, which
we illustrate and detail in Figures 4.1 - 4.4 and Table 4.1.

4.1. Effectiveness of Gradient Descent Optimization on Markov
Models 59

h0

0.5

h1
0.5

0.5

h2

0.5

0.5

0.5

a

1.0

b

1.0

c

1.0

Example: abbccccabcabbcccaabccaabcaaaaaabccaaaabbbbbbcccaa

Figure 4.1. Simple Markov Chain: Here, we have a Hidden Markov Model
with a very simple transition and emission model. It is a rather simple task for an
optimizer, since there are no ambiguities on the outputs (each state has a single
and unique emission, a, b or c), and all transitions are equally likely (meaning
that even with a relatively small amount of data there will likely be sufficient
examples of each transition being taken).

h0

h1

0.5
h21.0

0.8

0.2

h3

0.5
h4

1.0

0.8
0.2

a 1.0

b
1.0

c
1.0

d

1.0

1.0

Example: abdabdabdcddacdabdcddcddcddcddcddcddcddcddcdacddc

Figure 4.2. Ambiguous Markov Chain: In this model we introduce a small
amount of ambiguity in the observation of d, which is shared by two states. A local
minima in this scenario is to merge h2 and h4, but this comes with the penalty of
poorly estimating the occurrence of b’s and c’s. Local minimas occur in scenarios
such as this on account of the random initialization of parameters almost always
creating some state which has a higher bias towards d than the others. If this
bias is large enough, the model will deduce that it can best increase its likelihood
over the input by using this state whenever d appears. As it gets used more,
its transitions become even more optimized, increasing its attractiveness towards
alternatives, at which point it becomes very unlikely that the model will allocate
some other state that splits the merged value, as it hasn’t undergone the same
level of improvement, and is thus worse in every way.

60 Chapter 4. Experiments

Dst
Src h0 h1 h2 h3 h4 h5 h6 h7 h8 h9
h0 0.000 0.103 0.035 0.148 0.107 0.088 0.064 0.164 0.151 0.140
h1 0.115 0.046 0.052 0.313 0.141 0.037 0.001 0.002 0.119 0.174
h2 0.008 0.092 0.119 0.122 0.079 0.046 0.133 0.110 0.145 0.146
h3 0.149 0.176 0.177 0.108 0.069 0.047 0.052 0.148 0.004 0.070
h4 0.095 0.112 0.136 0.118 0.078 0.033 0.120 0.076 0.074 0.158
h5 0.076 0.031 0.047 0.089 0.169 0.109 0.208 0.158 0.072 0.041
h6 0.027 0.173 0.132 0.058 0.081 0.013 0.185 0.130 0.029 0.172
h7 0.096 0.139 0.077 0.053 0.108 0.129 0.144 0.137 0.090 0.027
h8 0.172 0.167 0.099 0.062 0.085 0.068 0.153 0.057 0.082 0.055
h9 0.079 0.100 0.177 0.005 0.198 0.114 0.010 0.106 0.038 0.173

Emission
Src a b c d e f g
h0 0.065 0.322 0.266 0.192 0.113 0.005 0.037
h1 0.167 0.176 0.177 0.048 0.194 0.132 0.106
h2 0.166 0.044 0.143 0.072 0.266 0.064 0.245
h3 0.040 0.294 0.024 0.003 0.399 0.119 0.121
h4 0.198 0.028 0.159 0.102 0.195 0.162 0.156
h5 0.187 0.139 0.018 0.199 0.143 0.041 0.273
h6 0.255 0.180 0.059 0.055 0.253 0.147 0.051
h7 0.124 0.283 0.011 0.175 0.224 0.144 0.039
h8 0.224 0.067 0.168 0.129 0.044 0.173 0.195
h9 0.189 0.199 0.059 0.255 0.037 0.033 0.228

Example: beadecffgfeceaabdaabcdcegcgggfaaeaebbbacafffffacg

Table 4.1. Large Random HMM: Here we define a uniformly random model
with 10 hidden states, and 7 emission values (observable states). In random
models such as this, synthesized sequences will often lack sufficient examples of
specific transitions (since there are many states, some less common than others,
with some transitions being less common than others as well), thus the training
data is likely to not match perfectly the real data, increasing the chances for
overfitting. On the other hand, identifying the exact model in a random scenario
such as this may not be particularly necessary for a reasonably approximation of
the data, as the generated sequences are already nearly random.

4.1. Effectiveness of Gradient Descent Optimization on Markov
Models 61

h0

0.5

h1
0.5

0.5

h2

0.5

0.5

0.5

a

0.5 0.5

b

0.5 0.5

c

0.5 0.5

Example: abbacaaaabaaabccbaaabccaabcaaabcabccbbbcaabbbcaac

Figure 4.3. Simple HMM: In this model we have a Hidden Markov Model
similar to Figure 4.1, but now with fully ambiguous emissions. While there is
more ambiguity here than in the model for Figure 4.2, the consequences of a
mistake are less dire.

h0 h11
h11

h11
h11

h11
h11

h11
h11

h11

1.0

a

1.0

b

0.0 0.7

a

0.3 0.9

b

0.1 0.8

a

0.2 0.7

b

0.3 0.6

a

0.4 0.1

b

0.9 0.4

a

0.6 0.5

b

0.5 0.2

a

0.8

Example: ababaababaaaababbbaaababbabaaaababbbbabaabaaaabab

Figure 4.4. Chain HMM: Similar to our original work-day/non-work-day ring
model we proposed in Section 3.2.2, the model here runs in a loop, emitting a’s
and b’s stochastically as it goes. Local minima are a serious problem here, as
identifying such a long chain without constraining the transitions so they follow
a ring shape is difficult.

From each of these models we derive two sequences of length 2000, representing
a training-series, from which the optimizers must derive their parameters, and a test-
series, on which we can evaluate the quality of the abstraction the optimizers built.
We chose this number of samples experimentally as it was a reasonably small number
of samples where training and test sets no longer had such distinct features in most
models (that is, where overfitting was minimized).

The training-series are then each used to generate a set of 20 models for each
optimizer. Parametrically, the number of iterations and Gradient Descent α values were
chosen so as to ensure convergence of the optimizers. We summarize these parameters
in Table 4.2. Note that we chose the number of hidden and observable states to match

62 Chapter 4. Experiments

Model Hidden Observable α iters GD iters BW
Small MC 3 3 0.01 1000 200

Ambiguous MC 5 4 0.01 1000 200
Small HMM 3 3 0.01 1000 200

Large Random 10 7 0.10 3000 400
Chain 10 2 0.01 3000 400

Table 4.2. Optimizer parameters used on the training sequences. Addition-
ally, 300 and 50k iterations were used in Baum Welch (BW)/Gradient Descent
(GD) respectively. The α parameter refers to the update scaling (detailed in the
Gradient Descent algorithm, Algorithm 4)

those of the ground truth (giving them more than that would be fine, and often results
in better likelihood metrics, but was unnecessary in these experiments).

To evaluate our results, we use likelihood as our measure, which we compute
on the train- and test-sequences. We then compare these results with the likelihoods
obtained using the correct model (ground truth) and a set of 20 random models of
equal design. An analysis of the mean and standard deviation of these likelihoods in
each set was done, aiming to better highlight the relationships between the upper and
lower bounds of the performance of the optimizers.

Code for this experiment (including the optimizers and likelihood computation)
was coded by the author in C++. Intermediate calculations in the likelihood and Baum
Welch algorithm were, however, verified against the HiddenMarkov R package[Harte,
2016], and the Hidden Markov Model optimizer was constructed through automatic
differentiation using the compiler we wrote. Experiments were run on a desktop com-
puter with an Intel i7-4770 CPU @ 3.40 GHz processor and 28.0 GB of DDR3 RAM
@ 800Mhz.

4.1.2 Results

Using the setup described in Section 4.1, we obtained models and likelihoods for each
of the problems from Figures 4.1 - 4.4 and Table 4.1. The likelihoods of the mod-
els generated by each approach (Random model (RND), Ground Truth (OPT), and
optimized via Gradient Descent (GD) and Baum Welch (BW)) for the training- and
test-sequences are shown and analyzed in Figures 4.5 through 4.9.

Results are generally favorable, showing that our Gradient Descent optimizer
performs virtually identically to the Baum Welch algorithm in most scenarios, though
with a slightly higher variability.

In the first case, Simple MC (Figure 4.1), one of the downsides of using Gradient

4.1. Effectiveness of Gradient Descent Optimization on Markov
Models 63

Train Test

−3,000

−2,000

−1,000

Lo
g-
Li
ke
lih

oo
d

OPT BW GD RND

Figure 4.5. Simple Markov Chain (Problem from Figure 4.1) train- and test-
series likelihoods.

Train Test

−4,000

−2,000

0

Lo
g-
Li
ke
lih

oo
d

OPT BW GD RND

Figure 4.6. Ambiguous Markov Chain (Problem from Figure 4.2) train- and
test-series likelihoods.

Train Test

−3,000

−2,500

−2,000

Lo
g-
Li
ke
lih

oo
d

OPT BW GD RND

Figure 4.7. Simple HMM (Problem from Figure 4.3) train- and test-series like-
lihoods.

64 Chapter 4. Experiments

Train Test

−4,200

−4,000

−3,800

Lo
g-
Li
ke
lih

oo
d

OPT BW GD RND

Figure 4.8. Large Random HMM (Problem from Table 4.1) train- and test-
series likelihoods. As expected, the large amount of states led to a disconnect
between the training- and testing-sequences’ distributions, causing overfitting.
Even so, results are relatively accurate, thanks to the mostly random nature of the
sequence. Larger sample sizes could improve the performance of both optimizers.

Train Test

−1,600

−1,400

−1,200

−1,000

−800

Lo
g-
Li
ke
lih

oo
d

OPT BW GD RND

Figure 4.9. Chain HMM (Problem from Figure 4.4) train- and test-series likeli-
hoods.

4.1. Effectiveness of Gradient Descent Optimization on Markov
Models 65

h1

0.505

h0

0.764

0.495

0.236

a

0.495

b

0.497

c

0.987

Figure 4.10. Local minima the Gradient Descent optimizer got stuck in when
using the training sample from the Simple Markov Chain (Problem from Figure
4.1). Weights were truncated and a few of the near-0 values were omitted.

Descent becomes evident by inspecting the error bars, which appear as large as they do
because of a single failure in the Gradient Descent optimization process. The culprit,
shown in 4.10, illustrates the two-state local minima the optimizer got stuck in, where
somewhere along the way the third state became unreachable. An analysis of the
unreachable third state reveals it specialized in emitting a’s and c’s, but with a lower
probability than h0 has for a and a worse probability than h1 has for c. We can
speculate from this that it was likely worse at modeling the data than h0 and h1 were,
and thus, when coupled with a poor random choice in the initial set of transitions, this
would have prompted the other two states to prefer each other, gradually excluding it
from the model.

Ambiguity in the transition and emission model were handled well by both the
optimizers, however, as expected, extreme examples such as the Large Random HMM
and Chain HMM challenges (from Figure 4.4 and Table 4.1, results in Figures 4.8
and 4.9) provide for too many local minima, which were too much for either model
to handle. Being that as it may, the results on both models are still rather accurate
(taking note of the scale on the axis on the Large Random HMM results), and neither
optimizer has a clear advantage.

The computational resources required by the optimizers was relatively negligible
considering modern hardware. On the most expensive example, the Large Random
HMM, the Baum Welch algorithm took an average of 0.62 seconds to complete, and
used approximately 700KB of RAM; The Gradient Descent optimizer used significantly
more resources, but was still at a meager 3.05 seconds and 4MB of ram.

We now revisit our research questions, and argue them individually:

• Can Gradient Descent optimization obtain an adequate Markov Model

66 Chapter 4. Experiments

from data?: In the first three examples we proposed the Gradient Descent opti-
mizer was able to retrieve precisely the original model using only the data, getting
snagged on local minima only very occasionally. In the last two, more complex
examples, the performance of the model obtained through GD is reasonably close
to that of the optimum, but has more difficulties on account of the size of the
problem.

• How does Gradient Descent optimization compare to more conven-
tional methods?: We compared the performance of our optimizer with that of
the Baum Welch algorithm, and found them to be roughly equivalent in most
cases. This might be because the Baum Welch algorithm is also a method which
aims to find a point where the gradient is zero, and is merely faster at traveling
between local minima than Gradient Descent. Resource-wise the Baum-Welch
algorithm is nearly an order of magnitude more efficient, but both approaches
make fairly reasonable uses of computational resources.

4.2 Digit Classification

In contrast to Section 4.1, where we explicitly compared the effectiveness of Gradient
Descent optimization with more traditional optimizers, here we focus on the flexibility
afforded to the models by this approach. To this end, we explore our visual Markov
Model from Section 3.2.1 in the context of digit classification on the MNIST dataset.
Our goal with these experiments is to gain insights into the following research questions:

• Is the process of extending the observation function expedient?: We
posited that using Gradient Descent made designing novel observation functions
more practical for final users. We answer this analyzing if the experience design-
ing this model reflects this added benefit.

• Are Markov Models effective when using more complex observation
functions?: While in theory we can append nearly arbitrary observation func-
tions to a Markov Model, does its structure lend itself well to creating a usable
gradient on the observation layer? Some models, such as deep Multilayer Percep-
trons and Recurrent Neural Networks will unintentionally obscure the gradient in
a phenomenon known as the vanishing gradient problem[Hochreiter, 1998], thus,
it is a legitimate issue which must be addressed.

• Are shared and conditionally defined transition probabilities effectively
optimized by Gradient Descent?: Shared transition probabilities, whereby

4.2. Digit Classification 67

Figure 4.11. Examples of the hand-written digits from the MNIST dataset. In
the data, each digit is a separate 28x28 pixel grayscale matrix.

multiple state transitions share a single parameter and/or are defined in function
of the same set of parameters have the potential to allow Markov Models to be
composed of a larger number of states without some of the usual side effects
such as overfitting and slow convergence rates. Similar to our question about
observation function optimization, it is necessary to verify if the gradient is viable
for more complex forms of modeling these values.

4.2.1 Setup

We train our model on the MNIST dataset[LeCun et al., 1998b], one of the most well
studied datasets in the area of image analysis. The data is comprised of 65k hand-
written digits, split into training- and test-sets at a ratio of 55/10. Each image in the
dataset is 28x28 pixels, and is a grayscale value between 0 and 255 (normalized to be
between 0 and 1 in our case). A few instances of the dataset are illustrated in Figure
4.11.

The model itself was implemented in python within TensorFlow, a tensor-
based automatic differentiation and general machine learning framework owned by
Google[Abadi et al., 2016]. While less flexible than other forms of automatic differen-
tiation, the framework also offers GPU support, which speeds up the training process
immensely.

We evaluate the performance of our model using test-set accuracy, and compare
it with some of the results reported by [LeCun et al., 1998a], the authors of the dataset,
as well as a CNN which uses the same convolutional layer architecture as our Visual
Markov Model.

68 Chapter 4. Experiments

Parametrically, we used 2 convolutional relu layers, with 32 and 64 feature maps,
both with 5 × 5 kernels and 2 × 2 max pooling, and ran our transition model for 3
iterations in order to calculate the likelihoods (additional iterations were tested, but
found to not significantly affect model performance). In the MLP portion of our CNN
baseline we utilized 1024 neurons. While a few different values were tested, the main
goal of this experiment was to explore the viability of the method, rather than achieve
optimal performance.

We ran our experiments on a desktop computer with an Intel i7-4770 CPU @ 3.40
GHz processor and 28.0 GB of DDR3 RAM @ 800Mhz. Also relevant is the GPU, the
NVIDIA GTX 970 (4GB video RAM), as it is used by TensorFlow in the optimization
process.

4.2.2 Results

Figure 4.12 illustrates the performance of the Visual Markov Model on MNIST’s test-
set as optimization progresses. From it we can conclude that our concerns about the
viability of the gradient are unfounded, as the model starts at random and, by the end,
reaches 96.02% accuracy.

Figure 4.13 compares the performance of our model with other methods. In it, we
see that we are able to exceed the performance of methods which are not specialized in
visual data analysis (linear regression, K-nearest-neighbors, and a two layer Multilayer
Perceptron), but fail to surpass more specialized algorithms (including the CNN which
uses the same convolutional architecture). While somewhat discouraging, these results
are expected as we are competing with the state of the art in static image processing
using a model designed for more generalized image sequence analysis tasks.

The main drawback of the model we presented is its excessive use of computational
resources and time: Where on one hand training the CNN we used as a baseline
took under two minutes and used only a few hundred MB of RAM, on the other, the
Visual Markov Model required nearly 3 hours and over 10GB of memory. While these
requirements aren’t out of the ordinary for many machine learning algorithms, they
scale with N4 (where N is the size of the grid created by the convolutional layers),
making the model, as it stands, unviable for larger images.

We now revisit our research questions:

• Is the process of extending the observation function expedient?: Consid-
ering the complexity of the model we proposed – a level which would be untenable
using more traditional optimization techniques – the model implementation was

4.2. Digit Classification 69

−0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

·104

0

0.5

1

Iterations

A
cc
ur
ac
y
(%

)

Figure 4.12. Test-set error of the visual Markov Model on the MNIST dataset.
By 50k iterations the model has essentially converged, with a best test-set score
of 96.02%

Lin
ea
r
KN

N
M
LP
2
VM

M
CN

N

35
CN

Ns

85

90

95

100

A
cc
ur
ac
y
(%

)

Figure 4.13. Performance comparison between the Visual Markov Model
(VMM) and Linear regression (Linear), K-Nearest Neighbors with euclidean dis-
tance (KNN), a 2 layer MLP with 300 hidden units (MLP2) [LeCun et al., 1998a],
our CNN, trained with the same architecture as the base of the VMM and 1000
hidden units in the MLP layer (CNN), and finally, a CNN committee[Ciregan
et al., 2012].

70 Chapter 4. Experiments

relatively simple, certainly not requiring expert knowledge about Markov Model
optimization.

• Are Markov Models effective when using more complex observation
functions?: Our model achieved a commendable 96.02% accuracy on our train-
ing data, which could only be achieved by successfully co-optimizing the con-
volutional layers. From this we can conclude that, indeed, Markov Models can
effectively optimize complex observation functions.

• Are shared and conditionally defined transition probabilities effectively
optimized by Gradient Descent?: The same evidence used to justify the
effectiveness of our model in optimizing the observation function also applies here,
as failure to optimize the complex transition model we proposed would inhibit
the level of accuracy achieved. Furthermore, an inspection of the means and
standard deviations of the model’s parameters reveals that it indeed optimized
them as intended, learning to construct paths between relevant features, and
forming projections outside of the image grid for features which were found to
not be useful.

4.3 Stacked Markov Model

In this set of experiments we aim to explore the effectiveness of the Stacked Markov
Model, a model which we introduced in Section 3.2.2, whose purpose in the scope of
this thesis is to illustrate the benefits of having a more flexible transition model, which
comes naturally from the use of Gradient Descent optimization.

To this end, we pose the following research questions to guide our analysis:

• Is the process of defining novel forms of Markov Models expedient
using Gradient Descent?: While expediency is somewhat subjective, we take
it here to relate to the effort and knowledge required by the user to develop
a model and optimizer which expresses their desired architecture. While some
effort and knowledge will always be required, we analyze this research question
considering the relative difficulty of achieving the same without the tools we have
proposed. Our discussion on this issue is mainly centered in our implementation
section, Section 4.3.1.3.

• Is there justification for adopting more complex transition models?:
Having a more flexible framework for defining customized transition models is

4.3. Stacked Markov Model 71

only useful insofar as there are benefits to be gained from novel architectures.
While this may be a sensible assumption, it is nevertheless something which
must be analyzed. We explore this issue differently in each of our experimental
sections (Sections 4.3.2.1, 4.3.2.2 and 4.3.2.3).

More specifically, and more related to the second question, we aim to validate the
properties of the SMM, which, in the case that they are shown to exist, may justify its
use outside of this thesis. These secondary questions are as follows:

• Is the SMM effective at modeling time series with long term contex-
tual issues?: The main reasoning behind the construction of the SMM was
that series often don’t strictly follow the Markov Property, and that memory in
Markov Models is an expensive resource. The SMM aims to solve these issues
by storing context information in higher level Markov Chains, which vary at a
slower rate, and influence lower levels by defining their transition models. While
this is theoretically the case, it remains to be seen if the model can indeed learn
to represent contextual information.

• Can the SMM model multiple time series simultaneously, sharing con-
textual information as needed?: We extended the SMM in Section 3.2.2.4
so as to include multidimensional data, positing that the model could learn to
efficiently share a parent layer should there be sufficient correlation between their
data. We explore this very scenario in the experiment described in Section 4.3.1.6.

4.3.1 Setup

4.3.1.1 Datasets

In contrast to the previous experimental sections, here we will focus more on more
realistic real-world sequence data (as opposed to the synthetic examples we used to val-
idate our optimizer in Section 4.1, and the somewhat artificial sequence-interpretation
of digit classification seen in Section 4.2). While it is the case that any sequence can
be modeled by the Markov Models we’ve investigated, we will focus on data which
is informative of the properties we wish to explore, namely the intersection between
stochasticity and structure (which is to say that we don’t desire data that is far too
random for any context information to be relevant, but also not overly structured, so
as to discard the need for the stochastic properties of Markov Models.

To this end, we focus our experiments on 3 histograms: The first, a plot of the
outside temperature near the airport in Belo Horizonte (Brazil), presents itself as a

72 Chapter 4. Experiments

−2
0 0 20 40 60 80 10

0
12

0
14

0
16

0
18

0
20

0
22

0

10

20

30

Time (hours)

Te
m
pe

ra
tu
re

(c
el
ci
us
)

Figure 4.14. Sample from the outdoors temperature data from the Confins
International Airport in Belo Horizonte, Brazil. While the behavior changes day
by day depending on a multitude of factors (e.g.: cloud coverage, wind speed,
rain, etc), patterns and regularities emerge thanks to the day/night cycle.

good candidate on account of it having structure in the form of periodicity (such as
the rise and fall of temperature during the day), but also stochasticity (numerous events
can affect the measured temperature on a given day, ranging from cloud coverage to
humidity to wind speed). We illustrate a portion of this series in Figure 4.14.

The other two histograms are of the CPU and Memory usage of a machine within
a network which, in addition to displaying the usual patterns of activity typical of an
idle computer, also periodically runs a series of computationally intense operations.
We show examples of these series in Figure 4.15.

In all three cases the data comes in as a sequence of floating point numbers, with
the temperature being sampled at a frequency of 15 minutes, totaling 32152 values (or
334 days) and a total of 20546 CPU and Memory samples were used, sampled at a rate
of one a minute (24 days).

For the purposes of testing, we split each series by a 70/30 ratio into a training-
and a test-sequence. The importance of context to our experiments means that it is
best that the training and test data be contiguous in time, thus the test-sequence was
cut from the end of each series. A concern here was that having such a large contiguous
batch of samples might affect the homogeneity of the training and test sequences. To
ensure this was not the case, the training- and test-sequences were visually inspected
to ensure that they exhibited similar patterns.

In one case the floating point values were used directly (with the data normalized
beforehand so it had a 0-mean and a standard deviation of 1). However in the other
two experiments we discretize the values into buckets. A copy of the samples were

4.3. Stacked Markov Model 73

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0

0

500

1,000

1,500

2,000

Time (minutes)

M
em

or
y
U
sa
ge

(M
B
)

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0
80

0
90

0

0

50

100

Time (minutes)

C
pu

U
sa
ge

(%
)

Figure 4.15. Sample from the machine’s CPU and memory usage. Activity
generally remains nominal, with small variations in activity, except for periodic
peeks caused by a timed process. The peeks, caused by synthetic stress added to
the system are often correlated between series, but, as can be seen above, this is
not always the case.

sorted, and then analyzed so that the ranges for each bucket could be determined in
such a way so as to ensure all buckets had an equal amount of samples – a technique
designed to minimize the effects outliers have on uniformly sized buckets. A total of
18 buckets were used, a somewhat arbitrary amount that provided good granularity on
the data while not making it overly sparse.

4.3.1.2 Baseline and Evaluation Measures

As stated at the beginning of this section, one of our research questions is whether
or not there is any utility in allowing a user to define their own architectures, such
as we have done with the SMM. It stands to reason that if conventional techniques
were to have similar performances to any novel models a user could come up with,
then this supposed benefit would not be real (as there would be no reason to utilize
anything but the well established models). Conversely, if we can design a Markov
Model that performs better than more traditional approaches in some set of contexts,
as we have aimed to do with the SMM, then the use of alternate optimizers is justified,

74 Chapter 4. Experiments

Layer States ∆l Time scale
0 18 5 0h15m
1 20 3 1h15m
2 1 ∞ 3h45m

Table 4.3. Parameters used to define the SMMs we trained on Temperature,
CPU and Memory data. Note that the bottom layer has 18 states, one for each
bucket in the histogram’s discretization, whereas the top layer has only a single
state, as is always the case, which allows it to merely define a transition model and
∆ value for the layer below it). ∆2 is infinite here so as to prevent our recursive
definition of the model from trying to run non-existent layers above layer 2.

as there would be evidence to sugest that there are contexts where a user might design
a transition model architecture which performs better than conventional techniques. It
is with this in mind that we chose the Hidden Markov Model as our baseline in these
experiments.

While simplistic, the HMM is a good baseline for the SMM on account of the
following: (1) Both are Markov Models, which allows us to support our hypothesis that
Gradient Descent can improve the flexibility of Markov Model design, and that having
this flexibility is useful within this class of models, (2) both models can be compared
using their likelihoods over a sequence, a well established measure that captures both
specialization and generalization of the models over their data, and (3), while more
complex Markov Models exist, the HMM remains the most widely used model of the
category, and as such, demonstrating that its performance can be surpassed without
the need for specialist knowledge would best argue for its use by the machine learning
community.

Parameters for the HMM and its optimizer were obtained by iteratively testing
different state counts and optimization iterations, with near optimal parameters being
chosen. For the HMM, we utilized 30 hidden states and 300 iterations of the Baum
Welch algorithm. These values were chosen to be as large as possible before overfitting
started having a negative impact on test-sequence performance. In the case of the
SMM, the large amount of resources required by the model reduced the total number
of configurations that could be tested, thus parameters were determined manually by
varying individual values until satisfactory result were obtained. We utilized a 3 layer
model, whose architecture is summarized in Table 4.3.

4.3.1.3 Implementation

We implemented our baseline, the Baum Welch algorithm, in C++, checking its in-
termediate and final outputs against the HiddenMarkov R package, so as to minimize

4.3. Stacked Markov Model 75

the chance that an implementation error would affect our results. The SMM and its
optimizer, on the other hand, underwent a much less straight forward development
process.

Initial development went into trying to devise an extension to the Baum Welch
algorithm which would optimize the SMM. This proved to be impossible, however, as
relaxing the requirements for the observation function to be a probability distribution
(allowing it to be a PDF, for example), inhibited important steps in the deduction of
the algorithm (namely setting up the Lagrange multipliers, whose parameters serve
as a left hand side when trying to analytically solve for setting the gradient to zero).
The first versions of the SMM’s optimizer using Gradient Descent were done manually,
requiring close to 4 pages of relatively simple, albeit tiresome differential calculus.
Mistakes can be made at any step in this process, with a mistake in the design process
cascading to the derivation phase, and then in turn to the software implementation.

The laborious nature of this process led to the design and implementation of our
own Domain Specific Language (DSL), accompanied by a compiler that supported au-
tomatic differentiation. We mention this whole process in light of our hypothesis that
automatic differentiation can make Markov Model design accessible to the average user,
which is exceedingly clear when considering the long stream of difficulties associated
with trying to develop our model in a conventional way which made it virtually im-
possible to bring it to fruition, in contrast to what became possible after automating
the gradient implementation. As a testament to the effectiveness of this procedure,
the same prototype which before took pages of calculus and hours of work now was
summarized to 50 or so lines of C-like syntax, and worked flawlessly.

As per the DSL, a full accounting of its syntax and inner working goes beyond
the scope of the text for this thesis, nevertheless, a few examples are useful in arguing
its accessibility for the final user. Figure 4.16 exemplifies the implementation of a
simple Multilayer Perceptron in the language, whereas Figure 4.17 illustrates a simple
Markov Model (the implementation of the SMM can be found in Appendix A). Different
from the more common tensor approach to automatic differentiation, the commands
in this language have a much higher granularity, allowing for a C-like syntax, as well
as features such as for-loops, conditional expressions, auxiliary methods and classes,
value reassignment, C++ inlining and recursion.

The compiler implements backward-mode automatic differentiation, and, due to
recursion, uses a call-stack-like system to keep track of the information needed to pre-
cisely reverse the control flow in the backward pass, as well as store the Jacobians
needed in computation (refer to Section 2.2 for the general model for automatic dif-
ferentiation). Needed values are stored sequentially so as to maximize spacial and

76 Chapter 4. Experiments

1 hyperp laneRegressor {
2 i n i t (i n t _dims) {
3 i n t dims = _dims ;
4 f l o a t w[dims] = random () ;
5 }
6 f (f l o a t ∗ x −> f l o a t y) {
7 y = 0 ;
8 f o r (i u n t i l dims) y += x [i] ∗ w[i] ;
9 }

10 }
11 mlpLayer{
12 i n i t (i n t inDims , i n t outDims) {
13 i n t un i t s = outDims ;
14 hyperp laneRegressor HR[un i t s] (inDims) ;
15 }
16 f (f l o a t ∗ x −> f l o a t ∗ y) {
17 f o r (u un t i l un i t s) y [u] = sigm (HR[u] . f (x)) ;
18 }
19 fLSE (f l o a t ∗ x , f l o a t ∗ y −> f l o a t LSE) {
20 f l o a t yEst [un i t s] = sigm (HR[_0] . f (x)) ;
21 LSE = 0 ;
22 f o r (u un t i l un i t s) LSE += (y [u] − yEst [u]) ^2;
23 }
24 }
25 mlp{
26 i n i t (i n t ∗ _dims , i n t _layerCnt) {
27 i n t layerCnt = _layerCnt ;
28 i n t dims [layerCnt] = _dims [_0] ;
29 mlpLayer l ay e r [layerCnt − 1] (dims [_0] , dims [_0 + 1]) ;
30 }
31 f (f l o a t ∗ x −> f l o a t ∗ y) {
32 f l o a t aux [layerCnt] [dims [_0]] ;
33 f o r (i u n t i l dims [0]) aux [0] [i] = x [i] ;
34 f o r (l u n t i l layerCnt − 1)
35 l a y e r [l] . f (aux [l] −> aux [l + 1]) ;
36 f o r (i u n t i l dims [layerCnt − 1])
37 y [i] = aux [layerCnt − 1] [i] ;
38 }
39 }

Figure 4.16. Multilayer Perceptron implemented in our Domain Specific Lan-
guage.

4.3. Stacked Markov Model 77

1 HMM{
2 i n i t (i n t _sCnt , i n t _oCnt) {
3 i n t sCnt = _sCnt , oCnt = _oCnt ;
4 f l o a t pD[sCnt] [sCnt] = random () ;
5 f l o a t oD [sCnt] [oCnt] = random () ;
6 }
7 fn (i n t ∗ obs −> f l o a t logL) {
8
9 // Denormalize we i gh t s

10 f l o a t pNF[sCnt] , oNF [sCnt] ;
11 f o r (i u n t i l sCnt) {
12 f o r (j u n t i l sCnt) pNF[i] += pD[i] [j]^2 + 0 . 0001 ;
13 f o r (j u n t i l oCnt) oNF[i] += oD[i] [j]^2 + 0 . 0001 ;
14 }
15 f l o a t p [sCnt] [sCnt] = (pD[_0] [_1]^2 + 0 .0001) /pNF[_0] ;
16 f l o a t o [sCnt] [oCnt] = (oD [_0] [_1]^2 + 0 .0001) /oNF[_0] ;
17
18 // Compute logL
19 logL = 0 ;
20 f l o a t d i s t S r c [sCnt] , d i s tDst [sCnt] ; d i s t S r c [0] = 1 . 0 ;
21 f o r (t u n t i l obs . s i z e) {
22 f o r (s u n t i l sCnt) d i s t S r c [s] ∗= o [s] [obs [t]] ;
23 f o r (s r c u n t i l sCnt)
24 f o r (dst u n t i l sCnt)
25 d i s tDst [dst] += d i s t S r c [s r c]∗p [s r c] [dst] ;
26 f l o a t pSum = 0 ;
27 f o r (s u n t i l sCnt) pSum += dis tDst [s] ;
28 f o r (s u n t i l sCnt) {
29 d i s t S r c [s] = d i s tDst [s] / pSum;
30 d i s tDst [s] = 0 ;
31 }
32 logL += log (pSum) ;
33 }
34 }
35 }

Figure 4.17. Hidden Markov Model implemented in our Domain Specific Lan-
guage.

78 Chapter 4. Experiments

temporal locality in both passes, and Jacobian calculations are designed to require the
smallest amount of re-computation.

As a consequence of these factors the resulting optimizer is rather efficient in
time – faster than many tested hand-written optimizers – but exceedingly inefficient in
memory use. Each expression requires one Jacobian for every variable on its right hand
side, meaning that runtime memory use scales with the number of computations, and
the ability to reassign values to variables (e.g.: an increment) means that the results
from the forward pass aren’t always available to the backward pass for use in its partial
derivatives.

Difficulties aside, once constructed, the compiler allowed for the development of
the SMM with virtually no need for special considerations on how it was going to be
optimized, illustrating the accessibility of these kinds of techniques to the average user.

4.3.1.4 Experiment Design: Series Likelihood Maximization

In this experiment we aim to quantify the relative performance of our model, the SMM,
with respect to our baseline, the HMM, on the three discretized datasets discussed in
Section 4.3.1.1. We train 20 instances of each model on the training sets, and plot the
average and standard deviation of the log-likelihoods.

Specifically, we aim to answer the question of whether the SMM is competitive
compared to other more traditional Markov Models. More generally, we argue that
superior performance in these contexts demonstrates the need for novel forms of Markov
Model optimization.

4.3.1.5 Experiment Design: Temperature Prediction

One of the main motivations for utilizing Markov Models is the set of tools which
are associated with them. While these tools are generally applicable to any discrete
Markov Model, it is useful to demonstrate that they function well in practice. Here, we
make use of the predictive ability of this class of models, by computing the probability
distribution of temperatures some time in the future.

Methodologically, we utilize the normalized real values of the temperature series
directly, with a Gaussian pdf observation function. We impose a minimum values for
σ = 0.05, using a soft-max function so as to prevent states from developing point-
distributions. While not a valid observation function, the resulting model and pseudo-
likelihood are still useful for our purposes (as discussed in 3.1), as the density functions
of the states can be added together, weighted by the probability of their states, in order
to form a mixture model, which in turn gives us a distribution of probable temperatures.

4.3. Stacked Markov Model 79

Beyond exemplifying the use of prediction and of non-probabilistic observation
functions, the experiment allow us to highlight the ability of the SMM to hold onto
contextual information, as the accuracy of the predicted distribution depends on the
model properly learning the periodicity of the temperature cycle. Since predictive
accuracy alone is difficult to judge in a vacuum, we contrast the SMM’s predictions
with those from a simpler HMM, similarly trained on continuous data.

We us the same set of parameters for the HMM and SMM as described in the
discrete cases in Section 4.3.1.2, only now we replace layer 0’s observation function
with the aforementioned Gaussians.

4.3.1.6 Experiment Design: Multi-series Analysis

In our final experiment, we explore the multi-series capabilities of the SMM, as laid
out in Section 3.2.2.4. Our main goal is to test our prediction that the SMM can
learn a joint transition model at higher level Markov Chains which translates well to
multiple time series, so long as they are related. Success in this matter would signify a
better approach towards multidimensional data than is commonly available in Markov
Models, as the conventional approaches either assume conditional independence of the
different dimensions of the data, or attempts to model both values simultaneously in
each of the states, leading to an explosion in the number of model parameters.

We make use of the CPU and Memory series in this example, as phenomenon
which affect one series often will also affect the other one. To gauge our success, we
compare the sum of the likelihoods of the models trained independently with that of
a joint model, which maintains the same set of higher level Markov Chains, differing
only in the addition of an extra, equal base layer (that is, in the parameters from Table
4.3, an exact copy of layer 0 is added to handle the second series).

4.3.2 Results

4.3.2.1 Experiment: Series Likelihood Maximization

Figures 4.18 through 4.20 compare the performance of our model to our baseline HMM.
As hoped, the addition of higher level Markov Chains and sequentially structured
sequences lead to significant improvements an all tested examples.

Furthermore, an inspection of the generated models reveals that, as expected, the
transitions in the Markov Chains mimic common shapes in the data, for instance, in
the model trained on the temperature series, stability, rising temperatures and lowering
temperatures are 3 common patterns which are learnt by the model.

80 Chapter 4. Experiments

Train Test

−2

−1

0

·105

Lo
g-
Li
ke
lih

oo
d

SMM HMM RND

Figure 4.18. Log likelihood obtained on the temperature data histogram (Figure
4.14) by our model (the SMM), our baseline (the HMM), and, for reference, a
random Markov Model (RND).

Train Test

−4

−2

0

·104

Lo
g-
Li
ke
lih

oo
d

SMM HMM RND

Figure 4.19. Log likelihood obtained on the CPU data histogram (Figure 4.15)
by our model (the SMM), our baseline (the HMM), and, for reference, a random
Markov Model (RND).

These results support our claims that the SMM can learn to store contextual
information in higher-level states, and, more generally, that flexibility in defining a
Markov Model’s transitions can be a highly useful trait.

4.3.2.2 Experiment: Temperature Prediction

In this experiment we employed the predictive tools of Markov Models on our SMM,
which was trained directly on the real valued inputs from the temperature histogram
using a Gaussian observation function. Our results, shown in Figure 4.21 illustrates

4.3. Stacked Markov Model 81

Train Test

−4

−2

0

·104

Lo
g-
Li
ke
lih

oo
d

SMM HMM RND

Figure 4.20. Log likelihood obtained on the memory data histogram (Figure
4.15) by our model (the SMM), our baseline (the HMM), and, for reference, a
random Markov Model (RND).

the sliding distribution our model predicts for 15 minutes, 6 hours, and one day into
the future.

From the results we can see that the model has acquired a firm grasp on the peri-
odicity of temperature data, with there generally being a good match between the most
probable estimate (the lightest color in each column) and the actual temperature value.
The model does however display some difficulties inferring temperatures outside of the
norm at points which are too far in the future. For example, the 15 minute prediction
is rather accurate, while the 6 hour prediction tends to predict the general expected
temperature at that hour, with only a slight relationship to its current observations.
The 24 hour estimate shows no signs of having used any non-periodic information (e.g.:
the model doesn’t relate it being hot now with it being hotter than usual in 24 hours
time). This kind of behavior is reasonable considering the data, since much of what
can affect temperature measurements at one time (such as cloud cover or wind) can
change within a few hours.

For comparison, we show in Figure 4.22 the same set of distributions, only now
using a Hidden Markov Model on the data – a model which has no way of efficiently
remembering context information. Not only are its predictions far less certain, but
they are actually static: A local minima for temperature estimation is to always guess
that the temperature in 15 minutes will be the same as it is now – a reasonably good
guess in the short term, but hardly useful in practice. Furthermore, the lack of an
understanding of periodicity means that the model’s probabilities tend to approach
the ergodic distribution as we increase k, as can be seen by the horizontal lines which

82 Chapter 4. Experiments

Figure 4.21. The SMMs prediction of the temperature in 15 minutes (top), 6
hours (middle), and 1 day (bottom). Each column represents one time index,
and each row a temperature, with lighter colors representing a higher probability
density than darker colors. To draw some column c, we first compute the prob-
ability distribution of the SMM given all data preceding c (that is, we compute
P [S

(c)
l |X

(0..c)] ∀l). Then, we propagate these probabilities for some number k of
steps (k = 1 for a 15 minute estimate, k = 24 for 6 hours, etc; This is equivalent
to computing P [S

(c+k)
l |X(0..c)] ∀l). We then plot the sum of the observation func-

tions, weighted by each state (
∑

i P [y|s(c+k)
0.i]P [s

(c+k)
0.i |X(0..c)]). Succinctly, what

this gives us the probabilistic estimate in k + c steps, given the data until c. Fi-
nally, we also add red dots where the actual temperature was recorded at each
time c+ k, for comparison.

4.3. Stacked Markov Model 83

develop over the distribution, which represent some state in the model acquiring a
higher probability and then never loosing it.

4.3.2.3 Experiment: Multi-series Analysis

In our last experiment we focus on the multi-series analysis properties of the SMM.
We wanted to know if, when given two correlated series (CPU and RAM usage) if the
model could jointly represent them through shared parent layers. Figure 4.23 illustrates
these results.

In these results we can see that, even though the independently trained models
together had vastly more parameters than the conjoint model, their performance was
only marginally better. From this we can infer that, while some aspects which were
abstracted from each series may have been lost when creating the conjoint model, they
still had sufficient in common so as to enable their co-optimization. Thus, the results
support our claim that the model is capable of abstracting common elements from
multiple time series in order to jointly represent them.

4.3.2.4 Discussion

We now revisit our research questions:

• Is the process of defining novel forms of Markov Models expedient
using Gradient Descent?: As discussed at length in Section 4.3.1.3, imple-
menting the SMM using conventional techniques is quite literally impossible,
on account of the violation of the key assumptions about probability distribu-
tions. The use of automatic differentiation, on the other hand, made for a rather
straightforward design process, were time could be invested in the model, instead
of the means by which it would be optimized.

• Is there justification for adopting more complex transition models?:
Our ability to significantly outperform our baseline, the HMM, illustrates that
there are scenarios where flexibility in designing more complex transition models
can be highly beneficial.

• Is the SMM effective at modeling time series with long term contextual
issues?: Our results from our temperature prediction experiment, as well as the
inspection of the SMM’s models, reveal that the model does indeed learn the
patterns of inferior layers, thus codifying contextual knowledge of the layer below.

84 Chapter 4. Experiments

Figure 4.22. The HMMs running prediction of the temperature in 15 minutes
(top), 6 hours (middle), and 1 day (bottom). The plot shown here is generated
in the same way as that of Figure 4.21

4.3. Stacked Markov Model 85

Train Test

−1

−0.5

0

·104

Lo
g-
Li
ke
lih

oo
d

MEM & CPU MEM + CPU

Figure 4.23. Log likelihood of the models trained together (SMM & CPU) vs
the sum of their likelihoods when trained independently (SMM + CPU).

• Can the SMM model multiple time series simultaneously, sharing con-
textual information as needed?: Our final experiment demonstrated that,
as designed, the SMM was able to deal with multiple correlated time series with
only a negligible penalty to its performance.

Chapter 5

Conclusions and Future Work

In this dissertation we posited that Gradient Descent Optimization could be used to
improve the flexibility and usefulness of Discrete Markov Models. We made this claim
on the basis that the development of novel Markov Model designs through conventional
means requires expert knowledge not common to most data scientists, whereas gradient-
optimized models are much more accessible to users, in large part due to automatic
differentiation. We argued that optimizing Markov Models in this way could open up
new, exciting possibilities, as Markov Models still offer an unparalleled tool-set, such
as prediction, simulation, and regression, whereas gradient-optimized methods such as
Neural Networks offer state-of-the-art data analysis.

In order to argue these points, we began by tackling the issue of developing a
Gradient Descent optimizer for the Hidden Markov Model. While our general goal
was to go beyond simple models such as this one, we reasoned that, should Gradient
Descent be shown as an effective alternative to the state of the art techniques for
optimizing this class of models, then there would be reason to believe that it could be
used effectively on other instances of Markov Models, for which there are no traditional
approaches for optimization. Our results indicate that Gradient Descent is a highly
competitive alternative to state of the art techniques, with its only downside being a
reasonable increase in resource usage.

Having illustrated that Gradient Descent could be an effective optimizer for
Markov Models, we next argued that the flexibility it afforded was indeed useful.
We did this by constructing two novel forms of Markov Models. The first model
we proposed makes use of a Convolutional Neural Network as its input, which is then
co-optimized along side the state transition model, with the aim of building a visual
classifier. The model highlights the advantages of our approach, as the convolutional
layers develop the feature detectors needed by the transition model, without the need

87

88 Chapter 5. Conclusions and Future Work

for the time consuming manual process that would normally be required. Furthermore,
the model explores concepts such as conditionally defined and share transition proba-
bilities, which can further aid in Markov Model design. We tested the model on the
MNIST dataset, a digit classification task, and achieved promising results, allowing us
to assert that complex observation functions could be used and conjointly optimized
with Markov Models.

Finally, we further exemplified the utility of our approach through our second
model, the Stacked Markov Model. In it, we devise a solution to the memory problem in
Markov Models which involves storing contextual information within secondary Markov
Models, who transition at progressively wider timescales. We test out this model on
3 real-world histograms, and show that we are able to significantly outperform our
baseline, the Hidden Markov Model, on the same task, thus justifying the need for
novel Markov Model architectures.

From these three tasks we believe that we have proved our hypothesis beyond a
reasonable doubt, and hope that this can serve to motivate users of Neural Networks to
think about ways to include Markov Models in their approaches, as well as conversely,
to motivate Markov Model users to think outside the box, and make use of the ana-
lytic abilities of techniques such as Neural Networks. Less abstractly, our dissertation
contributes with two novel techniques for data analysis, one of which we have already
shown to significantly outperform traditional approaches.

5.1 Future Work

Most importantly, the techniques presented here open up a vast expanse of possible
marriages between Markov Models and gradient-optimized approaches such as Neural
Networks. Foreseeable useful applications revolve around the analysis of real-world
sequence data, as real-world data processing often benefits from techniques such as
Neural Networks, whereas the tool-set inherent to Markov Models makes them ideal
for understanding the sequential aspects of the data. Common examples of these
sorts of problems are audio and video analysis, but more obscure applications exist,
including topics such as the analysis of series from Smart Cities or information flow
on the internet. Exploring these possibilities is liable to be a very fruitful direction for
future research.

Our optimization technique offers directions of research related to improving the
effectiveness of Gradient Descent on Markov Models, as it is generally the case that
every new class of models can lead to some adaptation of the Gradient Descent algo-

5.1. Future Work 89

rithm which improves optimization speed and performance. In particular, we briefly
investigated the use of second order optimization techniques, such as Hessian Free Op-
timization, which also allow for automatic differentiation, as a means to significantly
improve optimization performance. These attempts were not realized, however, due to
hurdles associated with convexity constraints on the objective function. Nevertheless,
future research into this area may well reveal a better way of optimizing models such
as ours.

Less abstractly, the models we devised here can also be improved upon, and
applied in different scenarios. The Stacked Markov Model has obvious applications in
text analysis, as many techniques in natural language processing already are forms of
Markov Models (such as n-gram models and Latent Dirichlet Allocation), and stand to
benefit from contextual information. The high dimensionality of text data is, however,
a challenge for this kind of model, namely because if we allocate one state per word,
then the resulting transition model ends up having millions of parameters, becoming
computationally intractable. Further work also needs to be done in the SMM in defining
architectures for multiple time series, since, as it stands, there aren’t good indicators
for determining which series could efficiently share a common parent layer, other than
testing out the resulting model, a relatively expensive process if trying to find the
optimal tree model with more than a few dozen series.

Finally, with respect to the Visual Markov Model, further analysis on other data
is required in order to truly evaluate its potential. Before this can be done, however, its
excessive use of computational resources must be addressed, as the size of the model it
generates quickly becomes intractable for larger images. Nevertheless, adaptations to
this model could be made which would allow it to look for patterns in video data, as
well as hand-written document optical character recognition, problems for which there
still aren’t particularly great solutions.

Bibliography

(1985). IEEE standard for binary floating-point arithmetic. Institute of Electrical and
Electronics Engineers, New York. Note: Standard 754–1985.

(2016). Google search statistics.

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S.,
Davis, A., Dean, J., Devin, M., et al. (2016). Tensorflow: Large-scale machine
learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.

Banerjee, U., Eigenmann, R., Nicolau, A., and Padua, D. A. (1993). Automatic pro-
gram parallelization. Proceedings of the IEEE, 81(2):211--243.

Baum, L. E., Petrie, T., Soules, G., and Weiss, N. (1970). A maximization technique
occurring in the statistical analysis of probabilistic functions of markov chains. The
annals of mathematical statistics, 41(1):164--171.

Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind, J. M. (2015). Automatic
differentiation in machine learning: a survey. arXiv preprint arXiv:1502.05767.

Bengio, Y. et al. (2009). Learning deep architectures for ai. Foundations and trends R©
in Machine Learning, 2(1):1--127.

Bergstra, J., Bastien, F., Breuleux, O., Lamblin, P., Pascanu, R., Delalleau, O., Des-
jardins, G., Warde-Farley, D., Goodfellow, I., Bergeron, A., et al. (2011). Theano:
Deep learning on gpus with python. In NIPS 2011, BigLearning Workshop, Granada,
Spain, volume 3. Citeseer.

Bishop, C. (2007). Pattern recognition and machine learning (information science and
statistics), 1st edn. 2006. corr. 2nd printing edn. Springer, New York.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. Journal
of machine Learning research, 3(Jan):993--1022.

91

92 Bibliography

Brown, P. F., Desouza, P. V., Mercer, R. L., Pietra, V. J. D., and Lai, J. C.
(1992). Class-based n-gram models of natural language. Computational linguistics,
18(4):467--479.

Ciregan, D., Meier, U., and Schmidhuber, J. (2012). Multi-column deep neural net-
works for image classification. In Computer Vision and Pattern Recognition (CVPR),
2012 IEEE Conference on, pages 3642--3649. IEEE.

Collobert, R., Bengio, S., and Mariéthoz, J. (2002). Torch: a modular machine learning
software library. Technical report, Idiap.

Devijver, P. A. (1985). Baum’s forward-backward algorithm revisited. Pattern Recog-
nition Letters, 3(6):369--373.

Fine, S., Singer, Y., and Tishby, N. (1998). The hierarchical hidden markov model:
Analysis and applications. Machine learning, 32(1):41--62.

Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850.

Harte, D. (2016). HiddenMarkov: Hidden Markov Models. Statistics Research Asso-
ciates, Wellington. R package version 1.8-7.

Hochreiter, S. (1998). The vanishing gradient problem during learning recurrent neural
nets and problem solutions. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 6(02):107--116.

Hutchens, J. L. and Alder, M. D. (1998). Introducing megahal. In Proceedings of the
Joint Conferences on New Methods in Language Processing and Computational Nat-
ural Language Learning, pages 271--274. Association for Computational Linguistics.

Kohavi, L. (2014). Internet threats trend report. CYREN, Inc., October
(http://www.cyren.com/tl_files/downloads/CYREN_Q3_2014_Trend_Report.pdf).

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998a). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278--2324.

LeCun, Y., Cortes, C., and Burges, C. J. (1998b). The mnist database of handwritten
digits.

Macedo, Y. (2016). Directed dialogue generation using n-gram models. Unpublished.

Bibliography 93

Martens, J. and Sutskever, I. (2012). Training deep and recurrent networks with
hessian-free optimization. In Neural networks: Tricks of the trade, pages 479--535.
Springer.

Moon, T. K. (1996). The expectation-maximization algorithm. IEEE Signal processing
magazine, 13(6):47--60.

Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT press.

Paiement, J.-F., Eck, D., and Bengio, S. (2005). A probabilistic model for chord pro-
gressions. In Proceedings of the Sixth International Conference on Music Information
Retrieval (ISMIR), number EPFL-CONF-83178.

Pearlmutter, B. A. (1995). Gradient calculations for dynamic recurrent neural net-
works: A survey. IEEE Transactions on Neural networks, 6(5):1212--1228.

Russell, S. and Norvig, P. (1995). Artificial intelligence, a modern approach. Artificial
Intelligence. Prentice-Hall, Egnlewood Cliffs, 25:27.

Saxena, S., Brémond, F., Thonnat, M., and Ma, R. (2008). Crowd behavior recogni-
tion for video surveillance. In International Conference on Advanced Concepts for
Intelligent Vision Systems, pages 970--981. Springer.

Tu, S. (2015). Derivation of baum-welch algorithm for hidden markov models.

Appendix A

SMM Formulation

The following is a complete listing of the code which defines the SMM. It is written in
our Domain Specific Language, and from it our compiler creates a working Gradient
Descent Optimizer.

1

2

3 // Manages p r o b a b i l i t i e s s t o r ed as r e a l v a l u e s thar are squared and sum−
normal ized

4 norm : : {
5 vec to r (f l o a t ∗ in −> f l o a t ∗ out) {
6 f o r (i u n t i l in . s i z e) out [i] = in [i] ^ 0 . 5 ;
7 }
8 matrix (f l o a t ∗∗ in −> f l o a t ∗∗ out) {
9 f o r (i u n t i l in . s i z e) norm : : vec to r (in [i] −> out [i]) ;

10 }
11 matrix3D (f l o a t ∗∗∗ in −> f l o a t ∗∗∗ out) {
12 f o r (i u n t i l in . s i z e) norm : : matrix (in [i] −> out [i]) ;
13 }
14 }
15

16 denorm : : {
17 vec to r (f l o a t ∗ in −> f l o a t ∗ out) : extern ;
18 matrix (f l o a t ∗∗ in −> f l o a t ∗∗ out) : extern ;
19 matrix3D (f l o a t ∗∗∗ in −> f l o a t ∗∗∗ out) : extern ;
20 }
21 /&
22

23 namespace denormAux {
24

25 i n l i n e f l o a t e p s i l o n () { re turn 0 .0001 f ; } ;

95

96 Appendix A. SMM Formulation

26

27 template<bool w_buffered , bool p_buffered>
28 i n l i n e void denorm_forward_aux (
29 u t i l : : array : : array_t<f l o a t , 1 , w_buffered> w,
30 u t i l : : array : : array_t<f l o a t , 1 , p_buffered> p
31) {
32 f l o a t sum = 0 ;
33 f o r (s i ze_t i : p . range ()) sum += p [i] = w[i]∗w[i] ;
34 f l o a t norm = (1 − w. s i z e () ∗ ep s i l o n ()) /sum ;
35 f o r (s i ze_t i : p . range ()) p [i] = norm ∗ p [i] + ep s i l o n () ;
36 }
37 template<bool w_buffered , bool p_buffered , s i ze_t dims>
38 i n l i n e void denorm_forward_aux (
39 u t i l : : array : : array_t<f l o a t , dims , w_buffered> w,
40 u t i l : : array : : array_t<f l o a t , dims , p_buffered> p
41) {
42 f o r (s i ze_t i : w. range ()) denorm_forward_aux (w[i] , p [i]) ;
43 }
44

45 template<bool c l e a rDe r i v a t i v e = true , bool w_buffered , bool
d_dw_buffered , bool d_dp_buffered>

46 i n l i n e void denorm_backward_aux (
47 u t i l : : array : : array_t<f l o a t , 1 , w_buffered> w,
48 u t i l : : array : : array_t<f l o a t , 1 , d_dw_buffered> d_dw,
49 u t i l : : array : : array_t<f l o a t , 1 , d_dp_buffered> d_dp
50) {
51 i f (c l e a rDe r i v a t i v e) d_dw. c l e a r () ;
52

53 f l o a t sumSq = 0 , wSumSq = 0 ;
54 f o r (s i ze_t i : w. range ()) {
55 f l o a t sq = w[i] ∗ w[i] ;
56 sumSq += sq ;
57 wSumSq += d_dp [i] ∗ sq ;
58 }
59 wSumSq /= sumSq ;
60

61 f l o a t norm = (2 . 0 f / sumSq) ∗ (1 − w. s i z e () ∗ ep s i l o n ()) ;
62 f o r (s i ze_t i : d_dw. range ())
63 d_dw[i] += norm ∗ w[i] ∗ (d_dp [i] − wSumSq) ;
64 }
65 template<bool c l e a rDe r i v a t i v e = true , bool w_buffered , bool

d_dw_buffered , bool d_dp_buffered , s i ze_t dims>
66 i n l i n e void denorm_backward_aux (
67 u t i l : : array : : array_t<f l o a t , dims , w_buffered> w,

97

68 u t i l : : array : : array_t<f l o a t , dims , d_dw_buffered> d_dw,
69 u t i l : : array : : array_t<f l o a t , dims , d_dp_buffered> d_dp
70) {
71 f o r (s i ze_t i : w. range ()) denorm_backward_aux<c l e a rDe r i va t i v e >(w[i

] , d_dw[i] , d_dp [i]) ;
72 }
73

74 template<s ize_t dims>
75 s t r u c t genericDenormMem{
76 typede f typename u t i l : : array : : array_t<f l o a t , dims , f a l s e > noBuff_t ;
77 typede f typename u t i l : : array : : array_t<f l o a t , dims , true> buffed_t ;
78

79 noBuff_t inNoBuff ;
80 buffed_t inBuf fed ;
81

82 template<bool bu f f e red , typename = typename std : : enable_i f<bu f f e r ed
== f a l s e >: : type>

83 noBuff_t getVal () { re turn inNoBuff ; }
84 template<bool bu f f e red , typename = typename std : : enable_i f<bu f f e r ed

== true >: : type>
85 buffed_t getVal () { re turn inBuf fed ; }
86

87 template<bool bu f f e red , typename = typename std : : enable_i f<bu f f e r ed
== f a l s e >: : type>

88 void setVal (noBuff_t s r c) { inNoBuff = s r c ; }
89 template<bool bu f f e red , typename = typename std : : enable_i f<bu f f e r ed

== true >: : type>
90 void setVal (buffed_t s r c) { inBuf fed = s r c ; }
91 } ;
92

93 // Denormalizer memorizes the source array by r e f e r ence . I t i s assumed
to be unchanging !

94 template<bool in_buffered , bool out_buffered , s i z e_t dims>
95 i n l i n e void denorm_forward (
96 genericDenormMem<dims> ∗ mem,
97 u t i l : : array : : array_t<f loat_t , dims , in_buffered> in ,
98 u t i l : : array : : array_t<f loat_t , dims , out_buffered> out
99) {

100 mem−>template setVal<in_buffered >(in) ;
101 denormAux : : denorm_forward_aux (in , out) ;
102 }
103 template<bool d_din_buffered , bool d_dout_buffered , s i ze_t dims>
104 i n l i n e void denorm_backward (
105 genericDenormMem<dims> ∗ mem,

98 Appendix A. SMM Formulation

106 u t i l : : array : : array_t<f loat_t , dims , d_din_buffered> d_din ,
107 u t i l : : array : : array_t<f loat_t , dims , d_dout_buffered> d_dout
108) {
109 denormAux : : denorm_backward_aux (mem−>template getVal<d_din_buffered

>() , d_din , d_dout) ;
110 }
111

112 }
113

114 s t r u c t denorm_vector_memt : pub l i c denormAux : : genericDenormMem<1> {} ;
115 s t r u c t denorm_matrix_memt : pub l i c denormAux : : genericDenormMem<2> {} ;
116 s t r u c t denorm_matrix3D_memt : pub l i c denormAux : : genericDenormMem<3> {} ;
117

118 template<typename in_t , typename out_t>
119 i n l i n e void denorm_vector_forward (denorm_vector_memt ∗ mem, in_t &in ,

out_t &out) { denormAux : : denorm_forward (mem, in , out) ; }
120 template<typename in_t , typename out_t>
121 i n l i n e void denorm_vector_backward (denorm_vector_memt ∗ mem, in_t &d_din ,

out_t &d_dout) { denormAux : : denorm_backward (mem, d_din , d_dout) ; }
122 template<typename in_t , typename out_t>
123 i n l i n e void denorm_matrix_forward (denorm_matrix_memt ∗ mem, in_t &in ,

out_t &out) { denormAux : : denorm_forward (mem, in , out) ; }
124 template<typename in_t , typename out_t>
125 i n l i n e void denorm_matrix_backward (denorm_matrix_memt ∗ mem, in_t &d_din ,

out_t &d_dout) { denormAux : : denorm_backward (mem, d_din , d_dout) ; }
126 template<typename in_t , typename out_t>
127 i n l i n e void denorm_matrix3D_forward (denorm_matrix3D_memt ∗ mem, in_t &in ,

out_t &out) { denormAux : : denorm_forward (mem, in , out) ; }
128 template<typename in_t , typename out_t>
129 i n l i n e void denorm_matrix3D_backward (denorm_matrix3D_memt ∗ mem, in_t &

d_din , out_t &d_dout) { denormAux : : denorm_backward (mem, d_din , d_dout)
; }

130

131 &/
132

133 MM{
134

135 i n i t (i n t s t a t e s) {
136 f l o a t q0 [s t a t e s] = random () ^2;
137 f l o a t w[s t a t e s] [s t a t e s] = random () ^2;
138 }
139

140 getP(−> f l o a t ∗∗ p) { denorm : : matrix (w −> p) ; }
141 getP0(−> f l o a t ∗ p0) { denorm : : vec to r (q0 −> p0) ; }

99

142 }
143

144

145 StandardMMSequence{
146

147 i n i t (i n t s t a t e s , i n t l ength) {
148 f l o a t q0 [s t a t e s] = random () ;
149 f l o a t w[l ength] [s t a t e s] [s t a t e s] = random () ;
150 }
151

152 getP(−> f l o a t ∗∗∗ p) { denorm : : matrix3D (w −> p) ; }
153 getP0(−> f l o a t ∗ p0) { denorm : : vec to r (q0 −> p0) ; }
154 }
155 SplitMMSequence{
156

157 i n i t (i n t s t a t e s , i n t l ength) {
158 f l o a t q0 [s t a t e s] = random () ;
159 f l o a t wNovelty = random () ;
160 f l o a t wPrior [s t a t e s] = random () ;
161 f l o a t wPrev [s t a t e s] [s t a t e s] = random () ;
162 f l o a t wSeq [l ength] [s t a t e s] [s t a t e s] = random () ;
163 }
164

165 // Se t s / Re t r i e v e s the i n i t i a l and i t e r a t i o n p r o b a b i l i t y matrix
166 getP(−> f l o a t ∗∗∗ p) {
167 f l o a t aux [wSeq . s i z e] [wSeq [_0] . s i z e] [wSeq [_0] [_1] . s i z e] = wNovelty +

wPrior [_2] + wPrev [_1] [_2] + wSeq [_0] [_1] [_2] ;
168 denorm : : matrix3D (aux −> p) ;
169 }
170 getP0(−> f l o a t ∗ p0) { denorm : : vec to r (q0 −> p0) ; }
171

172 }
173 TiedMMSequence{
174

175 i n i t (i n t s t a t e s , i n t l ength) {
176 f l o a t q0 [s t a t e s] = random () ;
177 f l o a t w[s t a t e s] [s t a t e s] = random () ;
178 }
179

180 // Re t r i e v e s the i n i t i a l and i t e r a t i o n p r o b a b i l i t y matrix
181 getP(−> f l o a t ∗∗∗ p) {
182 denorm : : matrix (w −> p [0]) ;
183 f o r (i from 1 un t i l p . s i z e)
184 f o r (j u n t i l p [0] . s i z e)

100 Appendix A. SMM Formulation

185 f o r (k un t i l p [0] [i] . s i z e)
186 p [i] [j] [k] = p [0] [j] [k] ;
187 }
188 getP0(−> f l o a t ∗ p0) { denorm : : vec to r (q0 −> p0) ; }
189 }
190

191 // Updates a s t a t e d i s t r i b u t i o n
192 MMForward : : {
193 d i s t (f l o a t ∗ d i s t , f l o a t ∗ obs , f l o a t ∗∗ p , f l o a t ∗ distAux −> f l o a t

sumP) {
194 sumP = 0 ;
195 distAux . c l e a r ;
196 f o r (i u n t i l d i s t . s i z e) {
197 f l o a t normSrc = d i s t [i] ∗ obs [i] ;
198 f o r (j u n t i l distAux . s i z e) distAux [j] += normSrc ∗ p [i] [j] ;
199 sumP += normSrc ;
200 }
201 f l o a t norm = 1 / sumP ;
202 f o r (i u n t i l d i s t . s i z e) d i s t [i] = distAux [i] ∗ norm ;
203 }
204 d i s tSeq (f l o a t ∗ d i s t , f l o a t ∗∗ obs , f l o a t ∗∗∗ p , f l o a t ∗ distAux , i n t

t0 , i n t T −> f l o a t logP) {
205 logP = 0 ;
206 f o r (t from t0 un t i l T) logP += log (MMForward : : d i s t (d i s t , obs [t] , p

[t % p . s i z e] , distAux)) ;
207 }
208 // Propagate the source d i s t r i b u t i o n i f the ob s e r va t i on p r o b a b i l i t y i s

d i s c r e t e
209 d i s c r e t e (f l o a t ∗ d i s t , i n t obsIdx , f l o a t ∗∗ p −> f l o a t sumP) {
210 f o r (i u n t i l d i s t . s i z e) d i s t [i] = p [obsIdx] [i] ;
211 sumP = d i s t [obsIdx] ;
212 }
213 d i s c r e t eS eq (f l o a t ∗ d i s t , i n t ∗ obsIdx , f l o a t ∗∗∗ p , i n t t0 , i n t T −>

f l o a t logP) {
214 i f (T == t0) logP = 0 ;
215 e l s e {
216 f l o a t e p s i l o n = 0 .00001 ;
217 logP = log (d i s t [obsIdx [t0]] + ep s i l o n) ;
218 f o r (t from t0 un t i l T − 1) logP += log (p [t % p . s i z e] [obsIdx [t

]] [obsIdx [t+ 1]] + ep s i l o n) ;
219 i n t l a s tB l o ck = (T − 1) % p . s i z e ;
220 f o r (i u n t i l d i s t . s i z e) d i s t [i] = p [l a s tB l o ck] [obsIdx [T−1]] [i] ;
221 }
222 }

101

223 }
224

225 // Stores the t r a n s i t i o n we i gh t s used in a SMM
226 SMMTransitions{
227

228 i n i t (i n t ∗ stateCnt , i n t ∗ dims , i n t ∗ l ength , i n t ∗ type) {
229

230 i n t uniqueTypes = 3 ;
231 i n t nodes = stateCnt . s i z e ;
232 i n t typeCounts [uniqueTypes] ;
233 f o r (i u n t i l nodes) typeCounts [type [i]]++;
234

235 i n t typeIndexToNodeMap [uniqueTypes] [typeCounts [_0]] ;
236 i n t nodeToTypeIndexMap [nodes] [2] ;
237 typeCounts . c l e a r ;
238 f o r (i u n t i l nodes) {
239 i n t currType = type [i] ;
240 i n t cu r rO f f s e t = typeCounts [currType] ;
241 typeIndexToNodeMap [currType] [c u r rO f f s e t] = i ;
242 nodeToTypeIndexMap [i] [0] = currType ;
243 nodeToTypeIndexMap [i] [1] = cu r rO f f s e t ;
244 typeCounts [currType]++;
245 }
246

247 StandardMMSequence standard [typeCounts [0]] [s tateCnt [
typeIndexToNodeMap [0] [_0]]] (dims [typeIndexToNodeMap [0] [_0]] ,
l ength [typeIndexToNodeMap [0] [_0]]) ;

248 SplitMMSequence s p l i t [typeCounts [1]] [s tateCnt [typeIndexToNodeMap
[1] [_0]]] (dims [typeIndexToNodeMap [1] [_0]] , l ength [
typeIndexToNodeMap [1] [_0]]) ;

249 TiedMMSequence t i e d [typeCounts [2]] [s tateCnt [typeIndexToNodeMap [2] [
_0]]] (dims [typeIndexToNodeMap [2] [_0]] , l ength [typeIndexToNodeMap
[2] [_0]]) ;

250 }
251

252 getP(−> f l o a t ∗∗∗∗∗ p) {
253

254 // f l o a t p [nodeCnt] [s ta t eCnt [_0]] [DT[_0]] [dims [_0]] [dims [_0]] ;
255 f o r (i u n t i l standard . s i z e)
256 f o r (j u n t i l standard [i] . s i z e) standard [i] [j] . getP(−> p [

typeIndexToNodeMap [0] [i]] [j]) ;
257 f o r (i u n t i l s p l i t . s i z e)
258 f o r (j u n t i l s p l i t [i] . s i z e) s p l i t [i] [j] . getP(−> p [

typeIndexToNodeMap [1] [i]] [j]) ;

102 Appendix A. SMM Formulation

259 f o r (i u n t i l t i e d . s i z e)
260 f o r (j u n t i l t i e d [i] . s i z e) t i e d [i] [j] . getP(−> p [

typeIndexToNodeMap [2] [i]] [j]) ;
261 }
262 getP0(−> f l o a t ∗∗∗ p0) {
263

264 // f l o a t p0 [nodeCnt] [s ta t eCnt [_0 + 1]] [s ta t eCnt [_0 + 1]] ;
265 f o r (i u n t i l standard . s i z e)
266 f o r (j u n t i l standard [i] . s i z e) standard [i] [j] . getP0(−> p0 [

typeIndexToNodeMap [0] [i]] [j]) ;
267 f o r (i u n t i l s p l i t . s i z e)
268 f o r (j u n t i l s p l i t [i] . s i z e) s p l i t [i] [j] . getP0(−> p0 [

typeIndexToNodeMap [1] [i]] [j]) ;
269 f o r (i u n t i l t i e d . s i z e)
270 f o r (j u n t i l t i e d [i] . s i z e) t i e d [i] [j] . getP0(−> p0 [

typeIndexToNodeMap [2] [i]] [j]) ;
271 }
272 }
273

274 // Creates the computat iona l graph requ i r ed f o r SMM computation
275 SMMTree{
276

277 i n i t (i n t ∗ _dims , i n t ∗ _stateCnt , i n t ∗ _DT, i n t ∗ _CDT, i n t ∗∗
_inputMap , i n t ∗∗ _chi ldren) {

278 i n t nodeCnt = _chi ldren . s i z e ;
279 i n t dims [nodeCnt] = _dims [_0] ;
280 i n t stateCnt [nodeCnt] = _stateCnt [_0] ;
281 i n t DT[nodeCnt] = _DT[_0] ;
282 i n t CDT[nodeCnt] = _CDT[_0] ;
283 i n t inputMap [nodeCnt] [2] = _inputMap [_0] [_1] ;
284 i n t ch i l d r en [nodeCnt] [_chi ldren [_0] . s i z e] = _chi ldren [_0] [_1] ;
285 }
286

287

288 f n_ in i t (i n t nID , i n t t0 , i n t T −> in t ∗ tBegin , i n t ∗ tEnd) {
289 tBegin [nID] = t0 / CDT[nID] ; t0 %= CDT[nID] ;
290 tEnd [nID] = T / CDT[nID] ; T %= CDT[nID] ;
291 f o r (c u n t i l c h i l d r en [nID] . s i z e)
292 f n_ in i t (ch i l d r en [nID] [c] , t0 , T −> tBegin , tEnd) ;
293 }
294 fn_rec (
295 i n t nID , i n t t0 , i n t T, i n t i sBegin , i n t isEnd , i n t ∗ tBegin , i n t ∗

tEnd ,
296 f l o a t ∗∗ u , f l o a t ∗∗∗ up , f l o a t ∗∗∗ s , f l o a t ∗∗∗ sAux ,

103

297 f l o a t ∗∗∗ obsDist , i n t ∗∗ obsSeq , f l o a t ∗∗ inMetaObsProb , f l o a t ∗∗
outMetaObsProb ,

298 f l o a t ∗∗∗∗∗ p
299 −>
300 f l o a t logL
301) {
302

303 // Clear the above l a y e r ’ s meta−obsProb
304 i f (! i sBeg in) outMetaObsProb [nID] . c l e a r ;
305

306 // I f t h i s i s the bottom l ay e r do standard markov computation
307 i f (c h i l d r en [nID] . s i z e == 0) {
308

309 // Propagate the l e a f node us ing e i t h e r sequence or d i s t r i b u t i o n
data

310 i n t inputType = inputMap [nID] [0] ;
311 i n t inputSrc = inputMap [nID] [1] ;
312 // D i s t r i b u t i o n based ob s e r va t i on s
313 i f (inputType == 0) {
314 f o r (t from t0 un t i l T) {
315 f l o a t sumP = 0 ;
316 f l o a t sumMeta = 0 ;
317 f o r (i u n t i l s tateCnt [nID]) {
318 f l o a t auxf = MMForward : : d i s t (s [nID] [i] , obsDist [

inputSrc] [t] , p [nID] [i] [t % p [nID] [i] . s i z e] , sAux [
nID] [i]) ;

319 outMetaObsProb [nID] [i] += log (auxf) ;
320 f l o a t metai = exp (outMetaObsProb [nID] [i]) ∗ u [nID] [i] ;
321 sumP += auxf ∗ metai ;
322 sumMeta += metai ;
323 }
324 logL += log (sumP/sumMeta) ;
325 }
326 // Sequence based ob s e r va t i on s
327 } e l s e i f (inputType == 1) {
328 f o r (i u n t i l s tateCnt [nID])
329 outMetaObsProb [nID] [i] += MMForward : : d i s c r e t eS eq (s [nID] [i

] , obsSeq [inputSrc] , p [nID] [i] , t0 , T) ;
330 }
331

332 // Otherwise , do SMM recurs ion
333 } e l s e f o r (t from t0 un t i l T + isEnd) {
334 i n t t t = t % DT[nID] ;
335 i n t f i r s tCh i l d ID = ch i l d r en [nID] [0] ;

104 Appendix A. SMM Formulation

336

337 // Recompute the l a y e r ’ s c h i l d r en ’ s un i v e r s a l p r o b a b i l i t i e s
338 u [f i r s tCh i l d ID] . c l e a r ;
339 f o r (i u n t i l s tateCnt [nID])
340 f o r (j u n t i l dims [nID])
341 u [f i r s tCh i l d ID] [j] += u [nID] [i] ∗ s [nID] [i] [j] ;
342 f o r (c from 1 un t i l c h i l d r en [nID] . s i z e) {
343 i n t ch i ldID = ch i l d r en [nID] [c] ;
344 f o r (j u n t i l dims [nID]) u [ch i ldID] [j] = u [f i r s tCh i l d ID] [j] ;
345 }
346

347 // Recurse on lower l a y e r s
348 i n t new_isBegin ; i f (i sBeg in && t == t0) new_isBegin = 1 ; e l s e

new_isBegin = 0 ;
349 i n t new_isEnd ; i f (isEnd && t == T) new_isEnd = 1 ; e l s e

new_isEnd = 0 ;
350 f o r (ch i l d Idx un t i l c h i l d r en [nID] . s i z e) {
351 i n t ch i ldID = ch i l d r en [nID] [ch i l d Idx] ;
352 i n t new_baseT = t ∗ DT[ch i ldID] ;
353 i n t new_t0 = new_baseT + new_isBegin ∗ tBegin [ch i ldID] ;
354 i n t new_T = new_baseT ; i f (new_isEnd) new_T += tEnd [ch i ldID] ;

e l s e new_T += DT[ch i ldID] ;
355 fn_rec (chi ldID , new_t0 , new_T, new_isBegin , new_isEnd , tBegin

, tEnd , u , up , s , sAux , obsDist , obsSeq , inMetaObsProb ,
outMetaObsProb , p −> logL) ;

356 }
357

358 // I t e r a t e the models a t the pre sen t l a y e r once
359 i f (t != T) {
360

361 // Compute the input meta−obsProb
362 f o r (i u n t i l dims [nID])
363 inMetaObsProb [nID] [i] = outMetaObsProb [f i r s tCh i l d ID] [i] ;
364 i f (c h i l d r en [nID] . s i z e > 1) {
365 f o r (i from 1 un t i l c h i l d r en [nID] . s i z e) {
366 i n t ch i ldID = ch i l d r en [nID] [i] ;
367 f o r (j u n t i l dims [nID])
368 inMetaObsProb [nID] [j] ∗= outMetaObsProb [ch i ld ID] [j] ;
369 }
370 f l o a t sum = 0 ;
371 f o r (i u n t i l dims [nID]) sum += inMetaObsProb [nID] [i] ;
372 f l o a t norm = 1/sum ;
373 f o r (i u n t i l dims [nID]) inMetaObsProb [nID] [i] ∗= norm ;
374 }

105

375

376 // Compute the un i v e r s a l t r a n s i t i o n p r o b a b i l i t y
377 up [nID] . c l e a r ;
378 f o r (i u n t i l s tateCnt [nID]) {
379 f l o a t u i = u [nID] [i] ;
380 f o r (j u n t i l dims [nID])
381 f o r (k un t i l dims [nID])
382 up [nID] [j] [k] += p [nID] [i] [t t] [j] [k] ∗ ui ;
383 }
384

385 // Merge ch i l d r en
386 f o r (c u n t i l c h i l d r en [nID] . s i z e) {
387 i n t ch i ld ID = ch i l d r en [nID] [c] ;
388 f o r (i u n t i l s tateCnt [ch i ld ID]) {
389 f l o a t norm = u [ch i ldID] [i] ∗ inMetaObsProb [nID] [i] ;
390 f o r (j u n t i l dims [ch i ldID])
391 sAux [ch i ld ID] [i] [j] = s [ch i ld ID] [i] [j] ∗ norm ;
392 }
393 s [ch i ld ID] . c l e a r ;
394 f o r (i S r c un t i l s tateCnt [ch i ld ID]) {
395 f o r (iDst un t i l s tateCnt [ch i ldID]) {
396 f l o a t p_srcDst = up [nID] [i S r c] [iDst] ;
397 f o r (j u n t i l dims [ch i ldID])
398 s [ch i ld ID] [iDst] [j] += sAux [ch i ldID] [i S r c] [j] ∗

p_srcDst ;
399 }
400 }
401 f o r (i u n t i l s tateCnt [ch i ld ID]) {
402 f l o a t sum ;
403 f o r (j u n t i l dims [ch i ldID]) sum += s [ch i ld ID] [i] [j] ;
404 f l o a t norm = 1 / sum ;
405 f o r (j u n t i l dims [ch i ldID]) s [ch i ld ID] [i] [j] ∗= norm ;
406 }
407 }
408

409 // I t e r a t e
410 f l o a t sumU = 0 ;
411 f o r (i u n t i l s tateCnt [nID]) {
412 f l o a t sumP ;
413 MMForward : : d i s t (s [nID] [i] , inMetaObsProb [nID] , p [nID] [i] [

t t] , sAux [nID] [i] −> sumP) ;
414 outMetaObsProb [nID] [i] += log (sumP) ;
415 }
416 f l o a t normU = 1/sumU;

106 Appendix A. SMM Formulation

417 f o r (i u n t i l s tateCnt [nID]) u [nID] [i] ∗= normU ;
418 }
419 }
420

421 i f (! isEnd /∗&& nID > 0∗/) {
422

423 // Normalize the metaObsProb out o f log−space
424 f l o a t maxObsProb = outMetaObsProb [nID] [0] ;
425 f o r (i from 1 un t i l s tateCnt [nID])
426 i f (outMetaObsProb [nID] [i] > maxObsProb) maxObsProb =

outMetaObsProb [nID] [i] ;
427 f l o a t sum ;
428 f o r (i u n t i l s tateCnt [nID]) {
429 f l o a t expdVal = exp (outMetaObsProb [nID] [i] − maxObsProb) ;
430 outMetaObsProb [nID] [i] = expdVal ;
431 sum += expdVal ;
432 }
433 f l o a t norm = 1 / sum ;
434 f o r (i u n t i l s tateCnt [nID]) outMetaObsProb [nID] [i] ∗= norm ;
435 }
436 }
437 }
438

439 SMM{
440

441 i n i t (i n t ∗ _dims , i n t ∗ _stateCnt , i n t ∗ _DT, i n t ∗ _CDT, i n t ∗
_transit ionType , i n t ∗∗ _inputMap , i n t ∗∗ _chi ldren) {

442 i n t nodeCnt = _stateCnt . s i z e ;
443 i n t stateCnt [_stateCnt . s i z e] = _stateCnt [_0] ;
444 i n t dims [_dims . s i z e] = _dims [_0] ;
445 i n t DT[_DT. s i z e] = _DT[_0] ;
446 SMMTransitions t r a n s i t i o n s (_stateCnt , _dims , _DT, _transit ionType) ;
447 SMMTree computationModel (_dims , _stateCnt , _DT, _CDT, _inputMap ,

_chi ldren) ;
448 }
449 fn (f l o a t ∗∗∗ obsDist , i n t ∗∗ obsSeq , i n t t0 , i n t T −> f l o a t logL) {
450 f l o a t p [nodeCnt] [s tateCnt [_0]] [DT[_0]] [dims [_0]] [dims [_0]] ;
451 f l o a t s [nodeCnt] [s tateCnt [_0]] [dims [_0]] ;
452 t r a n s i t i o n s . getP(−>p) ;
453 t r a n s i t i o n s . getP0(−>s) ;
454

455 i n t tBegin [nodeCnt] , tEnd [nodeCnt] ;
456 computationModel . f n_in i t (0 , t0 , T −> tBegin , tEnd) ;
457

107

458 f l o a t u [nodeCnt] [s tateCnt [_0]] , up [nodeCnt] [dims [_0]] [dims [_0]] ;
459 f l o a t inMetaObsProb [nodeCnt] [dims [_0]] , outMetaObsProb [nodeCnt] [

s tateCnt [_0]] ;
460 f l o a t sAux [nodeCnt] [s tateCnt [_0]] [dims [_0]] ;
461

462 u [0] [0] = 1 ;
463 logL = 0 ;
464 computationModel . fn_rec (
465 0 , tBegin [0] , tEnd [0] , 1 , 1 , tBegin , tEnd ,
466 u , up , s , sAux , obsDist , obsSeq , inMetaObsProb , outMetaObsProb ,

p −> logL
467) ;
468 }
469 }
470

471

472 // Co l l e c t i on o f normal d i s t r i b u t i o n s
473 normalMixture{
474 i n i t (i n t _dims , f l o a t muMin, f l o a t muMax, f l o a t sigmaMin , f l o a t

sigmaMax) {
475 i n t dims = _dims ;
476 f l o a t mu[dims] = random () ∗(muMax − muMin) + muMin ;
477 f l o a t tau [dims] = 1/(random () ∗(sigmaMax − sigmaMin) + sigmaMin) ^2;
478 }
479

480 seqToDiscrete (f l o a t ∗ sequenceIn −> f l o a t ∗∗ stateProbsOut) {
481 f l o a t auxA [dims] = (tau [_0] / 6 . 2 8 3) ^0 . 5 ;
482 f l o a t auxB [dims] = −tau [_0] / 2 ;
483 f o r (t u n t i l sequenceIn . s i z e) {
484 f o r (d un t i l dims) {
485 f l o a t va l = auxA [d] ∗ exp (auxB [d] ∗ (sequenceIn [t] − mu[d])

^2) + 0 . 0001 ;
486 stateProbsOut [t] [d] = va l ;
487 }
488 }
489 }
490 d i s c r e t eToDi s t (f l o a t ∗∗ s tateProbsIn , i n t T, f l o a t distMin , f l o a t

distMax , i n t distDims −> f l o a t ∗∗ distOut) {
491 f l o a t auxA [dims] = (tau [_0] / 6 . 2 8 3) ^0 . 5 ;
492 f l o a t auxB [dims] = −tau [_0] / 2 ;
493 f o r (t u n t i l T) {
494 f o r (d un t i l distDims) {
495 f l o a t x = distMin + d ∗ (distMax − distMin) / distDims ;
496 distOut [t] [d] = 0 ;

108 Appendix A. SMM Formulation

497 f o r (s u n t i l dims)
498 distOut [t] [d] += stateProbs In [t] [s] ∗ auxA [s] ∗ exp (auxB [s

] ∗ (x − mu[s]) ^2) + 0 . 0001 ;
499 }
500 }
501 }
502 }
503

504 normalMixtureSMM{
505

506 i n i t (
507 i n t ∗ dims , i n t ∗ stateCnt , i n t ∗ DT, i n t ∗ CDT, i n t ∗

t rans i t ionType , i n t ∗∗ inputMap , i n t ∗∗ ch i ld ren ,
508 i n t ∗ _inputDims , f l o a t ∗ muMin, f l o a t ∗ muMax, f l o a t ∗ sigmaMin ,

f l o a t ∗ sigmaMax
509) {
510 i n t inputDims [_inputDims . s i z e] = _inputDims [_0] ;
511 normalMixture NM[_inputDims . s i z e] (_inputDims [_0] , muMin [_0] , muMax[

_0] , sigmaMin [_0] , sigmaMax [_0]) ;
512 SMM M(dims , stateCnt , DT, CDT, trans i t ionType , inputMap , ch i l d r en) ;
513 }
514

515 fn (f l o a t ∗∗ x , i n t t0 , i n t T −> f l o a t logL) {
516 f l o a t obsDist [NM. s i z e] [x [_0] . s i z e] [inputDims [_0]] ;
517 i n t obsSeq [0] [0] ;
518 f o r (i u n t i l NM. s i z e)
519 NM[i] . seqToDiscrete (x [i] −> obsDist [i]) ;
520 M. fn (obsDist , obsSeq , t0 , T −> logL) ;
521 }
522 }

	Acknowledgments
	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Statement
	1.2 Objective
	1.3 Specific objectives
	1.4 Challenges and contributions
	1.5 Structure

	2 Background
	2.1 Markov Models
	2.1.1 Mathematical Formulation of the Markov Chain
	2.1.2 Mathematical Formulation of the Hidden Markov Model
	2.1.3 Predicting the future
	2.1.4 Simulating new data
	2.1.5 External data
	2.1.6 The Baum Welch algorithm

	2.2 Gradient Descent Optimization
	2.2.1 Artificial Neural Networks
	2.2.2 Automatic differentiation

	3 Extending Markov Models Through Gradient Descent
	3.1 Gradient Descent Formulation
	3.2 Proposed Models
	3.2.1 Co-Optimized Visual Markov Model
	3.2.2 Stacked Markov Model

	4 Experiments
	4.1 Effectiveness of Gradient Descent Optimization on Markov Models
	4.1.1 Setup
	4.1.2 Results

	4.2 Digit Classification
	4.2.1 Setup
	4.2.2 Results

	4.3 Stacked Markov Model
	4.3.1 Setup
	4.3.2 Results

	5 Conclusions and Future Work
	5.1 Future Work

	Bibliography
	A SMM Formulation

