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Resumo

A Web é um imenso repositório de informações. De acordo com a literatura aproxima-
damente 29% desse repositório contém conteúdo duplicado. A duplicação de conteúdo pode
ocorrer dentro de um mesmo sítio web (intrassítios) ou entre sítios diferentes (intersítios).
Esta dissertação trata do problema de detecção de réplicas intersítios. Neste trabalho, esse
problema é tratado como uma tarefa de classificação, onde exemplos positivos e negativos
de réplicas são utilizados no treinamento de um classificador binário.

O método proposto utiliza um algoritmo de aprendizado semissupervisionado baseado
em Maximização de Expectativas (do inglês Expectation-Maximization - EM). O algoritmo
EM é um método iterativo que permite a estimativa de parâmetros em modelos probabi-
lísticos com dados latentes ou não observados. No caso de detecção de réplicas há uma
facilidade de encontrar exemplos óbvios de réplicas e não réplicas. Nesse caso, o algoritmo
EM é utilizado para encontrar exemplos não óbvios e formar um conjunto de treino para o
algoritmo de classificação sem nenhum custo de uma rotulação manual.

É possível melhorar substancialmente a qualidade dos resultados obtidos com a com-
binação de classificadores através da exploração de um conceito da Economia, a Eficiência
de Pareto. Mais especificamente, essa técnica permite a escolha de resultados que se sobres-
saem em pelo menos um dos classificadores utilizados. O algoritmo proposto provê ganhos
significativos em relação ao estado-da-arte em detecção de réplicas de sítios.

A combinação do algoritmo proposto que elimina réplicas intersítios junto a algoritmos
que eliminam réplicas de conteúdo intrassítios leva a uma solução mais completa, possibili-
tando uma redução mais efetiva do número de URLs duplicadas na coleção.

Palavras-chave: Réplicas de Sítios, Aprendizado de Máquina, Maximização de Expectati-
vas, Pareto.
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Abstract

The Web contains a vast repository of information. According to the literature about
29% of this repository contains duplicate content. Duplication of content may occur within
a single web site (intra-site) or between different web sites (inter-site). This thesis addres-
ses the problem of detecting inter-site replicas. In this work, this problem is treated as a
classification task, where positive and negative replica examples are used to train a binary
classifier.

The proposed method uses a semi-supervised learning algorithm based on the
Expectation-Maximization (EM) approach. The EM algorithm is an iterative method that
allows estimation of parameters in probabilistic models with latent or unobserved data. In
replica detection, it is easy to find obvious replica and non-replica examples. The EM al-
gorithm is used to find non-obvious examples and form a training set for the classification
algorithm at no cost of manual labeling.

It is possible to substantially improve the quality of the results obtained with the com-
bination of classifiers by exploring a central concept of Economics, the Pareto efficiency.
More specifically, this technique allows to choose results that excel in at least one of the
classifiers used. The proposed algorithm provides significant gains compared to state-of-art
in detection of website replicas.

The combination of proposed algorithm that eliminates inter-site replicas with algo-
rithms that eliminate intra-sites replica content leads to a more complete solution allowing
an effective reduction in the number of duplicated URLs on the collection.

Keywords: Website replicas, Machine Learning, Expectation-Maximization, Pareto.
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Capítulo 1

Introdução

A Web é o maior repositório de informação já construído pelo homem. Esse sucesso
está bastante relacionado à facilidade com que pessoas, em todo o mundo, conseguem pu-
blicar conteúdo na Web. O controle sobre as publicações, que antes estava nas mãos das
editoras, graças ao surgimento da Web, hoje passa a integrar o cotidiano de pessoas comuns.
Qualquer pessoa pode criar documentos eletrônicos de naturezas distintas e, em muitos ca-
sos, de maneira anônima.

A facilidade de publicação torna a Web um ambiente bastante volátil e capaz de abrigar
uma quantidade incalculável de informação. Mas, com tanta informação disponível, certa-
mente é preciso ajuda para encontrar o que necessitamos. Nesse ponto, os sistemas conheci-
dos como máquinas de busca tratam a necessidade de se organizar e encontrar informações
em meio a esse enorme volume de dados. Uma máquina de busca é um sistema que recebe
uma consulta (que expressa uma necessidade de informação do usuário), pesquisa um índice
(que contém informações extraídas de documentos da internet) e apresenta ao usuário uma
lista ordenada de objetos (páginas, imagens, vídeos, entre outros) que atendem à necessidade
do usuário.

Um dos problemas enfrentados no desenvolvimento de máquinas de busca é a presença
de conteúdo replicado em suas coleções de dados. Estudos na literatura estimam que cerca
de 29% da informação na Web é replicada [Broder et al., 1997; Fetterly et al., 2003; Hen-
zinger, 2006]. No caso das máquinas de busca, a replicação de informação acarreta uma
série de problemas, entre eles o desperdício de tempo durante a coleta e processamento da
informação coletada, o desperdício de banda de Internet, de recursos em armazenamento
e processamento, entre outros. Assim sendo, vários estudos vêm sendo realizados com o
intuito de minimizar os problemas relacionados à replicação de dados na Web. Além de de-
senvolver técnicas que minimizem os problemas enfrentamos com a duplicação de conteúdo
durante a busca por informações de qualidade, uma das motivações para este trabalho é a

1



2 CAPÍTULO 1. INTRODUÇÃO

utilização das técnicas desenvolvidas em uma máquina de busca real, em construção dentro
do Instituto Nacional de Ciência e Tecnologia para a Web1 (InWeb).

A duplicação de conteúdo na Web pode ser dividida em duas categorias, sendo (i)
intrassítios, se ela ocorre dentro de um mesmo sítio web, ou (ii) intersítios, se acontece entre
sítios distintos. A forma de tratar esses dois problemas é diferente. Abordagens de detecção
de conteúdo duplicado intrassítios são baseadas em algoritmos que processam URLs de um
único sítio em busca de documentos duplicados internamente. Por outro lado, algoritmos
para detecção de duplicatas intersítios precisam processar URLs através de sítios distintos,
cujo objetivo é encontrar documentos compartilhados entre aqueles até então tratados como
sítios diferentes.

Embora a maioria dos trabalhos presentes na literatura considerem a deduplicação de
URLs intrassítios [Agarwal et al., 2009; Bar-Yossef et al., 2007, 2009; Dasgupta et al., 2008;
Koppula et al., 2010], uma solução completa deve também considerar o tratamento de con-
teúdo duplicado entre sítios distintos, uma vez que URLs duplicadas entre sítios diferentes
não seriam detectadas utilizando apenas a abordagem intrassítios. Dentre os poucos traba-
lhos existentes na literatura sobre a abordagem intersítios, podemos citar [Bharat & Broder,
1999; Bharat et al., 2000; da Costa Carvalho et al., 2007]. Esses trabalhos procuram detectar
sítios replicados em coleções web.

As principais causas da replicação de sítios web são:

• Prefixo padrão: sítios que possuem uma versão com prefixo WWW e outra sem o
prefixo WWW sendo indexadas.

• Balanceamento de carga: alguns sítios possuem vários servidores para atender à de-
manda de acessos. Nessa estratégia, um desses servidores, o mais próximo ao usuário
ou o menos sobrecarregado, é selecionado para responder a uma determinada requi-
sição HTTP. Algumas vezes cada um desses servidores responde sob uma URL dife-
rente. Esse comportamento faz com que os coletores web coletem e armazenem cópias
do mesmo sítio sob URLs diferentes.

• Franquia: um mesmo sítio é mantido por dois parceiros diferentes com duas URLs
diferentes, mas com conteúdo semelhante.

• Hospedagem: Sítios que passam por um processo de transferência para outra compa-
nhia de hospedagem.

• Objetivos maliciosos: Tentativa de aumentar as chances de um conteúdo ser listado
ou ter várias listagens em máquinas de busca através da criação de múltiplas copias
idênticas ou similares de seu sítio.

1http://www.inweb.org.br/
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O problema estudado neste trabalho é a detecção de réplicas de sítios web em coleções
de documentos de máquinas de busca. Quando um sítio é replicado, além dos problemas
relacionados ao desperdício de recursos computacionais, a informação à respeito da conec-
tividade desse sítio também é replicada. Isso interfere diretamente no funcionamento de
algoritmos de ranking como o PageRank [Brin & Page, 1998], afetando assim a qualidade
das respostas exibidas ao usuário. Outro problema causado pela replicação de sítios é a exi-
bição de respostas que do ponto de vista da máquina de busca são diferentes, mas que do
ponto de vista do usuário são iguais. Essa exibição de respostas muito similares pode abor-
recer o usuário por lhe passar a sensação de estar recebendo respostas repetidas. A remoção
redundância em rankings de respostas é uma tarefa importante para melhorar a qualidade da
busca por informações úteis [Bernstein & Zobel, 2005].

Detectar réplicas de sítios é uma tarefa importante, pois previne a duplicação de con-
teúdo intersítios em coleções de documentos de máquinas de busca. Ao reduzir a presença de
conteúdo duplicado são evitados os problemas citados anteriormente, a saber, o desperdício
de recursos, as anomalias nas funções de ranking e as repetições nas respostas exibidas ao
usuário. Além disso, uma coleta livre de réplicas geralmente favorece uma maior cobertura
de sítios visitados, demandando os mesmos recursos de uma coleta sem remoção de réplicas.

Vários fatores tornam a detecção de réplicas uma tarefa difícil. Uma ideia inicial para
resolver este problema seria, por exemplo, verificar se os sítios da base possuem o mesmo
conjunto de páginas. No entanto, realizar essa verificação na base de dados da máquina
de busca é inviável, devido à estratégia de cobertura em largura adotada por coletores web,
em que é priorizada a busca por novos sítios ao invés de sítios completos. Isso dificulta
o processo de se encontrar interseções entre os conjuntos de páginas de sítios replicados
nas bases das maquinas de busca. Outra tentativa poderia ser a utilização do endereço IP
como identificador único para cada sítio. Porém um mesmo sítio pode responder sob vários
endereços IPs diferentes assim como um mesmo IP pode estar relacionado a sítios distintos.

A detecção de pares de sítios replicados em bases de máquinas de busca também se
torna uma tarefa difícil devido à dimensionalidade do problema. Uma solução por força
bruta, por exemplo, requer a comparação entre todos os pares de sítios da base, o que leva a
uma complexidade quadrática. Portanto é preciso encontrar maneiras mais eficientes de se
resolver o problema.

1.1 Objetivos

Esta dissertação tem por objetivo principal propor e avaliar abordagens baseadas em
aprendizado de máquina para identificação de sítios web replicados em bases de máquinas
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de busca. Mais especificamente, modelamos o problema como uma tarefa de classificação.
Neste caso, um conjunto de treinamento é utilizado para produzir um classificador que re-
laciona características dos pares de sítios à probabilidade desse par ser ou não uma réplica.
Esse classificador é então utilizado para identificar automaticamente quais pares são repli-
cados em um conjunto de teste. Atualmente, os trabalhos presentes na literatura tratam a
seleção de sítios replicados por meio de heurísticas fixas que não envolvem um processo de
aprendizado.

Devido à alta complexidade do problema, este trabalho propõe a divisão da tarefa de
deduplicação em duas etapas: uma seleção inicial de pares candidatos à réplica, que reduz a
dimensionalidade do problema, e em seguida, uma validação dos pares candidatos extraídos
na primeira etapa, verificando quais dos pares selecionados são realmente réplicas através
das técnicas de classificação.

Para verificar a qualidade das técnicas de classificação desenvolvidas neste trabalho
é necessário obter uma coleção de dados que seja uma representação fiel da Web. Nessa
coleção, são necessários pares de sítios rotulados como positivos ou negativos, que permitam
o treinamento dos métodos de classificação propostos. Porém, o grande volume de dados
presente em uma coleção de sítios web torna inviável a rotulação manual dos pares de sítios
coletados. Portanto, este trabalho tem o objetivo de prover uma estratégia que, a partir de
exemplos óbvios e simples de se obter, possibilite a identificação de novos exemplos não
óbvios, construindo assim um conjunto de treino sem a necessidade de anotação humana.

1.2 Contribuições

A principal contribuição deste trabalho é propor um algoritmo para detecção de ré-
plicas de sítios web baseado em técnicas de aprendizado de máquina. Podemos citar como
contribuições específicas as seguintes:

• Algoritmo: O algoritmo de classificação proposto (Capítulo 3), que utiliza aprendizado
semissupervisionado a partir de exemplos óbvios de réplicas e provê ganhos significa-
tivos em relação ao estado-da-arte em detecção de réplicas de sítios [da Costa Carvalho
et al., 2007].

• Coleção de teste: A criação de uma coleção de teste que torna possível a comparação
de resultados da nossa abordagem com outras técnicas presentes na literatura e que
também pode contribuir para o avanço dessa área de pesquisa. Essa coleção é descrita
em detalhes na Seção 4.1

• Treinamento sem custo de anotação humana: Uma abordagem para aquisição automá-
tica de exemplos de treino a partir de um conjunto inicial de exemplos óbvios e sem
custo de aquisição, descrita na Seção 3.3.3.
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• Escolha ótima de parâmetros: Ao invés de utilizar parâmetros globais para todo con-
junto de treino, o algoritmo proposto é capaz de aprender modelos individuais para
cada instância e utiliza essa capacidade para estimar parâmetros que são ótimos local-
mente. Esse processo é detalhado na Seção 3.3.3.

• Combinação de classificadores: Mostramos como podemos melhorar substancial-
mente nossos resultados com a combinação de classificadores através da exploração
de um conceito central da Economia, a Eficiência de Pareto. Essa estratégia é descrita
na Seção 3.3.4.

• Combinação com técnicas de detecção de réplicas intrassítios: Avaliamos a combina-
ção do nosso algoritmo que elimina réplicas intersítios junto a algoritmos que elimi-
nam réplicas de conteúdo intrassítios. Especificamente, aplicar esses algoritmos em
conjunto nos leva a uma solução mais completa, possibilitando uma redução de até
21% em relação ao número de URLs duplicadas na coleção (Seção 4.5).

1.3 Organização da Dissertação

Esta dissertação está organizada da seguinte forma: no Capítulo 2, são introduzidos
os conceitos básicos referentes ao problema de detecção de réplicas de sítios web e funda-
mentais para o bom entendimento do restante da dissertação. No Capítulo 3, caracterizamos
o problema tratado neste trabalho e descrevemos a metodologia adotada para criação do
método proposto. O Capítulo 4 apresenta e discute o estudo realizado, bem como seus re-
sultados. Finalmente, no Capítulo 5, são apresentadas as conclusões e as possíveis direções
para trabalhos futuros.





Capítulo 2

Referencial Teórico e Trabalhos
Relacionados

O objetivo deste capítulo é apresentar conceitos básicos a serem utilizados no restante
do trabalho. Entre eles, a estrutura do conteúdo presente na Web, os componentes de uma
máquina de busca e os algoritmos de aprendizado de máquina estudados.

2.1 Conteúdo Web

2.1.1 A Estrutura da URL

Cada documento na Web é identificado por uma URL (Uniform Resource Locator).
Uma URL é única e identifica um único recurso. Ela é composta por três campos: método
de acesso, nome do servidor e caminho. Por exemplo, na URL da Figura 2.1, a sequen-
cia de caracteres http define o método de acesso, www.dcc.ufmg.br é o nome do servidor e
/pos/programa/historia.php é o caminho.

Figura 2.1: Os três campos da URL.

O nome do servidor identifica o servidor web no qual o documento está armazenado.
Um servidor web guarda uma coleção de documentos, os quais compartilham o mesmo nome
de servidor. O nome de servidor é composto por um nome de domínio acrescido ou não de
um prefixo. O nome de domínio identifica um conjunto de servidores enquanto o prefixo

7



8 CAPÍTULO 2. REFERENCIAL TEÓRICO E TRABALHOS RELACIONADOS

identifica um servidor específico sob esse domínio. No exemplo da Figura 2.1, o nome de
domínio é ufmg.br e o prefixo é www.dcc.

Cada documento é identificado pelo seu próprio caminho, que é único dentro do seu
servidor. O caminho reflete a estrutura de diretórios do servidor web. No exemplo da URL
na Figura 2.1, o documento historia.php está dentro do diretório programa que por sua vez
está dentro do diretório pos. O número de diretórios de um caminho é chamado de nível ou
profundidade do caminho e pode ser definido a partir do número de "/"(barras) da URL.

2.1.2 Definição de Sítios Web

O conceito de sítio web não está claramente definido na literatura. Os trabalhos no
tópico de detecção de réplicas de sítios web [Bharat & Broder, 1999; Bharat et al., 2000; Cho
et al., 2000; da Costa Carvalho et al., 2007] utilizam a definição de que um sítio é o conjunto
de páginas que compartilham um mesmo nome de servidor. Em [da Costa Carvalho et al.,
2007], por exemplo, essa definição é adotada sob a alegação de que ela é simples de usar
e representa um bom equilíbrio entre conjuntos de páginas de alta granularidade e de baixa
granularidade. Um conjunto de páginas de alta granularidade poderia ser obtido assumindo
que cada nome de domínio constitui um sítio diferente. Por outro lado, um conjunto de
páginas de baixa granularidade poderia ser obtido considerando que o sítio de uma página
web é dado pelo nome de servidor mais um pedaço de seu caminho.

Portanto, em concordância com a literatura de detecção de réplicas de sítio web, esta
dissertação adota a seguinte definição para descrever um sítio:

Um sítio web é o conjunto de páginas da Web que compartilham um mesmo nome
de servidor.

2.2 Máquinas de Busca

Uma máquina de busca é criada a partir da aplicação prática de técnicas de recuperação
de informação em grandes coleções de texto [Croft et al., 2009]. Apesar de as máquinas de
busca para a Web serem as mais conhecidas, elas não são as únicas. Esse tipo de sistema está
presente em muitas outras áreas e aplicações: computadores, smartphones, e-mails, aplica-
ções empresariais, entre outros. Quando se utiliza a funcionalidade pesquisar do Microsoft
Windows, por exemplo, se está utilizando na verdade uma máquina de busca que age sobre
a coleção de documentos existente no computador em questão. O foco do restante desta dis-
sertação são as máquinas de busca para Web, as quais serão referidas apenas como máquinas
de busca.
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Na prática, máquinas de busca comparam consultas com documentos e os organizam
em listas ordenadas que são apresentadas aos usuários em forma de ranking, porém há muito
mais por trás desse tipo de sistema do que apenas algoritmos de ranking. É preciso ob-
ter documentos úteis da Web, processá-los de forma eficiente, montar estruturas de dados
otimizadas para vários tipos de consultas, processar consultas de forma quase instantânea
e apresentar os resultados de forma clara e atraente ao usuário, entre outros. Para realizar
todas essas tarefas é necessário que uma série de componentes trabalhem em conjunto. Em
seguida são apresentados os três componentes principais de uma máquina de busca.

2.2.1 Coletor Web

Mesmo que seja utilizada a mais nova e sofisticada tecnologia aplicada a uma máquina
de busca, a informação de boa qualidade contida em seus documentos é que a torna útil
[Croft et al., 2009]. Por isso, o coletor web é um dos componentes mais importantes de uma
máquina de busca.

O coletor web é o componente responsável por encontrar e coletar páginas web auto-
maticamente. Também é dele a tarefa de responder a questões como "quando e o que cole-

tar?". Porém, é difícil responder a essas questões. Certamente, a melhor resposta para "o

que" seria "tudo o que for útil para alguém", e a melhor resposta para "quando" seria "sem-

pre que algo novo aparecer ou for atualizado". Contudo, fazer com que um programa de
computador saiba o que é útil e saiba quando um documento é criado ou atualizado na Web
é uma tarefa difícil.

Com relação ao seu funcionamento, os coletores trabalham em ciclos compostos por
três etapas:

i. Fetching: o sistema que recupera os documentos na Internet, chamado de fetcher, recebe
uma lista de URLs a serem coletadas, dispara várias requisições HTTP em paralelo e
armazena os documentos recuperados em um repositório de dados. No primeiro ciclo, o
conjunto de URLs recebido é montado externamente ao coletor e é chamado de semente.

ii. Descobrimento de novas URLs: os documentos coletados são processados a fim de
identificar e extrair seus apontadores, entre outras informações. Esses apontadores farão
parte do conjunto de URLs conhecidas pela máquina de busca.

iii. Escalonamento: as informações extraídas na etapa anterior são usadas para escolher,
dentre o conjunto de URLs conhecidas pela máquina de busca, quais URLs devem ser
enviadas ao fetcher para serem coletadas. Isso é feito por um módulo chamado escalo-
nador. Por fim, volta-se à etapa (i) e o ciclo continua.
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O coletor deve ser seguro e robusto o bastante para lidar com os problemas encontrados
na Web, pois ele é porta de entrada para tudo que vem dela. Entre esses problemas, é possível
citar: URLs mal formadas, documentos com estrutura inválida, informação replicada, sítios
fraudulentos, vírus, entre outros. O sistema para detecção de réplicas de sítios web deve
trabalhar próximo desse módulo, a fim de evitar que réplicas de um mesmo sítio continuem
sendo coletadas.

2.2.2 Indexador

Uma vez que diversos documentos foram coletados, é preciso capturar sua informação
e transformá-la em um formato que o computador possa interpretar. Além disso, é neces-
sário que seja possível pesquisar, quase que instantaneamente, o conteúdo desses documen-
tos. Para isso, as máquinas de busca utilizam estruturas de dados conhecidas como índices.
Índices são muito comuns em nossas vidas: estão presentes no final dos livros, nas listas
telefônicas, cardápios, bibliotecas e em muitos outros lugares.

Geralmente, os índices são representados em máquinas de busca como listas invertidas.
Listas invertidas são um tipo de lista de tuplas ordenadas do tipo <chave-valor>, onde as
chaves são termos (ou grupos deles) do vocabulário da coleção e os valores são listas de
referências para documentos (e posições) onde os termos ocorrem na coleção. O responsável
pela construção dessas listas é o indexador. Ele realiza a análise sintática dos documentos,
extrai seus termos e atualiza as estruturas de dados pesquisadas durante o processamento das
consultas.

Um dos principais desafios na construção do índice é o seu grande tamanho. Em cole-
ções enormes como a Web, o elevado número de termos pode fazer com que o processamento
do índice se torne muito difícil. Técnicas de redução do tamanho do índice, tais como com-
pressão [Ziviani et al., 2000], podem ser aplicadas para facilitar o processamento de tais
coleções. Outra maneira é transformar o texto a fim de reduzir o número de termos distintos
no vocabulário final. As transformações mais usadas são: transformação de maiúsculas em
minúsculas, stemming e remoção de stop words. Um estudo aprofundado sobre criação e
compressão de índices pode ser encontrado em [Witten et al., 1999].

2.2.3 Processador de Consultas

Uma vez que os documentos já foram coletados e indexados, a máquina de busca se
torna capaz de responder às consultas dos usuários. Assim, quando o usuário necessita de
alguma informação na Web, ele submete à máquina de busca uma consulta em forma de
texto, que representa a informação da qual ele necessita. Essa consulta é então modificada
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por meio de transformações semelhantes às aplicadas aos textos dos documentos no pro-
cesso de indexação. Por fim, os documentos recuperados são ordenados de acordo com uma
estimativa que tenta predizer sua relevância em relação à consulta submetida pelo usuário.

Um problema encontrado durante o processamento de consultas é o de prever a rele-
vância dos documentos. Isso porque quem decide o que é ou não relevante é o usuário e
essa decisão varia de usuário para usuário. Por exemplo, alguém pode formular a consulta
"mp3" procurando por informações sobre onde baixar conteúdo em mp3. Outro usuário,
porém, pode formular a mesma consulta procurando por informações técnicas sobre tipos de
compressão de áudio, ou ainda pode haver um terceiro usuário que estaria interessado em
comprar dispositivos que permitem ouvir musicas em mp3.

Outro problema que dificulta bastante o trabalho da máquina de busca é o tamanho da
consulta que, em geral, gira em torno de apenas duas ou três palavras [Croft et al., 2009].
Dificilmente uma pessoa diria simplesmente a palavra "correr" a outra, se quisesse uma
resposta sobre a regência verbal desse verbo. No entanto, essa é uma situação muito comum
em que as máquinas de busca enfrentam diariamente: os usuários, geralmente, não estão
dispostos a digitar grandes frases para explicar o que procuram.

Existem vários modelos de recuperação de informação, os quais máquinas de busca
podem utilizar para tentar predizer a relevância dos documentos, escolhendo, por exemplo,
aquele mais adequado à classe de consultas em questão. Podemos citar como os mais im-
portantes, o modelo Booleano [Frakes & Baeza-Yates, 1992] (um dos primeiros), o modelo
vetorial [Salton & Lesk, 1968; Salton & Yang, 1973] (considerado o mais popular) e o mo-
delo probabilístico [Stephen E. Robertson, 1976]. O algoritmo BM25 [Robertson & Walker,
1994], da família dos probabilísticos, merece ser ressaltado, por haver um consenso de que
ele supera o modelo vetorial em coleções de documentos gerais. O livro publicado por
Baeza-Yates & Ribeiro-Neto [2011] é uma boa leitura para os interessados em saber mais
sobre os modelos de recuperação de informação.

2.3 Aprendizado de Máquina

Mitchell [1997] define aprendizado de máquina como o estudo de algoritmos com-
putacionais capazes de melhorar automaticamente a execução de alguma tarefa através da
experiência. Algoritmos de aprendizado de máquina se baseiam principalmente em proba-
bilidade e estatística para aprender padrões complexos a partir de uma entrada de dados e
usá-los na tomada "inteligente" de decisões sobre algum assunto. Segundo Alpaydin [2004],
técnicas de aprendizado de máquina são utilizadas para realização de inferências sobre dados
futuros, mesmo sem saber a priori qual processo gerou os dados de entrada. Pode ser que
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não seja possível identificar completamente o processo que gerou os dados, mas é possível
construir uma aproximação boa e útil. Suas áreas de aplicação são abundantes: classificação
de clientes para aplicações de crédito utilizada pelos bancos, análise de sentimento, desambi-
guação de entidades, recomendação de rótulos (tags), ordenação de resultados de máquinas
de busca, diagnóstico de câncer de pulmão, entre outras.

Este trabalho lida com aprendizado de máquina supervisionado aplicado à classificação
de dados. De acordo com Grünwald & Langford [2007], um problema de aprendizado de
máquina é definido em um domínio de entrada (ou característica) X , um domínio de saída
(ou rótulo da classe) Y e uma distribuição de probabilidade P sobre X × Y , tal que um
classificador é uma função FS : X → Y .

Este trabalho parte da hipótese de que algoritmos de aprendizado de máquina podem
melhorar os resultados do estado-da-arte em detecção de réplicas de sítios web, a partir
de uma seleção e combinação automática de características que melhor descrevem pares
replicados e consequentemente maximizem a efetividade na tarefa de detecção de réplicas.

2.3.1 Classificação Associativa Sob Demanda (LAC)

O classificador associativo sob demanda (Lazy Associative Classifier - LAC) [Veloso
& Meira Jr., 2011] é um tipo de classificador baseado em regras de associação que, como o
próprio nome já diz, constrói seu modelo de classificação utilizando uma estratégia de extra-
ção sob demanda. Outros tipos de classificadores associativos extraem um mesmo conjunto
global de regras de associação, a partir dos dados de treinamento, para ser aplicado a todas
as instâncias de teste.

Os classificadores baseados na estratégia LAC induzem um conjunto específico de
regras para cada instância de teste. Esse processo geralmente reduz consideravelmente o
número de regras geradas. A ideia por trás da classificação associativa sob demanda é a de
que o problema pode ser decomposto em subproblemas mais simples, os quais podem ser
resolvidos de forma independente. A decomposição do problema é alcançada encarando a
classificação de cada instância xi do conjunto de teste T como um problema independente.
Assim, ao invés de gerar um único modelo de classificação f a ser utilizado para todas as
instâncias xi, o classificador gera um modelo específico fxi para cada xi. Tal modelo ma-
peia xi em uma classe ci predita. A decomposição se dá por meio de projeções do conjunto
de treinamento R sobre uma instância xi ∈ T , denotadas por Rxi . Mais especificamente,
sempre que uma entrada xi ∈ T é processada, o classificador usa xi como um filtro para
remover de R atributos e exemplos que não são úteis para gerar o modelo de classificação
para xi. Uma vez que Rxi contém apenas valores presentes em xi, todas as regras de asso-
ciação geradas a partir de Rxi devem se encaixar em xi. Dessa forma, apenas regras do tipo
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X → ci, com X ⊆ xi (xi contém todos os valores de X ), poderão ser extraídas.
Outros tipos de classificadores associativos extraem suas regras a partir de grandes

conjuntos de treinamento. Enquanto esse processo gera grandes conjuntos de regras globais,
regras para instâncias de teste específicas podem não ser extraídas. O classificador LAC, por
outro lado, foca sua extração de regras em um conjunto de treinamento muito menor, que é
induzido pelos valores da própria instância de teste.

As características utilizadas neste trabalho foram discretizadas por uma metodologia
não supervisionada [Dougherty et al., 1995]. Os valores contínuos de cada característica fo-
ram divididos em intervalos discretos. A identificação nominal de cada um desses intervalos
é utilizada como valor das características, substituindo assim os valores contínuos originais.

2.3.2 Maximização de Expectativas (EM)

O método de Maximização de Expectativas ("Expectation-Maximization" - EM) é um
método iterativo que permite a estimação de parâmetros em modelos probabilísticos com
dados incompletos (dados latentes ou não observados). Em outras palavras, o EM, proposto
por Dempster et al. [1977], é utilizado para estimar parâmetros de modelos probabilísticos
em que existem variáveis não observadas.

O método envolve dois passos que são repetidos até que haja convergência. Os dois
passos são:

• PassoE: estima-se os dados que faltam para completar a amostra de dados incompleta.
Essa estimativa é feita usando os valores das variáveis que foram observadas.

• Passo M : com as novas frequências esperadas obtidas anteriormente, aplica-se um
algoritmo com dados completos. Sendo assim, esses novos parâmetros substituem os
parâmetros anteriores.

Neste trabalho, a utilização de um modelo baseado em EM é justificada pela hipótese
de que vale a pena utilizar exemplos não rotulados no processo de construção do modelo
de treino do algoritmo, uma vez que tais dados não rotulados são abundantes e obtidos com
pouco esforço. O Capítulo 3 descreve as abordagens utilizadas neste trabalho e que foram
baseadas no algoritmo EM.

2.3.3 Máquinas de Vetores de Suporte (SVM)

Máquinas de Vetores de Suporte (Support Vector Machines - SVM) [Boser et al., 1992]
consistem de métodos de espaço vetorial para problemas de classificação binária, isto é, onde
existem apenas duas classes possíveis. A idéia por trás do SVM é encontrar um hiperplano
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de decisão que melhor separe os elementos das duas classes. Apesar de ter sido concebido
para resolver problemas binários (duas classes) onde as classes são separáveis por um hiper-
plano, o SVM pode ser estendido para problemas multi-classes e/ou de classes não separáveis
linearmente.

O conceito de melhor separação está relacionado à margem entre duas classes. A Fi-
gura 2.2 ilustra a definição de dois hiperplanos de decisão diferentes para o mesmo problema.
As linhas mais escuras representam os hiperplanos de decisão. As linhas mais claras, para-
lelas aos hiperplanos de decisão, são chamadas hiperplanos delimitadores e representam os
limites extremos de cada classe. A distância entre os hiperplanos delimitadores é chamada
de margem e representa o quanto o hiperplano de decisão pode ser movido sem causar erros.

X

Y

X

Y

Figura 2.2: Exemplos de hiperplanos diferentes aplicados ao mesmo problema

O gráfico da esquerda apresenta um hiperplano que produz uma margem menor que a
margem gerada pelo hiperplano do gráfico à direita. Nesse caso, o hiperplano à direita é o que
maximiza a margem. A ideia é que quanto maior for a margem, maior será a generalização
do algoritmo ao classificar instâncias novas. Dessa forma, o SVM resolve o problema de
otimização que busca o hiperplano de decisão que maximiza a margem entre as instâncias
das classes na coleção de treino.

Para resolver problemas não separáveis linearmente, podem ser utilizados hiperplanos
que permitem algum erro de treino [Cortes & Vapnik, 1995] ou modificações no algoritmo
que mapeiam as entradas para um espaço de dimensionalidade mais alta [Aizerman et al.,
1964], onde a instâncias do problema podem se tornar linearmente separáveis.

Uma propriedade importante do algoritmo SVM é a de que o hiperplano de decisão
é determinado apenas por instâncias de classes que se sobrepõem aos hiperplanos delimi-
tadores. Essas instâncias são chamadas de vetores de suporte. Mesmo que todos os outros
exemplos de treino sejam descartados, o mesmo hiperplano de decisão será obtido, gerando
assim o mesmo modelo de classificação.
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2.4 Eficiência de Pareto

O conceito de Eficiência de Pareto teve início na Economia e foi desenvolvido pelo
italiano Vilfredo Pareto. Sua definição pode ser dada por: se não existe maneira de melhorar
a situação de uma pessoa sem piorar a situação de outra, a solução encontrada satisfaz à
Eficiência de Pareto. O subconjunto de soluções que satisfazem à condição de Eficiência de
Pareto formam a Fronteira de Pareto [Börzsönyi et al., 2001]. Formalmente, a Fronteira de
Pareto consiste em um subconjunto de pontos tal que nenhum desses pontos é dominado por
qualquer outro. Um ponto em Rd consiste de um vetor de números reais de tamanho d. Um
ponto domina o outro se ele é melhor ou igual em todas as dimensões e é melhor em pelo
menos uma dimensão.

Y

X

Figura 2.3: Exemplo de Fronteira de Pareto em duas dimensões

A Eficiência de Pareto tem sido utilizada em outras áreas além da Economia, como, por
exemplo, otimização (Ribeiro et al. [2014]). Na área de otimização, a Eficiência de Pareto é
utilizada quando se deseja maximizar uma função multiobjetivo, sendo a Fronteira de Pareto
o conjunto de soluções ótimas. Neste trabalho essa técnica será utilizada na fase de detecção
de pares replicados com o objetivo de agregar resultados de diferentes modelos de predição.

2.5 Detecção de Réplicas

A grande quantidade de dados replicados na Web tem motivado pesquisas com o ob-
jetivo de caracterizar e entender como tratar o problema. Nesse sentido, Ye et al. [2008]
realizaram um trabalho com o objetivo de detectar duplicatas de documentos a partir da
comparação do conteúdo desses documentos. Para isso, os autores utilizaram uma técnica
conhecida como shingles. Essa técnica consiste em medir qual é a proporção de conteúdo
textual igual entre os documentos comparados.
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Embora essa técnica seja bastante eficiente, o uso de conteúdo textual para detectar
réplicas em tempo de coleta tem custo bastante elevado. Pensando nisso, trabalhos ante-
riores na literatura buscaram minimizar o uso de conteúdo das páginas durante a fase de
deduplicação.

Em [Bharat & Broder, 1999] os autores propuseram um método automático para a de-
tecção de réplicas de sítios em coleções de máquinas de busca composto por duas fases, em
que apenas na segunda etapa é utilizado o conteúdo textual das páginas. Primeiramente, pa-
res de sítios candidatos à réplica são selecionados com base em características obtidas a partir
das URLs das páginas. Em seguida, os pares candidatos são verificados em busca de réplicas.
Esse teste consiste em coletar amostras de páginas de cada sítio para verificar a ocorrência
de páginas em comum. Eles reportam uma precisão de apenas 80%, o que significa que um
grande número de sítios seriam incorretamente rotulados como réplicas e removidos da base
de dados da máquina de busca. Além disso, coletar diversas páginas adicionais de sítios para
se verificar casos de réplica é um processo de alto custo, principalmente quando o número
de candidatos é muito grande.

Uma alternativa para eliminar conteúdo duplicado é conhecida como detecção de pági-
nas DUST (Different URLs with Similar Text). Nesse caso, o problema é formulado como a
tarefa de detectar réplicas de conteúdo a partir apenas da análise de URLs. O primeiro algo-
ritmo a adotar essa estratégia foi o DustBuster [Bar-Yossef et al., 2009], que detecta DUST
através da criação de regras capazes de transformar determinada URL em uma outra URL
que provavelmente tem o mesmo conteúdo. As regras consistem em substituições de partes
do texto das URLs. Essas regras são aprendidas através de logs de coleta ou de logs da Web.
O trabalho de Dasgupta et al. [2008] apresenta outra formalização para reescrita de URLs
que é capaz de encontrar todas regras previamente encontradas pelo DustBuster, e também
padrões mais gerais, como a presença de partes irrelevantes da URL e parâmetros de id de
sessões. Experimentos mostraram uma redução de até 60% no número de URLs duplicadas.

Os autores em [Agarwal et al., 2009] estenderam o trabalho em Dasgupta et al. [2008]
para produzir uma solução mais escalável. Eles propuseram um algoritmo para derivação de
regras através de amostras de URLs, portanto reduzindo o custo de se inferir tais regras. Mais
adiante foi utilizado um algoritmo de árvore de decisão para aprender um conjunto pequeno
de regras de alta precisão, diminuindo assim o número total de regras a serem aplicadas na
coleta. A avaliação do algoritmo foi feita em um conjunto de aproximadamente 8 milhões
de URLs e o método atingiu uma taxa de redução de duplicatas de 42% utilizando as top 9%
regras mais precisas (cujo nível de precisão é acima de 80%). Em [Koppula et al., 2010] os
autores implementaram um framework distribuído e estenderam as representações de uma
URL e das regras para incluir novos padrões. Eles avaliaram o método proposto com 3
bilhões de URLs e atingiram uma redução maior em conteúdo DUST utilizando apenas 56%
das regras.
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Em [Rodrigues et al., 2013], os autores apresentaram um novo método inspirado em
algoritmos de alinhamentos multi-sequenciais para derivar regras usadas na eliminação de
DUST. Assim como em [Agarwal et al., 2009], uma amostragem de URLs é agrupada atra-
vés da comparação de seus conteúdos. Esses clusters de URLs com conteúdo similar são
denominados dup-clusters. Primeiramente todas URLs são alinhadas nos dup-clusters ob-
tendo um padrão em comum para cada dupcluster. As regras são então derivadas desses
padrões levando a uma redução em número de URLs duplicadas de 54%.

Em outra direção relacionada a detecção de conteúdo duplicado levando em consi-
deração a prevenção de desperdícios de recursos em tempo de coleta, Bharat et al. [2000]
apresentam uma família de métodos para detecção de réplicas baseados em evidências deri-
vadas de estruturas dos sítios web, tais como URLs, endereços IP e informações sobre links.

Em [da Costa Carvalho et al., 2007], os autores se basearam num dos métodos apresen-
tados por Bharat et al. [2000] para propor um novo método capaz de utilizar eficientemente
informações acerca do conteúdo das páginas. Esse método é chamado de NormPaths. O
NormPaths usa a norma da página como uma assinatura para seu conteúdo. Os autores ar-
gumentam que o uso da norma não afeta o desempenho do método, pois essa informação já
se encontra disponível nas bases das máquinas de busca como um subproduto do processo
de indexação de documentos. Devido ao uso de informações sobre o conteúdo dos sítios,
o método proposto é capaz de alcançar níveis de precisão maiores do que os métodos ante-
riores sem, contudo, consumir recursos computacionais adicionais. Segundo os autores, o
NormPaths conseguiu uma melhoria de 47% em precisão quando comparado com método
proposto anteriormente. Por se tratar do estado-da-arte em detecção de réplicas de sítios
web, o NormPaths será usado como baseline neste trabalho e é descrito em mais detalhes na
Seção 4.2.

Os autores em [Cho et al., 2000] lidaram com um problema levemente diferente, uma
vez que a tarefa é a detecção de coleções web duplicadas ao invés de sítios duplicados.
Note que detectar coleções duplicadas inclui a detecção de sítios ou fragmentos de sítios
replicados. A abordagem proposta primeiramente agrupa páginas com conteúdo similar e
então expande esses clusters de modo que eles representem coleções inteiras.

Assim como [Bharat et al., 2000] e [da Costa Carvalho et al., 2007], este trabalho trata
o problema de detecção de sítios duplicados em tempo de coleta. A maior diferença entre este
e os trabalhos anteriores é o uso de classificadores na combinação de várias características.
Utilizamos também, uma nova abordagem baseada em aprendizado de máquina com o intuito
de treinar o algoritmo de classificação sem a necessidade de esforço manual na criação dos
modelos de treino.





Capítulo 3

O Algoritmo Proposto para Detecção
de Réplicas

Este capítulo apresenta um novo algoritmo para detectar pares de sítios web possivel-
mente replicados em bases de documentos de máquinas de busca. O algoritmo proposto faz
uso de técnicas de aprendizado de máquina para combinar várias características obtidas da
base de documentos, com o objetivo de maximizar a efetividade na tarefa de detecção de
réplicas.

3.1 Descrição do Algoritmo

A tarefa de detectar sítios replicados em base de dados de uma máquina de busca pode-
ria ser executada por meio de um algoritmo que utiliza força bruta para comparação de todos
os pares de sítios na base. Para uma base contendo s sítios, se cada sítio for comparado com
todos os demais, o algoritmo terá uma complexidade O(s2). O tamanho do problema a ser
resolvido torna proibitivo o uso de algoritmos de complexidade quadrática. Por exemplo,
para uma coleção de aproximadamente 600 mil sítios como a que será utilizada neste traba-
lho, deveriam ser analisados por volta de 2 × 1011 pares, o que inviabiliza uma solução por
força bruta.

O algoritmo proposto utiliza uma solução simples para reduzir o número de pares
possíveis, descartando aqueles pares que obviamente não podem ser candidatos a serem
réplicas. Em seguida, o conjunto menor de candidatos selecionados é então refinado através
de técnicas de aprendizado de máquina em busca dos pares propriamente replicados.

A Figura 3.1 apresenta uma descrição geral do algoritmo proposto para detecção de
réplicas. O algoritmo é dividido em duas fases:
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1. Na fase 1, características mais gerais são utilizadas como filtro inicial para selecionar
um conjunto de pares de sítios que têm algum potencial para serem réplicas, chamados
de candidatos.

2. Na fase 2, características mais específicas são obtidas para o conjunto de pares gerados
na fase anterior e submetidas a um algoritmo de aprendizado de máquina que retorna
uma lista de pares de sítios e suas respectivas probabilidades de serem réplicas. Para
isso, um conjunto de treino formado por pares de sítios previamente rotulados como
réplicas ou não réplicas é utilizado por um método que avalia cada par candidato e
identifica os pares replicados.

Base de Sítios 
Coletados

Filtro 
Inicial Candidatos Avaliação

Conjunto 
de Treino

Ranking 
de 

Réplicas

Fase 1 Fase 2

Figura 3.1: Descrição geral do algoritmo proposto

O Programa 1 apresenta um refinamento do algoritmo proposto.

Programa 1 Detecção de réplicas de sítios web.
Entrada: base de dados B de uma máquina de busca.
Saída: conjunto C de pares de sítios ordenados pela probabilidade de serem replicados.
→ 1ª Fase: Seleção de pares candidatos a serem réplicas
1: para todo par de sítios (s1, s2) em B faça
2: extraia o conjunto básico de características Fb de s1 e s2
3: se s1 e s2 possuem alguma das características Fb em comum então
4: insira (s1, s2) no conjunto C de candidatos a réplica
→ 2ª Fase: Avaliação do conjunto de pares candidatos a serem réplicas
5: para todo par de sítios (s1, s2) em C faça
6: extraia o conjunto de características para refinamento Fr de s1 e s2
7: com base em Fr, obtenha, do algoritmo de aprendizado de máquina, a probabilidade de s1 e
s2 serem réplicas

8: Ordene os pares em C pela pontuação dada pelo algoritmo de aprendizado de máquina de acordo
com a chance de o par ser replicado

Na fase de seleção de pares candidatos a serem réplicas, um conjunto básico de ca-
racterísticas é utilizado como uma espécie de filtro sobre toda a base da máquina de busca.
Esse conjunto de características possui duas propriedades que tornam adequada a filtragem
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inicial sobre uma grande quantidade de pares: garante uma alta revocação e possui baixo
custo de processamento. Durante a fase de seleção de candidatos a réplica, todo par de sítios
que compartilhe alguma característica do conjunto básico é adicionado a um conjunto C de
candidatos a réplica.

Na fase de avaliação do conjunto de pares candidatos a serem réplicas, o algoritmo de
classificação, baseado em um novo conjunto de características, determina uma probabilidade
de cada par do conjunto C ser ou não uma réplica.

Uma etapa importante que precede a utilização dos algoritmos é a modelagem dos
dados, onde são avaliadas e selecionadas as características dos sítios da Web que serão uti-
lizadas na identificação de pares de sítios duplicados. Portanto a próxima seção apresenta a
modelagem dos dados e em seguida é descrito o refinamento das fases do algoritmo proposto.

3.2 Modelagem dos Dados

Esta seção trada a descrição e obtenção das características utilizadas pelo algoritmo
proposto. O fato de o algoritmo fazer uso de técnicas de aprendizado de máquina possibilita
um melhor aproveitamento da combinação das capacidades discriminativas das característi-
cas, baseando-se em propriedades aprendidas do próprio problema. A seguir são apresenta-
das as características utilizadas como evidência de replicação neste trabalho.

As duas primeiras características apresentadas, Caminho da URL e Assinatura do Con-

teúdo, correspondem ao conjunto de características mais gerais, ou conjunto básico, utiliza-
das em um filtro inicial que corresponde à primeira fase do algoritmo, conforme descrito na
Seção 3.3.

a) Caminho da URL: Essa característica foi proposta por Bharat et al. [2000]. Um par de
sítios A e B são considerados candidatos a réplica se A e B têm pelo menos um caminho
em comum.

b) Assinatura do Conteúdo: Especificamente é utilizada uma função hash para obter a assi-
natura para o conteúdo das páginas dos sítios armazenadas. Na máquina de busca utili-
zada para obter a coleção usada nos experimentos, a assinatura de cada página é gerada
durante a fase de coleta. Um par de sítios A e B são candidatos a réplica se A e B possuem
pelo menos uma página com a mesma assinatura de conteúdo.

As características seguintes formam o conjunto de refinamento, que corresponde às
características mais específicas utilizadas na segunda fase do algoritmo, conforme discutido
na Seção 3.3.
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i) Distância de Edição (ndist): Essa característica proposta neste trabalho consiste em
utilizar a distancia de edição [Levenshtein, 1966] entre duas URLs como atributo. Dado
um par de sítios A e B, e os nomes de servidor correspondentes uA e uB, a distância de
edição é dada pelo número de operações de remoção, inserção e substituição necessárias
para transformar uA em uB.

ii) Correspondência de Nomes de Servidor (nmatch): Essa característica foi proposta por
Bharat et al. [2000]. Os segmentos de um nome de servidor são tratados como um vetor
de termos. O peso de um termo t é dado pela Equação 3.1, onde len(t) é o número de
caracteres de t e df(t) é o número de nomes de servidor que possuem o termo t:

peso(t) = log(len(t))
1 + log(df(t)) · (3.1)

Sejam dois sítios A e B e seus respectivos vetores de termos a e b, a correspondência
entre seus nomes de servidor é dada pelo cosseno do ângulo entre a e b, como descrito
na Equação 3.2:

cosseno(~a,~b) = ~a •~b
|~a| × |~b|

· (3.2)

iii) Quatro Octetos (ip4):

O argumento para essa característica proposta em [Bharat et al., 2000] é que se os nomes
de servidor de dois sítios são traduzidos para o mesmo endereço IP é provável que esses
sítios sejam réplicas presentes no mesmo servidor. Porém, quando muitos nomes de
servidor são traduzidos para o mesmo endereço IP pode ser um caso de hospedagem
virtual, em que vários sítios diferentes são armazenados em um mesmo servidor web.
Essas hospedagens são úteis quando um indivíduo não quer ou não pode manter um
servidor web próprio.

Para calcular essa característica baseada nos quatro octetos do endereço IP é necessário
o agrupamento de todos sítios da base da máquina de busca com mesmo endereço IP.
Sejam dois sítios A e B, o valor do atributo é dado pela Equação 3.3, onde G é um agru-
pamento qualquer de sítios. A ideia é que quanto maior o grupo, menor a possibilidade
de os sítios do grupo serem réplicas:

ip(A,B) =


1
|G|−1 se A ∈ G e B ∈ G

0 caso contrário.
(3.3)
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iv) Três Octetos (ip3): O mesmo que a anterior, porém utilizando apenas os primeiros 3
octetos do endereço IP.

v) Correspondência entre Caminhos Completos (fullpath): Esse atributo, proposto por
[Bharat et al., 2000], representa os sítios como documentos e seus caminhos como ter-
mos dos documentos. Nesse caso o caminho inteiro é usado como um termo. Cada sítio
(ou documento) é representado por um vetor de termos (ou caminhos). O peso de um
termo t é dado pela Equação 3.4, onde df(t) é o número de sítios que contêm t e maxdf
é o maior df(t) entre todos termos da coleção. Todos termos com frequência acima de
100 são descartados, assim maxdf é efetivamente 100:

peso(t) = 1 + log
(
maxdf

df(t)

)
· (3.4)

Sejam dois sítios A e B e seus respectivos vetores de termos ~a e ~b, o valor da caracte-
rística entre A e B é dado pelo cosseno do ângulo entre seus vetores de termos, como
descrito na Equação 3.2. As informações df(t) e maxdf devem ser obtidas antes que a
característica possa ser utilizada.

3.3 Refinamento das Fases do Algoritmo

A partir da modelagem dos dados e do conhecimento das características utilizadas no
algoritmo proposto, podemos passar ao refinamento de suas duas fases.

3.3.1 Seleção de Pares Candidatos

A maioria dos pares de sítios nas bases de máquinas de busca é formada por sítios
que não são réplicas. O objetivo da fase de seleção de pares de candidatos é remover do
conjunto inicial pares de sítios que não tem nenhum potencial para serem réplicas. Isso
é feito por meio da aplicação de um filtro baseado no conjunto básico de características,
que é composto pela característica caminho da URL (Seção 3.2 Item a) e assinatura do

conteúdo (Seção 3.2 Item b).

Além de descartar um grande volume de pares de sítios que obviamente não são candi-
datos a réplicas, a metodologia desenvolvida para seleção de pares candidatos a réplicas tem
custo linear em função do número de páginas na base da máquina de busca.

O Programa 2 mostra o refinamento do algoritmo em questão.

A complexidade linear é alcançada ao se fazer apenas uma varredura na base de en-
trada, criando listas de sítios relacionados, isto é, que possuam ao menos uma página com
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Programa 2 Seleção de pares de sítios candidatos a réplica - 1º refinamento.
Entrada: base de dados B de uma máquina de busca.
Saída: conjunto C de pares de sítios candidatos a réplica.

1: para todo documento di em B faça
2: extraia as características básicas Fb de di

3: adicione o sítio de di às listas Lj de sítios relacionados correspondentes as características Fb

4: para todo Lista Lj faça
5: monte todos os pares de sítios possíveis e armazene no conjunto C de candidatos a réplica

determinada característica do conjunto básico em comum. Para cada página da base, o pri-
meiro passo insere seu sítio nas listas correspondentes a suas características. Para cada lista
de sítios relacionados, o segundo passo monta todos os pares possíveis e, com isso, obtém o
conjunto dos pares de sítios candidatos a réplica.

Um ponto importante dessa fase é a estrutura de dados usada para armazenar os sítios
relacionados, ilustrada na Figura 3.2. A estrutura é composta por uma tabela de valores para
uma determinada característica. Para cada entrada da tabela existe uma lista de sítios rela-
cionados que compartilham alguma página com aquele valor para aquela característica. É
importante ressaltar que é mantida uma estrutura como a da Figura 3.2 para cada caracte-
rística do conjunto básico. Vale ressaltar que a varredura da base é orientada a documentos
(páginas web) de modo linear e não a pares de sítios.

Figura 3.2: Estrutura de dados da Tabela de sítios Relacionados.

O conjunto básico de características utilizado possui duas propriedades que tornam
adequada a filtragem inicial sobre uma grande quantidade de sítios: garante uma alta revo-
cação e possui baixo custo de processamento. Durante a fase de seleção de candidatos a
réplica, todo par de sítios que compartilhe alguma característica do conjunto básico em co-
mum (pelo menos um caminho de URL ou um documento igual) é adicionado ao conjunto
de candidatos a réplica.
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As chances de se encontrar um caminho em comum entre sítios distintos é maior do
que a de ser encontrado um conteúdo em comum. O número de caminhos conhecidos é ex-
tremamente maior do que o número de páginas propriamente coletadas. Além disso podem
existir vários tipos de caminhos padronizados entre sítios diversos. De fato, a seleção de can-
didatos que possuem caminhos em comum é próxima de 60% dos pares encontrados como
candidatos. É possível variar o grau de restrição do filtro inicial, porém mesmo que o filtro
aplicado seja pouco restritivo e considere como candidatos, pares de sítios de similaridade
muito baixa, o número de pares possíveis é extremamente menor que uma seleção por força
bruta.

3.3.2 Avaliação do Conjunto de Pares Candidatos

O conjunto reduzido de pares candidatos obtido na primeira fase do algoritmo pode
então ser refinado por um processo que utiliza um algoritmo de aprendizado de máquina
para identificar a probabilidade de cada par ser um par replicado. Esse algoritmo utiliza
um conjunto de novas características, chamado de conjunto de refinamento, descritas na
Seção 3.2.

Neste trabalho, a tarefa de identificar a probabilidade de pares de sítios serem réplicas
é modelada como um problema de classificação. Mais especificamente, um classificador é
construído a partir de um conjunto de treinamento e relaciona características dos pares de
sítios à probabilidade desse par ser ou não uma réplica. Esse classificador é então utilizado
para identificar automaticamente quais pares são replicados em um conjunto de teste.

A principal vantagem de uma abordagem baseada em classificação é o fato de não
ser preciso definir exatamente o que é uma réplica. Muitas vezes pode não ser possível
identificar um par de sítios replicados apenas por uma análise da quantidade de conteúdo
duplicado entre eles. Por exemplo, existem classes de sítios como os que armazenam letras
musicais, que por armazenarem letras idênticas de músicas, possuem uma alta porcentagem
de documentos similares, porém não podem ser caracterizados como réplicas. Por outro lado,
ao ser utilizada uma abordagem de classificação, é preciso apenas fornecer uma quantidade
suficiente de exemplos de treino e o classificador automaticamente aprende a diferenciar
os pares que são ou não replicados, com base em diversas características e suas possíveis
relações.

O método de aprendizado de máquina utilizado nesta dissertação foi o algoritmo de
Classificação Associativa LAC [Veloso & Meira Jr., 2011], descrito na Seção 2.3.1. Mais
especificamente, é utilizado um conjunto de treino D que consiste de exemplos na forma
〈Fr, `〉, onde Fr é um conjunto de características associadas a cada par de sítios, e ` ∈ {�,�}
é uma variável binária que especifica se um par de sítios correspondente deve ou não ser
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considerado um par replicado. O conjunto de treino é então utilizado na construção de um
classificador L que relaciona padrões em Fr ao valor de ` e será responsável por calcular a
probabilidade dos pares de sítios web no conjunto de candidatos C serem réplicas.

O classificador Lx é composto por um conjunto de regras de associação que são extraí-
das do conjunto de treino D conforme a definição seguinte [Veloso et al., 2006a,b; Veloso &
Meira Jr., 2011; Veloso et al., 2011]:

Classificação baseada em regras: Uma regra de classificação tem a forma de
{F −→ `}, onde o antecedente F é o conjunto de características e o consequente
` ∈ {�,�} indica se a predição é positiva ou negativa. A cardinalidade da regra
{F → `} é dada pelo número de características no antecedente, ou seja |F|.
O suporte de F é definido como σ(F) e é o número de exemplos em D que
possuem F como um subconjunto. A confiança da regra {F → `} é definida
como θ(F −→ `) e é a probabilidade condicional de c dadas as características em

F , ou seja, θ(F −→ `) = σ(F ∪ `)
σ(F) ·

Mais especificamente, o classificador L é representado como um conjunto de en-
tradas de forma 〈chave, propriedades〉, onde uma chave = {F , `} e propriedades =
{σ(F), σ(F ∪`), θ(F → `)}. Cada entrada no conjunto corresponde a uma regra e a chave é
usada para facilitar um acesso rápido às propriedades da regra. Uma vez que o classificador
L é extraído de D as regras são coletivamente utilizadas para aproximar a probabilidade de
um exemplo arbitrário ser positivo (�) ou negativo (�). Basicamente, L é interpretado como
um conjunto em que cada regra {F → `} ∈ L é um voto dado por F para � ou �. Dado um
exemplo x, uma regra {F → `} é considerada um voto válido apenas se for aplicável a x.

Seja Lx o conjunto de regras em L que são aplicáveis ao exemplo x, todas e apenas as
regras em Lx são consideradas como votos válidos durante a classificação de x. Em seguida
é definido L`

x como o subconjunto de Lx que contém apenas regras de predição para `. Os
votos em L`

x tem pesos diferentes, dependendo da confiança das regras correspondentes.
Finalmente é feita a média dos pesos dos votos para `, retornando uma pontuação para ` em
relação a x (Equação 3.5). Finalmente, a probabilidade de x ser um exemplo negativo é dada
pela pontuação normalizada (Equação 3.6).

s(x, `) =
∑ θ(F → `)

|L`
x|

,with ` ∈ {�,�} (3.5)

α(x,�) = s(x,�)
s(x,�) + s(x,�) (3.6)

Para evitar o enorme espaço de busca durante o processo de extração de regras, o
algoritmo LAC projeta um conjunto de treino de acordo com o exemplo a ser processado (ou
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seja, pares de sítios web). Mais especificamente a extração de regras não é realizada até que
um candidato x seja dado para classificação. Em seguida os valores das características de x
são utilizadas como filtro que configura o conjunto de treino D de forma que apenas regras
aplicáveis a x sejam extraídas. Esse processo, ilustrado na Tabela 3.1, produz um conjunto
de treino projetado definido como Dx, que contém apenas características que são presentes
em x.

p `
ip4 ip3 ndist nmatch fullpath

y1 [0.1-0.3] [0.3-0.5] [8-10] [0.2-0.5] [0.3-0.5] �
y2 [0.1-0.3] [0.1-0.3] [10-14] [0.1-0.2] [0.1-0.3] �
y3 [0.5-0.8] [0.1-0.3] [8-10] [0.1-0.2] [0.1-0.3] �
y4 [0.1-0.3] [0.5-0.8] [8-10] [0.2-0.5] [0.3-0.5] �
y5 [0.3-0.5] [0.5-0.8] [5-8] [0.5-0.7] [0.3-0.5] �
y6 [0.1-0.3] [0.3-0.5] [8-10] [0.5-0.7] [0.3-0.5] �
y7 [0.1-0.3] [0.1-0.3] [10-14] [0.1-0.2] [0.3-0.5] �
y8 [0.3-0.5] [0.5-0.8] [5-8] [0.5-0.7] [0.3-0.5] �
x [0.1-0.3] [0.1-0.3] [8-10] [0.2-0.5] [0.1-0.3] ?

↓ ↓ ↓ ↓ ↓
ip4 ip3 ndist nmatch fullpath

y1 [0.1-0.3] − [8-10] [0.2-0.5] − �
y2 [0.1-0.3] [0.1-0.3] − − [0.1-0.3] �
y3 − [0.1-0.3] [8-10] − [0.1-0.3] �
y4 [0.1-0.3] − − [0.2-0.5] − �
y5 − − − − − �
y6 [0.1-0.3] − − − − �
y7 [0.1-0.3] [0.1-0.3] − − − �
y8 − − − − − �

Tabela 3.1: Conjunto de treino D = {y1, y2, . . . , y8}, e instância x. Em seguida o conjunto
projetado Dx.

O Programa 3 descreve o algoritmo para refinamento do conjunto de pares candidatos.

Programa 3 Avaliação do conjunto de pares candidatos a réplica
Entrada: conjunto C de pares de sítios candidatos a réplica.
Entrada: conjunto D de pares de sítios rotulados (marcados como réplicas ou não réplicas)
Saída: conjunto C de pares de sítios ordenados pela probabilidade de serem réplicas.

1: seja Fr o conjunto das características para refinamento
2: para todo par x em C faça
3: seja Vi o conjunto dos valores das características de x em Fr

4: projete D com base em Vi e x, para criar Dx

5: treine um classificador Lx com base no conjunto Dx

6: obtenha do classificador Lx a probabilidade de x ser réplica
7: Ordene os pares em C pela pontuação dada pelo classificador de acordo com a chance de o par

ser replicado

Um passo crucial do método proposto é a construção do conjunto de treinamento D
para o classificador. Devido a enorme quantidade de pares de sítios presentes em bases de
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máquinas de busca, o processo de criação de uma base de treino é considerado um verda-
deiro gargalo. Uma vez que seria preciso a avaliação humana de milhares de pares de sítios,
principalmente em busca de exemplos positivos que são desproporcionalmente mais escas-
sos. Mesmo a partir de uma seleção previa de sítios candidatos, o custo de uma inspeção
manual em busca de exemplos positivos pode tornar inviável a seleção de grandes quantida-
des de exemplos. Em muitos casos, porém, certos tipos de exemplos podem ser obtidos sem
esforço. Portanto, é proposta uma estratégia para criação automática do conjunto de treino
D, que será descrita na próxima seção.

3.3.3 Criação Automática do Conjunto de Treino

Nesta seção é detalhada a abordagem desenvolvida para criação automática do con-
junto de treino D utilizado no treinamento do algoritmo de classificação de sítios replicados.

A utilização de métodos de classificação neste trabalho está sujeita ao gargalo de aqui-
sição de dados, uma vez que a definição de exemplos de treino requer uma rotulação manual
de pares de sítios web, definidos como réplicas ou não. O custo associado a este processo de
anotação pode tornar inviável a aquisição de grandes quantidades de exemplos de treino.

Em muitos casos, porém, encontrar certos tipos de exemplos pode ser bastante fácil.
Por exemplo, podemos atribuir um rótulo positivo para o caso de réplicas detectadas de ma-
neira mais óbvia, pares de sítios cuja única diferença está na utilização ou não do prefixo
WWW. De maneira similar, podemos considerar exemplos negativos de réplicas, aqueles
pares que não são nem ao menos suspeitos de serem réplicas, ou seja, não compartilham
nenhuma página com mesmo conteúdo ou caminho de URL. Entretanto, construir um con-
junto de treino para um classificador diretamente desse tipo de exemplos pode levar a uma
baixa qualidade na detecção de réplicas, uma vez que pode existir uma enorme quantidade
de falsos-negativos nesse conjunto de treino.

Este trabalho propõe estratégias baseadas no algoritmo EM ("Expectation-

Maximization") [Dempster et al., 1977] para produzir um conjunto de treino de melhor qua-
lidade.

A primeira abordagem proposta, a qual chamaremos de PU, faz uso de exemplos posi-
tivos óbvios para construção do treino conforme o seguinte cenário:

PU: um conjunto de treino D é composto por um conjunto de exemplos poten-
cialmente positivos P e um grande conjunto de exemplos não rotulados U . Os
dados não rotulados contidos em U são então considerados negativos. Portanto
D pode conter falsos negativos.
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A seleção de pares que formam o conjunto P é realizada a partir de características
mais óbvias e fáceis de se computar em relação ao conjunto de candidatos C obtido na fase
de seleção de pares candidatos (Seção 3.3.1). São elas:

• Pares de sítios cuja diferença está apenas em ter ou não o prefixo "WWW".
Ex: www.exemplo.com.br / exemplo.com.br

• Sítios que possuam diferenças apenas no domínio superior.
Ex: exemplo.gov.br / exemplo.br

O conjunto U é formado pelo restante de pares candidatos, sendo P∩U ≡ ∅. O método
proposto baseado em EM realiza um processo de classificação que utiliza o algoritmo LAC
para atribuir a cada par x ∈ D uma probabilidade α(x,	) de ser negativo. Uma vez que essas
probabilidades foram calculadas, são realizadas transições de rótulos x(	→⊕), fazendo com
que pares previamente rotulados como negativos sejam atualizados como pares positivos.
Ao final do processo EM é esperada uma convergência dos rótulos assinalados para uma
combinação que seja mais próxima da realidade dos dados.

Uma questão importante que afeta o desempenho dessa abordagem é a decisão de
quando realizar uma operação de transição de rótulos. Nesse caso, um limiar de transição
αmin determina que uma operação x(	→⊕) é realizada sempre quando x é um exemplo ne-
gativo e α(x,	) ≤ αmin. O valor ótimo de αmin não é previamente conhecido, sendo a
definição desse limiar é uma peça fundamental do algoritmo.

A primeira estratégia para escolha do melhor limiar de corte consiste em alternar valo-
res diferentes para αmin e avaliar quais obtêm melhores resultados. Uma segunda estratégia
consiste em encontrar automaticamente o melhor limiar αx

min para cada instância do modelo,
ao invés de aplicar um único valor αmin global a todas instâncias. Para isso foi utilizado um
método de minimização de entropias [Davis et al., 2012] que encontra o limiar de transição
αx

min e possui o seguinte cenário:

Escolha de Limiar: Seja Dx o conjunto de treino induzido por um exemplo y
e `y ∈ {⊕,	} a classe associada ao exemplo y ∈ Dx. Considere N	(Dx) o
número de exemplos em Dx em que `y = 	. De maneira análoga, considere
N⊕(Dx) o numero de exemplos Dx em que `y = ⊕. O método proposto busca
por um limiar αx

min que provê um particionamento de melhor entropia no espaço
de probabilidades induzido por Dx.

A entropia de um conjunto pode ser definida como uma medida do grau de impureza
do conjunto, sendo máxima quando existem tantos elementos positivos quanto negativos, e
mínima quando todos os elementos são da mesma classe. É importante notar que o cálculo
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da melhor entropia e, por conseguinte a escolha do melhor limiar de corte, é feito com base
no conjunto de treino Dx induzido a cada instância de treino. Ou seja o limiar escolhido é
local e específico para cada modelo.

Mais especificamente, dados exemplos de treino {y1, y2, . . . , yk, } em Dx, o método
primeiramente calcula α(x,�) para todo yi ∈ Dx. Então, os valores de α(x,�) são ordena-
dos em ordem crescente. De um modo ideal, existe um corte αx

min tal que:

`yi =

 � Se α(yi,�) ≤ αx
min

� caso contrário

Entretanto, existem casos mais difíceis, para os quais não é possível encontrar uma
separação perfeita no espaço de probabilidades. Portanto, é aplicado um método mais geral
para encontrar o melhor corte, ou separação do espaço. A ideia básica é a de que qualquer
valor para αx

min induz duas partições sobre o espaço de valores para α(x,�), ou seja, uma
partição para valores abaixo de αx

min e uma para valores acima de αx
min. O algoritmo atribui à

αx
min o valor que minimiza a entropia dessas duas partições. Uma vez que αx

min é calculado,
ele pode ser usado para ativação das operações de transição de rótulos das classes entre
réplicas e não réplicas. Em seguida serão apresentadas as definições básicas que detalham
esse algoritmo.

Minimização de Entropia: Considere uma listaO = {. . . , <`yi , α(yi,�)>, . . . ,
<`yj , α(yj,�)>, . . .}, tal que α(yi,�) ≤ α(yj,�). Seja f um valor candi-
dato para αx

min. Nesse caso, Of (≤) é uma sub-lista de O, ou seja, Of (≤) =
{. . . , <`y, α(y,�)>, . . .}, tal que para todos elementos emOf (≤), α(y,�) ≤ f .
De modo similar, Of (>) = {. . . , <`y, α(y,�)>, . . .}, tal que para todos ele-
mentos em Of (>), α(y,�) > f . Sendo assim, Of (≤) e Of (>) são partições de
O induzidas por f .

Primeiramente o algoritmo calcula a entropia em O conforme a Equação 3.7. Em
seguida é calculada a soma das entropias em cada partição induzida por f , de acordo com a
Equação 3.8.

E(O) = −
(

N�(O)
|O|

× log N�(O)
|O|

)
−

(
N�(O)
|O|

× log N�(O)
|O|

)
(3.7)
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E(Of ) = |Of (≤)|
|O|

× E(Of (≤)) +

|Of (>)|
|O|

× E(Of (>)) (3.8)

Finalmente αx
min recebe o valor de f que minimiza E(O)−E(Of ), conforme a Fi-

gura 3.3.

Figura 3.3: Melhor ponto de corte (entropia mínima).

Outra abordagem proposta para criação automática de conjunto de treino é referente
ao uso de exemplos que sabidamente não são réplicas. Esses exemplos são fáceis de se
conseguir, uma vez que milhares deles são descartados na fase inicial do algoritmo. Mais
especificamente é utilizado um conjunto N de pares descartados como suspeitos na filtra-
gem de candidatos. Nessa abordagem é proposta uma nova versão de algoritmo EM com o
seguinte cenário:

NU: Um conjunto de treinoD é composto por um conjunto de exemplos negativos
N e um grande conjunto de exemplos não rotulados U . Neste cenário os dados
contidos em U são considerados positivos, contendo assim falsos positivos.

Similar ao processo em PU esta abordagem aplica operações x(⊕→	) aos rótulos das
instâncias em D. Uma transição de rótulo é realizada sempre que x é um exemplo positivo e
α(x,⊕) ≤ αx

min.

Um desafio particular é que o algoritmo proposto realiza diversas transições de rótulos
durante o processo EM e cada operação de transião modificaD e invalida parte do classifica-
dor atual L, que precisa ser propriamente atualizado. Nesse caso, o algoritmo LAC permite



32 CAPÍTULO 3. O ALGORITMO PROPOSTO PARA DETECÇÃO DE RÉPLICAS

manter L atualizado de maneira incremental [Silva et al., 2011; Lourenco Jr. et al., 2014]
de forma que o classificador atualizado seja o mesmo que seria obtido caso fosse totalmente
reconstruído do zero a cada passo. Sendo assim temos o seguinte cenário:

Atualização Incremental: Uma operação de transição de rótulos x�→� (ou
x�→�) não muda o valor de σ(F) de nenhum conjunto de características F .
Mais especificamente a operação x�→� muda apenas o rótulo associado a x e não
muda os valores das características de x. Portanto, o número de exemplos em D
que possuem o subconjunto F de características é essencialmente o mesmo em
{(D − x�) ∪ x�}. O mesmo acontece em operações x�→�. Além disso todas as
regras em L que devem ser atualizadas devido a x�→� (or x�→�) são as contidas
no classificador Lx específico para a instância x.

A atualização incremental do classificador durante o processo EM faz com que o pro-
cesso seja realizado de maneira muito mais eficiente. A comparação de desempenho entre
uma atualização incremental e uma atualização completa do classificador a cada iteração do
EM será discutida na Seção 4.6.

O Programa 4 descreve o algoritmo para construção do treino D.

Programa 4 Construção automática do conjunto de treino D
Entrada: conjunto inicial D com exemplos de treino óbvios
Saída: conjunto D completo com exemplos não óbvios.

1: para todo par x em D faça
2: Treine um classificador Lx com base no conjunto D
3: Defina um limiar mínimo de réplica αx

min

4: → Expectation:
5: se (PU) então
6: se (α(x,�) ≤ αx

min) então
7: realize operações x�→�

8: senão se (NU) então
9: se (α(x,�) > αx

min) então
10: realize operações x�→�

11: atualize D apropriadamente
12: →Maximization:
13: atualize Lx ⊆ L e α(x,�)

3.3.4 Combinação de classificadores

Os métodos PU e NU são suficientes para geração de coleções de treino a serem utiliza-
das na classificação automática de pares de sítios replicados. Porém, é possível melhorar os
resultados do processo de classificação proposto, utilizando um conceito da Economia deno-
minado Eficiência de Pareto [Palda, 2011]. Esse método é utilizado para agregar resultados
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gerados a partir das abordagens PU e NU. Mais especificamente, a agregação de resultados
é dada como eficiente se a predição de determinado classificador, ao ser privilegiada, pode
causar danos à predição de um outro classificador [Moreira et al., 2014]. A Eficiência de
Pareto é relacionada a noção de dominância no espaço induzido pelas predições de ambos
classificadores.

Esta dissertação propõe então a abordagem denominada PNU, baseada na Eficiência
de Pareto, que combina resultados de PU e NU com o seguinte cenário:

PNU: Seja αP (x,�) a probabilidade de um par x ser réplica de acordo com
o classificador construído por PU. Analogamente, seja αN(x,�) a probabilidade
de par x ser réplica de acordo com o classificador construído por NU. Cada candi-
dato x ∈ C é inserido em um espaço bidimensional, com coordenadas αP (x,�) e
αN(x,�) (Figura 2.3). Os pares de sítios replicados são selecionados sob a curva
que determina o conjunto de soluções ótimas nessas duas dimensões e caracteriza
a Fronteira de Pareto.

Como demonstrado na Figura 3.4, o candidato a domina o candidato b, se e somente
se, ambas condições forem mantidas:

• αP (a,�) ≥ αP (b,�) and αN(a,�) ≥ αN(b,�)

• αP (a,�) > αP (b,�) or αN(a,�) > αN(b,�)

Figura 3.4: Nem b ou c são dominados entre si, porém a domina b. Pontos não dominados
por nenhum outro ponto formam a Fronteira de Pareto.

O operador de dominância relaciona dois candidatos a réplica onde o resultado da
operação tem duas possibilidades: (i) um candidato domina outro candidato ou (ii) dois
candidatos não são dominados entre si. Portanto, a Fronteira de Pareto P é composta por
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todos candidatos a réplica que não são dominados por nenhum candidato. Mais especifica-
mente, a fronteira P é formada pela lista de k candidatos a réplica P = {x1, x2, . . . , k} de
forma que não exista nenhum par (xi, xj) onde x domina xj, como mostra a Figura 3.4.

A Fronteira de Pareto contém ou candidatos que se destacam em um classificador ou
candidatos que possuem um balanceamento adequado entre os dois classificadores. O pró-
ximo passo envolve ordenar os candidatos de acordo com a probabilidade de serem réplicas.

Seja dom(x) o número de candidatos que são dominados pelo candidato x. O ranking

final é uma lista ordenada {x1, x2, x3} de forma que não exista nenhum par (xi, xj) onde
dom(xi) > dom(xj), dado i > j. Sendo assim os pares mais dominantes aparecem no topo
ranking

O Programa 5 descreve o algoritmo para agregação de resultados que constitui o mé-
todo PNU.

Programa 5 PNU: Agregação de resultados (de PU e NU) via Fronteira de Pareto

Entrada: os espaços de predições αP (x,�) e αN (x,�) provenientes de PU e NU, respectivamente.
Saída: conjunto C de pares de sítios ordenados pela probabilidade de serem réplicas.

1: Encontre a Fronteira de Pareto P = {x1, x2, . . . , xk} para os pares de sítios x no espaço de
predições αP (x,�) e αN (x,�)

2: para todo par x em C faça
3: calcule dom(x)
4: Ordene os pares em C em ordem decrescente de acordo com dom(x)

A Figura 3.5 oferece uma visualização completa dos processos que envolvem método
proposto.

Filtro 
Inicial

Fase 1 Fase 2
PU

N

P EM

Ranking PU

Ranking NU
CandidatosBase de 

Sítios

NU EM

Ranking 
PNU

Classificação Pareto

U

U

Figura 3.5: Descrição dos processos do método proposto



Capítulo 4

Resultados Experimentais

Esta seção apresenta a coleção de dados utilizada neste trabalho e os resultados ex-
perimentais para o algoritmo proposto. As estratégias propostas são comparadas a outras
abordagens presentes na literatura. Para isso são descritas e utilizadas diferentes métricas de
avaliação dos algoritmos, como taxas de verdadeiros e falsos positivos, precisão e revocação,
taxa de redução, desempenho em detecção e tempo de execução. Em resumo serão avaliadas
as seguintes hipóteses:

• Distribuição de duplicatas intrassítios e intersítios na coleção: Qual a correlação entre
os diferentes tipos de duplicatas e o tamanho dos sítios. Réplicas geralmente aparecem
em pares ou em grupos maiores de sítios idênticos? (Seção 4.1).

• Relação entre a similaridade textual e os sítios duplicados: A similaridade sozinha é
uma boa medida para separar réplicas de não réplicas? (Seção 4.2).

• Porcentagem de réplicas detectadas em relação ao número de não réplicas seleciona-

das por engano: A análise ROC mostra uma área sob a curva de mais alta que 0.98,
indicando que o algoritmo proposto detecta todas réplicas de sítios na coleção à uma
baixa taxa de erro ou falsos-positivos (Seção 4.3).

• Eficácia do algoritmo: O algoritmo proposto é capaz de detectar casos de réplicas in-
filtrados em 1000 candidatos à réplicas com probabilidade maior que 99% (Seção 4.4).

• Impacto da detecção de réplicas de sítios em relação ao número de URLs duplicadas:
O algoritmo proposto reduz em 19% o número de URLs duplicadas na coleção a uma
taxa de apenas 0.005 em falsos positivos. Além disso, a combinação do algoritmo
proposto com algoritmos de detecção intrassítios pode aumentar a taxa de redução em
mais de 21% (Seção 4.5).

35
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• A viabilidade da solução em relação ao tempo de execução do algoritmo: O tempo de
execução cai em três ordens de magnitude ao atualizar os classificadores de maneira
incremental durante o processo EM. O tempo necessário para avaliar um candidato a
réplica não é maior que 0.1 segundos (Seção 4.6).

4.1 Coleção

A coleção de dados utilizada neste trabalho foi obtida através da coleta de páginas web,
utilizando um coletor web real, que integra uma máquina de busca desenvolvida no Instituto
Nacional de Ciência e Tecnologia para a Web (InWeb). O conjunto utilizado corresponde
a mais de 30 milhões de páginas web que se restringem a sítios brasileiros. Essa coleta
foi realizada entre Setembro e Outubro de 2010, e não houve nenhuma restrição ou filtro
quanto à qualidade ou conteúdo duplicado. Portanto, essa coleção é um retrato fiel da Web.
O conjunto de dados final corresponde a 583,411 sítios web, sendo assim aproximadamente
2× 1011 pares possíveis, sem nenhuma atribuição de classes manual ou semi-automática.

Uma vez que a proposta deste trabalho consiste em identificar sítios replicados, pa-
res de sítios que obviamente não formam candidatos a réplicas são descartados, como será
discutido em seguida.

Dup-clusters A seleção de pares candidatos a réplica, conforme a Seção 3.3.1, é feita
a partir do descarte de pares de sítios que não possuem nenhuma característica básica em
comum. Para que seja possível caracterizar a coleção de sítios presente na base de dados
e estudar as distribuições de conteúdo duplicado entre sítios, são criados os chamados dup-
clusters [Agarwal et al., 2009; Yang & Callan, 2006]. Páginas web que possuem conteúdo
idêntico são agrupadas em um mesmo (dup-)cluster, conforme mostra a Figura 4.1. Sítios
diferentes que possuem URLs em um mesmo dup-cluster são tratados como candidatos a
réplicas.

Figura 4.1: Descrição de um dup-cluster

Cada FPi é uma assinatura de conteúdo e cada Uj é uma URL. URLs duplicadas são
aquelas contidas em um mesmo dup-cluster. URLs em um dup-cluster que pertencem a um
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mesmo sítio web são consideradas duplicatas intrassítios (UA e UB), enquanto aquelas que
pertencem a sítios diferentes são consideradas duplicatas intersítios (UA e UC).

Especificamente foram obtidos 172.004 sítios web que compartilham pelo menos uma
assinatura com outro sítio web, resultando em 111 milhões de candidatos a réplica. Desse
conjunto foram separados 50 mil casos óbvios de serem réplicas utilizados como exemplos
positivos e 800 mil pares de sítios que não compartilham nenhum conteúdo em comum,
utilizados como exemplos negativos.

O tamanho de um dup-cluster é dado pelo número de URLs no dup-cluster. A Fi-
gura 4.2 (esquerda) mostra a distribuição de tamanhos dos dupclusters formados. Clara-
mente, muitos dup-clusters contêm poucas URLs e poucos dup-clusters contêm muitos mi-
lhares de URLs. A Figura 4.2 (direita) mostra o número de dup-clusters em que um sítio
aparece. Mais uma vez, poucos sítios estão presentes em muitos dup-clusters enquanto a
maior parte dos sítios estão contidos em poucos dup-clusters.
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Figura 4.2: Esquerda: Distribuição de tamanho dos dup-clusters. Direita: Distribuição de
sítios por dup-cluster

Distribuição de réplicas intersítios e intrassítios A Figura 4.3 mostra a relação
entre o número de réplicas intrassítios e intersítios em cada sítio web. A curva de correlação
mostra que um crescimento de três vezes para dez vezes em relação ao número de URLs
duplicadas intersítios e URLs duplicadas intrassítios, respectivamente.

Construção do gabarito A tarefa de definir se um par de sítios é ou não uma réplica
é muito difícil devido a (i) muitos sítios duplicados possuírem conteúdo dinâmico, onde
mesmo que determinada URL seja coletada duas vezes em seguida, o conteúdo coletado irá
diferir, e (ii) muitos sítios web podem conter páginas de conteúdo idêntico ou similar e ainda
assim não serem réplicas.

Portanto, para possibilitar a avaliação dos classificadores propostos, foram seleciona-
mos aleatoriamente um conjunto de 1.600.000 pares de sítios do conjunto de 111 milhões
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Figura 4.3: Correlação entre o número de URLs duplicadas intrassítios e intersítios por sítio
web. Cada ponto corresponde a um sítio web e seu tamanho indica o número de URLs dentro
do sítio. Esta figura é uma amostragem de 200 sítios

de pares possíveis de candidatos a serem réplicas. A partir desses pares, foram classifica-
dos manualmente 6.823 pares como sítios replicados. Do grupo de sítios selecionados como
réplicas, 354 são casos óbvios que consistem em versões com ou sem prefixo WWW ou
pequenas variações de domínio (".com", ".gov", ".net", etc.). Os 6.469, pares restantes, são
casos não óbvios, envolvendo variações maiores quanto ao nome dos servidores. No con-
junto de 1.600.000 pares de sítios existem 49.636 sítios, sendo 3.765 sítios que aparecem em
pelo menos um dos 6.823 pares de réplica.

A Figura 4.4 mostra a distribuição do tamanho de sítios replicados e não replicados.
Sítios replicados têm em média 224 URLs, enquanto sítios não replicados possuem uma
média de 135 URLs.
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Figura 4.4: Distribuição de tamanho de sítios replicados e não replicados

A Figura 4.5 mostra a fração de sítios que aparecem em pelo menos x casos de ré-
plicas. Como pode ser notado, a maioria dos sítios replicados aparece em poucos casos de
réplicas. A eliminação de todos 3.765 sítios replicados pode levar a uma redução de 12.1%
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de conteúdo duplicado (843.526 URLs seriam removidas de um total de 6.948.501 URLs
duplicadas). Vale notar que todas URLs pertencentes a um mesmo dup-cluster foram consi-
deradas URLs duplicadas. Outro fator importante é que devido ao enorme número de pares
candidatos, a inexistência de falsos falsos-negativos não é garantida.
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Figura 4.5: Fração de sítios que aparecem em pelo menos x casos de réplicas

Distribuição de similaridade entre sítios A similaridade entre sítios A e B é dada
em termos do numero de dup-clusters que contêm ambos os sítios. Especificamente, seja
CA o conjunto de dup-clusters contendo o sítio A, a similaridade entre A e B é dada pelo

Coeficiente de Jaccard
CA ∩ CB

CA ∪ CB

· A Figura 4.6 mostra a distribuição de similaridade, que

representa a fração de pares com similaridade acima de x. Também é apresentada a concen-
tração de réplicas, que representa a fração de pares replicados cuja similaridade é acima de
x. É possível notar que, ainda que sítios altamente similares tendem a ser de fato um par re-
plicado, a similaridade sozinha não é suficiente para separar completamente replicas de não
réplicas. Alguns casos de sítios duplicados envolvem sítios que não são altamente similares.

4.2 Metodologia de Avaliação

Os experimentos foram realizados a partir da técnica de validação cruzada. A base de
dados de 1.600.000 pares candidatos foi dividida aleatoriamente em 2-folds, onde a cada ro-
dada de testes, um fold foi utilizado como treino e outro como teste. Cada conjunto utilizado
como treinamento foi individualmente dividido em 5-folds para realização de aprendizado
automático via Maximização de Expectativas. Os resultados reportados são a média das
execuções, sendo utilizado o teste estatístico Wilcoxon Signed-rank Test [Wilcoxon, 1945]
para determinar se a diferença em desempenho foi estatisticamente significante. Em todos os
casos foram reportadas apenas as conclusões a partir de resultados que foram significantes a
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Figura 4.6: Distribuição de similaridade e concentração de réplicas

um nível de pelo menos 5%. Em cada rodada de treino e teste, foi adicionado o mesmo con-
junto de 50 mil casos óbvios de réplicas ao fold de treino com dados PU e os mesmos 800 mil
casos óbvios de não réplicas para cada fold treino com dados NU, conforme a Seção 3.3.3.

Métricas de avaliação As métricas de avaliação utilizadas neste trabalho foram as se-
guintes:

i) Precisão: Fração de réplicas que são corretamente detectadas.

ii) Revocação ou Taxa de Verdadeiros Positivos (TPR): Corresponde à fração de replicas
que são removidas da coleção.

iii) Taxa de Falsos Positivos (FPR): Corresponde à fração de não replicas que são removidas
da coleção.

iv) Taxa de Redução (RR): Sendo U o conjunto de URLs duplicadas na coleção original e
U∗ o subconjunto de U que é obtido depois da remoção de sítios replicados, temos que

a taxa de redução é dada por
|U | − |U∗|
|U |

·

v) Taxa de Detecção de Réplicas (RDR): Seja I a lista de k + 1 candidatos a réplica, onde
exatamente um par é conhecido como réplica e os k pares restantes são aleatoriamente
selecionados. Seja i a posição do par replicado depois de ordenarmos todos k + 1 pares
em ordem decrescente de α(x,�). Seja n o número de pares replicados de teste, o

processo é repetido n vezes e a taxa de detecção de réplicas é dada por
1
n

n∑ 1
i
· Nesse

caso foram selecionados do gabarito aleatoriamente 100 pares replicados.
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Baselines

• NormPaths: O algoritmo NormPaths [da Costa Carvalho et al., 2007] foi utilizado
como baseline neste trabalho. Esse método obtém uma pontuação entre um par de
sítios, o qual indica possibilidade de os sítios do par serem réplicas. Essa pontuação
é chamada de rsim. Quanto maior o valor dessa característica, maiores as chances de
replicação. Para a computação desse atributo são extraídos de cada página da coleção
seu caminho e uma assinatura para seu conteúdo. Cria-se então uma tupla no formato
<caminho, assinatura> e, para cada tupla, é montada uma lista L de todos os sítios que
possuem uma página com aquela tupla.

Dados dois sítios A e B da base da máquina de busca, o rsim entre eles é dado pela
Equação 4.1, onde SL é o conjunto de todas as listas L criadas e |L| é número de sítios
na lista L

rsim(A,B) =
∑

∀L∈SL|A∈L,B∈L

1
|L|
· (4.1)

Candidatos a réplica são ordenados de forma decrescente de acordo com rsim(A,B),
e os primeiros n candidatos são considerados réplicas.

• B-SVM: O algoritmo B-SVM (Biased SVM) [Liu et al., 2003] é considerado estado-
da-arte em aprendizado semissupervisionado sob dados PU. O B-SVM utiliza uma
margem SVM como classificador. Esse classificador é inteiramente reconstruído a
cada iteração EM. Além disso é aplicado um único limiar de transição αmin para o
conjunto inteiro de dados.

• Limite Superior (Upper bound): Foi considerado como limite superior para o desem-
penho em detecção de réplicas o resultado obtido por um classificador treinado com
um modelo correto de treino, ou seja, um treinamento feito com instâncias previamente
rotuladas. Esses resultados são comparados aos resultados obtidos por um classifica-
dor que utiliza o modelo de treino construído pelos algoritmos baseados em EM.

4.3 Melhor Limiar para Definição de Réplicas

Nesta seção, são apresentados dois grupos de resultados. A diferença entre eles está na
escolha do parâmetro utilizado pelo algoritmo no momento de escolher um limiar mínimo
para transição de rótulos entre réplicas e não réplicas. Os próximos resultados avaliam a
utilização de diversos valores diferentes em busca de um limiar único que obtenha bons
resultados.
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Limiar Fixo para Todas Instâncias Este conjunto de experimentos consiste em ava-
liar o desempenho do método proposto para diferentes valores de corte, ou seja, um limiar
mínimo que define uma réplica durante as iterações do modelo EM, conforme a Seção 3.3.3.
O desempenho do método proposto é avaliado através da curva ROC (Receiver Operating

Characteristic). Essa é uma plotagem gráfica para a taxa de verdadeiros positivos e falsos
positivos obtidos pelo classificador quando o grau de certeza é variado. Para realizar uma
síntese estatística da curva ROC, será utilizada a área sob a curva ROC ou AUC (Area Under

the ROC Curve). A curva AUC representa a probabilidade em que um classificador constrói
um ranking onde uma instância positiva aleatoriamente escolhida é inserida acima de uma
instância negativa. A Tabela 4.1 mostra os resultados em termos de AUC, associada à cada
limiar avaliado entre 0.1 e 0.9.

αmin 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
PU 0.7559 0.7594 0.7689 0.7643 0.9455 0.9683 0.9260 0.9351 0.9050
NU 0.3642 0.3632 0.3689 0.9281 0.9482 0.9413 0.3643 0.3521 0.3776

Tabela 4.1: Desempenho de diferentes valores para αmin

A tabela mostra que os limiares que proporcionaram o melhor desempenho do algo-
ritmo foram 0.6 para o método PU e 0.5 para NU. Portanto, os melhores resultados foram
obtidos com o uso de pontos de corte medianos. Uma possível justificativa é a de que li-
miares menores por serem muito tolerantes aumentam as chances de serem definidos falsos-
positivos. De maneira análoga, limiares maiores e mais restritivos favorecem o aparecimento
de falsos negativos.

O próximo conjunto de experimentos consiste em avaliar as características propostas
na Seção 3.2. Uma vez que seria inviável realizar um estudo envolvendo todas combinações
de características possíveis, foram considerados dois cenários: (i) cada característica é uti-
lizada isoladamente para representar os candidatos a réplica, e (ii) todas características são
utilizadas para representar candidatos a réplica, exceto aquela em que se pretende avaliar.

Conforme a Tabela 4.2, em se tratando de características utilizadas individualmente,
as melhores foram ndist e fullpath, utilizando a abordagem PU, e nmatch e fullpath para
abordagem NU. As piores características foram ip3 e ip4 quando utilizadas isoladamente em
PU, enquanto ndist foi a pior em NU.

Na maioria dos casos, quando apenas uma característica é descartada a abordagem PU
obteve resultados próximos aos alcançados com o uso de todas as características. Já a abor-
dagem NU obteve quedas de desempenho mais significativas quando qualquer característica
é eliminada. Quando a característica ndist foi descartada os resultados demonstraram a maior
queda em desempenho para PU. O mesmo acontece quando a característica fullpath é des-



4.3. MELHOR LIMIAR PARA DEFINIÇÃO DE RÉPLICAS 43

AUC (Area Under the Curve)
Individualmente Todas exceto

Características PU NU PU NU
ip3 0.5033 0.5114 0.9455 0.8166
ip4 0.5244 0.5218 0.9451 0.7036
nmatch 0.5426 0.5729 0.9301 0.6178
ndist 0.7450 0.5031 0.9183 0.7163
fullpath 0.6311 0.6304 0.9300 0.5845
Todas 0.9683 0.9482 0.9683 0.9482

Tabela 4.2: Desempenho de diferentes combinações de características

cartada em NU. É possível notar uma equivalência entre a melhor característica individual e
a queda de desempenho quando esta é retirada do conjunto completo de características.

A Figura 4.7 mostra a análise ROC para a avaliação dos métodos propostos e baselines.
O algoritmo normpaths obteve a pior relação entre as taxas de verdadeiros positivos (TPR)
e falsos positivos (FPR), alcançando um número de 0.9415 em termos de AUC. Os classi-
ficadores construídos através da abordagem PU e NU tiveram um desempenho de 0.9683
e 0.9482, respectivamente. A combinação de ambos classificadores utilizando a agregação
proposta via Eficiência de Pareto, resultou em uma melhoria que chegou a 0.9763, o que
ainda está distante do valor de 0.9956 atingido pelo limite superior.
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Figura 4.7: Análise da curva ROC

A Figura 4.8 (esquerda) mostra a relação entre a taxa de redução e a taxa de falsos
positivos. Claramente todos algoritmos mostram um desempenho similar se um grande nu-
mero em FPR é permitido. No entanto, é importante considerar a redução obtida ao custo
de uma taxa bem pequena de FPR. Portanto, a Figura 4.8 (direita) mostra a mesma relação
considerando um valor máximo de 0.005 em FPR. Nesta escala a qualidade dos resultados
dos diferentes algoritmos é bem diferente. Especificamente, o normpaths atinge os piores
resultados, fornecendo uma redução de 14% com uma taxa de FPR de 0.005. Nesse mesmo
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nível de precisão, classificadores aprendidos a partir dos modelos de PU e NU conseguiram
uma redução de 17% e 15, 5%, respectivamente. A combinação das predições de ambos
classificadores não alcançou resultados superiores ao modelo PU nesta escala, obtendo uma
redução de 16, 5%. Os ganhos da melhor abordagem sobre o baseline são mais expressivos
se considerarmos baixos valores de FPR. Por exemplo, o melhor método (PU) alcançou uma
redução de 11% com uma taxa de FPR de 0.001, enquanto o baseline normpaths atingiu uma
redução de apenas 7% nessa escala de precisão. Ainda que superem o baseline normpaths as
abordagens obtiveram uma redução abaixo da alcançada pelo limite superior que foi próxima
de 19%.
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Figura 4.8: Esquerda e Direita: Taxa de redução e Falsos-positivos

Em seguida são apresentados os resultados e melhorias alcançadas ao utilizar o método
(Seção 3.3.3) que encontra o melhor limiar para cada par de réplicas individualmente. Além
disso são demonstrados os resultados utilizando o algoritmo B-SVM.

Uso de Limiar Individual por Instância Este segundo conjunto de experimentos uti-
liza uma abordagem baseada em entropia mínima para escolha do melhor limiar de corte,
conforme a Seção 3.3.3.

Conforme a Tabela 4.3, em se tratando de características utilizadas individualmente, as
melhores foram ndist e fullpath. Utilizando a abordagem PU, as piores características foram
ip3 e ip4, enquanto namematch foi a pior na abordagem NU.

Na maioria dos casos, quando descartamos apenas uma característica obtivemos um
resultado muito próximo aos alcançados com o uso de todas as características. Isso sugere
que algumas das características são redundantes. De fato tal redundância é clara em alguns
conjuntos de características, como nos casos de ip3 e ip4, referentes aos endereços IP dos
sítios, assim como nmatch e ndist os quais se referem às strings das URLs. Em contrapar-
tida ao descartamos a característica fullpath os resultados demonstraram a maior queda em
desempenho.
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AUC (Area Under the Curve)
Individualmente Todas exceto

Features PU NU PU NU
ip3 0.5132 0.5116 0.9706 0.9411
ip4 0.5288 0.5283 0.9701 0.9431
nmatch 0.6565 0.2312 0.9646 0.9391
ndist 0.7716 0.6528 0.9631 0.9272
fullpath 0.7187 0.6274 0.9550 0.9206
Todas 0.9908 0.9688 0.9908 0.9688

Tabela 4.3: Desempenho de diferentes combinações de características

A Figura 4.9 (esquerda) mostra a análise ROC para a avaliação dos métodos. O algo-
ritmo normpaths obteve a pior relação entre as taxas de verdadeiros positivos (TPR) e falsos
positivos (FPR), alcançando um número de 0.9415 em termos de AUC. Os classificadores
construídos através da abordagem PU e NU tiveram um desempenho de 0.9908 e 0.9688, res-
pectivamente. A combinação de ambos classificadores utilizando a agregação proposta via
Eficiência de Pareto, resultou em uma melhoria que chegou a 0.9950, o que é extremamente
próximo ao valor de 0.9956 atingido pelo limite superior. O algoritmo B-SVM demonstra
um desempenho competitivo alcançando valores de até 0.9824 em termos de AUC.

As curvas de precisão e revocação podem ser visualizadas na Figura 4.9 (direita). Mais
uma vez o NormPaths obtém os piores resultados. Além disso, os classificadores construídos
através de dados PU superam bastante os resultados obtidos com o uso de NU, assim como
o B-SVM. A combinação dos classificadores construídos com PU e NU, utilizando a técnica
de agregação por Fronteira de Pareto proposta, mostra um desempenho levemente superior.
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Figura 4.9: Esquerda: Análise da curva ROC. Direita: Precisão x Revocação

A Figura 4.10 mostra a relação entre a taxa de redução e a taxa de falsos positivos.
Uma vez que todos os algoritmos mostram um desempenho similar quando permitido um
grande numero em FPR, é mostrada a relação considerando um valor máximo de 0.005 em
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FPR. Nessa escala, o normpaths atinge os piores resultados, fornecendo uma redução de 14%
com uma taxa de FPR de 0.005. Nesse mesmo nível de precisão, classificadores aprendidos a
partir dos modelos de PU e NU conseguiram uma redução de 18% e 17%, respectivamente. A
combinação das predições de ambos classificadores possibilitou uma redução extremamente
próxima dos 19% alcançados pelo limite superior. Os ganhos da melhor abordagem sobre o
baseline são mais expressivos quando considerados baixos valores de FPR. O melhor método
(PU + NU) alcançou uma redução de 12% com uma taxa de FPR de 0.001, enquanto o
baseline normpaths atingiu uma redução de apenas 7% nessa escala de precisão.
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Figura 4.10: Taxa de redução e Falsos-positivos

Os resultados alcançados utilizando a metodologia de entropia mínima para definição
do corte mínimo de réplicas foram superiores aos obtidos quando se é utilizado um limiar
fixo de réplica. A próxima seção mostra a combinação entre as taxas de detecção de réplicas
dos métodos discutidos.

4.4 Taxa de Detecção de Sítios Replicados

A Tabela 4.4 mostra os valores em taxa de detecção para os diferentes algoritmos.
O classificador construído através da estratégia de PU é bastante efetivo se considerarmos
menos de 1.000 candidatos a réplica, obtendo resultados próximos ao limite superior. Por
outro lado, o classificador construído por NU tem uma qualidade inferior se consideramos
menos de 10 candidatos a réplicas. Ainda assim, seu desempenho parece se manter quase
constante quando o número de candidatos cresce, indicando que as réplicas encontradas
receberam uma pontuação bem alta. O NormPaths mostrou uma característica similar ao
NU, alcançando resultados bem parecidos.

A próxima seção mostra a comparação entre o melhor método (PU+NU) de detecção
de réplicas intersítios apresentado neste trabalho e uma abordagem de detecção de replicas
intrassítios.
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Número de Candidatos
Algorithms 10 + 1 100 + 1 1000 + 1 10000 + 1
PU data 0.9900 0.9891 0.9615 0.7656
NU data 0.6590 0.4429 0.4300 0.4287
PU + NU 1.0000 1.0000 0.9905 0.8272
NormPaths 0.6619 0.4192 0.4105 0.4088
B-SVM 0.9805 0.9622 0.9349 0.7034
Upper bound 1.0000 0.9901 0.9586 0.7555

Tabela 4.4: Taxa de detecção de réplicas

4.5 Combinação de algoritmos intersítios e

intrassítios

A Tabela 4.5 mostra a taxa de redução obtida pelo algoritmo de detecção de réplicas
intersítios proposto, com diferentes taxas de FPR. A tabela também mostra uma taxa de
redução obtida por um algoritmo que detecta réplicas intrassítios [Dasgupta et al., 2008].

A parte superior da tabela mostra o número de URLs duplicadas na coleção de teste
e a distribuição desse valor em duplicatas intrassítios e intersítios. Em seguida é possível
observar a interseção entre os diferentes tipos de duplicatas, ou seja, quantas URLs são tanto
intrassítios quanto intersítios. Além disso é demonstrada a quantidade de duplicatas obtidas
ao variar o grau de erro dos algoritmos de detecção intersítios (FPR de 0.000 a 0.005) e
intrassítios (ε de 0.0 a 0.1). O valor de FPR representa a taxa de sítios falsos positivos recu-
perados durante a detecção de réplicas e ε representa o número de regras erradas admitidas
pelo algoritmo de DUST ao representar URLs de conteúdo similar.

A parte inferior da tabela mostra a taxa de redução obtida ao aplicar os algoritmos e o
quanto é possível reduzir ao combinar as técnicas distintas. É possível também avaliar a taxa
de redução obtida com a variação da taxa de erro permitida em cada técnica.

Existem 6.948.501 URLs duplicadas na coleção: 6.514.746 duplicatas intrassítios e
843.526 duplicatas intersítios. Além disso, 409,771 URLs ocorrem tanto como intersítios
quanto como intrassítios simultaneamente. Foram considerados duas configurações de algo-
ritmos intrassítios: (i) sem nenhuma taxa de erro para as regras geradas (ε = 0.0) que elimina
cerca de 4% das duplicatas, e (ii) com uma alta taxa de erros (ε = 0.1) que elimina cerca de
23% do conteúdo duplicado. A redução obtida pelo algoritmo proposto depende da taxa de
FPR permitida, e varia de 7.9%, sem nenhuma taxa de falsos positivos, para 19% com uma
FPR de 0.005. Finalmente, a combinação de ambas técnicas possibilita uma redução maior
que 21% com ε = 0.0. A taxa de redução sobe para 37% para ε = 0.1.
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FPR
0.000 0.001 0.005

# URLs duplicadas 6948501 − − −
# URLs intrassítios 6514746 − − −
→ ε = 0.0 293374 − − −
→ ε = 0.1 1628685 − − −
# URLs intersítios 843526 555880 865384 1331215
# inter ∩ intra 409771 286485 446182 758927
−→ ε = 0.0 64947 38835 70232 110284
−→ ε = 0.1 151683 98377 170827 388022
RR intra 0.9376 − − −
−→ε = 0.0 0.0422 − − −
−→ε = 0.1 0.2344 − − −
RR inter 0.1213 0.0791 0.1245 0.1916
RR inter + intra 1.0000 − − −
−→ ε = 0.0 0.1541 0.1166 0.1567 0.2179
−→ ε = 0.1 0.3340 0.3002 0.3343 0.3701

Tabela 4.5: Taxa de redução em URLs duplicadas

4.6 Tempo de Execução

O processo EM é executado inteiramente offline, construindo assim um conjunto de
treinamento final para o classificador. A Tabela 4.6 mostra o tempo gasto durante o processo
EM. A criação do conjunto de treino através de PU gasta mais de 2.5 horas se um classi-
ficador parcial é construído do zero após cada transição de rótulos. Esse tempo cai para
112 segundos se os modelos parciais são construídos e atualizados de maneira incremental
[Lourenco Jr. et al., 2014]. A criação de um conjunto de treino através de NU exige mais
iterações, e portanto mais tempo é necessário. Finalmente são gastos menos de 0.1 segundos
para construir um classificador para uma instância arbitraria de candidato a réplica.

Offline Online
EM process Time Learning classifiers Time
−PU (from scratch) 8838.98 −Rule extraction 0.0575
−PU (incremental) 112.26 −Prediction 0.0086
−NU (from scratch) 9172.37 −Aggregation 0.0232
−NU (incremental) 131.11

Tabela 4.6: Tempo de execução em segundos
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4.7 Comparação entre Métodos

Esta seção apresenta uma discussão sobre o comportamento e resultados obtidos pelos
algoritmos discutidos neste trabalho.

NormPaths Um fator que prejudica a identificação de réplicas com o uso de heurísticas
baseadas no conteúdo textual das páginas é a estratégia de cobertura em largura adotada por
coletores web. Nesse caso, é priorizada a busca por novos sítios ao invés de sítios completos,
o que dificulta o processo de encontrar interseções entre os conjuntos de páginas de sítios
replicados nas bases das maquinas de busca. Sendo assim, mesmo que um sítio A seja uma
réplica de um sítio B, é possível que o conjunto de páginas de A, conhecido até o momento
pelo coletor web, seja muito distinto do conjunto de páginas coletado deB, o que prejudica a
heurística de predição. Além disso sítios duplicados podem conter conteúdo dinâmico, onde
mesmo que determinada URL seja coletada duas vezes em seguida, o conteúdo coletado irá
diferir. Também podem existir páginas de conteúdo idêntico ou similar e ainda assim não
serem réplicas. Um exemplo de sítios de conteúdo similar que não constituem uma réplica
são os sítios que armazenam cifras musicais. Nesse tipo de sítio o conteúdo é muito similar,
uma vez que ambos podem ter as mesmas letras musicais.

Por combinar várias características de naturezas diferentes e utilizar um processo de
classificação para aprender padrões que caracterizam a Web e por conseguinte sítios repli-
cados, o algoritmo de aprendizado de máquina foi capaz de superar problemas enfrentados
pelo NormPaths alcançando assim resultados superiores.

B-SVM O algoritmo semissupervisionado B-SVM foi competitivo na criação de conjun-
tos de treino mais diversos assim como na avaliação de pares candidatos a réplica. Porém,
o custo computacional exigido para treinamento do algoritmo durante a coleta de páginas
web é uma grande desvantagem. Outro fator importante é que as características inerentes do
algoritmo não permitem a utilização de múltiplos limiares de transição de rótulos durante o
processo EM. Mais especificamente, esse algoritmo não realiza uma indução de treino indivi-
dual para cada instância de teste, sendo necessário um limiar global para todas as instâncias.

Réplicas intrassítios Versus Réplicas intersítios Foi observado um número ex-
pressivamente maior de URLs duplicadas intrassítios do que réplicas intersítios. A primeira
explicação possível também está relacionada à característica de cobertura da Web realizada
pelos coletores, uma vez que podem ser encontradas interseções pequenas de páginas conhe-
cidas, mesmo em sítios completamente duplicados.
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Outro fator importante é que, no momento em que um par de sítios duplicados é de-
tectado, é possível parar a coleta desses sítios, fazendo com que novas URLs não sejam
coletadas (inclusive URLs internamente duplicadas). Desse modo, a taxa de redução de con-
teúdo duplicado pode ser ainda maior. Porém, este trabalho não propôs uma metodologia
para escolha correta de qual sítio deve ser removido em um par replicado, ou ainda, quando
sítios replicados devem ser reavaliados.



Capítulo 5

Conclusões e Trabalhos Futuros

A presença de conteúdo duplicado na Web tem um impacto negativo em sistemas de
recuperação de informação. As máquinas de busca da web sofrem o custo de armazenar
e processar conteúdo desnecessário e até mesmo por prover resultados de busca que não
oferecem valor real aos usuários.

É possível dividir os tipos de URLs duplicadas em conjuntos intrassítios, se elas ocor-
rem dentro de um mesmo sítio web, e intersítios, se ocorrem em sítios distintos. Enquanto a
maioria dos trabalhos na literatura lida com réplicas intrassítios, uma solução completa exige
que o conteúdo duplicado intersítios também seja tratado.

Esta dissertação propôs um algoritmo para detecção de réplicas intersítios e avaliou o
impacto da remoção de sítios duplicados sobre uma coleção real de páginas web. Foi pro-
posta uma abordagem baseada em Maximização de Expectativas na criação de conjuntos de
treino para um classificador binário. Mais especificamente, essa abordagem permite a iden-
tificação de exemplos não óbvios a partir de exemplos óbvios e fáceis de se conseguir. Além
disso, as características do algoritmo de classificação utilizado (LAC) permitiram a definição
de valores ótimos para os parâmetros que definem os rótulos dos exemplos desconhecidos.
Assim foi possível criar um treinamento efetivo para o classificador proposto sem o alto
custo de anotação humana do conjunto de treino.

Os resultados de um classificador construído a partir de exemplos positivos de réplicas
foi combinado aos resultados de um classificador construído a partir de exemplos negativos
de réplicas. Essa estratégia faz com que os erros associados a um classificador possam ser
compensados por outro classificador e assim melhorar o desempenho da tarefa de detecção
de réplicas. Os experimentos realizados mostraram uma redução de quase 8% no número
de URLs duplicadas. Se for permitida uma taxa de falsos positivos de 0.005, a taxa de
redução sobe para 19%. Finalmente a combinação do algoritmo com técnicas de eliminação
de réplicas intrassítios possibilitou uma redução de até 21% no número de duplicadas.
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No futuro, pretendemos estudar novas características que ajudem a melhorar a quali-
dade do algoritmo de detecção de réplicas proposto. Uma possibilidade é avaliar a conectivi-
dade entre sítios, ou seja qual a relação entre sítios duplicados, como possíveis apontamentos
compartilhados entre si. Além disso pretendemos investigar novas estratégias de combina-
ção de rankings oriundos de treinamento com exemplos de réplicas e não réplicas. Também
pretendemos realizar um estudo sobre a melhor estratégia para escolha de quais sítios re-
plicados devem ser propriamente removidos das bases de máquinas de busca e quais devem
permanecer. Também é importante investigar o impacto das técnicas propostas em tempo de
coleta e estudar a viabilidade da adaptação do algoritmo proposto em um coletor real.
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