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Resumo

A crescente demanda e disponibilização de dados em larga escala de atos normativos

brasileiros apresentam oportunidades desafiadoras para a sociedade, particularmente na

construção de sistemas computacionais que possam aprender, raciocinar e realizar in-

ferências com base em conhecimentos prévios. Nesse contexto, as bases de conhecimento

são ativos de extrema importância para a representação e o racioćınio automatizado do

conhecimento em diversos domı́nios de aplicação. Um exemplo relevante é a inferência

de informações a partir de sua representação em redes (grafos de conhecimento), que

tem ganhado notoriedade acadêmica e industrial nos últimos anos. Diante disso, esta

dissertação visa desenvolver um modelo de Inteligência Artificial utilizando técnicas de

Aprendizado de Máquina em grafos para a predição da popularidade de atos normativos

brasileiros espećıficos da área de segurança alimentar. O desenvolvimento do projeto exi-

giu a implementação de um fluxo de processamento (pipeline) estruturado e abrangente,

com o intuito de realizar análises detalhadas e produzir resultados relevantes. A base de

dados utilizada foi composta por atos normativos brasileiros voltados para a segurança

alimentar, obtidos no site oficial do Ministério da Agricultura e Pecuária (MAPA). A co-

leta dos dados normativos foi realizada por meio da técnica de web scraping, que permitiu

a captura estruturada e sistemática de 320 atos normativos em formato PDF. As etapas

do estudo inclúıram: tratamento dos dados, modelagem de tópicos, criação de matriz de

similaridade, construção de grafos e suas caracteŕısticas, geração de embeddings do grafo,

e experimentos com modelos de Aprendizado de Máquina utilizando embeddings e featu-

res do grafo, além da aplicação do método SHAP. Os resultados evidenciam que a análise

dos atos normativos através do BERTopic permitiu a identificação de tópicos relevantes,

enquanto a construção de grafos e a aplicação de técnicas de Aprendizado de Máquina

possibilitaram a predição da popularidade desses atos normativos. Conclui-se que a me-

todologia aplicada não só fornece uma análise detalhada e robusta da popularidade dos

atos normativos, mas também contribui significativamente para o campo de pesquisa ao

demonstrar a eficácia das técnicas de Aprendizado de Máquina em grafos no contexto

juŕıdico e normativo.

Palavras-chave: Inteligência Artificial. Aprendizado de Máquina. Grafos. Legislação

Brasileira. Segurança Alimentar.



Abstract

The growing demand and availability of large-scale data on Brazilian normative acts

present challenging opportunities for society, particularly in the construction of computa-

tional systems that can learn, reason, and make inferences based on prior knowledge. In

this context, knowledge bases are extremely important assets for the representation and

automated reasoning of knowledge in various application domains. A relevant example

is the inference of information from its representation in networks (knowledge graphs),

which has gained academic and industrial notoriety in recent years. Therefore, this disser-

tation aims to develop an Artificial Intelligence model using Machine Learning techniques

in graphs to predict the popularity of Brazilian normative acts specific to the area of

food security. The development of the project required the implementation of a struc-

tured and comprehensive processing pipeline to perform detailed analyses and produce

relevant results. The database used was composed of Brazilian normative acts focused

on food security, obtained from the official Ministério da Agricultura e Pecuária (MAPA)

website. The collection of normative data was carried out using web scraping techniques,

which enabled the structured and systematic capture of 320 normative acts in PDF for-

mat. The study stages included: data processing, topic modeling, creation of a similarity

matrix, construction of graphs and their characteristics, generation of graph embeddings,

and experiments with Machine Learning models using embeddings and graph features,

in addition to the application of the SHAP method. The results show that the analysis

of normative acts through BERTopic allowed the identification of relevant topics, while

the construction of graphs and the application of Machine Learning techniques enabled

the prediction of the popularity of these normative acts. It is concluded that the ap-

plied methodology not only provides a detailed and robust analysis of the popularity of

normative acts but also significantly contributes to the research field by demonstrating

the effectiveness of Machine Learning techniques in graphs in the legal and normative

context.

Keywords: Artificial Intelligence. Machine Learning. Graphs. Brazilian Legislation.

Food Security.
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Caṕıtulo 1

Introdução

No Brasil mais de 5 milhões de regras juŕıdicas geradas por cerca de 5 mil entes legislativos

nas três esferas normativas diferentes - União, Estados e Munićıpios - com competências

concorrentes. Isso causa confusão, tanto por parte da administração pública ao criar leis

contraditórias e amb́ıguas, quanto instabilidade e insegurança juŕıdica para os cidadãos

(Soares, 2009).

O Brasil se caracteriza por intensa atividade legislativa e, talvez por isso, sofre as

consequências negativas dessa produção massiva, como falta de planejamento adequado

e rigor. Desta maneira, é crucial a vigilância sobre a qualidade da elaboração normativa.

A preocupação com a qualidade das leis e dos atos normativos no âmbito dos Poderes

Executivo e Legislativo no Brasil tem ganhado relevância na academia, mas ainda se

encontra em estágios iniciais de desenvolvimento. Refletir sobre a qualidade desses atos

é essencial para garantir a segurança juŕıdica, promover a transparência do Estado e

proteger os direitos e deveres dos cidadãos. Portanto, a discussão sobre a qualidade dos

atos normativos no Brasil é fundamental para melhorar o sistema legal e fortalecer o

Estado de Direito.

Dentre a seara legislativa, é objeto deste estudo os atos normativos, emitidos e

disponibilizados pelo Ministério de Agricultura e Pecuária desta Federação, que tratam

sobre segurança alimentar. Esse tema é relevante pois segurança alimentar e desempenha

um papel vital para garantir que todos tenham acesso a alimentos seguros, saudáveis e

adequados para consumo. As leis que tratam sobre segurança alimentar são voltadas para

a proteção da saúde e bem-estar da sociedade.

Uma maneira de avaliar o impacto de uma lei é a frequência ou popularidade com

que um ato normativo é buscado e discutido online. Tal popularidade serve como um

indicador de relevância, mostrando que um ato normativo está sendo amplamente buscado

e discutido online, o que sugere seu interesse para a sociedade. A popularidade também

pode ajudar na avaliação do impacto de uma lei ou regulamento, pois atos normativos que

geram muita discussão geralmente têm um impacto significativo na vida das pessoas, seja

positivo ou negativo. Além disso, a popularidade pode ser um sinal de alto engajamento

público, essencial em democracias, onde é importante que os cidadãos estejam atentos e

envolvidos nos processos legislativos e regulatórios. Para pesquisadores e legisladores, a
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popularidade pode ajudar a priorizar quais atos normativos precisam de maior atenção ou

revisão, permitindo uma análise mais detalhada das suas implicações e posśıveis melhorias.

Porém a popularidade não garante sua qualidade.

Uma das técnicas posśıveis para avaliar legislações é o uso de Aprendizado de

Máquina. Essa abordagem é particularmente relevante devido à quantidade de entes le-

gisladores, o volume de legislação vigente, a linguagem técnica utilizada, a diversidade de

formatação e a constante evolução das leis. Técnicas de Aprendizado de Máquina se mos-

tram eficazes na análise de leis por sua capacidade de processar grandes volumes de dados,

automatizar tarefas repetitivas e extrair informações relevantes de textos complexos.

Além disso, algoritmos de Aprendizado de Máquina podem prever resultados de

casos judiciais e identificar tendências em decisões anteriores, auxiliando advogados e

júızes na tomada de decisões informadas. Isso torna a análise legal mais eficiente, precisa

e informada, beneficiando o trabalho juŕıdico.

Essas técnicas também permitem a personalização de recomendações legais, de-

tecção de anomalias e fraudes, e o aprimoramento da qualidade legislativa. Ao analisar

o impacto de leis existentes, o Aprendizado de Máquina fornece insights para melhorias,

tornando a criação e aplicação de legislações mais eficazes e eficientes. Isso resulta em

maior precisão, eficiência e suporte na análise de complexidades juŕıdicas.

Associado ao Aprendizado de Máquina, a técnica de Processamento de Linguagem

Natural (NLP) possibilita a análise textual automatizada, célere, confiável afim de extrair

as features. Essas variáveis, presentes intrinsecamente nos dados, será utilizada para

a realizar as classificações, além de serem essenciais na identificação de padrões pelo

algoritmo pela aprendizagem de máquinas.

Diante deste panorama da intensa atividade legislativa brasileira, e os posśıveis

conflitos decorrentes, e entendendo a relevância do tema da segurança alimentar, acredita-

se que a aplicação das técnicas de NLP e Aprendizado de Máquina podem contribuir na

discussão do tema por meio do destaque da popularidade dos atos normativos.

As motivações desta pesquisa foram duas. Uma é pessoal, pois minha filha e eu

fomos diagnosticados com doença crônica autoimune de origem genética e mecanismo in-

flamatório deflagrado pela ingestão alimentar (doença ceĺıaca) em 2016, para qual não

há medicamento, tratamento ou cura, apenas controle de danos e sintomas a partir da

supressão de alimentos que contenham glúten. Percebemos, no cotidiano, que a segu-

rança alimentar é frequentemente comprometida pela rotulagem incorreta, pela falta de

informação adequada sobre a composição dos alimentos e pela ausência de rigor na fisca-

lização das normas de segurança alimentar. Por essa razão, busquei compreender melhor

sobre a elaboração e fiscalização de atos normativos brasileiros relacionados à segurança

alimentar.

Em segundo lugar em razão de duas disciplinas isoladas que cursei no Depar-

tamento de Ciência da Computação (DCC) da Universidade Federal de Minas Gerais
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(UFMG): Aprendizado de Máquina e Processamento de Linguagem Natural, sendo que a

segunda me despertou muito interesse. Posteriormente, aprovado como aluno regular do

Mestrado, procurei o Professor Dr. Adriano Alonso Veloso, pela referência em trabalhos

com NLP.

Neste mesmo peŕıodo, tive a oportunidade de conhecer a Professora Dra. Fabiana

de Menezes Soares, que desenvolvia o Pós-doutorado no Laboratório de Inteligência Ar-

tificial (LIA) no DCC/UFMG juntamente com o professor Adriano. A Professora Dra.

Fabiana possui um vasto conhecimento sobre legislação alimentar e ao analisar seu projeto

de Pós-Doutorado da Professora Dra. Fabiana, intitulado: “Análise preditiva aplicada a

sistemas normativos complexos: IA para detecção de riscos ao direito à alimentação”,

surgiu a oportunidade de juntar o meu cotidiano de restrição alimentar com o uso da IA,

como uma forma de extensão dos estudos realizados pela Professora Dra. Fabiana e para

entender sobre a elaboração e fiscalização de atos normativos brasileiros relacionados à

segurança alimentar.

Debater esse problema é fundamental para melhorar a análise e a gestão dessas

normas. Predizer a popularidade dos atos normativos é importante porque permite iden-

tificar quais normas têm maior impacto e aceitação entre o público, o que pode orientar

poĺıticas públicas e estratégias de comunicação mais eficazes. Além disso, a popularidade

dos atos normativos pode influenciar a sua implementação e o cumprimento, tornando a

predição uma ferramenta valiosa para a tomada de decisões no âmbito governamental.

1.1 Problema de pesquisa

A utilização de técnicas de Aprendizado de Máquina em grafos pode auxiliar na

predição da popularidade de atos normativos brasileiros do MAPA?
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1.2 Objetivos

1.2.1 Objetivo Geral

Desenvolver um modelo de Inteligência Artificial com o uso de técnicas de Aprendi-

zado de Máquina em grafos para predição da popularidade de atos normativos brasileiros

espećıficos para a área de segurança alimentar.

1.2.2 Objetivos Espećıficos

• Revisar a literatura acadêmica relevante para construir uma base teórica sólida sobre

a aplicação de técnicas de Aprendizado de Máquina em grafos, focando na predição

da popularidade de atos normativos brasileiros relacionados à segurança alimentar;

• Coletar e organizar todos os atos normativos emitidos pelo Ministério da Agricul-

tura, Pecuária e Abastecimento (MAPA), que serão utilizados como dados para a

análise;

• Aplicar o método BERTopic para identificar e agrupar tópicos presentes nos atos

normativos, facilitando a análise temática desses documentos;

• Construir um grafo onde os nós representam os atos normativos e as arestas repre-

sentam os tópicos identificados e a relação entre esses atos normativos, utilizando a

biblioteca NetworkX ;

• Empregar técnicas de Graph Neural Networks (GNN) e Node2Vec para gerar em-

beddings, que são representações vetoriais dos grafos, capturando a estrutura e as

caracteŕısticas dos nós e arestas; e

• Desenvolver e treinar um modelo de Aprendizado de Máquina que utilize os embed-

dings gerados e features derivadas dos grafos para prever a popularidade dos atos

normativos, classificando-os em quartis.
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Caṕıtulo 2

Referencial Teórico

Haja vista que os pontos focais para o entendimento desta pesquisa são correlacionar o que

é segurança alimentar, atos normativos e Inteligência Artificial, os temas serão abordados

a seguir, para que seja posśıvel franquear embasamento teórico aos resultados alcançados.

Segurança alimentar é um conceito crucial que envolve garantir que todas as pes-

soas tenham acesso a alimentos seguros, nutritivos e em quantidade suficiente para uma

vida saudável. Este tema é de suma importância devido aos seus impactos na saúde

pública, qualidade de vida das populações e sustentabilidade ambiental. A falta de segu-

rança alimentar pode levar a má nutrição, obesidade, doenças crônicas e deficiências de

micronutrientes. Garantir alimentos de qualidade previne doenças e fraudes alimentares,

protegendo especialmente grupos vulneráveis como crianças e idosos. Práticas sustentáveis

são essenciais para preservar recursos e garantir o futuro alimentar. A relevância da segu-

rança alimentar é amplamente discutida na literatura cient́ıfica, destacando a interconexão

entre saúde, desenvolvimento sustentável e poĺıticas públicas eficientes.

A relevância da segurança alimentar é amplamente discutida na literatura ci-

ent́ıfica, com diversos estudos sublinhando sua importância para a saúde pública e o

desenvolvimento sustentável. A Organização das Nações Unidas para a Alimentação e a

Agricultura (FAO), em seu relatório de 2019, aborda de forma abrangente a interconexão

entre segurança alimentar, saúde e desenvolvimento sustentável, ressaltando a necessidade

de sistemas alimentares resilientes e inclusivos para garantir o acesso universal a alimentos

nutritivos.

Pinstrup-Andersen (2009) destaca a complexidade da segurança alimentar, consi-

derando fatores como a disponibilidade de alimentos, o acesso econômico e f́ısico a esses

alimentos, a utilização nutricional adequada e a estabilidade desses elementos ao longo

do tempo. Seu trabalho enfatiza a importância de poĺıticas públicas eficazes que possam

mitigar os riscos associados à insegurança alimentar, especialmente em regiões vulneráveis.

Godfray et al. (2010) exploram os desafios e estratégias para alimentar uma po-

pulação global crescente, abordando questões como a intensificação sustentável da agri-

cultura, a redução de perdas e desperd́ıcios de alimentos, e a adaptação às mudanças

climáticas. Este estudo enfatiza a necessidade de poĺıticas integradas que promovam a se-

gurança alimentar em um contexto de pressões ambientais crescentes, propondo soluções
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inovadoras e colaborativas para garantir a sustentabilidade dos sistemas alimentares glo-

bais.

Esses estudos, em conjunto, fornecem uma visão abrangente e multidimensional da

segurança alimentar, destacando a necessidade de abordagens hoĺısticas e interdisciplina-

res para enfrentar os desafios contemporâneos e futuros nesta área crucial.

2.1 Norma Juŕıdica e atos normativos

No contexto juŕıdico brasileiro, os textos produzidos são organizadas de maneira

hierárquica, em que normas de diferentes ńıveis de importância e abrangência se so-

brepõem ordenadamente, garantindo a coerência e a estabilidade do sistema legal. A

hierarquia das normas é essencial para compreender como os atos normativos infralegais,

objeto deste estudo, se inserem no arcabouço juŕıdico e sua importância para a efetivação

das poĺıticas públicas e a regulação de diversas atividades sociais.

Segundo Kelsen, as normas hierarquizadas se apresentam em formato de pirâmide,

na qual as normas inferiores devem respeitar as normas superiores. No ápice da pirâmide

está a Constituição da República Federativa do Brasil de 1988, que é o fundamento de

validade de todo o ordenamento juŕıdico.

Figura 2.1: Pirâmide de Kelsen. Estrutura geral da pirâmide normativa.

Fonte: Manual de elaboração de atos normativos. Ministério da Saúde (2021)

A Constituição Federal de 1988 ocupa o topo da pirâmide normativa no Brasil,

sendo a norma fundamental que confere validade a todas as demais normas do sistema.

Abaixo da Constituição estão as emendas constitucionais, que são instrumentos destinados

a alterar ou complementar o texto constitucional. Em um ńıvel inferior, encontram-se
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as leis complementares, leis ordinárias e leis delegadas, que são elaboradas pelo Poder

Legislativo e têm como objetivo regulamentar matérias de competência da União.

Seguindo na estrutura hierárquica, encontramos as medidas provisórias, que são

editadas pelo Presidente da República em situações de relevância e urgência, com força

de lei, mas sujeitas à posterior aprovação pelo Congresso Nacional. Em um patamar

subsequente, estão os decretos legislativos e as resoluções, que também são atos do Poder

Legislativo, porém com funções espećıficas e limitadas.

Os atos normativos infralegais, que incluem decretos, portarias, instruções nor-

mativas, resoluções administrativas e outros atos administrativos, situam-se na base da

pirâmide normativa. Embora ocupem uma posição hierárquica inferior, esses atos desem-

penham um papel crucial na aplicação e execução das leis, detalhando procedimentos,

estabelecendo regras complementares e adaptando as normas gerais às especificidades de

diferentes contextos administrativos e setoriais.

Os decretos são editados pelo Presidente da República ou por autoridades delega-

das e têm a função de regulamentar as leis, especificando as condições de sua aplicação.

As portarias, por sua vez, são expedidas por ministros de Estado e outras autoridades

administrativas, visando detalhar e orientar a execução de poĺıticas públicas e a adminis-

tração de serviços públicos. As instruções normativas e as resoluções administrativas são

emitidas por órgãos e entidades da administração pública para orientar a atuação de seus

servidores e assegurar a uniformidade e eficiência dos procedimentos administrativos.

A importância dos atos normativos infralegais reside em sua capacidade de conferir

agilidade e flexibilidade à administração pública, permitindo que o Poder Executivo ajuste

as normas às realidades dinâmicas e complexas do dia a dia administrativo. Esses atos

complementam as leis e viabilizam sua execução prática, assegurando a implementação

eficaz das poĺıticas públicas e a prestação de serviços à sociedade.

Em śıntese, a compreensão da hierarquia das normas e da função dos atos nor-

mativos infralegais é fundamental para a análise e o desenvolvimento de qualquer estudo

juŕıdico. Esse entendimento é particularmente relevante quando se trata de áreas es-

pećıficas e cruciais, como a segurança alimentar.

A importância dos atos normativos infralegais reside em sua capacidade de conferir

agilidade e flexibilidade à administração pública, permitindo que o Poder Executivo ajuste

as normas às realidades dinâmicas e complexas do dia a dia administrativo. Esses atos

complementam as leis e viabilizam sua execução prática, assegurando a implementação

eficaz das poĺıticas públicas e a prestação de serviços à sociedade.

Em śıntese, a compreensão da hierarquia das normas e da função dos atos nor-

mativos infralegais é fundamental para a análise e o desenvolvimento de qualquer estudo

juŕıdico. Esse entendimento é particularmente relevante quando se trata de áreas es-

pećıficas e cruciais, como a segurança alimentar.

Na pesquisa, foram utilizadas as normas juŕıdicas Decreto-Lei, Lei, Portaria, Ins-
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trução Normativa, Decreto Legislativo, Medida Provisória, Decreto, Ato, Diário Oficial,

Memorando Circular, Decisão, Norma Operacional, Protocolo, Resolução MERCOSUL,

e Of́ıcio-Circular, além de uma cartilha contendo orientações sobre a inscrição de espécies

no RNC.

2.2 Inteligência Artificial

Não há na literatura uma definição clara a respeito de Inteligência Artificial (IA).

Esta indefinição reside nas diversas dimensões em que este tema pode ser abordado. Se-

gundo Norvig; Russell (2013), IA pode ser definida ao longo de duas dimensões: as que se

relacionam ao processo de pensamento e racioćınio e as que se referem ao comportamento.

Assim, foi adotada a definição de Nilsson (1998) “IA... está relacionada a um desempenho

inteligente de artefatos”, associada à dimensão do comportamento inteligente.

O desenvolvimento da AI tem experimentado vários ciclos de avanço desde seu

ińıcio em 1943. Atualmente, as principais forças motrizes de avanço da IA são dados,

processadores e algoritmos de aprendizado (Xuejiao; Xiaofeng; Yang, 2013). Desde 2010,

a quantidade de dados produzidos no mundo atingiu o ńıvel de zettabyte (ZB). O surgi-

mento de processadores espećıficos melhorou a eficiência do processamento de dados de

IA. Estes processadores aceleram a velocidade de treinamento e iteração dos cálculos e

promovem o desenvolvimento da indústria de IA. Conforme Farid (2017) o computador

infere caracteŕısticas do próprio objeto a partir do banco de dados e, em seguida, identifica

o objeto de acordo com a regra da caracteŕıstica. Segundo este mesmo autor, este aspecto

permite a eliminação de gargalos de processamento da IA.

Um atributo que está diretamente vinculado ao que a IA visa alcançar é a criação

de sistemas que possam perceber seu ambiente e, consequentemente, tomar medidas para

aumentar as chances de sucesso (Dopico et al., 2016). Como as formas de consumo estão

mudando, os fabricantes buscam concentrar-se em demandas cada vez mais individuali-

zadas para alcançar o máximo de clientes em potencial. Assim, o ambiente industrial

também deve tornar-se variável. Portanto, a indústria precisa fornecer uma linha de

produção dinâmica, onde não apenas os produtos são feitos, mas uma combinação de

produtos e serviços são oferecidos para obter vantagem contra seus concorrentes, o que

leva a produção a mudar constantemente (Lee; Wang; Su, 2015).

Para conseguir isso, deve-se buscar um grau de automação flex́ıvel, onde a com-

putação senśıvel e coleta de informações do ambiente, deve poder prever as próximas

etapas da produção com quase nenhuma interação com o operador, da mesma maneira

que a IA preconiza (Zhang et al., 2019). Devido ao avanço das tecnologias de IA e
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o desenvolvimento cont́ınuo da fabricação industrial inteligente no mundo, as empresas

começaram gradualmente a integrar as tecnologias de IA às atividades industriais. Este

processo de integração é chamado de Inteligência Artificial Industrial (Industrial Artificial

Intelligence – IAI) (Zhang et al., 2019). Da perspectiva industrial, é posśıvel definir a

IAI a partir dos requisitos de aplicação industrial, tecnologias e funções da IA. Funções

inteligentes estão ligadas a capacidade dos softwares de aprendizado e previsibilidade das

próximas etapas, cuja tecnologia é conhecida como Aprendizado de Máquina, uma das

linhas de estudo da AI, conforme apresentado a seguir.

2.2.1 Aprendizado de Máquina

Aprendizado de Máquina (do inglês, Machine Learning) é uma subárea da In-

teligência Artificial (IA), campo de pesquisa centrado na interseção de áreas como Es-

tat́ıstica e Ciência da Computação e pode ser vista como sendo uma área de estudos

que objetiva a criação de sistemas de computação capazes de realizar tarefas de forma

inteligente (Carvalho; Pereira; Cardoso, 2019). Esse termo foi proposto inicialmente em

1956 pelo pesquisador John McCarthy. Apesar da simplificação do termo aqui proposta,

esse é um conceito dif́ıcil de ser definido, principalmente porque a área está em constante

evolução e o entendimento sobre o que ele significa evolui ao longo do tempo.

Outra razão para a dificuldade em definir IA é a natureza interdisciplinar do campo.

Antropólogos, biólogos, cientistas da computação, linguistas, filósofos, psicólogos e neu-

rocientistas contribuem para o campo da IA, e cada grupo traz sua própria perspectiva

e terminologia (Luckin et al., 2016). A discussão se aprofunda ainda mais e se torna fi-

losófica quando tentamos definir o que significa ser “inteligente”. Uma boa definição para

“ser inteligente” é “ser racional”. Assim, um sistema é inteligente e, ao mesmo tempo,

racional, se “faz tudo certo” com os dados que tem (Russel, 2004). A Inteligência Artifi-

cial sistematiza e automatiza tarefas intelectuais e, portanto, é potencialmente relevante

para qualquer esfera da atividade intelectual humana (Gomes, 2010).

De uma forma geral, algoritmos de Aprendizado de Máquina podem ser vistos como

sendo funções que buscam fazer o mapeamento entre um conjunto de caracteŕısticas, uti-

lizadas como entrada, para extrair algum tipo de aprendizado. Os algoritmos de Aprendi-

zado de Máquina são frequentemente divididos em dois grupos: Aprendizado Supervisio-

nado e Aprendizado Não-Supervisionado. Na primeira classe, os algoritmos que possuem

a propriedade de utilizar rótulos previamente conhecidos para induzir funções que relaci-

onem o conjunto de caracteŕısticas de entrada com o atributo alvo.

Seja X o espaço de entrada e Y o espaço de sáıda, o objetivo do Aprendizado
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Supervisado é aprender uma função f : X → Y (Luxburg; Schölkopf, 2011). Na segunda

classe, os algoritmos relacionados com Aprendizado Não-Supervisionado lidam apenas

com o espaço de entrada X, uma vez que os rótulos das instâncias não são conhecidos

(exemplos não são rotulados). Este tipo de algoritmo é utilizado para clusterização ou

agrupamento de dados e redução da dimensão do espaço de entrada. Ainda sobre Apren-

dizado Supervisionado, os algoritmos são comumente divididos em duas subcategorias,

conforme a natureza do problema em que serão utilizados:

• Algoritmos de Classificação: utilizados em problemas onde o atributo alvo pode

ser descrito por classes ou assumem valores discretos. O principal exemplo de pro-

blema dentro dessa subcategoria é a classificação binária, onde existem duas classes

posśıveis para rotulagem das instâncias. Exemplos de algoritmos: árvores de decisão

e support vector machines.

• Algoritmos de Regressão: aplicados em problemas onde o atributo alvo é um

valor numérico (cont́ınuo). O objetivo dos algoritmos é induzir funções (lineares ou

não-lineares) que aproximem ao máximo os atributos de entrada à variável de sáıda.

Um exemplo de problema dentro dessa subcategoria é a previsão do preço de ações

ou previsão de temperatura. Exemplos de algoritmos: regressão linear e regressão

loǵıstica.

2.2.2 Processamento de Linguagem Natural

Segundo Chowdhury (2005), o Processamento de Linguagem Natural, comumente

conhecido como NLP (em inglês Natural Language Processing), é uma área de pesquisa e

exploração de mecanismos que possibilitam a manipulação de texto falado e escrito pelos

computadores. Uma definição mais formal que denota o termo NLP em (Liddy, 2001)

expressa que NLP é um grupo de técnicas computacionais para analisar e representar

naturalmente um ou mais ńıveis de análise lingúıstica a fim de alcançar uma aparência

humana no processamento da ĺıngua em várias tarefas e aplicações.

De fato, a ĺıngua é um mecanismo bastante variado, dependente da geografia e

vasto para ser facilmente compreendido pelas máquinas, gerando um interesse não só na

reprodução no interior dos computadores para compreensão do que se é dito, mas também

na reprodução da ĺıngua em aplicações, como os famosos chatbots.
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2.3 Modelagem de Tópicos

A modelagem de tópicos engloba um conjunto de algoritmos baseados em mode-

los estat́ısticos, que processam documentos para identificar suas estruturas temáticas em

tópicos, podendo envolver ainda uma análise de como estes se relacionam uns com os ou-

tros e como se alteram em cada intervalo de tempo (Blei, 2012). Esses algoritmos partem

da perspectiva de que um documento pode ser compreendido como uma distribuição de

tópicos, enquanto estes representam uma distribuição de palavras. Mais especificamente,

os tópicos consistem em estruturas latentes num documento que podem ser reveladas por

modelos de Aprendizado de Máquina e, assim, permitem descrever por meio de um con-

junto de palavras as temáticas tratadas no documento analisado (Blei; Jordan, 2003; Blei,

2012).

Existem diversas técnicas computacionais apropriadas para a modelagem de tópicos,

sendo uma das mais conhecidas a Latent Dirichlet Allocation (LDA), um algoritmo de

Aprendizado de Máquina Não-Supervisionado que utiliza como base um modelo proba-

biĺıstico generativo para captar a permutabilidade de palavras e documentos, sem consi-

derar a ordem que os documentos são apresentados nem das palavras que aparecem em

cada documento, baseando-se, então, na representação de BOW. Assim, a LDA parte

de um número pré-definido de tópicos e atribui – por meio de tratamentos estat́ısticos –

cada palavra a um ou mais tópicos, e cada tópico a um ou mais documentos (Blei; Jordan,

2003; Murphy, 2014).

Apesar de ser uma técnica muito utilizada, a LDA pode ser insuficiente quando a

pesquisa possuir como finalidade uma análise mais detalhada das relações existentes na

ocorrência de tópicos, já que ela parte do pressuposto que a ordem dos documentos e das

palavras não importam, e por não observar relações além da pura modelagem de tópicos

(Blei, 2012).

Diante dessas limitações, pode-se levar em consideração algoritmos que estendem

a LDA, diminuindo suas pressuposições e aumentando as variáveis de análise (Blei, 2012).

Alguns exemplos desses modelos são o Correlated Topic Model (Blei; Lafferty, 2005), que

observa a correlação entre os tópicos, e o Dynamic Topic Model (Blei; Lafferty, 2006),

que leva em consideração a ordem dos documentos e analisa as mudanças que ocorrem

em cada tópico no decorrer do tempo.

Existem ainda técnicas mais complexas que vão além das modelagens exclusiva-

mente probabiĺısticas citadas acima e fazem uso de embeddings, obtidos por meio de

modelos de linguagem baseados em transformers, para agrupar documentos com base

na similaridade semântica existente entre eles, adicionando como variável o contexto que

cada palavra se insere no documento. Exemplos de aplicações desse tipo são o Top2Vec

(Angelov, 2020), o BERTopic (Grootendorst, 2022) e o Combined Topic Model (Bianchi;
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Terragni; Hovy, 2021). Essas técnicas neurais podem aumentar a interpretabilidade dos

tópicos, já que suas palavras-chave passam a conter informações contextuais latentes –

inexistentes na abordagem com BOW.

2.4 Teoria dos Grafos

Teoria de Grafos teve sua primeira aparição com o famoso problema das sete pontes

de Königsberg, enfrentado por Leonhard Euler (1707-1783), um renomado matemático e

geômetra. Durante sua estadia em Königsberg (atualmente Kaliningrado), ele deparou-se

com esse desafio aparentemente simples, mas de solução elusiva até então. O problema

das sete pontes, ilustrado na Figura 2.2, consistia em determinar se era viável percorrer

todas as pontes sem repeti-las e retornar ao ponto de partida a partir de terra firme.

Figura 2.2: Cidade de Königsberg, com suas sete pontes destacadas.

Fonte: Goldbarg; Goldbarg (2012).

Euler, ao associar pontes a arestas e regiões de terra firme a vértices, concluiu que

o grafo correspondente teria que ser um grafo euleriano, onde a condição fundamental é

que todos os vértices possuem grau par, ou seja, cada vértice deve ter um número par de

conexões.

Formalmente, um Grafo G é um conjunto de três elementos {V(G),E(G), ψG},
onde V(G) é um conjunto não vazio e finito de vértices e |V (G)| = n e |E(G)| = m, sendo

E(G) um conjunto disjunto de V (G) que representam as arestas e ψG sendo uma função

incidente que associa com cada aresta de G um par não ordenado de vértices de G que
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não precisam ser distintos. Um exemplo pode ser visto abaixo:

V (G) = {v1, v2, v3, v4, v5, v6}

V(E) = {e1, e2, e3, e4, e5, e6}

ψG(e1) = v1v2, ψG(e2) = v1v3, ψG(e3) = v3v2, ψG(e4) = v4v2, ψG(e5) = v4v5, ψG

(e6) = v5v6

Figura 2.3: Exemplo de grafos não direcionado e direcionado.

Fonte: Elaborado pelo autor.

Os grafos podem ser ou não ser direcionados. Em grafos direcionados, as arestas

possuem uma direção representada por uma seta indicando o vértice em que a aresta

incide. Em grafos não direcionados as arestas não possuem direção e indicam um relacio-

namento mútuo. A Figura 2.3 (esquerda) mostra um exemplo de um grafo não direcionado

e a Figura 2.3 (direita) mostra um exemplo do mesmo grafo, porém direcionado. Um es-

tudo mais detalhado pode ser visto em J.A. Bondy e U.S.R. Murty, 1976. Normalmente,

utiliza-se uma representação gráfica (geométrica) de um grafo.

Em um grafo direcionado, considera-se um ciclo como um caminho fechado dire-

cionado. Um grafo direcionado é ćıclico se os vértices inicial e final coincidirem, caso

contrário, é denominado grafo direcionado aćıclico, não formando ciclo conforme as setas

roxas indicadas na Figura 2.2 (Aloise; Cruz, 2001).

Um grafo G é considerado bipartido quando se é posśıvel particionar o seu conjunto

V de vértices em dois subconjuntos V1 e V2, de modo que cada aresta deve possuir, obri-

gatoriamente, uma ponta em cada um destes dois subconjuntos. Geralmente é utilizada

a notação G = (V1∪V2, E) para representar um grafo bipartido (Szwarcfiter, 1984). Para

determinar se um grafo é bipartido deve-se verificar se os ciclos contidos em G possuem

comprimento par, pois, caso contrário, o caminho não terminaria no mesmo vértice de

ińıcio, já que em cada passo da travessia o vértice atual está no conjunto oposto ao que se

encontra o vértice anterior, e, portanto, não é posśıvel chegar ao vértice de ińıcio com um
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ciclo de comprimento ı́mpar. Um grafo é denominado bipartido completo quando existe

uma aresta conectando cada um dos vértices dos conjuntos V1eV2 (Szwarcfiter, 1984).

2.5 Graph Embedding

Graph embedding é o processo de transformação de um grafo num conjunto de

vetores espaciais de baixa dimensionalidade. O espaço gerado pelo conjunto de vetores

preserva propriedades dessa rede, de modo a garantir que nós mais similares, que com-

partilhem relações, fiquem mais próximos entre si nesse novo espaço. Há uma série de

motivos para uso do embedding, em contrapartida, de aplicação de métodos sobre o grafo

(Godec, 2018).

O primeiro motivo é que há todo um universo já amplamente estudado e um

grande conjunto de ferramentas para aplicação de algoritmos em vetores (embedding)

devido à bagagem de conhecimento acumulado pelos anos de estudo sobre vetores e suas

propriedades que possibilitaram alcançar bons resultados em algoritmos que trabalham

com esses objetos matemáticos em detrimento de grafos. Outro ponto positivo para uso

de embedding é sua representação comprimida, no qual comumente exige menor espaço

de armazenamento e, por conseguinte, menor tempo de processamento. Além disso, os

embeddings por serem vetores possibilitam operações matemáticas rápidas e simples, como

soma e multiplicação por escalar, se comparadas com operações sobre grafos.

Apesar das vantagens do uso de embedding, este possui uma série de desafios que

apesar de estarem sendo superados, não estão ainda suplantados. Por ser um embedding,

há a necessidade de representação num objeto menor, o vetor resultado do processo, o nó

ou o grafo de entrada sem que haja grande perda da informação presente. Devido a isso

são usadas uma série de considerações de conceitos presentes em grafos e busca-se aplicá-

los para uma melhor representação do grafo. Além desses conceitos, o uso de informações

como pesos nas arestas do grafo ou a presença de atributos nos nós e relacionamentos

podem ser primordiais para um melhor resultado de embedding.

Outro ponto desafiador é a eficiência desses algoritmos em grafos de grande di-

mensão. Grafos muito grandes podem exigir muito esforço computacional para percorrer

cada nó/subgrafo presente no grafo e gerar n caminhos aleatórios para representação em

vetores. Ainda seguindo nessa área, maiores embeddings preservam mais informação,

porém induzem mais espaço e tempo de complexidade (128 e 256 são usualmente usados).

Em virtude disso, eficiência no consumo de tempo e espaço são questões relevantes no

âmbito de geração de embedding em grafos. É importante salientar que existe na lite-

ratura uma sobrecarga do termo graph embedding. Isso se deve pela existência de duas
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categorias de embeddings que podem ser realizados sobre grafos.

A primeira categoria corresponde a conversão de cada nó do grafo num vetor de

espaço vetorial Rt, sendo t um número inteiro positivo. Essa abordagem é a tradicional,

usada nas maiorias das situações, e é conhecida pelo vertex/node embedding. Enquanto

o último, uma abordagem mais recente, o embedding é realizado ao ńıvel de subgrafos

(não nós), os transformando em vetores de Rt. Tal abordagem pode ser encontrada no

mapeamento de compostos qúımicos, no qual sua natureza pode ser interpretada como um

grafo. Contudo, pelas áreas não terem se desenvolvido ao mesmo tempo, o termo graph

embedding era inicialmente empregado somente para embeddings sobre nós. Devido a isso,

se usa até hoje o termo graph embedding para representá-la.

No contexto da complexa produção legislativa do Brasil, este estudo se propõe a

analisar os desafios relacionados à avaliação da popularidade e qualidade dos atos norma-

tivos no páıs, com um foco especial na aplicação de técnicas de Aprendizado de Máquina.

2.5.1 Node2Vec

O algoritmo Node2Vec foi desenvolvido por Grover e Leskovec (2016), para o apren-

dizado de caracteŕısticas em grafos. Este método é baseado em random walks, que fo-

ram propostos no método DeepWalk (Perozzi; Al-Rfou; Skiena, 2014). No DeepWalk,

introduziu-se o conceito da arquitetura Skip-gram, proposta em Mikolov et al. (2013) e

Perozzi, Al-Rfou e Skiena (2014) para métodos de aprendizagem de caracteŕısticas no con-

texto da linguagem natural. Neste método, cada palavra corrente (atual) é usada como

entrada para um classificador linear, que prediz as palavras a uma certa distância antes e

depois da palavra corrente. O Node2Vec é uma adaptação desta arquitetura, usada para

o aprendizado de caracteŕısticas no contexto de grafos.

Feito isso, também foi necessário modificar as random walks para maximizar a

extração de caracteŕısticas em grafos, gerando o conceito de biased random walk. E essas

biased random walks são usadas para o aprendizado de poderosas representações vetoriais

dos nós de grafos.

O Node2Vec foi desenvolvido para fazer amostragens da vizinhança de modo flex́ıvel

alternando entre BFS e DFS, e tal objetivo é obtido por meio de biased random walk que

explorar a vizinhança no modo de BFS assim como DFS.
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2.5.1.1 Random Walks

Dado um nó inicial u, uma simulação de random walk de tamanho fixo l é feita.

Sendo ci o i-ésimo nó da walk, partindo de c0 = u. Os nós ci são gerados pela distribuição

na equação abaixo, onde πvx é a probabilidade de transição não normalizada entre os nós

v e x, e Z é a constante de normalização.

P (ci = x | ci−1 = v) =

πvx

Z
, se (v, x) ∈ E

0, caso contrário
(2.1)

A Figura 2.4 demostra um exemplo de random walk, cada transição em azul mostra

o peso relacionado à aresta e a probabilidade de transição da escolha do próximo passo

da walk.

Figura 2.4: Exemplo de random walk.

Fonte: Gal (2018).

2.5.1.2 Search bias a

O modo mais simples de fazer uma biased random walk seria mostrar o próximo nó

baseado no peso das arestas wvx, por exemplo πvx = wvx. Entretanto, tal modo não levaria

em conta a estrutura do grafo e levaria a busca a explorar diferentes vizinhanças no grafo.

Adicionalmente, diferentemente da BFS e da DFS que são paradigmas de amostragem

adequados para structural equivalence e homophily respectivamente, e as random walks
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não devem se acomodar com essas noções de equivalência, pois grafos do mundo real

normalmente exibem uma mistura de ambas.

Uma random walk de segunda ordem é defina em Grover e Leskovec (2016) com

dois parâmetros p e q que guiam a walk : considerando a random walk que acaba de cruzar

a aresta (t, v) e atualmente está no nó v (Figura 2.5).

Figura 2.5: Ilustração do procedimento da random walk no Node2Vec.

Fonte: Grover e Leskovec (2016).

A walk agora precisa decidir o próximo passo, e então as probabilidades de transição

wvx são avaliadas nas arestas (v, x) partindo de v. Logo define-se a probabilidade de

transição não normalizada como πvx = αpq(t, x) · wvx, onde αpq(t, x) (segundo a equação

abaixo) e dtx denotando o menor caminho entre os nós t e x. Observa-se que dtx deve ser

0, 1 ou 2, e consequentemente os dois parâmetros p e q são necessários e suficientes para

guiar a walk.

αpq(t, x) =


1
p
, se dtx = 0

1, se dtx = 1

1
q
, se dtx = 2

(2.2)

Intuitivamente nota-se que os parâmetros p e q controlam o quão rápido a walk

explora e deixa a vizinhança do nó inicial u. Mais precisamente, os parâmetros que o

procedimento de busca definido interpole entre um BFS e uma DFS e assim torna o

procedimento ter mais afinidade para diferentes noções de equivalência de vértices.

2.5.1.3 Parâmetro de retorno

O parâmetro p controla a probabilidade de revisitar imediatamente a nó em uma

walk. Setá-lo com um alto valor (> max(q, 1)) garante que é menos provável de mostrar
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um nó já visitado nos próximos dois passos (a menos que o próximo vértice não tenha

vizinho). Essa estratégia incentiva uma moderada exploração do grafo e evita redundância

2-hop na amostragem. Caso contrário, se p é pequeno (< min(q, 1)), é provável que a

walk retroceda um passo e mantém a walk localmente próxima do nó de partida u.

2.5.1.4 Parâmetro de entrada-sáıda

O parâmetro q permite que a busca diferencie os nós ”internos”e ”externos”. Nós

”internos”referem-se aos nós que estão mais próximos ao nó de origem ou ao nó atualmente

considerado na caminhada, enquanto nós ”externos”referem-se aos nós que estão mais

distantes do nó de origem ou do nó atualmente considerado na caminhada. Olhando a

Figura 2.5, se q > 1 a random walk é provável de explorar os nós próximos de t. Tais

walks obtêm uma visão local do grafo subjacente ao nó de partida, e a walk se aproxima

do comportamento da BFS no sentido de que as amostragens abrangem os nós localmente

próximos. Em contraposição, se q < 1 a walk é inclinada a visitar nós mais distantes do

nó t.

Tal comportamento corresponde ao da DFS que incentiva a exploração externa.

Entretanto, uma diferença essencial é que a exploração ao modo de DFS é obtida usando

o método de random walk. Portanto, os nós amostrados não estão necessariamente au-

mentados de distância do nó de ińıcio u, mas por sua vez, há o benef́ıcio de um pré-

processamento computacionalmente tratável e uma amostragem com eficiência superior

das random walks.

2.5.1.5 Redes Neurais de Grafos

Segundo a definição de Kipf e Welling (2016), uma Rede Neural de Grafos (Graph

Neural Networks - GNN) é um modelo para aprender um sinal em um grafo G, que recebe

como entrada uma descrição de caracteŕısticas hi, ∀i e uma descrição da estrutura do grafo

em forma de matriz e produz uma sáıda de ńıvel de nó Z. A equação abaixo define uma

forma geral para o modelo e seus blocos de construção.

O processo para gerar Z é composto por uma série de iterações empilhando camadas

e/ou épocas para calcular um embedding final hZ . Na iteração k+1, para cada nó v ∈ V ,

a representação do nó é calculada por:
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hk+1
u = σ

(
hku,Θ

(
hkv ,∀ ∈ N (u)

)))
(2.3)

Aqui, hku é a incorporação do nó u na iteração k; θ é a função de agregação que

combina informações do nó vizinho do nó u; e σ é o que é conhecido como função de atua-

lização, responsável por transformar o resultado da função de agregação e a representação

de incorporação atual do nó u em uma nova incorporação para o nó u. A ideia é ilustrada

na Figura 2.6.

Figura 2.6: Blocos, message Passing, Aggregationh, Update para construção do GNN.

Fonte: Aritrasen.com (2022).

A Figura 2.6 ilustra o processo de passagem de mensagens em um grafo para o nó

1, enfatizando como as informações são agregadas dos nós vizinhos e subsequentemente

utilizadas para atualizar o estado do nó. O diagrama superior mostra um grafo com

quatro nós (1, 2, 3, 4), cada um associado a um vetor de caracteŕısticas (x1, x2, x3,

x4). As setas indicam a direção da passagem da mensagem para o nó 1 a partir de seus

vizinhos imediatos (nós 2 e 3) e do vizinho (nó 4). Na parte inferior esquerda, a seção

’AGGREGATE ’ detalha como as caracteŕısticas dos nós vizinhos são agregadas, cada

uma transformada por uma função h espećıfica do seu ńıvel de conexão com o nó 1 (k+1

para vizinhos imediatos, k+2 para o vizinho do vizinho). Na parte inferior direita, o passo

’UPDATE ’ mostra o vetor de caracteŕısticas do nó 1 atualizado para uma nova versão

h(k+2), integrando as informações agregadas de seus vizinhos.

As Redes Neurais de Grafos são uma generalização da maioria das arquiteturas

atuais de aprendizado profundo. Abordagens como redes convolucionais profundas (DCN)
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e redes neurais recorrentes (RNN) podem ser representadas como arquiteturas GNN com

a adição de informações estruturais. Em particular, pode-se argumentar que a DCN é um

caso particular de GNN para grafos de grade (pixels de imagens) e que a RNN é um caso

particular de GNN para grafos de linha.

Além da generalização geométrica, a ideia central dos modelos GNN é gerar re-

presentações dependentes tanto da estrutura do grafo quanto das caracteŕısticas do nó.

Dessa forma, a combinação da posição estrutural dos nós com as caracteŕısticas oferece

uma vantagem significativa ao comparar os modelos GNN com técnicas de incorporação

estrutural que produzem incorporações de baixa dimensão utilizando somente a estrutura

da rede, resultando em um vetor de incorporação único para cada nó.

Segundo Bronstein et al. (2021), a grande maioria dos trabalhos baseados em GNN

são derivados de três tipos de camadas de GNN, que são: convolutional, attentional, e

de message passing. A diferença entre esses tipos de GNN está na estratégia usada para

agregar nós vizinhos. No tipo convolutional (Kipf e Welling, 2016), a comunicação direta

(one-hop) é agregada usando a soma normalizada dos atributos de nó dos vizinhos. No

tipo attentional (Velickovi et al., 2017), as interações são impĺıcitas, e os nós vizinhos são

agregados conforme os coeficientes de atenção aprendidos α. Finalmente, o tipo message

passing se resume a calcular vetores arbitrários ao longo das arestas.

É importante observar que os três tipos de GNN, representados na Figura 2.7, estão

relacionados de forma hierárquica, com convolutional ⊆ attentional ⊆ message passing.

As GNNs de attentional podem representar as GNNs convolutional utilizando uma tabela

de pesquisa com αu,v = cu,v, onde α é a atenção entre os nós u e v w é o peso entre

nós. Ademais, os modelos de attentional e convolutional podem ser representados como

casos espećıficos de message passing, em que as mensagens correspondem simplesmente

às caracteŕısticas do nó multiplicadas por algum vetor mu,v.

Figura 2.7: Arquiteturas convolutional, attentional e message-passing.

Fonte: Bronstein et al., (2021).

Na Figura 2.7, observa-se que tanto as arquiteturas convolutional quanto as atten-

tional agregam os vetores de representações dos vizinhos para gerar novas representações

dos nós. A arquitetura GNN convolutional agrega o nó vizinho conforme os pesos de
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aresta, enquanto a arquitetura attentional utiliza pesos de agregação aprendidos. Por

outro lado, a arquitetura message passing agrega vetores arbitrários gerados por cada

vizinho.

2.5.1.6 Message passing

O conceito subjacente à message passing do GNN é que, em cada ciclo, cada nó vai

reunir informações de sua vizinhança local e produzir uma representação com dados que

combinam a representação inicial do nó e informações estruturais do grafo. Após k ciclos

de iterações de mensagens do GNN, as representações para cada nó contêm informações

sobre as caracteŕısticas em seu entorno até k-hop.

O conteúdo da mensagem é variável, mas geralmente consiste na representação do

nó com alguma transformação. Os nós vizinhos mantêm essas mensagens em uma espécie

de caixa de correio e as combinam ainda mais utilizando alguma função de agregação

variável. É importante notar que a caixa de correio é uma abstração para armazenar

temporariamente as mensagens antes da combinação e não faz parte do fundamento teórico

das GNNs. Na prática, diferentes estratégias podem ser empregadas para armazenar as

mensagens, dependendo da tecnologia alvo ou da aplicação.

2.5.1.7 Aggregation

A agregação desempenha um papel fundamental nas Redes Neurais Geométricas

(GNNs). Ela consiste em combinar as informações dos nós vizinhos em uma única repre-

sentação vetorial que será posteriormente incorporada à atualização do próprio nó. Esse

processo é central nas GNNs e tem sido amplamente estudado na literatura, devido à sua

capacidade de realizar diversas operações de convolução.

Durante a etapa de agregação, a função Θ coleta informações de um conjunto de

vizinhos N e gera um único vetor H que codifica de forma eficaz todas as caracteŕısticas

da vizinhança. Essa função pode variar desde operações simples, como soma e média,

até agregações mais complexas que envolvem o uso de redes neurais para combinar as

entradas. É importante notar que a função Θ é, essencialmente, uma função que opera

sobre um conjunto, o que significa que ela deve ser insenśıvel à ordem das entradas. Isso

é crucial no contexto das GNNs, pois não existe uma ordem natural nos vizinhos de um
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nó, e a identificação dos nós pode variar dependendo da inicialização do grafo.

Embora a maioria das implementações de GNNs utilize agregações simples e es-

tratégias para lidar com a permutação da ordem, alguns trabalhos, como os citados em

Murphy et al. (2018) e Xu et al. (2018), obtiveram bons resultados aplicando uma ordem

canônica aos vizinhos e utilizando funções que consideram a ordem, como as redes LSTM.

Em suma, a agregação é o componente mais crucial de uma GNN, uma vez que,

nas implementações mais relevantes, os parâmetros da função de agregação são treinados,

e não a representação vetorial inicial dos nós. Esse treinamento torna as GNNs mais

eficientes computacionalmente e, acima de tudo, indutivas, em vez de transdutivas. A

aprendizagem indutiva é vantajosa, pois permite a geração eficiente de representações

para nós não vistos durante o treinamento, ao contrário dos métodos transdutivos, que

requerem retrabalho do modelo para acomodar novos nós, o que pode ser inviável em

escala industrial. Com a aprendizagem indutiva, uma vez que os pesos de agregação são

aprendidos, não é necessário retrabalhar o modelo, a menos que ocorram mudanças nos

dados.

2.5.1.8 Update

A função de atualização comumente envolve operações simples, como a soma ou a

média entre a representação do nó hku e as representações agregadas dos vizinhos Θ
(
hku

)
,

seguidas por uma função não-linear σ. Um desafio recorrente ao desenvolver essas funções

é chamado de “suavização excessiva”, que ocorre quando, após várias iterações de GNN,

as representações de todos os nós se tornam muito semelhantes. Isso acontece porque a

influência dos vizinhos acaba dominando a representação inicial do nó.

Para combater a suavização excessiva e otimizar a etapa de atualização, trabalhos

como Phan et al. (2017 e Selsam et al. (2018) tentam aplicar analogias aos métodos

convencionais de aprendizado profundo, como conexões de salto e conexões controladas.

A etapa de atualização é o ponto onde as informações agregadas dos vizinhos do nó se

mesclam com a informação do próprio nó. Embora esta etapa seja opcional, é importante

mencionar que é posśıvel adicionar auto-laços no grafo e misturar a informação do nó

durante a etapa de agregação, mas isso leva a resultados inferiores (Hamilton, 2021) e

restringe significativamente a capacidade de priorizar a informação do nó em relação à

informação dos vizinhos. A representação vetorial resultante da etapa de atualização é

utilizada na próxima iteração durante a etapa de passagem de mensagens.
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2.6 BERTopic

Segundo Grootendorst (2022), o BERTopic é um framework que incorpora algorit-

mos para a busca automática de tópicos densos em uma coleção de documentos, partindo

do pressuposto de que documentos semanticamente similares formam tópicos (Figura 2.8).

Figura 2.8: Processo de modelagem de tópicos usando BERTopic. O modelo BERT é
utilizado para gerar embeddings, seguido pela redução de dimensionalidade com UMAP.
A clusterização é realizada com HDBSCAN e a importância das palavras em cada tópico
é avaliada usando c-TF-IDF.

Fonte: Grootendorst (2021).

A primeira etapa do BERTopic converte os documentos em dados numéricos uti-

lizando as técnicas de geração de embeddings do modelo BERT. Neste trabalho foi reali-

zada a redução de dimensionalidade dos dados antes de realizar o agrupamento através do

UMAP. A segunda etapa é a de clusterização, que é realizada através do HDBSCAN, um

algoritmo de agrupamento hierárquico por densidade, proposto em Campello, Moulavi e

Sander (2013).

Neste algoritmo, os documentos que possuem maior similaridade entre si são agru-

pados em clusters baseados na estabilidade do cluster. Uma das importantes carac-

teŕısticas do HDBSCAN é o fato de ele não forçar a seleção de um dado para um de-

terminado cluster. Caso o dado não se encaixe em nenhum grupo por similaridade, ele é

considerado um outlier.
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O modelo CountVectorizer foi utilizado para converter os tópicos em vetores de

contagem, removendo palavras irrelevantes como stopwords em português.

A última etapa do processo é a seleção dos tópicos com base na importância das

palavras. Para isso, o autor desenvolveu uma técnica denominada c-TF-IDF. Esta técnica

funciona de forma parecida com o TF-IDF original, que compara a importância das

palavras analisando todo o corpus, entretanto, o c-TF-IDF utiliza os clusters gerados na

etapa de agrupamento aplicando o TF-IDF em cada um deles. Esse processo classifica as

palavras conforme a importância para cada grupo gerado no processo de agrupamento e

extrai os principais tópicos de cada grupo. O cálculo é feito pela fórmula:

c− TF− IDF =
ti
wi

· log m∑n
j tj

(2.4)

Onde a frequência de cada palavra t é extráıda para classe i e dividida pelo número

total de palavras da classe i. Essa etapa pode ser vista como uma forma de regularização

das palavras frequentes na classe. Depois, esse valor é multiplicado pelo logaritmo do

número total de documentos (m) dividido pela frequência total da palavra t ao longo de

todas as classes n. Assim, é obtido um valor de importância para cada palavra em um

cluster que será utilizada para criar os tópicos.
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Caṕıtulo 3

Trabalhos Relacionados

Neste caṕıtulo são apresentados trabalhos recentes, publicados nos últimos 6 anos (2019–2024)

referentes à área de Aprendizado de Máquina em grafos. Tais estudos foram escolhidos

visando apresentar o que vem sendo publicado atualmente na literatura cient́ıfica sobre a

temática.

Em um estudo relacionado, Kipf e Welling (2019) investigaram a utilização de

Graph Convolutional Networks (GCNs) para a inferência em grafos de conhecimento.

A abordagem propõe a utilização de convoluções em grafos para capturar informações

estruturais e semânticas dos nós e arestas, promovendo uma representação mais robusta

do conhecimento contido nos grafos. Este método tem se mostrado eficaz em várias

aplicações, incluindo a predição de chatbots e a classificação de nós em redes complexas

(Kipf e Welling, 2019).

Outro trabalho relevante é o de Ma et al. (2022), que propuseram a técnica

Node2Vec para a extração de caracteŕısticas de grafos. Esta técnica foi desenvolvida

para capturar as relações estruturais e temporais em grafos de conhecimento, permi-

tindo a aplicação em diferentes domı́nios, como redes sociais e biologia computacional.

A técnica demonstrou resultados promissores ao melhorar a precisão das previsões em

diversas tarefas de Aprendizado de Máquina aplicadas a grafos (Ma et al., 2022).

O trabalho de Yang et al. (2023) introduziu o uso de modelos de Aprendizado

Profundo para a segmentação de páginas de documentos digitalizados. Utilizando uma

combinação de técnicas de Aprendizado de Máquina e grafos, o estudo aborda o problema

da segmentação de documentos, identificando componentes como blocos de texto, figuras

e tabelas. Os resultados experimentais, obtidos com imagens de documentos de bancos de

dados como o PRIMA Layout Analysis Datase, demonstraram o potencial da abordagem

proposta em lidar com leiautes diversificados e complexos, além de destacar a vantagem

da análise lógica de leiaute na extração de informações de documentos digitalizados (Yang

et al., 2023).

O estudo realizado por Zhang et al. (2024), intitulado ”Hierarchical Temporal

Graph Attention Networks for Popularity Prediction in Information Cascades”, explora

a predição da popularidade de cascatas de informação utilizando redes neurais baseadas

em grafos temporais hierárquicos. O trabalho aborda a modelagem dinâmica de grafos
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inteiros de cascata para capturar tendências de popularidade impĺıcitas em cascatas com-

plexas. Por meio da incorporação de embeddings de nós senśıveis ao tempo, mecanismos de

atenção em grafos e estruturas de pooling hierárquicas, o modelo HierCas demonstra de-

sempenho superior em comparação com as abordagens mais avançadas da área, conforme

comprovado por experimentos em dois conjuntos de dados do mundo real, dispońıveis no

repositório GitHub (Zhang et al., 2024).

Esses estudos evidenciam a evolução das técnicas de Aprendizado de Máquina

em grafos e suas diversas aplicações, desde a predição de popularidade em cascatas de

informação até a segmentação de documentos e a inferência em grafos de conhecimento.

A cont́ınua pesquisa e desenvolvimento nessas áreas prometem avançar ainda mais a

capacidade de análise e processamento de grandes volumes de dados estruturados em

grafos.



41

Caṕıtulo 4

Metodologia

Nesse caṕıtulo, está apresentada a metodologia utilizada para desenvolver esta pesquisa

de Mestrado e as etapas desenvolvidas, que possibilitaram o vislumbre dos resultados

alcançados.

4.1 Delineamento da pesquisa

A pesquisa realizada é de natureza quantitativa e descritiva, uma vez que utiliza

dados numéricos e técnicas computacionais para análise e predição, bem como busca

descrever e analisar a popularidade dos atos normativos utilizando técnicas avançadas de

processamento de dados. A abordagem quantitativa é evidenciada pelo uso de algoritmos

de Aprendizado de Máquina e análise de grafos para tratar e prever a popularidade dos

atos normativos, enquanto a natureza descritiva visa fornecer uma compreensão detalhada

das caracteŕısticas desses atos e como elas podem influenciar sua popularidade.

Além disso, a pesquisa se caracteriza como documental e bibliográfica. É docu-

mental porque se baseia na coleta e análise de atos normativos dispońıveis em fontes

oficiais. Ao mesmo tempo, é bibliográfica porque envolve a revisão e utilização de li-

teratura acadêmica existente sobre aprendizado de máquina, grafos, Processamento de

Linguagem Natural e modelagem de tópicos.

O desenvolvimento da pesquisa demandou a implementação de um fluxo de pro-

cessamento (pipeline) estruturado e abrangente, a fim de realizar análises detalhadas e

produzir resultados relevantes. O pipeline foi projetado para englobar uma série de etapas

cruciais, visando a transformação e análise dos dados textuais coletados. Cada fase do

pipeline contribuiu de maneira essencial para a obtenção de informações valiosas e aprimo-

ramento das análises realizadas. O fluxo de processamento foi composto pelas seguintes

fases apresentadas na Figura 4.1.

A descrição de cada passo da metodologia é descrita a seguir:
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Figura 4.1: Diagrama do pipeline do projeto, incluindo: coleta de dados, conversão de
formato, pré-processamento, modelagem de tópicos, construção do grafo, geração de em-
beddings e treinamento do modelo.

Fonte: Elaborado pelo autor.

4.2 Coleta de dados

A segurança alimentar é um elemento crucial para a saúde pública e o bem-estar

social, demandando uma análise rigorosa das regulamentações que a envolvem. Neste

estudo, o foco recaiu sobre a análise de atos normativos brasileiros espećıficos da área

de segurança alimentar, utilizando um corpus singular e altamente relevante. Os dados,

também chamado corpus, que formam a base deste estudo, foram coletados diretamente

do site oficial do Ministério da Agricultura e Pecuária (MAPA), acesśıvel por meio do en-

dereço eletrônico https://www.gov.br/agricultura/pt-br. Essa fonte foi selecionada

pela sua autoridade em informações do setor, e a coleta ocorreu em 3 de setembro de

https://www.gov.br/agricultura/pt-br
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2022. Foram capturados diversos tipos de normas juŕıdicas, como Lei, Decreto-Lei, Por-

taria, Instrução Normativa, Decreto Legislativo, Medida Provisória, Decreto, Ato, Diário

Oficial, Memorando Circular, Decisão, Norma Operacional, Protocolo, Resolução MER-

COSUL, e Of́ıcio-Circular, além de uma cartilha contendo orientações sobre a inscrição de

espécies no RNC, totalizando 320 atos normativos, todos em formato Portable Document

Format (PDF). A coleta foi realizada utilizando a técnica de web scraping, permitindo a

extração automatizada de informações do site do MAPA.

4.3 Conversão dos Dados

Após a conclusão da fase de coleta dos dados, a etapa subsequente foi dedicada

à conversão dos dados adquiridos para o formato text file format (TXT). Essa etapa

desempenhou um papel fundamental na preparação dos dados brutos, para facilitar ma-

nipulações e análises posteriores. O processo de conversão foi concretizado por meio da

elaboração de um script desenvolvido utilizando a linguagem de programação Python.

A seleção da linguagem Python para desenvolver esta pesquisa foi baseada em sua

versatilidade e disponibilidade de bibliotecas voltadas para manipulação e transformação

de dados.

4.4 Tratamento dos Dados

Em NLP, a etapa de pré-processamento tem a finalidade de criar um conjunto de

tokens que terão alguma relevância para a modelagem de tópicos e é dividida em algumas

tarefas sequenciais, conforme apresentado nos próximos itens.

• Tokenização: transformação de caracteres para minúsculos, troca de caracteres

acentuados pelo mesmo caractere sem a acentuação e retirada de caracteres que não

sejam letras, além da exclusão dos números.

• Remoção de stopwords: remoção de palavras irrelevantes para a classificação,

como as preposições, por exemplo; remoção de nomes próprios e remoção de palavras

com menos de 3 caracteres.
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• Stemmização: redução das palavras ao seu radical, mantendo apenas a parte mais

significativa de cada palavra.

• Remoção de verbos: a remoção de verbos durante a modelagem de tópicos é

fundamental para melhorar a precisão, reduzir o rúıdo e simplificar o processamento,

o que resulta em uma análise mais eficaz e eficiente dos dados de texto.

A etapa de pré-processamento proporcionou um melhor entendimento da base de

dados, apresentando as seguintes quantidades de tokens por pronunciamento em cada

uma das etapas e as seguintes diferenças entre cada classificação na etapa de aplicação de

stemming.

4.5 Modelagem de Tópicos

Para realizar a tarefa de agrupamento e sumarização de tópicos em um conjunto

de 320 documentos previamente normalizados, utilizamos o seguinte procedimento: to-

dos os textos dos atos normativos foram convertidos em uma lista única encadeada e

passados como parâmetro para o BERTopic. Em seguida, todas as etapas mencionadas

anteriormente (1.6) foram realizadas e um modelo foi gerado como resultado. Através

desse modelo, pudemos extrair os principais tópicos, analisando a frequência e o valor de

importância obtido anteriormente, e gerar um mapa de distribuição de tópicos.

Criou-se uma instância do BERTopic em que foram definidos vários parâmetros. O

parâmetro ’language’ foi configurado como ’portuguese’, indicando que o algoritmo usará

modelos de processamento de linguagem natural pré-treinados em português. Além disso,

o parâmetro ’min topic size’ foi definido como 320, garantindo que cada tópico resultante

contenha pelo menos 320 documentos, o que ajuda a evitar a formação de tópicos com

um número muito pequeno de documentos. Esta escolha foi feita empiricamente para

assegurar que os tópicos formados sejam significativos e representativos.

O parâmetro ’n gram range’ foi configurado como (1, 3), o que significa que o

algoritmo considerará sequências de palavras de 1 a 3 palavras para construir os tópicos,

levando em consideração não apenas palavras individuais, mas também combinações de

até três palavras em sequência.

O parâmetro ’embedding model ’ refere-se ao modelo de incorporação usado para

representar os documentos como vetores numéricos, permitindo uma análise mais eficaz da

similaridade entre os documentos. O ’umap model ’ é responsável por reduzir a dimensio-

nalidade dos vetores de incorporação, facilitando a interpretação dos clusters resultantes.

O ’vectorizer model ’ converte os documentos em representações numéricas, possibilitando
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a aplicação de cálculos matemáticos sobre os dados textuais. O ’ctfidf model ’ é utilizado

para calcular a importância das palavras nos documentos, atribuindo pesos com base na

frequência das palavras nos documentos e no corpus geral.

Com o parâmetro ’calculate probabilities ’ ativado, o algoritmo calcula as probabi-

lidades de cada documento pertencer a um determinado tópico durante o processo de mo-

delagem. A opção ’verbose’ exibirá informações detalhadas sobre cada etapa do processo

durante a execução do algoritmo, úteis para depuração e análise de desempenho. O ’hdbs-

can model ’ é um algoritmo de clusterização hierárquica, baseado em densidade, capaz de

identificar clusters de formatos irregulares e de diferentes tamanhos. O parâmetro ’repre-

sentation model ’ define como os documentos serão representados como vetores numéricos,

facilitando a manipulação eficaz durante o processo de modelagem.

O ’hdbscan model ’ é um algoritmo de clusterização hierárquica, baseado em den-

sidade, capaz de identificar clusters de formatos irregulares e de diferentes tamanhos. O

parâmetro ’representation model ’ define como os documentos serão representados como

vetores numéricos, facilitando a manipulação eficaz durante o processo de modelagem.

Após estabelecer os argumentos, a função fit transform é convocada e o algoritmo é

acionado. Durante este estudo, todo o procedimento foi realizado com base nos parâmetros

personalizados do BERTopic, destacando-se a habilidade de ajustar o algoritmo con-

forme as exigências e particularidades espećıficas do conjunto de dados e do problema em

questão.

4.6 Matriz de similaridade

A matriz de similaridade foi constrúıda a partir da matriz de Documentos por

Tópicos gerada com dimensões de ”Número de Documentos”por ”Número de Tópicos”,

após a análise e extração dos tópicos. Essa matriz proporciona uma visão abrangente sobre

quais tópicos estão presentes em cada documento e com qual intensidade, contribuindo

para uma compreensão mais completa dos elementos temáticos presentes nos documentos.

A matriz de similaridade foi gerada para quantificar a relação de similaridade entre

diferentes pares de documentos por meio da comparação de seus vetores de tópicos. Para

isso, foi utilizada a medida de similaridade do cosseno, que calcula o ângulo entre os vetores

de tópicos dos documentos. Essa medida é valiosa porque fornece uma maneira precisa de

entender como os documentos estão relacionados uns com os outros, identificando quais

possuem conteúdo semelhante ou abordam tópicos parecidos.

A importância da matriz de similaridade reside na capacidade de oferecer insights

valiosos sobre um grande conjunto de documentos. Ao calcular e representar numeri-
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camente as semelhanças entre os documentos, essa matriz possibilita a identificação de

padrões, grupos temáticos e relações que poderiam não ser imediatamente percept́ıveis

através de análises manuais.

4.7 Grafo e suas caracteŕıstica

Orientado pela matriz de similaridade previamente gerada, foi constrúıdo um grafo

aćıclico e direcionado para quantificar as relações de similaridade entre diferentes pares

de documentos. Essa construção contou com o NetworkX, um pacote Python utilizado

para manipulação de grafos e redes complexas e se baseia na comparação dos vetores

de tópicos associados a cada documento. No âmbito desse processo, cada nó no grafo

está vinculado a um documento espećıfico, e as arestas que interligam esses nós refletem

as relações de similaridade detectadas na matriz. A direção das arestas é definida pela

informação temporal, indicando a ordem dos anos de publicação dos documentos. A

resultante representação gráfica oferece uma visão ńıtida da estrutura subjacente e das

interconexões entre os documentos.

Além da criação inicial do grafo, a análise se estende ao cálculo e exploração de

diversas métricas do grafo. Essa abordagem aprofundada proporciona insights mais de-

talhados sobre a importância relativa de cada documento dentro da rede.

4.8 Geração de embeddings do grafo

Para a geração de embeddings do grafo, utilizamos duas abordagens principais:

Node2Vec e GNN (Graph Neural Networks). A escolha destas técnicas se baseou na

capacidade comprovada de cada uma em capturar informações estruturais importantes

do grafo, e preservar a estrutura local e global do grafo e representá-las de maneira eficaz

em um espaço de dimensões reduzidas.

O algoritmo Node2Vec foi selecionado devido à sua habilidade em preservar a

estrutura e os padrões de conexões entre nós. A flexibilidade do Node2Vec em ajus-

tar a exploração e a explotação durante a geração dos caminhos no grafo nos permitiu

capturar informações contextuais importantes. Foram realizados experimentos com di-

ferentes tamanhos de embeddings (8, 64 e 128 dimensões) para avaliar a qualidade das
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representações aprendidas e compreender a captura de padrões estruturais complexos em

diferentes espaços dimensionais.

Por outro lado, as Graph Neural Networks (GNNs) foram adotadas devido à sua

capacidade de aprender representações considerando as interações locais e globais do grafo.

A utilização de redes neurais possibilitou a captura de informações complexas e não line-

ares presentes nas relações entre nós, resultando em representações mais ricas e informa-

tivas. Da mesma forma que com o Node2Vec, conduzimos experimentos com diferentes

tamanhos de embeddings (8, 64 e 128 dimensões) para compreender o desempenho da

técnica em diferentes espaços dimensionais e comparar as representações aprendidas com

aquelas geradas pelo Node2Vec em termos de complexidade e expressividade.

Ao adotar essas duas abordagens complementares, buscamos explorar a comple-

mentaridade entre a capacidade do Node2Vec em capturar informações estruturais de

grafos e a habilidade das GNNs em aprender representações complexas, visando a geração

de embeddings de alta qualidade que possam ser aplicados a uma variedade de tarefas de

análise e processamento de grafos.

4.9 Tratamento do modelo de Machine Learning

Um dos objetivos deste estudo foi treinar um modelo de regressão baseado no al-

goritmo LightGBM para prever quartis e, dessa forma, identificar a posição relativa dos

atos normativos dentro de uma distribuição de popularidade. Para isso, realizamos dois

conjuntos de experimentos: o primeiro com diferentes dimensões de embeddings gerados

pelo Node2Vec e GNN, e o segundo com caracteŕısticas do grafo, incluindo ’degree centra-

lity ’, ’closeness centrality ’, ’load centrality ’, ’harmonic centrality ’, ’betweenness centrality ’,

’average neighbor degree’, ’clustering ’ e ’pagerank ’.

Os valores alvo (y) foram obtidos a partir de pesquisas no Google, ocorrida no dia

23 de agosto de 2023, sobre atos normativos coletados (Figura 4.2). Para realização da

pesquisa, foi adotado e utilizado exatamente o t́ıtulo do ato normativo contido dentro do

documento. Isso garantiu precisão e relevância nos resultados, permitindo uma medida

exata do interesse público. A padronização do método assegurou comparabilidade e con-

sistência nos dados, tornando o processo eficiente e replicável, além de reduzir rúıdos e

resultados irrelevantes.

Para o processamento, a data da pesquisa no Google foi subtráıda da data de

criação do ato normativo e, em seguida, dividida pelo número total de pesquisas no Google

no mesmo intervalo de anos. Esse procedimento proporcionou uma métrica representativa

da frequência com que um ato normativo foi pesquisado em relação ao seu ano de criação.
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Figura 4.2: Exemplo da pesquisa no Google para o t́ıtulo ”PORTARIA SDA Nº 605, DE
23 DE JUNHO DE 2022”mostrando aproximadamente 49.800 resultados.

Fonte: Elaborado pelo autor.

4.9.1 Experimento 1: utilização de embeddings

Neste experimento, conduziu-se uma análise detalhada do treinamento de um mo-

delo de regressão com o uso do framework LightGBM, a fim de prever os quartis de atos

normativos, baseando-nos em embeddings gerados a partir de duas técnicas: Node2Vec e

GNN (Graph Neural Networks). A utilização de embeddings visa fornecer representações

vetoriais das caracteŕısticas dos atos normativos, permitindo ao modelo capturar relações

e padrões complexos. Para avaliar o desempenho do modelo em diferentes cenários, foi

realizado uma série de experimentos considerando diversas dimensões de embeddings e

operações de concatenação e subtração entre eles.

Os dados de entrada (X) consistem em embeddings gerados por Node2Vec e GNN,

variando em dimensões de 8, 64 e 128. Adicionalmente, ocorreu a concatenação e sub-

tração de embeddings com a mesma dimensão. Os valores alvo (y) foram obtidos a partir

de pesquisas no Google sobre atos normativos coletados, conforme descrito no ı́tem 4.8.

Para treinar o modelo de regressão, inicialmente calcula-se um valor de corte para

cada quartil com base na frequência de aparecimento dos atos normativos. Em seguida,

divide-se os dados em conjuntos de treinamento e teste. Utilizamos validação cruzada

estratificada com 5 dobras para avaliar o desempenho do modelo e evitar qualquer viés

na divisão dos dados. O LightGBM é um algoritmo de gradient boosting que permite oti-

mização de hiperparâmetros. Para encontrar os melhores hiperparâmetros que minimizem

o erro absoluto médio (MAE), utilizamosou-se a biblioteca Optuna.

Após a realização dos experimentos, identificamos os melhores conjuntos de hi-

perparâmetros para cada cenário e calculamos o MAE médio no conjunto de validação

cruzada. Também calculamos o MAE nos dados de teste para avaliar o desempenho do

modelo em um conjunto independente. Os resultados são consistentemente avaliados e

comparados entre os diferentes cenários de embeddings.
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4.9.2 Experimento 2: utilização de features do grafo

No segundo experimento, o treinamento do modelo de regressão LightGBM foi con-

duzido visando prever os quartis com base em diversas métricas derivadas do grafo. Essas

metricas incluem ’degree centrality ’, ’closeness centrality ’, ’load centrality ’, ’harmonic cen-

trality ’, ’betweenness centrality ’, ’average neighbor degree’, ’clustering ’ e ’pagerank ’. Essas

métricas forneceram as features de entrada (X) para o modelo, enquanto os resultados

das pesquisas no Google serviram como o valor a ser previsto (y).

Para preparar o conjunto de dados de treinamento, os valores de y passaram por

um cálculo espećıfico. A diferença entre a data da pesquisa no Google e a data de criação

do ato normativo foi estimada, seguida pela divisão entre o número total de pesquisas no

Google e a diferença entre os anos.

O treinamento do modelo de regressão LightGBM foi conduzido para minimizar

o erro absoluto médio (MAE). Durante o processo de treinamento, testamos diferentes

conjuntos de hiperparâmetros para determinar os melhores valores. Esse procedimento

foi executado para cada dataframe espećıfico, utilizando uma validação cruzada estratifi-

cada para garantir a robustez dos resultados. O melhor conjunto de hiperparâmetros foi

identificado para cada iteração do processo de treinamento, e o modelo final foi treinado

com esses parâmetros otimizados. A avaliação do desempenho do modelo foi realizada

usando o MAE nos dados de teste.

Adicionalmente, foram gerados gráficos de boxplot para visualizar a distribuição

dos valores previstos em relação aos quartis.

4.9.3 SHAP

O método SHAP (SHapley Additive exPlanations) é uma técnica avançada de ex-

plicabilidade que ajuda a entender como as features individuais de um modelo contribuem

para as predições. Neste trabalho, foi utilizado o cálculo do SHAP para um modelo de

regressão baseado no algoritmo LightGBM, associado a um conjunto de features extráıdas

de um grafo. As features utilizadas foram ’degree centrality ’, ’closeness centrality ’, ’load

centrality ’, ’harmonic centrality ’, ’betweenness centrality ’, ’average neighbor degree’, ’clus-

tering ’ e ’pagerank ’.

Inicialmente divide-se os dados em conjuntos de treinamento e teste e em seguida

realiza-se os ajustes de hiperparâmetros na biblioteca Optuna para otimizar o modelo

LightGBM, minimizando a métrica de erro absoluto médio (MAE). A validação cruzada
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estratificada com 5 dobras foi empregada para garantir uma avaliação robusta do desem-

penho do modelo.

O processo de cálculo do SHAP foi realizado após o treinamento do modelo final

com os melhores hiperparâmetros. Utilizamos o TreeExplainer da biblioteca SHAP para

calcular os valores SHAP para os dados de teste. Em seguida, um resumo dos valores

SHAP foi gerado e um gráfico SHAP foi criado para visualizar a importância das diferentes

features na tomada de decisão do modelo.
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Caṕıtulo 5

Resultados e discussão

O presente trabalho visa a predição da popularidade de busca no Google de atos nor-

mativos brasileiros disponibilizados pelo MAPA, mais especificamente sobre segurança

alimentar, através da utilização de técnicas de Aprendizado de Máquina em grafos. A

coleta de dados para a construção do corpus iniciou-se em setembro de 2022 e conta com

320 normas juŕıdicas.

A análise dos atos normativos sobre segurança alimentar, visualizada através de

uma nuvem de tags (Figura 5.1), destaca termos como ”produto”, ”estabelecimento”,

”registro”, ”instrução normativa”, ”produção”e ”amostra”. A centralidade desses termos

revela as principais preocupações das regulamentações, que buscam garantir a qualidade

e segurança alimentar desde a produção até a comercialização. A presença de palavras

como ”produto”e ”estabelecimento”sublinha a importância dos itens aliment́ıcios e dos

locais de produção, enquanto ”registro”e ”instrução normativa”enfatizam a necessidade

de documentação e conformidade com diretrizes detalhadas.

Além disso, termos como ”análise”, ”controle”, ”material”e ”uso”refletem a abrangência

das normas, cobrindo desde a análise de reśıduos e controle de processos até a especificação

de materiais permitidos. A coleta e análise de amostras são práticas fundamentais menci-

onadas, garantindo que os produtos atendam aos padrões de segurança e qualidade. Em

suma, a nuvem de tags evidencia um esforço cont́ınuo para assegurar que os alimentos

consumidos pela população sejam seguros e de alta qualidade, através de regulamentações

rigorosas e abrangentes.

Após a etapa de preparação do corpus, implementamos o modelo BERTopic com

configurações ajustadas conforme descrito em 3,4, o que resultou na identificação de 49

tópicos distintos, com representação gráfica em barras de termos-chave para alguns desses

tópicos. Esses gráficos são constrúıdos com base nas pontuações c-TF-IDF associadas a

cada tópico, permitindo uma análise comparativa entre os diferentes tópicos. Tal abor-

dagem proporciona insights valiosos e facilita a visualização hierárquica resultante dessa

análise (Figura 5.2).

Os tópicos gerados podem ser observados e organizados hierarquicamente. A fim

de compreender a estrutura hierárquica potencial dos tópicos, associa-se a biblioteca

scipy.cluster.hierarchy para formar agrupamentos e analisar suas inter-relações. Essa
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Figura 5.1: Nuvem de tags representando os termos mais frequentes nos atos norma-
tivos sobre segurança alimentar. Os termos destacados, como ”produto”, ”estabeleci-
mento”, ”registro”e ”instrução normativa”, refletem as principais áreas de foco das regu-
lamentações.

Fonte: Elaborado pelo autor.

abordagem facilita a seleção de um número adequado de tópicos, contribuindo para a

redução da complexidade do conjunto inicial. A visualização da clusterização hierárquica

é apresentada na Figura 5.3.

A análise de tópicos realizada forneceu uma forma estruturada de interpretar o

conjunto de atos normativos para construção do grafo aćıclico direcionado (DAG), visando

explorar as relações temporais e temáticas entre documentos. Após a modelagem de

tópicos, utilizou-se a similaridade de cosseno para estabelecer uma matriz de similaridade

entre os pares de documentos e o limiar de 0,82 foi definido para discernir as conexões

significativas e identificar quais pares de documentos compartilhavam tópicos similares.

Três tópicos principais foram identificados e utilizados para a construção do grafo.

Com a matriz de similaridade estabelecida e o limiar aplicado, obteve-se pares de

documentos com tópicos relevantes em comum, permitindo construir um grafo que con-

siderasse a direcionalidade baseada no ano do documento. Este passo foi crucial para

garantir que a direção das arestas refletisse a sequência temporal, apontando do docu-

mento mais antigo para o mais recente.

Para a construção do grafo, foi utilizada a biblioteca NetworkX em conjunto com

a capacidade de visualização do Pygraphviz. Na Figura 5.4, é apresentado somente uma

parte do grafo, com o propósito de visualizar a sua estrutura. No entanto, o grafo é

consideravelmente maior e não é viável anexá-lo na ı́ntegra ao trabalho.

Na Figura 5.4, o gráfico direcionado e aćıclico visualiza a inter-relação entre dife-

rentes atos normativos, com os vértices representando o ı́ndice de cada ato. As arestas,

por sua vez, simbolizam os três tópicos mais relevantes que estabelecem a similaridade

entre esses atos.

O grafo resultante foi estruturado para refletir não apenas a relação entre docu-
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Figura 5.2: Gráficos de barras mostrando os termos-chave de tópicos gerados pelo BER-
Topic, com base nas pontuações c-TF-IDF.

Fonte: Elaborado pelo autor.

mentos, mas também para destacar os tópicos que conectam cada par de documentos. A

análise das arestas e dos nós, indicou uma interconexão temática alinhada com a evolução

temporal dos documentos, conforme demonstrado pelos rótulos dos tópicos. A metodo-

logia utilizada proporcionou uma visualização clara das ligações temporais e conceituais

entre os documentos, auxiliando na compreensão da progressão e influência dos tópicos

ao longo do tempo.

A utilização do DAG para representar relações documentais ressalta a relevância

da orientação temporal na análise de documentos. Os tópicos mais influentes podem

ser rastreados em uma linha do tempo, fornecendo insights sobre como certas temáticas

ganham ou perdem relevância. Embora a seleção do limiar de similaridade seja um as-

pecto subjetivo, o valor escolhido (0,82) provou ser eficaz na filtragem de conexões menos

significativas, mantendo um grau de rigor na análise de tópicos.

Os resultados obtidos reforçam a utilidade do BERTopic como uma ferramenta

de modelagem de tópicos robusta e do NetworkX como um meio de visualizar e analisar

relações complexas em conjuntos de dados documentais. Essas ferramentas juntas forne-

cem uma poderosa capacidade de análise para pesquisadores e profissionais interessados

em mineração de texto e análise de dados.

Buscou-se explorar a eficácia do Node2Vec e das Graph Neural Networks (GNNs)
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Figura 5.3: Dendrograma ilustrando a clusterização hierárquica dos tópicos gerados pelo
BERTopic. Os tópicos são agrupados com base na similaridade, facilitando a compreensão
das relações entre eles.

Fonte: Elaborado pelo autor.

na geração de representações vetoriais, ou embeddings, para nós de um grafo. Focando a

análise na variação das dimensões dos embeddings gerados (8, 64 e 128) e em experimentos

de concatenação e subtração de embeddings com a mesma dimensão.

A análise dos boxplots para os valores previstos utilizando embeddings de 8 di-

mensões para Node2Vec e Graph Neural Networks revela várias caracteŕısticas importan-

tes. Primeiramente, ao considerar a mediana (Q2), que é a linha central nos boxplots,
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Figura 5.4: Parte do grafo aćıclico direcionado mostrando a inter-relação entre atos nor-
mativos. Vértices representam atos normativos e arestas indicam tópicos relevantes que
conectam esses atos.

Fonte: Elaborado pelo autor.

percebe-se que, para Node2Vec, os valores médios são consistentes entre os quartis, su-

gerindo uma distribuição relativamente uniforme dos valores centrais. Por outro lado, o

e Graph Neural Networks apresenta uma mediana levemente mais alta no Q3, indicando

uma leve assimetria para valores maiores neste quartil.

Em relação ao primeiro quartil (Q1), a borda inferior da caixa nos mostra que os

valores iniciais dos dados são similares entre Node2Vec e Graph Neural Networks, com

uma pequena variação, podendo indicar uma consistência nos valores mais baixos entre

os métodos.

O terceiro quartil (Q3), que é a borda superior da caixa, sugere que o e Graph

Neural Networks tem uma maior dispersão dos 25% dos dados superiores em comparação

ao Node2Vec, principalmente no Q3, onde o Graph Neural Networks apresenta valores

superiores.

O intervalo interquartil (IQR), que mede a dispersão da metade central dos dados,

parece ser mais amplo no Graph Neural Networks, especialmente no Q3 e Q4, indicando
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uma variabilidade maior nestes quartis em comparação ao Node2Vec.

Os valores mı́nimo e máximo dentro dos limites aceitáveis mostram que o Graph

Neural Networks possui um alcance maior de valores, como visto pelas linhas que se

estendem para fora da caixa, especialmente no Q3 e Q4. Isso pode ser um indicativo de

que o gnn8 captura extremos mais significativos do que o Node2Vec. Os outliers, marcados

como pontos individuais fora das linhas de máximo e mı́nimo, são mais prevalentes no

Graph Neural Networks, o que pode ser um indicativo de que este modelo pode estar mais

sujeito a valores at́ıpicos ou a uma maior variância nos dados preditos.

Por fim, a assimetria pode ser observada pela posição da mediana dentro da caixa

e o comprimento das caudas. O Graph Neural Networks mostra uma assimetria positiva

no Q3, sugerindo uma distribuição com uma cauda mais longa para valores mais altos. A

dispersão, medida pela largura do IQR, é claramente maior no Graph Neural Networks,

indicando maior variabilidade nos valores previstos (Figura 5.5).

Figura 5.5: Boxplots comparando os quartis preditos utilizando embeddings de 8 di-
mensões para Node2Vec e Graph Neural Netwoks, destacando as diferenças de dispersão
e assimetria entre os modelos.

Fonte: Elaborado pelo autor.

Ao comparar os quartis preditos utilizando embeddings de 64 dimensões para

Node2Vec e Graph Neural Networks, observamos diferenças notáveis e alguns padrões si-

milares entre as duas abordagens. Para Node2Vec, a mediana (Q2) do primeiro e terceiro

quartis (Q1 e Q3) parece ser ligeiramente mais alta do que para Graph Neural Networks,

indicando que os valores médios previstos pelo Node2Vec são geralmente maiores. Isso

pode sugerir que o modelo Node2Vec tende a prever valores centrais um pouco mais ele-

vados, ou que a sua capacidade de captar a centralidade dos dados é diferente daquela do

Graph Neural Networks.

O primeiro quartil (Q1) para ambos Node2Vec e Graph Neural Networks mostra

uma consistência, com o Node2Vec apresentando uma borda inferior da caixa ligeiramente

mais alta, o que implica que 25% dos dados mais baixos estão previstos com valores um

pouco mais elevados do que o Graph Neural Networks.
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Em relação ao terceiro quartil (Q3), Node2Vec apresenta valores previstos mais

altos para 75% dos dados, indicado pela borda superior da caixa. Isto sugere que Node2Vec

tende a prever valores mais elevados para a maioria dos dados quando comparado com

Graph Neural Networks.

O intervalo interquartil (IQR) para Node2Vec é ligeiramente mais estreito do que

para Graph Neural Networks, especialmente nos quartis Q1 e Q3, sugerindo que Node2Vec

tem uma dispersão menor na metade central dos dados, o que pode indicar uma con-

sistência maior nas previsões.

Os valores mı́nimo e máximo (dentro de limites aceitáveis) parecem ser similares

em ambos os modelos, com Graph Neural Networks exibindo uma ligeira tendência para

valores mı́nimos maiores. Os outliers, representados por pontos individuais fora das li-

nhas de máximo e mı́nimo, são visivelmente presentes em ambos os casos, mas com uma

frequência ligeiramente superior no Node2Vec.

No que diz respeito à assimetria, ambos os modelos exibem algum grau de assi-

metria, como indicado pela posição da mediana dentro da caixa e pelo comprimento das

caudas. A assimetria parece ser um pouco mais acentuada no Node2Vec, especialmente

no quartil Q4. A dispersão, avaliada pela largura do IQR, como já mencionado, é menor

para Node2Vec, indicando que as previsões deste modelo são menos variáveis (Figura 5.6).

Figura 5.6: Boxplots comparando os quartis preditos utilizando embeddings de 64 di-
mensões para Node2Vec e Graph Neural Netwoks, destacando as diferenças de dispersão
e assimetria entre os modelos.

Fonte: Elaborado pelo autor.

Ao analisar os boxplots dos valores previstos utilizando embeddings de 128 di-

mensões para os modelos Node2Vec e Graph Neural Networks, observamos diferenças

notáveis na distribuição dos quartis, o que pode indicar diferenças na capacidade de pre-

visão de cada modelo.

Para o modelo Node2Vec, percebe-se que os valores médios (Q2) apresentam uma

distribuição mais homogênea entre os quartis, indicando uma certa consistência nas pre-

visões. As medianas estão centradas nos boxplots, sugerindo uma simetria na distribuição
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dos dados. A dispersão, indicada pelo intervalo interquartil (IQR), mostra-se relativa-

mente estável, o que pode ser interpretado como uma variabilidade moderada nas pre-

visões.

Já no modelo Graph Neural Networks, os boxplots revelam uma distribuição li-

geiramente diferente. A mediana do Q1 parece mais elevada comparada ao Node2Vec,

sugerindo que o modelo Graph Neural Networks pode ter uma tendência a prever valores

ligeiramente superiores para o quartil inferior da distribuição. Por outro lado, o terceiro

quartil (Q3) e a mediana parecem estar mais próximos, o que pode indicar uma menor

dispersão dos valores mais altos, mas também uma potencial assimetria, com uma cauda

inferior mais longa.

Os valores mı́nimos e máximos dentro dos limites aceitáveis são similares entre

os dois modelos, embora o Graph Neural Networks pareça ter outliers mais distantes,

particularmente no Q4. Esses outliers podem ser devido a peculiaridades nos dados que

o modelo Graph Neural Networks não conseguiu captar tão bem quanto o Node2Vec.

A assimetria é menos evidente nos boxplots do Node2Vec, enquanto no Graph Neu-

ral Networks, há indicações de uma distribuição ligeiramente assimétrica, especialmente

nos quartis Q1 e Q4. Isso pode ser um indicativo de que o modelo Graph Neural Networks

tem dificuldades em prever valores que se desviam da norma.

Em termos de dispersão, ambos os modelos parecem ter uma dispersão similar,

embora o Graph Neural Networks mostre uma dispersão ligeiramente menor no Q3 e uma

maior dispersão no Q1, o que pode ser evidenciado pela presença de outliers (Figura 5.7).

Figura 5.7: Boxplots comparando os quartis preditos utilizando embeddings de 128 di-
mensões para Node2Vec e Graph Neural Netwoks, destacando as diferenças de dispersão
e assimetria entre os modelos.

Fonte: Elaborado pelo autor.

Os resultados obtidos a partir da análise dos boxplots dos valores previstos utili-

zando embeddings concatenados de 8, 64 e 128 dimensões para Node2Vec e Graph Neural

Netwoks, revelam informações importantes sobre a distribuição dos dados preditos em

cada caso.
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Para os embeddings concatenados de 8 dimensões para Node2Vec e Graph Neural

Netwoks, percebe-se uma distribuição dos dados com mediana (Q2) estável, sugerindo

uma consistência na centralidade dos valores previstos. O primeiro quartil (Q1) e terceiro

quartil (Q3) demonstram uma dispersão moderada, indicada pela extensão do IQR, o que

aponta para uma variabilidade significativa entre os dados mais centrais. Valores mı́nimos

e máximos estão distribúıdos de forma equilibrada, sem ind́ıcios claros de assimetria,

embora alguns outliers sugiram pontos de atenção pontuais na análise.

A transição para os embeddings concatenados de 64 dimensões para Node2Vec e

Graph Neural Netwoks não apresenta mudanças drásticas na mediana, indicando que o

aumento das dimensões dos embeddings não alterou substancialmente a centralidade dos

dados. Entretanto, observa-se um leve aumento na dispersão, como mostrado pelo IQR

ligeiramente mais largo. Os outliers são mais evidentes nesse cenário, sugerindo que a

modelagem com maior dimensionalidade pode estar capturando variações mais extremas

nos dados ou posśıveis anomalias.

Já nos embeddings concatenados de 128 dimensões para Node2Vec e Graph Neural

Netwoks, a mediana mantém-se alinhada com as observações anteriores, o que pode indicar

que a centralidade dos dados é robusta às mudanças nas dimensões dos embeddings. O

IQR parece ser comparável aos embeddings concatenados de 64 dimensões, o que sugere

uma dispersão similar. Neste caso, os outliers parecem ser menos proeminentes, o que

pode indicar uma melhoria na consistência dos valores previstos ou uma filtragem mais

eficaz de variações at́ıpicas.

Comparando os três grupos, não se observam diferenças substanciais nas medianas,

sugerindo que a centralidade das previsões é mantida independentemente da dimensão dos

embeddings. O IQR, um indicador de dispersão, aumenta ligeiramente com o crescimento

das dimensões, o que pode sugerir um aumento na variabilidade dos dados com embeddings

mais complexos. Os outliers presentes em todas as dimensões reforçam a necessidade de

uma investigação mais aprofundada sobre a natureza desses pontos extremos (Figura 5.8).

Os boxplots fornecidos representam a distribuição dos quartis preditos utilizando

embeddings subtráıdos de 8, 64 e 128 para Node2Vec e Graph Neural Netwoks, respec-

tivamente. Através da análise comparativa destas visualizações, pode-se inferir várias

caracteŕısticas sobre os dados e o impacto das dimensões dos embeddings na predição dos

valores.

Observando a mediana (Q2), que é a linha central dentro do boxplot, nota-se que

ela se mantém relativamente estável entre os três boxplots, indicando uma consistência

na tendência central dos valores preditos independentemente do número de dimensões

utilizadas.

Quanto ao primeiro quartil (Q1), este representa o valor abaixo do qual 25% dos

dados estão situados. Nos embeddings subtráıdos de 8 e 128 dimensões para Node2Vec

e Graph Neural Netwoks, o Q1 parece ser um pouco mais elevado em comparação aos
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Figura 5.8: Boxplots comparando os quartis preditos utilizando o somatório dos embed-
dings de 8, 64 e 128 dimensões para Node2Vec e Graph Neural Netwoks.

Fonte: Elaborado pelo autor.

embeddings subtráıdos de 64 dimesões para Node2Vec e Graph Neural Netwoks, sugerindo

uma ligeira elevação nos valores mais baixos das predições à medida que aumentamos o

número de dimensões dos embeddings.

O terceiro quartil (Q3), que indica o valor abaixo do qual 75% dos dados se encon-

tram, apresenta variações mais notáveis entre os três grupos. Os embeddings subtráıdos

de 64 dimensões para Node2Vec e Graph Neural Netwoks parecem ter um Q3 ligeiramente

menor do que os outros dois, o que pode indicar uma concentração mais densa de dados

em valores mais baixos.

O intervalo interquartil (IQR), que é a diferença entre Q3 e Q1, é uma medida de

dispersão da metade central dos dados. Através dos boxplots, percebe-se que o IQR varia

entre os grupos, com os embeddings subtráıdos de 64 dimensões para Node2Vec e Graph

Neural Netwoks mostrando uma dispersão um pouco maior, o que sugere uma variabili-

dade mais elevada nos valores preditos quando comparado aos embeddings subtráıdos de

8 e 128 dimensões para Node2Vec e Graph Neural Netwoks. Os valores mı́nimo e máximo,

o qual são os extremos dos dados não considerados outliers, também variam entre os box-

plots. Os embeddings subtráıdos de 64 dimensões para Node2Vec e Graph Neural Netwoks

apresentam um valor máximo mais elevado e a presença de outliers, indicando que esse

conjunto de dimensões pode estar associado a uma maior variação nos valores preditos.
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Em termos de assimetria, não se observa uma assimetria significativa em nenhum

dos grupos, visto que a mediana parece estar centralizada dentro da caixa neles todos, e

as caudas não mostram diferenças drásticas em comprimento.

Quanto à dispersão geral, avaliada pela largura do IQR, percebe-se que ela varia

entre os grupos, mas não de maneira consistente à medida que se aumenta o número de

dimensões. Isso sugere que outras variáveis podem estar influenciando a dispersão além

do número de dimensões dos embeddings.

Finalmente, ao comparar os grupos entre si, os boxplots facilitam a visualização das

diferenças nas distribuições dos valores preditos. Enquanto os embeddings subtráıdos de

64 dimensões para Node2Vec e Graph Neural Netwoks mostram maior variabilidade e po-

tenciais valores extremos, os embeddings subtráıdos de 8 e 128 dimensões para Node2Vec

e Graph Neural Netwoks parecem ter distribuições mais concentradas, embora os embed-

dings subtráıdos de 128 dimensões para Node2Vec e Graph Neural Netwoks apresente

valores ligeiramente mais elevados no geral (Figura 5.9).

Figura 5.9: Boxplots comparando os quartis preditos utilizando a subtração dos embed-
dings de 8, 64 e 128 dimensões para Node2Vec e Graph Neural Netwoks.

Fonte: Elaborado pelo autor.

Ao observar o boxplot dos valores previstos utilizando as caracteŕısticas do grafo,

notamos variações significativas entre os quartis. O Q1 apresenta uma mediana próxima

de 2.0, indicando que a centralidade média dos vizinhos, o clustering e o pagerank podem
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ter valores baixos, sugerindo uma menor importância ou conexão desses nós dentro do

grafo. Além disso, a presença de outliers abaixo do primeiro quartil pode indicar casos

at́ıpicos de nós com caracteŕısticas de grafo muito diferentes da tendência geral.

O Q2, com a mediana em verde, mostra uma distribuição mais concentrada de

valores previstos, com mediana levemente superior a 2.0 e uma amplitude interquart́ılica

(distância entre o primeiro e o terceiro quartil) menor, indicando menor variabilidade nas

caracteŕısticas de centralidade como a closeness centrality e a load centrality.

O Q3, por sua vez, mostra uma mediana indicada pela linha vermelha, situada em

um valor próximo de 3.0. Isso pode sugerir que nós representados neste quartil possuem

uma posição mais central no grafo em termos de betweenness centrality, o que pode indicar

um papel de intermediário importante na transferência de informações ou na conectividade

do grafo.

Por fim, o Q4 mostra uma variabilidade considerável, com uma amplitude inter-

quart́ılica maior e uma mediana indicada pela linha roxa, também próxima a 3.0. Isso

pode ser interpretado como uma indicação de que os nós nesse quartil possuem muita

centralidade em algumas das métricas, mas não em todas, o que pode refletir uma hete-

rogeneidade nas funções ou papéis desses nós dentro da rede.

A análise dos boxplots sugere que há uma variação notável nas caracteŕısticas de

centralidade e importância dos nós entre os diferentes quartis. Essa variação pode ser

devida à estrutura inerente da rede ou às diferentes funções que os nós desempenham

dentro dela. Por exemplo, nós com alta betweenness centrality podem atuar como pontes

entre diferentes partes do grafo, enquanto aqueles com alta degree centrality podem ser

importantes para a coesão dentro de suas respectivas comunidades.

É importante notar que outliers podem tanto representar erros na coleta de da-

dos ou na modelagem quanto indicar casos especiais que merecem atenção adicional em

análises futuras. Além disso, a análise de boxplot por si só não é suficiente para entender

completamente as dinâmicas complexas de um grafo e deve ser complementada com ou-

tras análises de rede, como a investigação das propriedades topológicas ou a visualização

da estrutura da rede (Figura 5.10).

Os resultados obtidos pela análise dos valores SHAP para as features baseadas em

grafos revelam insights significativos sobre o impacto dessas caracteŕısticas na sáıda do

modelo. O SHAP (SHapley Additive exPlanations) fornece uma medida do impacto de

cada caracteŕıstica na previsão do modelo, considerando a contribuição marginal de cada

uma quando combinada com outras.

A centralidade de grau (degree centrality) demonstra uma variação significativa

nos valores SHAP, indicando uma influência considerável na sáıda do modelo. Valores

positivos de SHAP sugerem que muita centralidade tende a aumentar a previsão do

modelo, enquanto valores negativos apontam para uma diminuição. A centralidade de

proximidade (closeness centrality) e a centralidade de carga (load centrality) seguem uma



63

Figura 5.10: Boxplots mostrando a distribuição dos quartis previstos com base em
métricas do grafo: degree centrality, closeness centrality, load centrality, harmonic cen-
trality, betweenness centrality, average neighbor degree, clustering e pagerank.

Fonte: Elaborado pelo autor.

tendência similar, indicando que a posição estratégica de um nó dentro do grafo é um

preditor relevante do resultado.

Por outro lado, a centralidade harmônica (harmonic centrality) mostra uma dis-

tribuição mais concentrada em torno de valores SHAP baixos, o que pode indicar uma

influência menos pronunciada no resultado do modelo em comparação com outras métricas

de centralidade. A centralidade de intermediação (betweenness centrality) apresenta uma

gama ampla de valores SHAP, refletindo a sua capacidade de capturar a importância de

um nó como intermediário nas comunicações entre outros pares de nós.

O grau médio dos vizinhos (average neighbor degree) exibe uma dispersão notável

nos valores SHAP, sugerindo que a conectividade dos vizinhos de um nó tem um papel

variável na previsão do modelo. Já o coeficiente de aglomeração (clustering) revela que

agrupamentos locais dentro do grafo podem ter tanto efeitos positivos quanto negativos

sobre a sáıda do modelo, dependendo da configuração espećıfica da rede.

Finalmente, o pagerank, uma métrica clássica de importância baseada na estrutura

de links de um grafo, mostra uma influência moderada, com valores SHAP distribúıdos

de maneira relativamente equilibrada entre impactos positivos e negativos.

A interação entre essas features indica a complexidade e a riqueza das informações

codificadas na estrutura do grafo. A análise SHAP sugere que não apenas a importância

individual de cada nó, mas também a sua conectividade e o papel dentro da rede mais

ampla, são fundamentais para compreender e prever os fenômenos modelados. Estes

resultados reforçam a relevância de abordagens baseadas em teoria dos grafos para análise

de dados complexos e fornecem uma base sólida para pesquisas futuras nessa direção.
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Figura 5.11: Gráfico de valores de SHAP mostrando a importância das caracteŕısticas do
grafo: degree centrality, closeness centrality, load centrality, harmonic centrality, betwe-
enness centrality, average neighbor degree, clustering e pagerank, na previsão do modelo.

Fonte: Elaborado pelo autor.
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Caṕıtulo 6

Conclusão

O estudo demonstrou que a aplicação de técnicas de Aprendizado de Máquina em grafos

pode prever a popularidade dos atos normativos brasileiros relacionados à segurança ali-

mentar. Utilizando o BERTopic para identificar tópicos relevantes e técnicas como Graph

Neural Networks (GNN) e Node2Vec, foi posśıvel mapear as normas mais discutidas e

aceitas. Esses resultados fornecem insights valiosos para a elaboração e implementação

de poĺıticas públicas.

Os benef́ıcios para a sociedade incluem a possibilidade de direcionar esforços para

fortalecer e melhorar as normas mais populares, promovendo um ambiente regulatório

mais eficiente. A predição da popularidade dos atos normativos também pode facilitar

a comunicação entre o governo e a população, garantindo a divulgação de informações

relevantes e de interesse público.

Na segurança alimentar, a previsão das normas mais populares pode garantir que

os regulamentos mais eficazes sejam priorizados, resultando em uma melhor fiscalização

e redução de riscos de contaminação e fraudes alimentares. Para o direito, o estudo

oferece uma ferramenta para análise e gestão de normas juŕıdicas, ajudando legisladores a

identificar normas que precisam de revisão, melhorando a coerência e qualidade das leis.

Contudo, algumas limitações foram observadas. A complexidade dos atos normativos e

a variabilidade na qualidade das fontes de dados podem ter influenciado os resultados.

Além disso, a seleção de parâmetros para os modelos de Aprendizado de Máquina e a

definição de popularidade como métrica de avaliação podem ter impactado a precisão das

predições.

A importância das técnicas utilizadas reside na capacidade de transformar dados

normativos complexos e extensos em informações acionáveis e compreenśıveis. O uso de

Graph Neural Networks (GNN) e Node2Vec foi crucial para capturar a estrutura e as in-

terrelações dos atos normativos, permitindo uma análise detalhada e precisa das conexões

e influências entre diferentes normas. A consistência dessas técnicas é demonstrada pela

robustez dos resultados obtidos, que foram validados por meio de experimentos rigorosos.

A relevância das técnicas também é evidente na aplicação prática dos resultados, ofere-

cendo uma ferramenta poderosa para a gestão de poĺıticas públicas e a melhoria cont́ınua

do arcabouço regulatório. Em suma, a combinação dessas técnicas de Aprendizado de
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Máquina proporciona um avanço significativo na análise e predição da popularidade dos

atos normativos, contribuindo para um sistema legal mais transparente e eficaz.
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Caṕıtulo 7

Sugestões para Estudos Futuros

Para futuras pesquisas, sugere-se a expansão do conjunto de dados para incluir um es-

pectro mais amplo de atos normativos, abrangendo diferentes áreas além da segurança

alimentar. Isso permitiria uma análise mais diversificada e abrangente das tendências

legislativas.

Outra recomendação seria explorar métodos alternativos de modelagem de tópicos

e de representação de grafos, a fim de comparar e melhorar potencialmente a precisão das

predições. Além disso, seria interessante investigar a relação entre a popularidade dos

atos normativos e outros fatores, como impacto econômico ou social, para fornecer uma

compreensão mais hoĺıstica de sua relevância.

Por fim, seria produtivo aplicar as técnicas utilizadas neste estudo em outros con-

textos legislativos, tanto no Brasil quanto em outros páıses, para validar a eficácia das

abordagens de Aprendizado de Máquina em diferentes cenários normativos e culturais.
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para segmentação de páginas. PhD thesis, Universidade de São Paulo, São Paulo. Tese

(Doutorado em Ciências da Computação).

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Distributed

representations of words and phrases and their compositionality. In Advances in neural

information processing systems, pages 3111–3119, Lake Tahoe. Curran Associates Inc.

Murphy, B. (2014). Latent dirichlet allocation.

Murphy, R. L. et al. (2018). Janossy pooling: Learning deep permutation-invariant func-

tions for variable-size inputs. Cornell University.



Referências 70

Perozzi, B., Al-Rfou, R., and Skiena, S. (2014). Deepwalk: Online learning of social

representations. In Proceedings of the 20th ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 701–710.

Pham, T. et al. (2017). Column networks for collective classification. Proceedings of the

AAAI conference on artificial intelligence, 31(1):2485–2491.

Rodrigues, G. E. P. (2022). Detecting cryptographic misuse with machine learning. Mas-

ter’s thesis, Universidade Estadual de Campinas, Campinas. Dissertação (Mestrado em

Ciência da Computação).

Russell, S. J. (2004). Inteligência Artificial. Elsevier, Rio de Janeiro.

Selsam, D. et al. (2018). Learning a sat solver from single-bit supervision. Cornell Uni-

versity.

Silva, D. N. R., Ziviani, A., and Porto, F. (2019). Aprendizado de máquina e inferência
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