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Resumo

O glaucoma é uma doenca ocular que se desenvolve em decorréncia de uma alteragao no
nervo 6ptico, que o torna mais fragil. Como resultado, as fibras nervosas sao danificadas de
forma irreversivel, o que faz com que o paciente perca o seu campo visual gradativamente
e, nos casos mais avangados, fique cego.

E recomendével uma visita anual ao médico oftalmologista a partir dos 40 com o
intuito de descartar a presenca da doencga, ou, em caso positivo, iniciar o tratamento em
suas fases iniciais e os devidos cuidados sejam tomados para que danos maiores ao globo
ocular sejam evitados. Quanto mais idoso, maior probabilidade de incidéncia da doenca.
Os principais fatores de riscos sao: pressao, idade e fatores genéticos.

A Fundoscopia e a Tomografia de Coeréncia Optica sdo exames laboratoriais co-
mumente utilizados para a deteccao do glaucoma. Considerando diversos estudos que
concluiram que ocorrerd, nos proximos anos, um grande aumento de casos positivos da
doenga, novos métodos para a deteccao e tratamento do glaucoma vém sendo desenvolvi-
dos, com o objetivo de dar suporte aos especialistas.

Este trabalho estuda a utilizagao de algoritmos de aprendizado de maquina, através
do uso de dados clinicos e de imagens da retina, para detectar o glaucoma de angulo aberto,
com diagnésticos rapidos, eficientes e automatizados. Além disso, o trabalho também
apresenta diagnosticos e decisdes do modelo que suportam explicabilidade, dando ainda
mais recursos para o profissional ter uma decisdo mais assertiva junto ao paciente.

Ao final, os experimentos mostraram que diferentes arquiteturas de modelos ti-
veram assertividade alta quanto ao diagnéstico, inclusive modelos que utilizam recurso
computacional de forma mais eficiente, dando flexibilidade de sua utilizacao em diferentes
tipos de infraestrutura computacional disponivel, sendo este um smartphone ou conjunto

de computadores centralizados.

Palavras-chave: Aprendizado de Maquina. Computagao Visual. Modelagem. Glau-

coma. Diagnéstico. Explicabilidade.



Abstract

Glaucoma is an eye disease that develops due to a change in the optic nerve, making it
more fragile. As a result, the nerve fibers are irreversibly damaged, causing the patient
to lose their visual field gradually and, in more advanced cases, to go blind.

An annual visit to the ophthalmologist from the age of 40 is recommended to rule
out the presence of the disease or, if positive, to start treatment in its early stages and the
proper care taken so that more significant damage to the eyeball is avoided. The older
you are, the more likely the disease is to occur. The main risk factors are pressure, age,
and genetic factors.

Fundoscopy and Optical Coherence Tomography are laboratory tests commonly
used to detect glaucoma. Considering several studies that have concluded that there will
be a significant increase in positive cases of the disease in the coming years, new methods
for detecting and treating glaucoma are being developed to withstand specialists.

This paper studies the use of machine learning algorithms using clinical and retinal
imaging data to detect open-angle glaucoma with fast, efficient, and automated diagnosis.
In addition, the work also presents diagnoses and model decisions that withstand explai-
nability, giving even more resources for the professional to have a more assertive decision
with the patient.

In the end, the experiments indicated that different model architectures had high
assertiveness regarding diagnosis, including models that use computational resources more
efficiently, giving flexibility of use in various types of computational infrastructure avai-

lable, whether a smartphone or a set of centralized computers.

Keywords: Machine Learning. Computer Vision. Modeling. Glaucoma. Diagnostic.

Explainability
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16

Capitulo 1

Introducao

O glaucoma é uma doenca que acomete os olhos caracterizada pela degeneracao das células
ganglionares e do nervo 6ptico (ONH, do inglés optic nerve head), o que pode levar a perda,
progressiva de visdo. E uma doenca grave que, em seu estdgio mais avancado, pode levar
a cegueira, e, por isso, faz-se imprescindivel que o paciente receba o diagndstico nas fases
iniciais da doenca, para os sintomas nao evoluam para a perda total e irreversivel da
visdo. Sabe-se, no entanto, que o diagnostico precoce da doenga se torna prejudicado
devido as fases assintomaticas da doenca. Por isso, o nimero de pessoas que nao recebem
um diagnéstico adequado é alto [82], o que contribui para o agravamento da doenca e
para o paciente ter a perda completa de sua visao.

O glaucoma do tipo angulo aberto é um dos principais tipos de glaucoma e esté
relacionado pelo aumento e/ou descontrole da pressao intraocular (PIO). Sendo este tipo
de glaucoma o mais comum encontrado em pacientes com mais de 49 anos. E possivel
utilizar intervengoes médicas para diminuir a pressao e/ou controlar a PIO por colirios,
laser ou cirurgia, e evitar que a doencga avance para estagios mais severos e a perda da visao
[9]. Em seguida, estd o glaucoma secunddrio, causado por fatores externos, o glaucoma
congénito e o glaucoma de angulo fechado, sendo este ultimo o mais agressivo entre eles
[76].

O diagnostico do glaucoma é efetuado por especialistas, através da realizagao de
exames clinicos, como a Fundoscopia e a Tomografia de Coeréncia Optica. A Fundoscopia
¢é realizada via aparelhos de retinografia. Esse exame é bastante utilizado por nao ser
invasivo e por ser de ficil acesso ao profissional de saide [52], sendo possivel ser feita por
um smartphone e uma lente especial[52, 39]. Este exame de imagem consegue capturar
caracteristicas importantes nas imagens do fundo de olho, como, por exemplo, os vasos
sanguineos e o disco 6ptico (DO), fornecendo dados tteis para a detecgdo do glaucoma
[52].

A Tomografia de Coeréncia Optica (OCT, do inglés Optical Coherence Tomo-
graphy) também é utilizada para avaliar o paciente quanto a presenga do glaucoma. Tal
procedimento, assim como a Fundoscopia, nao é invasivo e gera imagens de cortes secci-
onais da retina com alta resolucdo e detalhamento [10]. As imagens seccionais fornecem

a espessura da camada de fibras nervosa da retina, possibilitando a verificacdo da de-
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gradagdo da camada de fibras nervosas retinais do paciente com diagnostico positivo de
glaucoma.

Estudos comprovam que o ntimero de pessoas com glaucoma aumentara em 111,8
milhoes até 2040 [54], portanto, métodos que utilizam inteligéncia artificial vem sendo
desenvolvidos para automatizar o processo de diagndstico do glaucoma [7], dentre eles
técnicas baseadas em aprendizado de méaquina (ML, do inglés, Machine Learning). ML
vem se destacando no campo de ciéncia e tecnologia, tornando-se referéncia, inclusive
na area médica. Uma das principais aplicacoes e técnicas de aprendizado de maquina
utilizado no campo médico sdo os modelos de classificacdo. Isto porque o uso de mo-
delos classificadores possibilita o diagnostico de doencas utilizando dados demogréficos,
clinicos, imagens e até mesmo audio. Estes modelos podem ser baseados em técnicas de
aprendizado estatistico ou aprendizado profundo [7]. Sistemas inteligentes de diagndsti-
cos conseguem prover interpretacoes clinicas para auxiliar o especialista em suas decisoes

quanto aos tratamentos do paciente, aumentando as chances de sucesso [32, 67].

1.1 Aprendizado de maquina aplicado a

diagnoésticos com imagens

O desenvolvimento de novas tecnologias envolvendo inteligéncia artificial e apren-
dizado de maquina vem possibilitando grandes avancos em varias dreas do conhecimento,
reforcando a importancia da interdisciplinaridade para a criagao de aplicagoes como solu-
¢ao eficiente de problemas complexos. Dentre as solucoes, técnicas de reconhecimento de
voz, reconhecimento de objetos, predi¢ao de demanda e veiculos auténomos tém se mos-
trado eficientes. Na area médica, além do diagnéstico, é possivel utilizar IA para descobrir
novas drogas, melhorar a comunicacao entre médico e paciente, transcrever documentos
(como receita de medicamentos) e realizar cirurgias e tratamentos a longa distancia.

O aprendizado de maquina é uma area de IA que utiliza dados como pilar central
em suas aplicagoes. Em alguns casos, o desempenho de modelo de ML consegue ser melhor
do que a do humano, como, por exemplo, na detecgao de objetos [65], jogos eletrdnicos
[49], imitacao de estilo e de arte [24] e em previsao comportamental [25].

O presente trabalho analisa o uso de diversos modelos de ML para diagnéstico de
glaucoma através do estudo de artigos publicados entre o ano 2014 e 2019 em que existe um
problema de classificacdo (presenga ou auséncia do glaucoma) [6]. Os modelos analisados
se dividem em métodos que extraem as caracteristicas da imagem e fazem reducgao de

dimensionalidade do espaco amostral e modelos de aprendizado profundo utilizando redes
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convolucionais (CNN, do inglés, Convolution Neural Network)[29] para andlise de imagens.
A maior influéncia da escolha do método se resume ao nimero de dados disponiveis e o

recurso computacional disponivel.

1.2 Motivacao

Este trabalho apresenta uma analise detalhada do uso de diferentes arquiteturas de
modelos de aprendizado profundo que consigam auxiliar no diagnéstico do glaucoma de
angulo aberto eficientemente. Foram exploradas diferentes arquiteturas de modelos, com
diferentes técnicas de sofisticacdo e uso de recurso computacional. Podendo este recurso
ser supercomputadores ou combinagoes de computadores (cluster') ou, até mesmo, um
smartphone com acesso a uma camera. Além do diagnostico, o uso dos modelos também

traz o beneficio da explicabilidade, fornecendo racionabilidade na decisdo.

1.2.1 Explicabilidade

A explicabilidade dos modelos sera explorada tanto nas arquiteturas mais simples,
utilizando somente uma imagem do fundo de olho, quanto nas arquiteturas mais comple-
xas, que utilizam miultiplas imagens do fundo de olho e as mensuragoes extraidas pelo
exame OCT do paciente. O especialista ira entender quais foram os fatores ou caracteris-
ticas mais importantes para a decisao do modelo e o quao influente, em magnitude, cada
uma delas foram.

Para explicar os modelos, foi utilizada uma biblioteca conhecida como SHAP [68].
Esta biblioteca serda abordada na secao 3.14 com maiores detalhes, contudo, a ideia do
SHAP ¢é calcular o impacto médio de cada uma das caracteristicas da imagem ou dos

dados clinicos quanto ao diagnéstico do modelo.

YUm cluster (do inglés cluster: ’grupo, aglomerado’) consiste em computadores fortemente ligados
trabalhando em conjunto, de modo que, em muitos aspectos, podem ser considerados um tnico sistema.
Diferentemente dos computadores em grade, computadores em cluster tém cada conjunto de nés, para
executar a mesma tarefa, controlado e programado por software. Fonte: Wikipedia
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1.2.2 Flexibilidade

O Brasil, por ser um pais de escala continental, carece de acesso a saide em locais
remotos ou que nao se adéquam a realidade social daqueles que 14 vivem [17]. Solugoes
que sejam acessiveis em questao de custo e mobilidade sao as melhores opc¢oes a serem
utilizadas. Com isso, o trabalho, além de trazer o aspecto explicativo para o diagnostico
da doenca, também ira trazer diferentes arquiteturas que se encaixam em diferentes usos
€ acessos a recursos computacionais.

Regides remotas do Brasil, onde a infra-estrutura de saide possui poucos recursos
acessiveis, modelos que consigam ser executados em dispositivos méveis como um celular
sao recomendados. Outra opg¢ao é adotar um servidor central que ficara responsavel por
executar todo o processo de diagnéstico e tratamento dos dados e retornar os resultados
para o especialista responsavel. Cada uma das opgodes anteriores possui seus beneficios,
mas como requerimento, independentemente da opcao, modelos eficientes e com baixo

custo sdo necessarios.

1.3 Declaracao de Dissertacao

As principais perguntas a serem respondidas neste projeto sdao: (Q1) Modelos
computacionalmente eficientes e flexiveis (em termos de acesso a infra-estrutura) desem-
penham a tarefa, de forma eficaz, igual, ou melhor, do que modelos computacionalmente
mais caros e menos flexiveis? (Q2) De acordo com a explicabilidade do modelo, quais sdo

os fatores ou caracteristicas mais pertinentes quanto a sua decisao?

1.4 Contribuicao

Este projeto contribui com diferentes modelagens de aprendizado profundo e ana-
lise dos resultados para o diagnodstico do glaucoma de angulo aberto. Os modelos aqui
apresentados sao focados em tarefas que envolvem computagao visual, ou seja, quando se

utiliza de imagens para resolver uma tarefa.

o Automatizacao do processo de deteccao do glaucoma utilizando modelos de apren-
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cado

dizado profundo
Flexibilidade e explicabilidade

— Diferentes arquiteturas de modelos implementadas, dando enfase nas arquite-
turas mais eficientes e eficazes
— Utilizacdo do SHAP para trazer explicabilidade para os modelos

Aplicacao e experimentacao de técnicas de aprendizado de maquina para criagao de

modelos mais robustos e performéticos (RandAugment/Early Stopping)

Analise de resultados quanto as métricas escolhidas e também quanto ao uso de

recurso computacional e a eficiéncia do modelo

Observagao: A partir deste momento o glaucoma de angulo aberto serd identifi-

somente como glaucoma como forma de simplificar a escrita e a leitura do texto.

1.5 Organizacao

O segundo capitulo 2 contém referéncias teéricas quanto a utilizacao de modelos

de aprendizado de maquina para diagnodstico e deteccao de doencas. O terceiro capitulo 3

explicita conceitos de aprendizado de maquina e do glaucoma, das métricas utilizadas,

das arquiteturas testadas e das técnicas aplicadas. O quarto capitulo 4 contém todos

os passos realizados antes da experimentacao dos modelos, que envolve processamento e

aquisicado dos dados, configuragoes de hiperparametros e softwares utilizados. O quinto

capitulo 5 contém os resultados dos experimentos realizados e suas avaliagoes. Também

estd incluido a explicabilidade do modelo. O ultimo capitulo 6 conclui esta dissertagao.
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Capitulo 2

Referéncias Teoricas

O uso de inteligéncia artificial vem revolucionando o mercado mundial, base para o desen-
volvimento de diversas aplica¢oes inovadoras. O aprendizado de maquina, drea promissora
da inteligéncia artificial, tem sido cada vez mais estudado por pesquisadores de todo o
mundo, devido as contribuic¢oes trazidas a miltiplas areas do conhecimento. Na medicina,
varios tipos de modelos de aprendizado de maquina auxiliam os profissionais de saude na
detecgao de doencas e outras aplicagoes, beneficiando nao sé os especialistas da area, mas
os pacientes e a sociedade como um todo.

Na secao 2.1 serao avaliados alguns trabalhos voltados para o diagnéstico de do-
encas de forma geral, enquanto na secao 2.2 serao apresentados trabalhos focados no

diagnostico do glaucoma.

2.1 Aplicacoes de Aprendizado de Maquina Geral

Modelos de redes neurais convolucionais possuem multiplas aplicagoes, inclusive
na detecgdo de doengas de pele [84]. Os autores exploram diferentes arquiteturas de
redes neurais convolucionais, entre elas estdo RegNet [83] e EfficientNet [77], que apare-
cem como modelos mais eficientes, e também modelos tradicionais como ResNet [35] e
VGG [45]. Os autores também trouxeram uma versao modificada do RandAugment, apli-
cado neste projeto e explicitado na secao 3.13, para melhorar o desempenho do modelo
utilizando técnicas de Data Augmentation. Utilizando um conjunto de dados extrema-
mente desbalanceado, os autores implementaram uma funcao de custo (Segao 3.5.6) que
considera o desbalanceamento dos dados. Ao final, os resultados dos diferentes modelos
serao apresentados. Os modelos computacionalmente mais eficientes, como o RegNet,
demostraram um desempenho préximo, ou melhor, do que os modelos menos eficientes
computacionalmente (ResNet, VGG) com uma acuracia balanceada de 0.858.

E possivel identificar doencas nas folhas da macéa utilizando modelos profundos,

conforme citado no artigo [42]. Na referida pesquisa, os autores utilizaram um conjunto de
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dados que possui um total de 2200 imagens, aproximadamente, e 5 diferentes doencas para
serem detectadas. Os modelos testados foram ShuffleNet, EfficienteNet-B0, MobileNetV3,
RegNet e ViT [89, 77, 83, 37, 92]. Dentre os modelos citados, o que atingiu a melhor
acuracia de 0.99 foi o modelo RegNet. Todos os modelos foram treinados com 4 diferentes
otimizadores, que serao explicados na secao 3.5.7, e 5 diferentes taxas de aprendizagem
(Segao 3.5.3).

A partir da combinagao de imagens e dados demograficos/clinicos, modelos de
aprendizado profundo foram utilizados para detectar o cancer de mama [75]. Uma rede
neural convolucional (Segdo 3.5.10) processa multiplas imagens com diferentes angulos
de uma tomografia do térax. Cada imagem ¢é processada por um modelo independente,
ou seja, eles nao compartilham os pardmetros entre si (Segao 3.5.2). Os dados clinicos,
contendo idade, historico familiar em relacdo ao cancer e presenca de diabetes, sao pro-
cessados por outra rede neural multicamadas (Secao 3.6). Ao final, os dados processados
pela rede neural convolucional e da rede neural multicamadas sao concatenados por outra
rede neural multicamadas e, em seguida, o modelo efetua o diagnéstico quanto a presenca
de cancer. Os autores concluem que a adi¢do de um modelo convolucional com multiplas
entradas (multi-input) e dados clinicos conseguem trazer resultados melhores do que o
modelo utilizando somente uma imagem (single-input) frontal do térax, com uma AUC
de 0.99 e acuracia de 0.97.

Utilizando modelos de aprendizado profundo, os autores conseguiram detectar do-
engas cardiovasculares [3]. Os modelos foram divididos em dois grupos: single-input e
multi-input. As arquiteturas de modelo single-input utilizaram o a rede neural Inception-
V3 [74] quando os dados sdo imagens, e redes neurais multicamadas com modelos de
arvore de decisdo [8] quando os dados sdo clinicos. A arquitetura multi-input utiliza o
Inception-V3 para os dados de imagem e o de redes neurais multicamadas para processar
os dados clinicos e, também, como classificador. A arquitetura de modelo multi-input
atingiu uma acuracia 0.79, enquanto o single-input atingiu uma acuracia de 0.75.

Com o uso de Visual Tranformers (ViT) apresentados na segao 3.6, foi possivel
a detecgao de pneumonia nos pulmoes, inclusive quando advindo da Covid-19 [13]. As
imagens foram coletadas de uma tomografia computadorizada e divididas em varios pe-
dagos menores. Cada um destes pedagos foram codificados no modelo ViT e, em seguida,
repassados para uma rede neural multicamadas para detectar a presenca de Pneumonia
(ocasionada pelo virus da COVID-10 ou outro virus). O modelo dos autores apresentou
uma acuracia de 0.97 na deteccao da doenca.

O trabalho apresentado a seguir traz uma forma diferente de trabalhar com re-
des neurais convolucionais utilizando o modelo DCGAN [70]. Os modelos DCGAN sao
baseados em modelos neurais generativos [29, 30]. O intuito destes modelos é utilizar
dados reais para criar dados que sejam sintéticos e similares aos dados reais. Para isso,

o modelo se divide em duas partes: codificador e decodificador. O modelo codificador
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aprende uma representacao vetorial dos dados de entrada, no caso as imagens, enquanto
o decodificador processa essa representagao vetorial e tenta recriar uma imagem parecida
com a original. Neste artigo [70], os autores utilizam o codificador para criar a represen-
tagao vetorial mais proxima possivel as imagens do fundo de olho. Em seguida, os autores
utilizaram essa representacao vetorial em um modelo classificador baseado em regressao
logistica para detectar a presenca de Alzheimer nos pacientes. Os dados utilizados pelo

modelo DCGAN sao imagens neurais multimodais.

2.2 Aplicacoes de Aprendizado de Maquina para

glaucoma

Conforme os autores, que utilizaram redes neurais convolucionais, mais especifi-
camente uma ResNet34, o modelo conseguiu prever a espessura das camadas de fibras
nervosas do disco 6ptico [48]. Para evitar que haja qualquer tipo de vazamento de dados
entre os dados de treino e de teste (Segao 3.10), a divisdo dos dados foi feita por paciente,
desta forma, nenhum dado de paciente esta presente no treino e no teste em simultaneo.
As imagens foram padronizadas com altura e largura de 256 x256 pixeis, e os valores de
pixeis foram normalizados entre 0 e 1. Foram utilizadas algumas técnicas de Data Aug-
mentation para aumentar a variabilidade das amostras do conjunto de dados, diminuindo
a chance de sobreajuste do modelo (Sec¢ao 3.5.9). Um segundo modelo classificador biné-
rio foi treinado para detectar anormalidades (ou normalidades) na espessura da camada
de fibras utilizando fotografias do disco éptico. As métricas utilizadas foram MAE (Mean
Absolute Error) para predicdo da espessura da camada de fibras nervosas e AUC (Area
under the ROC curve) para a classificagdo binaria. Foram utilizados aproximadamente
1200 pacientes como amostras e um total de 2312 olhos. Os modelos apresentaram resul-
tados de 0.944 para curva ROC, uma acuracia de 0.84 e erro de predi¢ao da espessura da
camada de fibras nervosas de aproximadamente 7,39 micromilimetros.

Neste trabalho, a imagem do fundo de olho foi utilizada para extrair uma carac-
teristica utilizando redes CNN, que o autor deu o nome de CNN Degree [53]. Além da
caracteristica extraida pelas redes CNNs, foram também utilizados dados clinicos para
um segundo modelo, com o papel de diagnosticar o glaucoma, como, por exemplo: es-
pessura da camada de fibras nervosas (temporal, nasal, inferior, superior), espessura da
cornea, tamanho da escavagao do disco 6ptico (CDO, do inglés, Physiologic Cup ou Optic
Cup) e do disco 6ptico, idade, sexo do paciente, etc. Para o modelo diagnosticador, foram

utilizados modelos com estruturas diferentes. Dentre eles, estdo: Support Vector Machine
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(SVM), Random Forest, C5.0 e XGBoost. As métricas utilizadas foram AUC, ROC, sen-
sibilidade e especificidade. Os autores constataram que o melhor modelo foi o XGBoost,
apresentando AUC igual a 0.945, sensibilidade de 0.950 e especificidade de 0.945. Além
disso, os autores apresentaram explicabilidade para o modelo, sendo a caracteristica mais
importante a espessura das camadas das fibras nervosas da retina superior (REFNLsupe-
rior). Pacientes com glaucoma apresentam valores menores para essa caracteristica e
pessoas sauddveis apresentam valores altos. As caracteristicas apontadas pelo modelo
como a segunda e terceira mais importantes sio RNFLinferior (espessura da camada de
fibras nervosas inferior) e a pressao intraocular (PIO).

Outro trabalho que vale a pena ser analisado para a detecgdo do glaucoma ¢é a
aplicagao do modelo Inception-V3 [74] para detecgao do glaucoma [43]. Os autores trazem
técnicas de Data Augmentation (Segdo 3.13) para aumentar heterogeneidade dos dados.
As fotos foram padronizadas para o tamanho 299 x299 e os pixeis foram normalizados entre
0 e 1. Quanto ao Data Augmentation, foram aplicadas as seguintes operagoes: rotagoes
randomizadas de 90, 180 e 270 graus e também um deslocamento entre 0 e 3 pixeis na
horizontal. Este tltimo é aplicado para aumentar o detalhe de captura das imagens sem
a necessidade de aumentar o niimero de pixeis das imagens. Quanto aos hiperparametros
do treino, o autor utilizou o otimizador Adam [40] com uma taxa de aprendizagem de
0.002 e um, tamanho de batch de 32 imagens. Estes hiperparametros serao explicados na
se¢do 3.5. Com um total de 48 mil imagens e em um intervalo de confianca de 0.95, o
autor atinge um desempenho de AUC entre 0.984 e 0.988. Além disso, o autor aponta

quais foram as caracteristicas que mais geraram falso negativo:

e O glaucoma normalmente aparece com outras doengas, como, por exemplo, miopia,

retinopatia diabética e degeneracao macular devido a idade.

e Defeito nas camadas das fibras nervosas da retina ou disco 6ptico causado por uma

hemorragia.

Para um uso mais extensivo ao ptublico, foi implementado uma framework de di-
agnostico do glaucoma utilizando a combinacao de dados publicos e privados com acesso
ao modelo de aprendizado de maquina profundo [23]. Esta framework! ¢ acessivel para o
publico geral, que envia as fotos do fundo de olho e, em seguida, recebe o resultado de-
cisorio do modelo. Quando negativo, o resultado é enviado diretamente para o paciente.
Quando positivo, este é enviado para um oftalmologista para uma analise mais profunda

e o paciente encaminhado. A framework é divida em duas partes: a parte ptublica, onde

'Um framework em desenvolvimento de software, é uma abstracio que une cédigos comuns entre
varios projetos de software provendo uma funcionalidade genérica. Um framework pode atingir uma
funcionalidade especifica, por configuracdo, durante a programacao de uma aplicacdo. Ao contrario das
bibliotecas, o framework é quem dita o fluxo de controle da aplicagdo, chamado de Inversao de Controle.
Fonte: Wikipedia
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as pessoas podem carregar as imagens do fundo de olho e a parte privada, onde ¢ reali-
zado todo o processamento e a geracao do relatério. O acesso publico pode ser pela web
ou por um dispositivo MobileNet. O resultado é baseado na propor¢ao entre o disco e
escavagao do disco 6ptico: cup-to-disc ratio (CDR). Se o valor da CDR, é maior que 0.5
o modelo retorna a possibilidade de glaucoma. Para segmentar e classificar a imagem, os
modelos utilizados foram: EfficientNet [77] (Codificador) e UNet++ [92] (Decodificador).
O codificador cria um mapa de caracteristicas que sera decodificado, pelo decodificador,
de forma que cada segmento da imagem seja separado e o valor da CDR seja calculado.
O acesso ao banco de dados também é manuseado por um servidor publico, de forma que
todas as pessoas tenham acesso. Enquanto o processamento da imagem é feito por um
servidor privado.

O seguinte trabalho faz uma comparacdo da acurdacia do modelo de aprendi-
zado de maquina com fotos coletadas nos centro épticos e fotos coletadas utilizando um
smartphone e um aparelho acoplado D-Eye Lens [50]. O autor descreve que a utilizagao
do smartphone possibilita que mais pessoas sejam avaliadas devido ao facil acesso e lo-
comocao do dispositivo. Para captar as fotos pelo smartphone, um video de 1 minuto é
gravado, e do video. A partir do video, uma imagem é extraida, sendo esta imagem a
que melhor captura o disco 6ptico. Isto possibilita que pacientes com deméncia também
sejam diagnosticados. Os autores utilizaram uma ResNet para classificar a presenca do
glaucoma. Quanto aos dados, foram utilizadas técnicas de Data Augmentation, abordado
na secao 3.13, para diversificar o dado e por consequéncia melhorar o desempenho do mo-
delo quanto a generalizacao. Dentre as operacoes realizadas nas imagens, estao: rotacao
da imagem (10 graus), translagao vertical e horizontal, mudanga de contraste e saturagao
de forma randomica e variacao do tamanho das bordas da imagem. O modelo apresentou
um desempenho AUC de 0.98 para a camera padrao e 0.84 para o uso do smartphone. Os
autores discutem que a diferenca dos desempenhos, que apesar de serem suficientemente
bons para uma anélise, se da pela capacidade de foco da camera, gerando imagens que

nem sempre possuem qualidade adequada para uma avaliagao mais assertiva.
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Capitulo 3

Fundamentacao Teédrica

3.1 Estrutura Ocular

O conhecimento sobre a anatomia do olho humano é importante para um melhor
entendimento dos resultados que serao apresentados no capitulo 5. O olho é um érgao
sensorial complexo, capaz de capturar relacoes espaciais e temporais de algum objeto,
captando a energia luminosa refletida e transformada em sinais elétricos. A energia lumi-
nosa passa pela retina e através do nervo 6ptico, onde se encontra o disco 6ptico (DO), a
energia transformada em impulsos elétricos é enviada para o cérebro [55].

A figura a seguir 3.1 mostra o olho humano com uma geometria similar a um globo.
O globo ocular possui formato esférico, revestido por trés camadas: externa, intermediaria

e interna.

Figura 3.1: Estrutura interna do olho
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Fonte: Imagem retirada de [72]

A retina (do inglés, retina) ¢ a membrana mais interna do olho e se estende por
toda a por¢ao posterior da parede, composta por células fotossensiveis (cones e bastonetes)
que recebem o estimulo, luminoso, transformando-o em estimulo elétrico. Desta forma, a

retina é responsavel pela sensacao da imagem visual projetada pelas estruturas frontais
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do olho [55, 28, 56].

Na retina existe uma pequena regiao conhecida como févea (do inglés, fovea) onde
a imagem se torna mais detalhada e nitida. A févea possui a capacidade de capturar as
cores dos objetos e se encontra na regiao central da macula (do inglés, macula) [36].

A luz que penetra no olho percorre o meio dptico composto pela cérnea (do inglés,
cornea), iris (do inglés, iris), cristalino (do inglés, lens), humor vitreo (do inglés, vitreous
humour) e humor aquoso (do inglés, aqueous humour) antes de chegar na retina. A iris é
responsavel por controlar a quantidade de luz que penetra no olho através da pupila (do

inglés, pupil) [56, 55].

3.2 Glaucoma

O glaucoma é uma neuropatia que degenera as células ganglionares da retina (RGC,
do inglés, retinal ganglion cells) e seus axdnios, resultando em uma aparéncia diferenciada,
para a regiao central do nervo 6ptico, conhecida como escavagao papilar ou escavacao do
disco éptico [81].

Dentre os principais fatores relacionados ao aparecimento do glaucoma estao: idade
acima de 49 anos, portadores de miopia, pessoas de origem africana, pessoas com historico
familiar da doenca, pressao intraocular alta, pessoas com diabetes, pessoas que utilizam
ou ja utilizaram esteroides/cortisona, pessoas lesionadas visualmente, com hipertensao
arterial alta e desregulagdo vascular [51, 27].

A incidéncia do glaucoma esté diretamente relacionada ao humor aquoso, um fluido
que circula na parte interna do olho, com o objetivo de nutrir a regiao da iris e da cérnea
e exercer pressao para manter o formato do olho. Esse liquido é secretado constantemente
e, quando nao ¢ drenado adequadamente, aumenta a pressao intraocular. Consequente-

mente, o nervo 6ptico é danificado, como mostra a figura abaixo.
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Figura 3.2: Glaucoma progredindo e danificando o nervo éptico
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Fonte: Imagem retirada de Medium

Uma das formas de deteccao do glaucoma é o célculo da razao conhecida como
cup-to-disc ratio (CDR) [2].
CDO
DO
A equagao 3.1 mostra como é feito o cdlculo do valor da CDR que nada mais é do

CDR = (3.1)

que a razao do diametro vertical da escavagao do disco éptico e do didmetro vertical do

disco optico.

Figura 3.3: Disco 6ptico e escavacdao do disco 6ptico de um olho normal e outro com
glaucoma.
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Fonte: Imagem retirada de [6]
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A figura acima 3.3 possui 4 imagens de 2 retinas diferentes. As duas imagens na
linha inferior possui a escavacao do disco 6ptico modificada pela presenca do glaucoma.
Nestas duas imagens, a altura do didmetro da escavagao do disco 6ptico (cup height) esta
proxima da altura do didmetro do disco, e consequentemente, a equacao 3.1 assume valores
maiores. Casos positivos do glaucoma podem ser considerados quando a razao for maior
0.5 [2] ou 0.7 [90]. De qualquer forma, este método ¢ sensivel a diferencga de iluminagao e
o especialista pode demorar de 1 até 3 minutos para fazer uma andlise subjetiva [18].

Outra forma de fazer o diagnéstico do glaucoma é utilizando a regra ISNT (Infe-
rior, Superior, Nasal e Temporal) [34]. Para cada quadrante da regiao do disco déptico é
calculado uma energia wavelet através de diferentes sub-bandas, usando diferentes fami-
lias wavelet. Em seguida, é coletado a espessura da camada de fibras nervosas de cada
uma das regioes. Um olho sem a presenca do glaucoma deve apresentar a seguinte ordem

de espessura da camada de fibras: inferior > superior > nasal > temporal.

Figura 3.4: Disco 6ptico e escavacao do disco 6ptico de um olho normal e outro com
glaucoma e o valor da CDR e a regra ISNT.
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Fonte: Image retirada de [6]

A figura 3.4 mostra o valor da CDR e a ordem ISNT do olho glaucoma. O olho
com glaucoma nao segue a ordem estabelecida para um olho saudavel quanto a ordenacao
da espessura da camada de fibras nervosas nos 4 setores ISNT.

Para se obter as duas informacoes citadas anteriormente, ISNT e CDR, os exames
de Fundoscopia e Tomografia de Coeréncia Optica sdo utilizados para diagnosticar os pa-
cientes com suspeita de glaucoma. Estes dois exames serao detalhados nas duas préximas

secoes.
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3.3 Fundoscopia

Atualmente, um dos recursos mais utilizados para detectar a doenca é a imagem
da retina ou imagem do fundo de olho (Fundoscopia). A Fundoscopia é um exame que
avalia a parte posterior do olho e, através da imagem, é possivel verificar o formato
e o tamanho do disco Optico e da escavagao do disco Optico, ja que este ultimo sofre
alteragoes na presencga da doenga [88, 71, 5, 93]. Além disso, a Fundoscopia detecta os
vasos sanguineos, a macula e a fovea, dando recursos para detectar outras doencas e lesoes
como, por exemplo, microaneurismas, sangramentos, exsudatos e manchas de algodao [79].

Existem dois tipos de imagens geradas pela Fundoscopia apresentada na figura 3.5
[16]:

e Colorida: Documenta possiveis alteragoes retinianas por intermédio das imagens,

realizado em toda a faixa do espectro visivel, permitindo que o DO seja capturado.

o Fluorescente ou Angiofluoresceinografia: Usa uma iluminagao especial e fil-
tros, podendo ser realizado com ou sem contraste, ajudando a detectar melhor os

vasos sanguineos.

Figura 3.5: Exemplos de imagem de fundo de olho colorida e fluorescente

Fonte: Imagem retirada de [16]

A figura 3.6 traz duas imagens de fundo de olho, uma delas com a presenca do
glaucoma. E possivel conferir na imagem inferior do fundo de olho, em que hé o diag-
nostico de glaucoma, o aumento do valor da CDR. Ja a figura 3.7 traz a diferenca de

espessura do ISNT da escavagao do disco.
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Figura 3.6: Exemplos de imagem do fundo de olho com presenca e auséncia de glaucoma.
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Fonte: Nature, 2021

Figura 3.7: Exemplo de ISNT capturado por uma Fundoscopia. (a) Olho normal, (b) Olho
com glaucoma
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Fonte: Imagem retirada de [64]

Por mérito do avanco tecnolégico de dispositivos moveis e o uso de redes neurais efi-
cientes, é possivel que o glaucoma seja detectado utilizando Smartphones [11]. Utilizando
uma lente e um smartphone (Android ou I0S) os autores desenvolveram um aplicativo
que extral a imagem do fundo de olho e, em seguida, um modelo de aprendizado de ma-
quina profundo faz a segmentacao do disco e da escavacao do disco éptico. A segmentagao
fornecia os valores da CDR, e por fim, o diagnéstico do glaucoma era dado conforme o

valor da razao, atingindo uma acuracia de 0.78. A figura a seguir mostra os dispositi-


https://www.nature.com/articles/s41598-021-81554-4
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vos (imagem a e b) utilizados pelos autores para detectar o glaucoma com a aplica¢ao

desenvolvida:

Figura 3.8: Smartphone com camera de imagem de fundo de olho.
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Fonte: Imagem retirada de [31]

3.4 Tomografia de Coeréncia Optica

O exame OCT, Tomografia de Coeréncia Optica, mensura a espessura da camada
de fibras nervosas da retina peri-papilares assim como o tamanho da escavac¢ao do disco
optico. Estas medigoes fornecem aos profissionais intimeras informacoes, dando mais
recurso para uma melhor avaliagdo do glaucoma.

A obtencao de imagens pelo exame OCT baseia-se na técnica de interferometria'. O
interferometro 6ptico usa o principio de comparacao entre feixes de luz para alta resolugao
de estruturas, ou seja, mede o tempo de atraso em escala de femtossegundos. Um feixe
é refletido e o outro é transmitido ao olho, refletido por estruturas oculares a partir de
distancias axiais variadas. O feixe de luz que reflete do olho é composto por ecos que
informam a distancia e espessura das estruturas interiores dos olhos. O segundo feixe é

refletido a partir de um espelho de referéncia situado a uma determinada distancia. A

nterferometria é uma técnica que utiliza a interferéncia de ondas sobrepostas para extrair informa-
coes. Fonte: Wikipedia
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chave do processo consiste no fato de que o interferémetro pode medir o tempo de atraso
de ecos 6pticos pela comparaciao do feixe de luz refletido com o feixe de luz padrao de
referéncia [69)].

A figura 3.9 mostra um exame OCT, com suas respectivas medidas de espessura
da camada de fibras nervosas da retina, e o valor G, sendo a média dos setores. Quanto
menor o valor G, maior a probabilidade de se ter glaucoma. A camada de fibras nervosas
¢ divida em 6 setores: nasal (N), nasal superior (NS), nasal inferior (NI), temporal (T),
temporal superior (T'S) e temporal inferior (TI). A figura nos mostra que o olho direito
esta com as camadas de fibras nervosas danificadas e pode ter glaucoma, enquanto o olho

esquerdo estd saudavel.

Figura 3.9: Exemplo do exame OCT, sendo o olho direito (OD) com a presenca de glaucoma
e o esquerdo (OS) em estado saudavel.
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3.5 Conceitos de Aprendizado de Maquina

3.5.1 Camadas

As camadas sdo onde se encontram os neurdnios ou unidades de processamento.
Uma rede neural normalmente possui multiplas camadas, ou, pelo menos, duas camadas
de entrada e saida. Quanto mais camadas na rede neural, mais profunda ela é, ou seja,
mais neuronios sao utilizados. No entanto, é necessario um cuidado, pois quanto mais
neurdnios mais operagoes matematicas sao realizadas e, por consequéncia, mais dados sao

necessarios para utilizar o modelo, demandando mais poder computacional.

3.5.2 Pesos ou Parametros

As redes neurais s@o compostas por varias unidades de processamento, cujo fun-
cionamento é o mais simples possivel. As unidades de processamento das redes neurais,
conhecidas também como neur6nios, sdo interligadas entre si, e cada uma dessas uni-
dades possui um parametro associado, também conhecido como peso. As unidades de
processamento fazem operagoes matematicas com os dados recebidos de outras unidades
de processamento ou das tabelas de dados se a unidade estiver na primeira camada do
modelo, também conhecida como camada de entrada (do inglés, input layer).

A figura 3.10 representa uma rede neural multicamada (MLP, do inglés, Multi Layer
Perceptron) contendo trés camadas. Uma camada de entrada, uma camada intermediaria
e uma camada de saida. Cada uma dessas camadas possui um ntimero N de neurdnios.
Cada neuronio, ou unidade de processamento, possui conexoes com outras unidades, sendo
que essa conexao seria o peso ou parametro. O parametro entao é multiplicado pela saida
de um neurénio que entra em um préximo neurdnio. No neurénio, todas as entradas sao
somadas. Em seguida, o resultado da soma passa em uma func¢ao de ativagdo, como, por
exemplo, uma sigmoid [29], para transformar ou limitar os valores. Todos os neur6nios

de uma camada possuem ligagoes com todos os neuronios da proxima camada.
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Figura 3.10: Uma rede neural MLP, com 3 camadas. Uma de entrada com 3 neuronios,
uma camada intermediaria com 4 neurdnios e uma de saida com dois neurdnios.
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Fonte: Imagem elaborada pelo autor.

3.5.3 Taxa de aprendizagem

A taxa de aprendizagem(LR, do inglés, Learning Rate), é o valor de atualizagao
dos parametros. Toda vez que uma rede neural erra sua previsao ou resposta, é necessario
que estes parametros se ajustem, para diminuir o valor do erro em uma préxima iteracao.
A taxa de aprendizagem ¢é a magnitude desta atualizacdo. Quanto mais alta a taxa de
aprendizagem, maior serd o valor adicionado ou subtraido do pardmetro. E necessério

balancear o valor desta taxa, para as atualizagoes acontecerem de acordo e em direcao da

diminuigao do erro do modelo [29].
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3.5.4 Treino, Teste e Inferéncia

O processo para se obter e usar um modelo de aprendizado de maquina se divide
em trés fases: treino, teste e inferéncia. O treino é a fase onde se ajusta os parametros
do modelo para que ele complete uma tarefa da melhor forma possivel, que neste projeto
seria diagnosticar o glaucoma. O teste é a fase onde ird ser avaliado o desempenho
do modelo, utilizando as métricas previamente estabelecidas. E a fase de inferéncia é
quando um modelo ja treinado e avaliado segundo as métricas estabelecidas ja esta sendo
utilizado pelo publico alvo. Normalmente, os modelos na fase de inferéncia sao colocados
na nuvem? ou em alguma infraestrutura computacional local para poderem ser acessados
por diferentes aplicages e profissionais que queiram agregar valor ao negdcio [29].

Cada uma dessas fases trabalha com um conjunto de dados tinico que nao se
intersectam. E necessério ressaltar que se deve ter cuidado em dividir o conjunto de dados
do treinamento e do teste para nao haver vazamento de dados entre os dois conjuntos e
o modelo atinja um desempenho que nao representa a realidade. O conjunto de dados
da inferéncia é coletado quando o modelo ja estd em producdo, ou seja, todos aqueles
dados que nao estavam presentes no conjunto de treino e teste e ainda nao possuem um
ground truth®. Apdés um certo tempo, normalmente os dados coletados na inferéncia sao
adicionados aos dados de treino e teste e o modelo é retreinado ja que o modelo pode
sofrer de Distribution Shift*.

3.5.5 Batch e Epoca

O treinamento se divide em épocas. Cada época é um processamento completo
dos dados de treino e de teste pelo modelo. Logo, consegue-se atualizar seus parametros
e avaliar o modelo. No entanto, nao é possivel passar todos os dados para o modelo
de uma tnica vez devido ao custo computacional e ao tamanho limitado da memoria.
Portanto, os dados sao separados em batches que nada mais sao que um subgrupo de
um grupo de dados. O tamanho deste subgrupo ¢ ajustado conforme a tarefa e recursos

computacionais disponiveis. Ha algumas restri¢oes quanto a este tamanho. O ideal é que

2Infraestrutura de computacio necessarios para rodar uma aplicacdo que seja acessada através da
internet. Os recursos virtuais refletem uma infraestrutura fisica local, com servidores, memorias, clusters
e armazenamentos. Tudo isso voltado para uma aplicacdo que seja escalavel e de facil uso.

3 Ground truth é uma informacdo estabelecida como real utilizando métricas ou através da observacio.

4 Distribution Shift é quando a distribuicdo de dados muda durante um tempo devido as sazonalidades
dos dados ou mudancga de comportamento do grupo de amostra.
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o tamanho dos batches seja menor que a totalidade dos dados do conjunto e maior do
que 1. Neste ultimo caso, o modelo precisara fazer por cada amostra processada e usara
recurso computacional excessivamente, além de que, a generalizagdo podera ser afetada
para pior, ja que 1 amostra dificilmente ird representar ou aproximar minimamente a

distribuigao do conjunto de dados [29].

3.5.6 Funcao de custo

A funcgao de custo mede o quao longe o modelo estd da resposta correta presente
nos dados. Também conhecida como func¢ao de perda, esta funcao ird indicar a qualidade
do modelo e quais sao os valores de atualizacao necessarios para os parametros utilizando
um numero real como indicador. O que esta funcao faz é comparar oground truth com
a decisao do modelo e serd analisado a proximidade ou igualdade entre dois elementos.
Neste projeto, o ground truth é a classe dos dados, indicando presenca ou auséncia do

glaucoma.

3.5.7 Otimizadores

Os otimizadores sao algoritmos ou fungoes responsaveis por atualizar os parametros
dos modelos usando o nimero gerado pela funcao de custo. O otimizador calcula os
melhores valores para cada um dos parametros visando diminuir o erro do modelo em
uma devida tarefa. Para realizar este calculo sdo necessarios os parametros do modelo,
a taxa de aprendizado e o erro calculado na funcao de custo. O otimizador conseguinte
escolhe a melhor atualizagao para os parametros. Todavia, é essencial escolher o melhor
otimizador para cada uma das tarefas ou modelos a serem utilizados, nao existindo um

otimizador que seja global e eficiente em todos os contextos.
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3.5.8 Hiperparametros

Os hiperparametros dos modelos sao configuracoes ligadas ao processo de apren-
dizado. Por exemplo, como citado anteriormente, a taxa de aprendizagem (Secao 3.5.3) é
um hiperparametro a ser escolhido e sinaliza a magnitude de atualizagao dos parametros.
Outro hiperpardmetro ¢ o tamanho do batch (Se¢ao 3.5.5) e também qual otimizador (Se-
¢ao 3.5.7) serd utilizado [29]. Normalmente, para encontrar os melhores hiperparametros
para o modelo é necessario repetir o processo de treino e teste multiplas vezes, tornando

este processo extremamente caro.

3.5.9 Sobreajuste

O sobreajuste (do inglés, overfitting) é um cendrio onde o modelo se ajusta de
forma quase que perfeita para um conjunto de dados X e, por consequéncia, acaba tendo
uma perda de desempenho no conjunto de dados Y que possui uma distribuicao diferente
de X. O ideal é que o modelo consiga generalizar bem para todos os conjuntos de da-
dos disponiveis, no entanto, é praticamente impossivel, ja que qualquer comportamento
diferente nos dados pode causar distribui¢oes totalmente diferentes entre eles. Logo, se
os conjuntos de dados X e Y possuem distribui¢coes préoximas, mas nao iguais, é possivel
utilizar de um para conseguir inferir o outro. Portanto, se o modelo sobreajusta para X e
tenta inferir Y, este modelo ird ter um erro grande quanto a sua inferéncia, ja que apesar
de as distribui¢oes serem proximas, estas diferem entre si [29].

Para se evitar o sobreajuste do modelo, este projeto aplicou uma técnica conhecida
como Early Stopping (ES) (Segao 3.10). A técnica tem como intuito parar o processo de
treinamento quando o modelo comega a aumentar seu desempenho no conjunto de dados
de treino (X)) e sofre uma piora significativa no conjunto de dados de teste (Y) utilizado

para avaliacao. A figura 3.11 a seguir mostra visualmente como acontece o sobreajuste.
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Figura 3.11: Uma imagem representando o problema de sobreajuste e subajuste.
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3.5.10 Convolugao

As convolugoes funcionam como filtros que enxergam pequenos quadrados e vao
“escorregando” por toda a imagem, captando os tragos mais marcantes. Explicando
melhor, com uma imagem 32x32x3 e um filtro que cobre uma area de 5x5 da imagem
com movimento de 2 saltos (chamado de stride), o filtro passard pela imagem inteira, por
cada um dos canais, formando no final um feature map ou activation map de 28 x28x1.

A imagem 3.12 mostra como uma convolugao funciona.


https://www.ibm.com/cloud/learn/overfitting
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Figura 3.12: Exemplo de uma convolucao com filtro 5x5. Cada quadrado com este tamanho
produz um nimero utilizando operacées matematicas. Em seguida, o quadrado é deslocado
para o lado ou para baixo e um novo filtro é formado.
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Fonte: Yale

A profundidade da saida de uma convolucao é igual a quantidade de filtros apli-
cados (total de canais). Quanto mais profundas sdo as camadas das convolugbes, mais
detalhados sao os tracos identificados com o activation map. No entanto, quanto maior o
numero de canais, maior serda o nimero de operagoes matematicas e, consequentemente,

uma demanda maior de hardware.

3.6 Modelos

Os modelos mencionados a seguir sao modelos focados em visao computacional.
Todos os modelos sao baseados em redes neurais convolucionais, com excec¢ao do modelo
Vision Transformers (ViT). Com intuito de trazer mais flexibilidade ao diagnéstico de
glaucoma, foram testados modelos com niimero total de pardmetros (Segao 3.5.2) variavel
e por consequéncia, o uso computacional destes modelos. Alguns dos modelos conseguem
ser executados em dispositivos menores, como, por exemplo, um smartphone. Outros
modelos trazem rapida inferéncia quando é necessario que a resposta do modelo seja
eficiente. Toda a experimentacdo é com objetivo de trazer diferentes arquiteturas de
redes neurais que se encaixam em diferentes contextos e infraestrutura disponivel. Logo, os
modelos testados foram: RegNet, MobileNet, ShuffleNet, EfficientNet, ResNet, Inception-
V3, ViT [83, 37, 89, 35, 74, 21, 77|

Cada um dos modelos citados anteriormente possui suas vantagens. A MobileNet,
como o proprio nome ja diz, é otimizada para rodar em celulares ou dispositivos menores
do que um computador [37]. As redes MobileNet, sdo menores dos que as redes convolu-
cionais tradicionais, utilizando menos energia para atender recursos limitados e também

possuem baixa laténcia para ter respostas rapidas. A EfficientNet é bastante eficiente


http://euler.stat.yale.edu/~tba3/stat665/lectures/lec18/lecture18.pdf
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em tarefas que envolvem o reconhecimento visual, dando respostas rapidas. Estas redes
podem ser escaladas facilmente para serem utilizadas em larga escala ou melhorar seu de-
sempenho sem trazer custos adicionais exagerados e de forma simples [77]. A ShuffleNet
traz uma rede neural que seria o extremo de reducao de custo tentando manter a acuracia
do modelo. A ShuffleNet pode ter uma eficiéncia 13 vezes maior que uma ResNet sem
perder muito do seu desempenho quanto a acuracia do modelo. As ShuffleNet possuem o
niimero de operagoes por segundo reduzidas (MFLops®) e também o tempo de resposta
[89].

Quanto aos modelos mais custosos, foram testados ViT, Inception-V3 e ResNet.
A ResNet traz um modelo robusto com o foco em assertividade alta devido ao niimero de
parametros [35]. As ViT sdo redes neurais que conseguem trazer capacidade de aprendi-
zado mesmo com um numero pequeno de dados, mas mantendo o poder computacional
das redes neurais convolucionais mais profundas, como a ResNet, citada anteriormente.
Como toda rede neural, quanto mais dados disponiveis, melhor serda o poder de generali-
zacao da rede, no entanto, redes neurais ViT apresentam resultados melhores utilizando
técnicas de Self-Attention [41, 21]. A Inception-V3 utiliza um classificador auxiliar que
evita o problema de Vanish Gradient, ou, quando as camadas mais préoximas da entrada
nao conseguem modificar seus pardmetros, com objetivo de diminuir o erro, devido a
profundidade da rede.

E, além dos modelos convolucionais citados anteriormente, foram utilizados tam-
bém modelos de redes neurais de miltiplas camadas (MLP, do inglés, Multi Layer Per-
ceptron). As redes MLP sdo redes neurais mais simples, no entanto, com alto poder de
generalizacao. Neste projeto, as MLP serao utilizadas na parte de classificacao e conca-

tenagao dos resultados das arquiteturas que serao citadas na préxima secao 3.8.

3.7 RegNet: O modelo mais flexivel para visao

computacional

O modelo RegNet é um tipo de rede neural criada via um Network Design Space
(NDS). Diferente dos modelos de arquitetura padrao, em que uma arquitetura de rede
neural foi descoberta por NAS® [94], 0 RegNet é um espaco contendo todas as redes neurais

possiveis com as configuragoes de hiperparametros disponiveis. Ou seja, NDS fornece um

5Medida de operacdo de ponto flutuante por segundo. Quanto menor este niimero para uma rede
neural, menos energia é gasta para serem calculados os resultados.

6 Neural Architecture Search é uma técnica de automatizar o processo de busca de arquitetura de redes
neurais, desempenhando melhor do que redes neurais montadas manualmente.
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mecanismo de testagem de arquiteturas mais sofisticado, sem a necessidade de testar
cada uma das arquiteturas, mas sim uma amostragem robusta do espaco, reduzindo custo
computacional e, simultaneamente, fornece modelos simples e eficazes.

O NDS ¢é um conjunto de possiveis arquiteturas em um espago de busca. Em
cada iteragao, esse espaco de amostragem ¢é restringido pelos hiperparametros, com o
intuito de querer obter redes neurais com desempenho maior ou pelo menos igual, no
entanto, utilizando uma arquitetura muito mais simples. Desta forma, com a amostragem,
verifica-se que utilizando uma certa combinac¢ao de grupo de hiperparametros, é possivel
testar se uma populacao amostral de arquitetura de redes neurais consegue ter um bom
desempenho em tarefa ao invés de procurar uma arquitetura tnica que traga o melhor
resultado possivel, conforme utilizado na metodologia NAS [94].

A composicao dos hiperparametros e estruturas de uma RegNet serdo abordados

nos seguintes topicos.

3.7.1 Hiperparametros

Total de blocos: Cada bloco é composto por um grupo de convolugoes (Segao 3.5.10).
« Largura do bloco: Total de canais (Se¢ao 3.5.10) de cada um das convolugoes.

» Razao do gargalo: Utilizado para diminuir o nimero de canais entre uma convolugao

e outra, diminuindo o total de operacoes a serem executadas.

Largura do grupo: Total de operacoes de convolugoes para cada bloco.

3.7.2 Estrutura

» Tronco (Stem): Contém as camadas (Segao 3.5.1) de entrada da rede neural.

» Corpo (Body): A parte principal da rede neural, sendo esta a estrutura influenciada

pelos parametros citados acima.

o Cabeca (Head): Camada de saida do modelo, contendo o classificador.

A figura a seguir 3.13, apresenta um modelo RegNet.



3.7. RegNet: O modelo mais flexivel para visao computacional 43

Figura 3.13: Corpo de um modelo RegNet contendo 4 (Fixo) estagios. Cada estagio contém
nimero X de blocos.
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Fonte: Imagem retirada do artigo [61].

Um ponto de atencao citado pelos autores é a decisao de manter todos os blocos

iguais e com a mesma estrutura de uma ResNet [35]. A imagem 3.14 a seguir exemplifica:

Figura 3.14: Exemplo de um bloco X baseado em uma rede residual.
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Imagem retirada do artigo [61].

Tabela 3.1: Tabela de restrices dos modelos até chegar no modelo RegNet [61]. O indice
i é o estagio, fixado em 4. O b; representa razdo do gargalo, g; representa o total de canais
da convolucdo, d; representa o total de blocos e o w; representa o tamanho do bloco.

Versao Restricoes Dim Combinacgoes Total
AnyNet A none 16 ((16-128 -3-6)%) ~1.8-10!8
AnyNet g (+b; + 1 =1by) 13 ((16-128 - 6)* - 3) ~ 6.8-1016
AnyNet ¢ (+gi +1=9:) 10 ((16 - 128)* -3 -6) ~ 3210
AnyNet p (+w; + 1 > w;) 10 ((16-128)*-3-6/(4") ~1.3-103
AnyNet (+d; +1>d;) 10 ((16 -128)* - 3-6/(41)2) ~5.5-10M1
RegNet quantized linear 6 (~64*-6-3) ~3.0-108

Fonte: Desiging Design Network Spaces

A tabela 3.1 explica um pouco como o modelo RegNet é construido. Como citado

anteriormente, sao infinitas as combinacoes de arquitetura de redes neurais, a depender


https://arxiv.org/abs/2003.13678
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dos hiperparametros a serem testados. A primeira arquitetura de rede neural, AnyNetA,
nao possui nenhuma restricao, totalizando, aproximadamente, 1.8-10*® combinacdes pos-
siveis. A cada nova versao de AnyNet mais restri¢oes sao adicionadas ao NDS. No ultimo
modelo, apds adicionar todas as restrigoes e avaliar todas as AnyNets, o modelo enfim
chega no RegNet utilizando uma metodologia conhecida como quantized linear paramete-
rization, para que todos os blocos do mesmo estagio tenham o mesmo tamanho.

O desempenho dos modelos amostrados do NDS ¢é calculado por um procedimento
que se resume em treinar o modelo no conjunto de dados ImageNet [20] por 10 épocas
(Segao 3.5.5) e calcular o erro de inferéncia nesse mesmo conjunto de dados. E amostrado

em torno de 100 modelos para cada NDS com seu conjunto de pardmetros e restrigoes.

Figura 3.15: A imagem da esquerda mostra os Design Spaces A, B, e C, sendo o C mais
restritivo entre eles. A imagem da direita mostra a distribuicdo de erro de cada desses
espacos, sendo o C aquele que possui o0 melhor desempenho entre eles.

cumulative prob.

40 a5 50 55 60
error

Fonte: Imagem retirada do artigo [61].

Ao final, os autores chegam a conclus@ao que os modelos amostrados do espaco
RegNet possuem desempenho melhor do que os modelos amostrados do AnyNet para
qualquer valor dos parametros escolhidos. Além disso, os autores apresentam o modelo
RegNetY que é uma variacao do RegNetX contendo uma técnica conhecida como squeeze-
and-ezcitation [38] para que cada bloco adapte os pesos para capturar as partes mais

importantes da imagem com um adicional de custo computacional baixo.

3.8 Arquiteturas de Modelos

Neste projeto, 4 arquiteturas de modelos foram testadas. Diferentes das arquite-
turas de redes neurais, uma arquitetura de modelo combina uma ou mais redes neurais.
Cada uma das arquiteturas de modelos apresentados a seguir sera testada com diferentes
combinacgoes de hiperparametros. O intuito de testar diferentes arquiteturas é que cada

uma delas pode se sair melhor a depender da tarefa a ser realizada e dos dados disponiveis.
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Foram testadas as seguintes arquiteturas mostradas na figura 3.16.

Figura 3.16: Arquitetura de modelos. O Backbone pode ser um dos modelos citados
anteriormente (RegNet, ResNet, Inception e “etc”), e o Classifier é uma rede neural de
miltiplas camadas (MLP), assim como o modelo MLP que recebe os dados tabelados e
também o que faz a operacdo de concatenar (concat) juntando todas as saidas e passando
para o classificador.

(a) Arquitetura utilizando uma imagem de
olho

(b) Arquitetura utilizando uma imagem do

Images
olho e os dados tabulados
Images Table
¥
Backbone MLP
Backbone
Concat
h 4
Classifier
Classifier
h 4
Output

(¢) Arquitetura utilizando duas imagens do

mesmo olho (d) Arquitetura utilizando duas imagens do

mesmo olho e os dados tabulados

Images Images

Backnone Backbone Backbone

Classifier

Fonte: Imagem elaborada pelo autor.

Todas as arquiteturas de modelos citados na figura 3.16, representados por um
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retangulo e com excecao do Backbone, sao modelos MLP. Os modelos Backbone, com
traducao literaria de espinha dorsal, sao os modelos principais utilizados para extrair os
padroes mais importantes dos dados de imagens de fundo de olho.

A primeira arquitetura 3.16a usou somente uma imagem do fundo de olho. Entre
as arquiteturas citadas na figura 3.16 esta é a arquitetura mais simples que utiliza a menor
quantidade de recurso computacional. A segunda arquitetura, além de uma imagem do
fundo de olho, também utilizou os dados tabelados do exame OCT 3.16b. Esta segunda
arquitetura junta os dados de imagens e os dados clinicos para trazer mais informagcoes e
ajudar na classificagdo/diagnéstico da presenga/auséncia do glaucoma.

A terceira arquitetura 3.16¢ utilizou duas imagens do fundo de olho. Para que isso
fosse possivel, foi feita uma limpeza dos dados e uma avaliagdo manual de cada uma das
fotos para cada paciente da base de dados. Foram escolhidas dois tipos de imagens: uma
mais distante, contendo as bordas pretas; outra mais focada e proxima do disco optico.
A quarta e ultima arquitetura é a que utiliza duas imagens do fundo de olho e dados
clinicos. Esta é a arquitetura que utiliza mais recurso computacional, ja que o modelo de
imagem ¢é duplicado (Backbone), utilizando o dobro de meméria e uma rede MLP para
processar os dados do exame OCT e demograficos.

Um ponto de atencao ¢ que a arquitetura de modelo, que utiliza somente uma
imagem, seleciona aleatoriamente um dos dois tipos de imagens disponiveis para processar.
Desta forma, este modelo aprende a trabalhar com imagens com bordas e sem bordas.
Para o modelo que utiliza duas imagens, cada tipo de imagem passa por um Backbone
diferente. Logo, o mesmo padrao de imagem deve passar pelos seus respectivos Backbones

em todas as etapas e iteragoes, inclusive no momento de inferéncia.

3.9 Meétricas de Avaliacao

Para a modelagem de diagndstico na area médica, as métricas certas devem ser
utilizadas para que se possa avaliar a qualidade do modelo com robustez. Para isso, faz-se
necessario o entendimento dos seguintes conceitos: Verdadeiros Positivos (TP, do inglés,
True Positive), Falsos Negativos (FN, do inglés, False Negative), Falsos Positivos (FP,
do inglés, False Positive) e Verdadeiros Negativos (TN, do inglés, True Negative) [19],

conforme explicitado a seguir:

 Verdadeiros Positivos (TP): Casos positivos de glaucoma, identificados pelo modelo

como positivo.
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o Falsos Negativos (FN): Casos positivos de glaucoma, identificados pelo modelo como

negativo.

o Falso Positivos (FP): Casos negativos de glaucoma, identificados pelo modelo como

positivo.

o Verdadeiros Negativos (TN): Casos negativos de glaucoma, identificados pelo mo-

delo como negativo.

Tabela 3.2: Matriz de confusao identificando

Verdadeiro

Glaucoma | Normal
Predigio Glaucoma | TP FP
Normal FN TN

Fonte: Tabela retirada de [19]

A tabela acima sumariza os conceitos de TP, TN, FP e FN utilizando uma matriz de
confusao 3.2. Abaixo, verificam-se as métricas utilizadas para a avaliacao das arquiteturas

de modelos sugeridas:

 Especificidade (SP): E a capacidade do modelo em detectar casos que sio negativos.

TN

P i —— 2
TN+ FP (32)

« Sensibilidade (SN): E a capacidade do modelo em detectar todos os casos verdadeiros

de glaucoma.

TP

TP+ FN (3.3)

o Caracteristica de Operagao do Receptor (ROC): Esta curva ajuda os profissionais
e desenvolvedores do modelo a escolher um limiar de corte entre sensibilidade e
especificidade que concorde com o problema de negdcio. Esta métrica é a mais
importante e utilizada em diagnésticos, pois como citado anteriormente, é possivel
se ter uma flexibilidade consoante a regra de negdcio, dando mais importancia para

sensibilidade ou para especificidade [33]. .

« Area sob a curva ROC (AUC): Permite verificar o quiao bom o modelo classificador
binario desempenha no problema. O célculo é feito utilizando a &rea sob a curva
ROC. Quanto maior este valor, mais flexivel o modelo consegue ser quanto a especi-
ficidade e sensibilidade. Esta métrica varia de 0 a 1, sendo o melhor modelo aquele

que tem valor igual a 1.
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Figura 3.17: AUC e curva ROC.
(a) Curva ROC
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Fonte: Ciéncias e Negdcios, 2020

Para selecionar o melhor modelo entre todos os experimentados, foi utilizada a AUC
como métrica principal, ja que esta métrica consegue sumarizar, utilizando somente um
numero, o quao bom a curva ROC se encontra em cada um dos modelos. A figura 3.17
explica, de forma ilustrativa, como a curva ROC e a AUC funcionam. Em aplicagoes
médicas, é mais valido trazer o maior nimero de verdadeiros positivos sem aumentar
significativamente a taxa dos falsos positivos. Normalmente, é mais prejudicial deixar de
diagnosticar uma doenca do que dar um diagnostico positivo falso. Neste caso, o interesse
maior é na sensibilidade. No entanto, se abaixarmos o threshold demais, o nimero de falsos
positivos aumenta significativamente, o que faz com que muitos casos analisados sejam
enviados para a verificacdo de um especialista, gerando um maior custo, mao de obra e de
tempo 3.17a. As duas métricas, sensibilidade e especificidade, interagem entre si. Quando
se aumenta uma, movimentando threshold, é possivel que se perca desempenho na outra.
Contudo, o valor da métrica AUC carrega consigo a informacao de variacao desse ganho e
dessa perda, ou seja, quanto melhor o AUC, mais facil movimentar o threshold ganhando
de um lado e abdicando menos do outro. O modelo perfeito, com 100% de AUC, na
imagem da direita 3.17b, mostra que se movimentarmos o threshold nao se perderia nada,
e seria possivel capturar todos os casos verdadeiros sem nenhum caso de falso positivo.
No entanto, é impossivel construir um modelo perfeito, e normalmente os modelos ficam
entre 50% e 100%.

Devido ao aspecto do problema, a métrica de especificidade também ira ser impor-
tante, pois esta métrica mede a capacidade do modelo de capturar todos os casos positivos,
ou seja, os verdadeiros positivos. E mais prejudicial para o paciente, com glaucoma, ser
diagnosticado como falso negativo e nao receber o tratamento adequado, podendo evoluir

sintomas mais graves da doenca, como a cegueira.


https://cienciaenegocios.com/curva-roc-e-auc-em-machine-learning
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3.10 Treinamento e Avaliacao dos Modelos

Os modelos foram treinados e avaliados utilizando uma técnica conhecida como
validagao cruzada (do inglés, cross-validation). A validacdo cruzada avalia a capacidade
de generalizacao de um modelo a partir de diferentes combinagoes do conjunto de dados.
Busca-se, entao, estimar o quao preciso é este modelo quando a avaliacao é feita em um
conjunto de dados nunca visto antes pelo modelo. Foi utilizado a metodologia K-Fold [62],
sendo este método mais o utilizadas para se obter modelos confidveis quanto ao aspecto
de desempenho do diagnéstico [6].

O método K-Fold consiste em separar os dados em K partes, sendo que K-1 partes
serao utilizadas para o treino do modelo e a parte restante sera utilizada para a validacao
do modelo. Em uma préxima iteragao, um novo grupo € selecionado para teste e os outros
K-1 para treino, até que todos os grupos passem pela fase de teste. Com isto, é possivel

que o modelo seja avaliado com mais robustez e com variabilidade controlada.

Figura 3.18: Imagem ilustrando a validacdo cruzada. Cada parte assume o papel de teste
uma vez e treino K-1 vezes.

Teste Treino
AC AD

N

FOLD 1 FOLD 2 FOLD 3 FOLD 4 FOLD 5

FOLD 1 FOLD 2 FOLD 3 FOLD 4 FOLD 5

FOLD 1 FOLD 2 FOLD 3 FOLD 4 FOLD 5 > Validacdo

FOLD 1 FOLD 2 FOLD 3 FOLD 4 FOLD 5

FOLD 1 FOLD 2 FOLD 3 FOLD 4 FOLD 5
J

Avaliagéo Final { AD

Fonte: Elaborado pelo autor.
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A imagem 3.18 mostra como os dados sao divididos. Existem dois conjuntos de
dados que sdo AC (Amostras Conhecidas) e o AD (Amostras Desconhecidas). Utilizando
o conjunto AC, aplica-se a metodologia de validacao cruzada, avaliando os melhores mo-
delos. Em seguida, o melhor modelo é avaliado no conjunto AD para mensurar seu
desempenho real. Este conjunto AD nao entra nas iteragoes da validagao cruzada, por-
tanto é possivel avaliar a capacidade de generalizacdo do modelo em dados que simulam

os dados na etapa de inferéncia.

3.11 Fine-Tunning

Os modelos utilizados como Backbones sao modelos que ja foram ajustados ante-
riormente com algum conjunto de dados de imagens (ndo necessariamente similares aos
utilizados neste projeto). Existem trés formas mais utilizadas para fazer o treinamento
para cada modelo. A primeira, conhecida como Scratch, ¢ um treinamento onde os mo-
delos sao inicializados com parametros de forma randomica e, em seguida, os dados sao
processados para o modelo conseguir aprender padroes do zero. O segundo método é
conhecido como Feature Fxtraction, onde somente a ultima camada do modelo é, nor-
malmente, a camada classificadora, com seus parametros ajustados para o conjunto de
dados que deseja. Neste caso, todo o treinamento serd conduzido apenas nessa tultima
camada adicionada, enquanto todas as outras camadas terao os seus parametros conge-
lados. Existe, também, um terceiro modo, conhecido como Fine-Tunning, onde todos os
pesos sofrem um ajuste fino para os dados da tarefa a ser realizada.

Dos métodos citados acima, as literaturas apontam que o Fine-Tunning consegue
desempenhar melhor na grande maioria das tarefas. No treinamento em que se utiliza o
método Scratch, é necessario um grande volume de dados para ajuste do modelo. Desta
forma, quanto mais parametros, mais dados sao necessarios para o modelo desempenhar
da melhor forma. No segundo método, utilizando Feature Eztraction, o modelo nao con-
segue se especializar da melhor forma ja que se tém algumas poucas adaptagoes dos pesos,
limitado em pequenas mudancas nesta ultima camada classificadora. Ja no terceiro mé-
todo, o Fine-Tunning, consegue aproveitar a complexidade do modelo treinado em um
conjunto de dados mais volumoso e heterogéneo e, em seguida, se adaptar para o conjunto
de dado desejado [44, 26, 4, 1, 86].

Logo, para este projeto, foi utilizado somente o Fine-Tunning como método de

treinamento dos modelos.
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3.12 Learning Rate Decay

Learning Rate Decay (LRD) é uma técnica de treinamento de rede neural. O
modelo comeca com uma taxa de aprendizagem e vai decaindo essa taxa multiplas ve-
zes durante o treinamento. Dessa maneira, o modelo comeca atualizando os pesos mais
rapidamente até que se chega em um certo ponto, em que é necessario trabalhar com
magnitudes de atualizacoes diferentes. A taxa de aprendizagem do modelo modifica, po-
dendo aumentar ou reduzir a magnitude dos valores de atualizagao dos parametros atingir
valores melhores quanto ao desempenho.

Os seguintes trabalhos trazem um pouco do beneficio do Learning Rate Decay
[87, 35]. A imagem na figura 3.19 mostra que em um certo momento os modelos ResNet-
18 e ResNet-34 chegam em um platé onde o erro do modelo nao decrementa. A partir
deste momento, a taxa de aprendizagem é subtraida por um valor e, apés esta mudanca
de valor, o modelo volta a melhorar seu desempenho. Com isso, o modelo utilizando taxas
menores de aprendizado consegue fazer ajustes mais finos, ou, em outras palavras, dar

passos menores para um minimo local da fun¢ao de erro.

Figura 3.19: Learning Rate Decay aplicado a modelos visuais.
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Fonte: Towards Data Science

3.13 RandAugment

Data Augmentation [58] é uma técnica de aumento da heterogeneidade dos dados

de forma sintética. Neste caso, operacoes sao aplicadas na imagem de forma que novas


https://towardsdatascience.com/the-subtle-art-of-fixing-and-modifying-learning-rate-f1e22b537303
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imagens sejam criadas a partir das originais, aumentando a variabilidade dos dados para
modelagem. Com os dados mais heterogéneos, é possivel atingir desempenhos melhores
para o modelo sem aumentar de forma exponencial o custo computacional (mais poder
computacional) que sera refletido em custo real.

Para realizar o Data Augmentation foi utilizado neste projeto o RandAugment [15].
Conforme os autores, o RandAugment traz beneficios como: diminuir drasticamente o uso
computacional, pois nao se utiliza politicas para escolher as operagoes a serem aplicadas
nas imagens, mas sim uma probabilidade X de acontecer para cada uma delas. E possivel
manter a diversidade das imagens e ter um custo baixo para isso. As transformacoes
possiveis sao: transformacao, identidade, alto-contraste, equalizador, rotacao, solarizacao,
cor tremida, mudanca de contraste, mudanca de brilho, posterizagao, mudanca de formato,

translagoes e cortes.

3.14 Explicabilidade: SHAP

O Shapley Additive Explanations (SHAP) é uma das ferramentas mais utilizadas
quando o assunto é explicabilidade. O objetivo por tras do SHAP é trazer um enten-
dimento quanto a decisdo de modelos complexos, modelos antes conhecidos como caixa
preta devido sua falta de interpretabilidade. Logo, modelos estatisticos como XGBo-
ost, Light GBM e modelos profundos como redes neurais convolucionais (CNN) agora sdo
possiveis de serem entendidos ou interpretados por pessoas [46].

A interpretacdo dos modelos trouxe uma forma inovadora de aplicar modelos de
aprendizado de maquina, principalmente na area da saude. O modelo interpretavel traz
informagoes extras para que o profissional consiga tomar melhores decisbes quanto ao
problema que enfrenta.

Diferentes modelos foram propostos para diagnosticar e verificar a progressao da
evolugao da doenga de Alzheimer [22]. Os autores aplicaram o modelo SHAP para pegar as
caracteristicas que sao mais criticas para o modelo e entender como essa doenga evoluiu
durante o tempo. Além disso, o modelo também forneceu explicagoes individuais dos
pacientes. Logo apds, foi utilizado um sistema baseado em légica fuzzy [80] e linguagem
natural para poder criar um formuldrio que os médicos e os pacientes utilizassem e o
especialista conseguisse explicar de forma mais completa e concisa os fatores que causaram
a doencga e sua evolucao.

Utilizando modelos mais simples, como Arvores de Decisao [60], Regressao Logis-
tica [14] e kNN [78] e modelos mais complexos, como SVM [66], XGBoost [12], e RF [8],

os autores criaram um sistema de progndstico da doenga de hepatite [57]. Utilizando o
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modelo SHAP, fornecem explicacdo para cada um dos pacientes e também geraram gra-
ficos de dependéncia entre as varidveis (caracteristicas) de entrada e o rétulo dos dados
(presenca ou auséncia de hepatite).

Foram utilizados modelos XGBoost [12] para selecionar qual cirurgia refratédria
deve ser feita em um paciente [85]. A escolha certa de uma cirurgia aumenta a satisfa-
¢ao do paciente no final do processo. Antes da escolha da cirurgia, o paciente consulta
um especialista da area e, em seguida, 80 caracteristicas da tomografia da cérnea sao
extraidas, 40 caracteristicas demograficas sdo coletadas e mais de 22 caracteristicas de
exames oftalmoldgicos, como, por exemplo, didmetro da pupila. Ao final, os autores fa-
zem uma validagao cruzada de 10 grupos e atingem uma acuracia média de 72% quanto
a cirurgia a ser aplicada. Os autores também apresentam as caracteristicas gerais mais
importantes para cada um dos 3 tipos de cirurgias possiveis: LASEK, LASIK, SMILE e
contraindicagao.

O SHAP utiliza os Shapley Values ou valores de Shapley. Os valores de Shapley
sao uma média ponderada da contribuicao marginal de cada uma das caracteristicas
[68]. Sumarizando, ele mede o impacto que cada uma destas caracteristicas tem no valor

decisivo do modelo [73].

Figura 3.20: Grafico sumarizado para o conjunto de dados Boston Housing ordenado pelas
caracteristicas mais importantes do modelo.
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A figura 3.20 representa um grafico SHAP para previsao dos pregos de moradias


https://github.com/slundberg/shap
https://github.com/slundberg/shap
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em Boston-MA. Cada um dos pontos é uma amostra com o valor de suas caracteristicas.
Se o ponto é azul, essa amostra apresenta um valor baixo para esta caracteristica, se o
ponto é vermelho ela apresenta um valor alto, se o ponto esta do lado direito quer dizer
que aquele valor da variavel contribui para a resposta ser positiva ou maior; se do lado
esquerdo, negativa ou menor. Por exemplo, a variavel mais importante é a LSTAT, que
corresponde a propor¢ao de adultos sem ensino superior e a propor¢ao de trabalhadores
bracais do sexo masculinos em uma &area. Significa que quanto maior essa proporgao,
menor sera o preco das casas na vizinhanca. Enquanto a varidvel RM ¢é a quantidade de
quartos na casa. Quanto mais quartos na casa, maior serd o valor atribuido para aquela

residéncia.

Figura 3.21: Explicacao de uma imagem utilizando SHAP. Os pontos vermelhos e azuis
mostram onde o modelo julgou como parte importante para a imagem. Seguindo a mesma
logica do 3.20, pontos vermelhos aumentam a probabilidade na saida do modelo, enquanto
pontos azuis diminuem.
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Fonte: SHAP Github

Na figura 3.21 a explicabilidade do modelo forneceu quais sdo as areas das ima-
gens mais importantes para a identificacado de um animal. Por exemplo, para o passaro,
observa-se que existem varios pontos vermelhos fortes na mesma area do bico, indicando

que essa parte foi uma das mais importantes para a identificacdo do passaro.
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3.14.1 Explicabilidade para o glaucoma

A explicabilidade no glaucoma se dara de duas formas:

e O modelo de imagem ird apontar as areas mais importantes para diagnosticar o
glaucoma. Sera possivel verificar, em imagens, se o modelo consegue capturar a
escavagao do disco optico e o disco Optico em si. Esta visualizagao se dara com
acumulo de pontos nestas regioes, demonstrando que o modelo se adapta a diferente

posicoes da retina, como também diferentes recortes de imagens do fundo de olho.

o As medigoes mensuradas pelo exame OCT ira fornecer espessuras das camadas
em diferentes regioes. O especialista ird utilizar da explicabilidade para verificar
suas teorias quanto a degeneracdo das fibras em diferentes setores. Além disso, o
especialista ird poder de dialogar com o paciente utilizando recursos visuais que

facilitam o entendimento do diagnoéstico da doenca.

O objetivo é que o modelo explicativo dé suporte ao especialista quanto as decisoes
do tratamento. A explicabilidade, além de fortalecer argumentos, consegue ainda fornecer
informagoes para que novos métodos sejam estudados e criados e que métodos antigos

sejam validados ou confrontados baseados em resultados interpretaveis do modelo.
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Capitulo 4

Metodologia

4.1 Setup

Todos os experimentos foram executados em uma maquina com processador i7-
3770, 16 gigabytes de RAM e uma placa de video Nvidia RTX-3060 com 12 gigabytes de
memoria.

Dentre os softwares utilizados estao as seguintes bibliotecas de Python': Pytorch?,
Seaborn®, SHAP * e Pandas®. Para execucao das andlises foi utilizada o Jupyter Note-

book®.

4.2 Aquisicao dos Dados

Os dados foram coletados de pacientes por especialistas do Hospital Sao Geraldo,
especializado em atendimento médico nas areas de Oftalmologia e Otorrinolaringologia.
Os exames foram armazenados em um banco de dados contendo a data do exame e a
identificacdo do paciente. Todos os dados, que possuem casos confirmados de glaucoma,
sao do tipo glaucoma primario de angulo aberto.

Os exames OCT foram realizados por um dispositivo da Heidelberg (Spectralis
SD-OCT, Software Version 5.4.7.0) e os exames de Fundoscopia foram realizados por um
dispositivo da Cannon (CR2, Canon USA).

Thttps://www.python.org/
2https://pytorch.org/
3https://seaborn.pydata.org/
4https://github.com/slundberg/shap
Shttps://pandas.pydata.org/

Shttps://jupyter.org/
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4.2.1 Critérios de Inclusao

» Pacientes com glaucoma de angulo aberto
« Pacientes com idade entre 3 e 96 anos

o Pacientes com incidéncia de glaucoma em somente um dos olhos ou nos dois olhos

4.2.2 Critério de Exclusao

« Todos os pacientes que possuem glaucoma de angulo fechado, secundério e congénito
« Pacientes que realizaram exames de retinografia utilizando dispositivos moveis

o Pacientes que nao realizaram os dois exames: OCT e Fundoscopia

4.3 Sumario dos dados

Os dados recebidos possuem multiplas imagens de fundo de olho. As imagens estao
separadas por paciente, conforme o olho em que foi realizado o exame, direito ou esquerdo.
H& dados de 442 pacientes e 887 imagens de olhos. Entre os dados, consta uma tabela
com as seguintes informagoes: informacoes demograficas do paciente e do exame OCT.

Na tabela recebida contém os seguintes dados:
o dados demograficos: nome, idade, género;
e presenca ou auséncia do glaucoma;

« indicacao do olho examinado: esquerdo ou direito. Quando nao ha indicagao, ambos

os olhos foram examinados;

» medigoes de espessura da camada de fibras nervosas coletadas do exame OC'T" regiao
nasal (N), nasal inferior (NI), nasal superior (NI), temporal (T), temporal inferior

(TT), temporal superior (TS) e a média de todos os quadrantes (G);
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Um exemplo na figura 4.1 contendo duas imagens do fundo de olho:

Figura 4.1: Duas imagens do fundo de olho com distancias diferentes

(a) Imagem do fundo de olho distante do disco ~ (b) Imagem do fundo de olho préxima do
e copo disco e copo

Fonte: Imagem extraida do conjunto de dados.

A primeira imagem 4.1a é uma imagem de fundo de olho contendo bordas pretas
e engloba toda retina. A segunda imagem é focada no centro da retina e possui o disco e
escavacao do disco éptico mais proximo e também a macula e a fovea 4.1b. Cada paciente
testado neste trabalho deve possuir pelo menos duas fotos similares a essa para cada olho
onde o exame OCT foi realizado.

Portanto, faz-se necesséria a realizacao da limpeza dos dados, observando-se os re-
quisitos dos experimentos executados neste projeto. Na proxima secao, sera descrito todo
o processo de limpeza dos dados realizado como requisitos dos experimentos executados

neste projeto.

4.4 Limpeza

Conforme explicitado acima, foi realizada a padronizacao dos dados utilizados,
para que todo o processo fique mais simples, automatizado e consistente. Assim, algumas

manipulagdes manuais foram aplicadas aos dados, conforme se observa a seguir:

« verificagao de duas vias: foi verificado se o paciente esté presente nos dados tabulares
do exame OCT e se existe uma pasta contendo as fotos do fundo de olho (Esquerdo

e/ou Direito);

« contabilizacgdo do nimero de fotos: foi contabilizado o niimero de fotos para cada
um dos pacientes, considerando o requisito de, no minimo, duas fotos de cada olho.

Todos que possuiam somente uma foto ou nenhuma foram eliminados;
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o proximidade da imagem: foram selecionadas, manualmente, duas fotos para cada
olho de cada paciente. Uma foto mais distante, contendo a parte marginal preta,
e uma segunda foto mais préxima, sem a parte marginal preta. As fotos foram
renomeadas para indicar qual das duas imagens ¢ a mais proxima ou distante, de
forma que a arquitetura do modelo, que utiliza duas imagens, sempre receba o

mesmo tipo de foto;

« cor das imagens: foram selecionadas somente fotos coloridas. Fotos preto e branco

foram eliminadas, ja que a maioria dos pacientes nao possuia este tipo de foto;

o data dos exames: alguns pacientes possuem diferentes datas dos exames OCT e
Fundoscopia. Foram consideradas as fotos de fundoscopia tiradas em datas proximas

a realizacao do exame OCT.

No total de 442 pacientes e 885 olhos, apds a limpeza dos dados, restaram 426

pacientes e 758 amostras de olhos utilizados na modelagem.

4.5 Exploracao

Para um melhor entendimento do problema, faz-se necessario que os dados sejam
explorados e que a sua distribuicao seja compreendida. Nesta secao, os dados serao
avaliados, observando-se suas caracteristicas, como, por exemplo, a correlagdo entre as
espessuras da camada de fibras nervosas e a presenca do glaucoma, a idade e o género dos
pacientes, dentre outras caracteristicas importantes que deram base para a obtenc¢ao dos

resultados apresentados na secao 5.3.
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Figura 4.2: Contagem de casos de glaucoma por género e por olhos
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Fonte: Elaborado pelo autor.

Os histogramas da figura 4.2 demostram que os dados possuem mais casos de
pessoas contendo glaucoma em somente um dos olhos do que nos dois olhos. Ha mais
pacientes do género feminino do que do masculino. No entanto, proporcionalmente, a
presenca de glaucoma é maior em homens do que em mulheres. Possivelmente, tal fato se
deve a fatores culturais observados em pessoas do sexo feminino que, conforme a Pesquisa
Nacional de Saude [59], sdo as mulheres que tém mais hébito de ir ao médico manter-se
saudavel. Assim, apesar de as mulheres serem a maioria dos pacientes que realizaram
0s exames, Sa0 as que menos registram a presenca do glaucoma. Na secao de resultados,
serd avaliado se o modelo coloca a variavel género como uma das principais caracteristicas

para a predicao do glaucoma.
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Figura 4.3: Distribuicdo do glaucoma por variavel
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Fonte: Elaborado pelo autor.

Os graficos da figura 4.3 mostram a distribuicdo das variaveis do exame OCT

quanto a presenca de glaucoma. Existe uma separacao visivel das distribuig¢oes das ca-
racteristicas G, TS, N e TI quando ha ou nado glaucoma.
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Figura 4.4: Boxplot do glaucoma por variavel.
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Fonte: Elaborado pelo autor.

Observou-se a presenca de valores atipicos mostrados na figura 4.4. As carateris-
ticas idade, NI, G e NS sao as que mais possuem valores fora do comportamento padrao
da distribuicdo. A idade é, como se vé na figura, um bom divisor, ji que existe uma
tendéncia a esquerda (menor idade) quanto a auséncia do glaucoma. As varidveis TI, G

e TS s@o as que mais distanciam os casos quanto a presenca ou nao do glaucoma.
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Figura 4.5: Correlacdo absoluta das caracteristicas entre 0 e 1, sendo 1 correlacdo perfeita.
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Fonte: Elaborado pelo autor.

Existe uma forte correlacao entre a variavel TS e G 4.5. Sendo G uma média
global, existe a possibilidade de que a variavel TS tenha uma influéncia forte na média.
As varidveis que mais se correlacionam com a classe sao: TS, TI e G. A sumarizagao dos

dados apos a limpeza estd descrita abaixo:

Tabela 4.1: Tabela contendo sumarizacdao dos dados utilizando as estatisticas: maximo,
minimo, média, desvio e contagem.

Classe G T NS TS N NI TI Idade
Contagem 758.00 758.00 758.00 758.00 758.00 758.00 758.00 758.00 758.00
Média 0.28 87.73 62.65 98.15 117.77 67.15 103.76 122.49 58.57
Desvio Padrao 0.45 18.82 14.26 28.11 31.97 16.94 28.63 34.75 15.90
Minimo 0.00 27.00 20.00 13.00 12.00 9.00 25.00 17.00 3.00
25% 0.00 79.00 54.00 80.00 101.00 57.00 87.00 106.00 50.00
50% 0.00 91.00 63.00 100.00 122.00 68.00 104.00 129.00 61.00
75% 1.00 100.00 71.00 117.00 139.00 78.00 121.00 145.75 70.00
Méximo 1.00 145.00 129.00 188.00 228.00 136.00 204.00 228.00 96.00

Fonte: Elaborado pelo autor.

4.6 Engenharia de caracteristicas e Normalizacao

Quanto a engenharia de caracteristicas, apenas uma operacao matematica foi apli-
cada. Sabendo que uma das caracteristicas importantes para a deteccao do glaucoma é
o valor da CDR (Equagao 3.1) presente na imagem de fundo de olho, as caracteristicas

criadas sdo a razao entre as medigdes numéricas do exame do OCT [91]. Cada carate-
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ristica numérica do exame OCT ira criar uma caracteristica de razao entre pares com as
outras. No total, 15 novas caracteristicas foram criadas para serem utilizadas nos mode-
los. Além de serem caracteristicas facilmente criadas, sao faceis de serem interpretadas
pelos profissionais responsaveis ao analisar os resultados e a explicabilidade do modelo.

A normalizagao é um processo de redimensionar os valores das caracteristicas nu-
méricas para limites entre 0 e 1. A importancia da normalizacao nas redes neurais estéd
diretamente ligada ao fator de atualizagdo dos parametros e otimizacao do modelo. Os
algoritmos de otimizacdo utilizam a descida gradiente” para encontrar os melhores valo-
res para diminuir o erro. Na féormula de descida gradiente, os valores de cada uma das
caracteristicas sao utilizados para atualizar os parametros e diminuir o erro do modelo.
Contudo, se os valores das caracteristicas nao forem normalizados e os dados possuirem
caracteristicas com valores de magnitude diferentes, as caracteristicas com magnitudes
maiores terdo mais importancia, o que nao pode se assumir como verdade conforme os
dados. Portanto, para evitar que tal fato ocorra e prejudique o desempenho do modelo,
o ideal é que todas as carateristicas tenham a mesma magnitude e o modelo escolha a
importancia de cada uma delas durante o processo de treinamento.

Uma comparagao de aplicacao da técnica de normalizagao foi realizada entre os
modelos de redes neurais, modelos de arvore de decisao como Tree Decision, Regressao
Logistica e modelos matematicos como SVM [47]. Para os modelos que nao sao redes
neurais, 22 caracteristicas foram extraidas do exame OCT. Uma destas caracteristicas é a
razao entre o copo e o disco 6ptico. Todas as caracteristicas foram normalizadas antes de
serem processadas pelos modelos. Os resultados foram benéficos para os modelos de redes
neurais profundas e invariante para os outros modelos. Uma observagao é que todas
as estatisticas para aplicar a normalizacao devem ser calculadas utilizando o conjunto de
dados de treino. Por exemplo, na normalizacao entre 0 e 1, os valores minimo e maximos
sao calculados usando os dados de treino e aplicados nos dados de teste, evitando-se que
haja vazamento de dados entre os dois conjuntos.

Todas as caracteristicas numéricas, como a idade, as mensuragoes do exame OCT
e as caracteristicas sintéticas derivadas do exame OCT mencionadas foram anterior-
mente normalizadas entre 0 e 1 para serem processadas pelo modelo. Quanto ao gé-
nero do paciente, foi utilizado 1 para o género masculino e 0 para o género feminino.
https://www.facebook.com/messages/t/100002734850472/

70 método do gradiente (ou método do méximo declive) ¢ um método numérico usado em otimizagao.
Para encontrar um minimo (local) de uma fungéo usa-se um esquema iterativo, onde em cada passo se
toma a dire¢do (negativa) do gradiente, que corresponde & dire¢ao de declive maximo. Pode ser encarado
como o método seguido por um curso da dgua, na sua descida pela forga da gravidade. Fonte: Wikipedia
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Figura 4.6: Correlacao das caracteristicas criadas pela operacdo razao.
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A figura 4.6 mostra a correlagdo das caracteristicas criadas sinteticamente com a
operacao de razao. Duas caracteristicas que mais apresentam correlacao com a classe
(presenga ou auséncia de glaucoma) sao: N/TI e T/TI. No capitulo de resultados 5,
mais especificamente na secao de explicabilidade 5.3, serd averiguado se alguma destas

caracteristicas criadas foram importantes para o modelo.

4.7 Experimentacao

Os experimentos foram faseados, da seguinte forma:

e Primeiro, utilizando diferentes configuracoes de hiperparametros, foram testados os
seguintes modelos: Mobile, RegNet (X e Y), ShuffleNet, EfficientNet, Inception-
V3, ResNet, e ViT. Cada um dos modelos citados foram testados com 4 diferente

otimizadores (Adam, RAdam, SGD, Ranger) de pardmetros e 4 valores de taxa de
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aprendizagem (0,01, 0,001, 0,0001, 0,0005). Ao final desta etapa, foram selecionados
os melhores modelos conforme a métrica AUC para a préxima etapa. Esta etapa
também forneceu o melhor momento para aplicar o Learning Rate Decay e o Farly

Stopping para ser utilizado nas proximas etapas.

o Em seguida, os melhores K modelos selecionados foram re-executados com validagao
cruzada e divididos em dois grupos. Um grupo utilizando as técnicas Learning Rate

Decay e Early Stopping e outro grupo sem incluir estas técnicas.

o E, por tdltimo, os melhores M modelos dos K foram selecionados e aplicado o Ran-
dAugment (Segao 3.13) para trazer mais diversidade para os dados de treino e veri-

ficar o impacto, em questao de desempenho e variabilidade, do Data Augmentation.

A partir do segundo passo, todos os testes foram feitos utilizando a metodologia de
validagao cruzada com o parametro de divisao de grupos igual a 5. A decisdao de aplicar
somente a partir do segundo passo é o nimero exponencial de modelos a serem treinados
caso fosse aplicado desde o primeiro passo. Em todas as etapas, o numero de épocas
padrao ¢ 100 e a funcdo de custo é uma entropia cruzada binaria[63].

Uma observacao importante é que a separacao dos dados de treino e teste acon-
teceu na granularidade de paciente e nao de olho, para que, assim, um paciente nao esteja
presente no conjunto de treino e teste em simultaneo, evitando vazamento de dados e o
modelo demostre um desempenho irreal.

Tabela 4.2: Vers6es dos modelos visuais utilizados como Backbones e o total de parametros

de cada um. O modelo ViT é o que possui maior niimero de parametros, aproximadamente
86 milhGes, enquanto o modelo ShuffleNet possui somente 2.5 milhGes.

Versao Backbone Parametros
RegNet800MFEFX RegNetX 6.586.329
RegNet80OMFEY RegNetY 5.648.297
RegNet1l.6GFX RegNet16X 8.279.048
RegNetl.6GFY RegNet16Y 10.314.319
RegNet3.2GFX RegNet32X 14.288.561
RegNet3.2GFY RegNet32Y 17.824.851
MobileV3Large MobileNet 4.203.313
ResNet50 ResNet 23.510.081
EfficientNetb0 EfficientNet 4.008.829
ShuffleNetV1X1.5 ShuffleNet 2.479.649
VitBasel6_ 224 ViT 85.799.425
InceptionV3 Inception 24.346.082

Elaborado pelo autor.

A tabela 4.2 possui a versao e o total de pardmetros dos modelos citados na se-

¢ao 3.6 implementados na biblioteca Pytorch®.

8Biblioteca Python de aprendizado de maquina
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Capitulo 5

Resultados

Neste capitulo os resultados serdo apresentados. A primeira se¢cao abordard uma visao ge-
ral dos modelos quanto ao desempenho relacionado a métrica principal, AUC (Secao 3.9).
Além disso, pelo grafico da fun¢ao de custo (loss), um ponto ideal foi definido para ser
aplicado as técnicas de Learning Rate Decay (Segao 3.12) e Early Stopping. Na segao
seguinte 5.2 sera avaliado o desempenho do modelo utilizando validagao cruzada e as
técnicas mencionadas anteriormente. Nesta mesma se¢ao sera também avaliado o Ran-
dAgument. E por fim, na tltima segdo 5.3 serd avaliado a explicabilidade do modelo.
Arquiteturas de modelos utilizando duas imagens de fundo de olho sao apontados como

Dual Image.

5.1 Desempenho Geral

A figura 5.1 mostra como foi o desempenho geral dos Backbones. Os Backbones
utilizando dados do exame OCT atingiram melhores resultados nas arquiteturas de uma
e duas imagens. A distribuicdo de desempenho dos modelos que nao utilizam o exame

OCT ¢é menos esparsa, com excecao do ViT e do Inception.
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Figura 5.1: Avaliacdo geral dos Backbones divididos por arquiteturas. O grafico violino
mostra a distribuicdo dos valores maximos atingidos nas 4 arquiteturas de modelos testados.
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Fonte: Elaborado pelo autor.

O grafico 5.2 faz uma relagdo entre os valores maximo e médio que o Backbone
atinge quanto a métrica AUC para o conjunto de teste. Quando se compara os grupos,
percebe-se que os modelos estao distribuidos uniformemente no grafico. Existe uma rela-
¢ao direta entre a média de AUC (Teste) e o valor maximo que essa métrica atinge durante
todas as iteracoes, com raros casos de discrepancia. Portanto, é possivel perceber que as

arquiteturas de modelos nao variam seu desempenho drasticamente durante o processo
de treinamento e avaliacao.



5.1. Desempenho Geral 69

Figura 5.2: Comparacao das estatisticas da métrica AUC. O eixo y é o melhor resultado
do Backbone durante todas as épocas, enquanto o eixo x € a média do modelo durante o
treinamento.
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Fonte: Elaborado pelo autor.

As tabelas 5.1 e 5.2 sumarizam todas as execugoes dos Backbone em todas as ar-
quiteturas discutidas na segao 3.16. O primeiro cabegalho da tabela contém as colunas
Melhor AUC e AUC Média, indica o valor médximo atingido pela métrica AUC e valor
médio durante todo o processo de treinamento avaliado no conjunto de teste, respecti-
vamente; No segundo cabecalho estao as estatisticas calculadas das duas colunas citadas
anteriormente, std, min, max, mean, significando, respectivamente: desvio padrao, va-
lor minimo, valor maximo, a média do valor. Ou seja, na coluna Melhor AUC/min igual
0.5 significa que houve arquitetura de modelos que nao conseguiram aprender utilizando
certas combinagoes de hiperpardmetros para aquele Backbone especifico e AUC Média /-
mean significa que na média as arquiteturas de modelos para aquele Backbone especifico
atingiu 0.71 na métrica AUC durante o processo de treinamento avaliado no conjunto
de dados de validacao/teste. Os valores maximos atingidos pelos modelos ficaram entre
0.92 e 0.95. A AUC Média mostra como o processo de generalizagdo do modelo é um
processo que exige experimentacao, para que assim o modelo consiga alcancar resultados
que ultrapassam o desempenho médio. Quanto as arquiteturas testadas, a presenca do
exame OCT é benéfico para o modelo, aumentando até em 12% o desempenho dos mode-
los 5.2. No entanto, ndo houve melhora dos modelos quando se utiliza duas imagens na
arquitetura. Dito isso, todas as arquiteturas avaliadas daqui para frente utilizara somente

uma imagem do fundo de olho como entrada.
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Tabela 5.1: Tabela contendo os resultados quanto a métrica AUC separado por Backbone.

Backbone Melhor AUC AUC Média

min max mean std min max mean std
EfficientNet 0.5 0.93 0.8 0.11 0.5 0.85 0.72 0.1
Inception 0.5 0.94 0.79 0.14 0.5 0.86 0.7 0.12
MobileNet 0.5 0.93 0.79 0.11 0.5 0.84 0.69 0.1
RegNet16X 0.5 0.93 0.79 0.1 0.5 0.86 0.71 0.09
RegNetl6Y 0.5 0.94 0.79 0.11 0.5 0.87 0.71 0.09
RegNet32X 0.5 0.94 0.79 0.11 0.5 0.87 0.71 0.1
RegNet32Y 0.52 0.93 0.8 0.1 0.5 0.86 0.71 0.09
RegNetX 0.5 0.94 0.79 0.11 0.5 0.86 0.71 0.09
RegNetY 0.51 0.93 0.78 0.11 0.5 0.85 0.7 0.09
ResNet 0.5 0.95 0.79 0.1 0.5 0.87 0.7 0.1
ShuffleNet 0.5 0.95 0.8 0.09 0.5 0.88 0.7 0.1
ViT 0.5 0.92 0.75 0.15 0.5 0.85 0.67 0.12

Fonte: Elaborado pelo autor.

Tabela 5.2: Tabela contendo os resultados separados por grupos: OCT e Dual Image. A
tabela mostra que utilizar duas imagens nao foi benéfico, enquanto o uso do exame OCT
agrega desempenho aos resultados

Dual Usando Melhor AUC AUC Média

Image OCT min max mean std min max mean std
Nao Nao 0.5 0.85 0.75 0.08 0.5 0.74 0.66 0.07
Nao Sim 0.5 0.95 0.85 0.1 0.5 0.88 0.75 0.1

Sim Nao 0.5 0.85 0.74 0.11 0.5 0.77 0.66 0.09
Sim Sim 0.5 0.95 0.83 0.11 0.5 0.87 0.74 0.1

Fonte: Elaborado pelo autor.

A distribuicao dos desempenhos apresentados na figura 5.3 mostra uma separacao

clara entre a utilizacao e nao utilizagdo do exame OCT. No entanto, como citado anterior-

mente, nao ha diferenca do modelo utilizando uma ou duas imagens. Foram selecionados

os melhores 5% modelos baseados na AUC das arquiteturas que utilizam uma imagem

com a inclusdo e nao inclusdo do exame OCT. Para a selecdo, foi utilizado o percentil!

95 e todos os modelos abaixo das 95 partes dos dados foram filtrados. Ao final, restaram

um total de 28 arquiteturas de modelos e configuragoes de hiperparametros dos modelos.

'Em estatistica descritiva, os percentis sdo medidas que dividem a amostra (por ordem crescente dos
dados) em 100 partes, cada uma com uma percentagem de dados aproximadamente igual. O k-ésimo
percentil P é o valor x (xx) que corresponde a frequéncia cumulativa de N.k/100, onde N é o tamanho

amostral.
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Figura 5.3: Distribuicio dos desempenhos separados por arquiteturas de modelos.
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Fonte: Elaborado pelo autor.

Por 1ltimo, tem-se o grafico 5.4 da funcdo de custo durante o treinamento. O
grafico apresenta a média global de todos os modelos treinados com intervalo de confianca
de 0.95. O grafico mostra, ainda, que a partir de 30 iteragoes (épocas), os modelos nao
conseguem ter uma melhora significativa no seu desempenho. Portanto, as técnicas Farly
Stopping e o Learning Rate Decay foram aplicadas, a partir deste momento, na proxima

fase de experimentacao, a validagao cruzada.
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Figura 5.4: Comportamento da funcdo de custo durante as épocas de treinamento. O
grafico mostra um valor médio e um intervalo de confianca de 0.95
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Fonte:
Elaborado pelo autor.

5.2 Validacao Cruzada

Nesta se¢ao, os melhores modelos selecionados na etapa anterior serao avaliados
para a verificacdo do seu desempenho utilizando a validagdo cruzada [62]. O valor de
grupos para a validacao cruzada, fixo para todo o experimento, é igual a 5, ou seja, cada
configuragao de hiperparametros e arquiteturas geraram 5 modelos diferentes, totalizando
140 modelos.

A figura 5.5 mostra a distribuicado do desempenho dos modelos testados. O Lear-
ning Rate Decay e o Farly Stopping, indicado nas colunas somente como LRD, trouxeram
uma melhora significativa para os resultados. Apesar de terem aumentado a variabili-
dade da AUC, as técnicas trouxeram beneficios positivos quanto ao maximo atingido pela

métrica. O salto maior foi para a arquitetura de modelos utilizando somente imagem.
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Figura 5.5: Comparacdo do uso do Learning Rate Decay e Early Stopping nos modelos
selecionados na primeira fase. Os melhores modelos da etapa anterior foram re-executados,
sem a utilizacdo das técnicas citadas anteriormente, utilizando validacao cruzada para uma

comparacao justa.
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Fonte: Elaborado pelo autor

Usando OCT

Sim

A tabela a seguir 5.3 sumariza as melhorias nas métricas quanto a aplicagdo da

técnica LRDs e ES. O modelo RegNet16X teve o maior ganho na métrica AUC, no entanto,

possui uma variabilidade alta nos resultados. Esta variabilidade é consideravel quando se

analisa as médias de todas as métricas, por outro lado, os valores maximos de desempenho

atingidos pelos modelos trouxeram menos variabilidade. Para a visualizacao completa

dos resultados, uma tabela que contém os hiperparametros utilizados e os resultados

detalhados serd anexada ao apéndice dessa dissertacao A.
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Tabela 5.3: Tabela com os resultados comparando a utilizacao da técnica LRD e ES na
validacao cruzada. Foram calculados a média e o desvio padrao entre os Backbones dos
melhores modelos. Os Backbones com desvio padrao igual a 0 significa que s6 houve uma
arquitetura de modelo entre os modelos selecionados na fase anterior.

AUC (%) SN (%) SP (%)
Backbone Melhor Média Melhor Média Melhor Média
iﬁ“em' 557 + (0.0)  -2.10 + (0.0) 9.65 + (0.0) 0.77 + (0.0) 2.86 + (0.0) 3.56 + (0.0)
Inception  5.50 & (4.44)  5.54 =+ (4.06) 17.33 £ (8.1) 15.8 & (8.74) 2.41 + (2.1) 1.45 £ (4.19)
MobileNet  0.26 & (0.0) 7.79 % (0.0) 8.24 + (0.0) 34.54 % (0.0) 1.83 £ (0.0)  -0.99 % (0.0)
ﬁzfiex 9.01 + (3.92)  9.32 & (2.13) 14.58 & (7.09)  12.54 £ (12.77)  8.88 + (9.09)  9.59 & (10.42)
E‘;fib,y 341 & (3.01) 434 & (5.8) 4.66 + (4.16) 19.1 £ (9.8) 343 + (1.48)  3.32 & (2.36)
EZ%QX 2.33 + (5.26)  6.06 & (7.63) 9.51 + (8.63) 17.62 & (8.33) 0.53 + (2.63)  -0.53 £ (3.82)
EZ%QY 1.38 £ (0.23)  4.28 + (4.73) 5.62 + (5.87) 9.47 + (16.26) 0.48 £ (1.92)  1.92 £ (2.57)
RegNetX  6.61 &+ (1.03)  7.03 & (3.3) 14.18 & (3.27)  32.93 £ (13.03)  0.95 &+ (1.83)  2.21 % (0.7)
ResNet 1.56 & (1.51)  -10.57 &+ (18.94)  2.73 &£ (4.06)  -28.48 & (30.21)  2.31 & (2.02)  5.26 % (4.48)
ShuffieNet  1.36 + (4.13)  2.14 + (7.55) 5.48 £ (4.56)  8.53 + (20.61) 0.88 + (1.4) 1.23 & (1.89)

Fonte: Elaborado pelo autor.

Quanto ao uso de memoéria e tempo de inferéncia, a tabela 5.4 mostra que os mo-
delos RegNets possuem tempo de inferéncia préximo a dos modelos mais eficientes, como
ShuffleNet e MobileNet, e menor do que os modelos mais complexos, como, por exemplo,
o Inception. Isto proporciona flexibilidade para o modelo RegNet possa ser utilizado em
diferentes contextos em que uma resposta rapida é necessaria, tal como o processamento
de quadros de um video ou algum sistema nuvem que recebe milhares de requisi¢oes si-
multaneamente. Quanto ao uso de meméria, os modelos RegNets apresentam versdes com
diferentes usos deste recurso. Variando de 1600 até 4182 megabytes, o modelo consegue
apresentar desempenho melhor ou proximo quando comparado aos modelos que utilizam
mais memoria (ou seja, usam mais parametros e fazem mais operagoes matemaéticas), e
também aqueles que sao mais eficientes computacionalmente. Conclui-se, que é possivel
atingir desempenho alto com modelos que utilizam recursos computacionais limitados,
dando flexibilidade para sua utilizacao, tanto para supercomputadores ou para dispositi-

vos moveis, e desta forma, se responde a questao Q1 (Segao 1.3).
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Tabela 5.4: Tabela contendo informacées relacionadas ao tempo de inferéncia e o uso de
memoéria. A meméria é medida em megabytes (mb) e o tempo de inferéncia em milisse-

gundos (ms).

Backbone Memoéria (mb) Inferéncia (ms) Batch
EfficientNet 3002 0.033 £ (0.002) 16
Inception 4747 0.041 £ (0.003) 16
MobileNet 1662 0.019 =+ (0.000) 16
RegNet16X 2405 0.022 =+ (0.001) 16
RegNet16Y 2812 0.024 £ (0.002) 16
RegNet32X 3600 0.024 + (0.002) 16
RegNet32Y 4182 0.027 % (0.003) 16
RegNetX 1679 0.020 = (0.001) 16
ResNet 3762 0.044 £ (0.002) 16
ShuffleNet 1057 0.018 £ (0.001) 16

Fonte: Elaborado pelo autor.

model = init_pretrained_model (model_name)
device = torch.device("cuda")

model .to(device)

dummy_input = torch.randn(1l, 3,224,224, dtype=torch.float).to(

device)

starter, ender = torch.cuda.Event(enable_timing=True),

cuda.Event (enable_timing=True)
repetitions = 300
timings=np.zeros ((repetitions ,1))
for _ in range (10):
= model (dummy_input)
with torch.no_grad():
for rep in range(repetitions):
starter.record ()
= model (dummy_input)
ender .record ()
torch.cuda.synchronize ()
curr_time = starter.elapsed_time (ender)
timings [rep] = curr_time
mean_syn = np.sum(timings) / repetitions

std_syn = np.std(timings)

Algoritmo 5.1: Algoritmo utilizado para calcular o tempo de inferéncia dos modelos. Cédigo

retirado de DECI


https://deci.ai/blog/measure-inference-time-deep-neural-networks/
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5.2.1 RandAugment

Tendo em vista os resultados da se¢ao anterior, 3 modelos foram selecionados para

aplicar data augmentation. Um dos hiperpardmetros do RandAugument (coluna ROP)

é o nimero de operagoes de transformagoes sequenciais aplicado em uma foto. Por esse

motivo, foram testados diferentes valores para este hiperparametro: 1, 2, 3 e 4. Nesta

etapa, a validacao cruzada também foi utilizada para avaliar o modelo. A tabela 5.5 a

seguir mostra os resultados dos experimentos e os respectivos hiperparametros associados

a este experimento.

Tabela 5.5: Experimentos utilizando diferentes parametros de RandAugment (coluna OP).
O ndmero na coluna representa o numero de operacées seguidas aplicada na imagem.

Back- Op- Melhor 2 s Melhor Melhor SP Mé- SN Mé-
bone tim LR ROP  OCT  ,y¢ AUC Média SP SN dio dio
Inception  ranger 0.001 0 Nao 0.899 0.795 (£0.066) 0.935 0.882 0.923 0.666
Inception  ranger 0.001 1 Nao 0.89 0.802 (£0.057) 0.971 0.882 0.914 0.69
Inception  ranger  0.001 2 Nio 0.847 0.787 (£0.045) 0.971 0.765 0.884 0.69
Inception  ranger  0.001 3 Néo 0.871 0.787 (£0.055) 0.943 0.853 0.897 0.677
Inception  ranger  0.001 4 Néo 0.855 0.785 (£0.056) 0.935 0.794 0.892 0.679
%Zfisx radam  0.001 0 Néo 0.899 0.818 (£0.052) 0.929 0.882 0.913 0.722
Ezlfisx radam  0.001 1 Néo 0.872 0.811 (£0.038) 0.962 0.794 0.911 0.711
ﬁzfi 6x radam  0.001 2 Nio 0.865 0.808 (40.049) 0.941 0.872 0.88 0.737
EZfisx radam  0.001 3 Néo 0.871 0.805 (£0.047) 0.962 0.853 0.913 0.697
§Etgi 6x radam  0.001 4 Nio 0.855 0.8 (£0.046) 0.971 0.794 0.93 0.669
Ezfi . radam  0.01 0 Sim 0.991 0.927 (£0.04) 0.99 1.0 0.963 0.891
gz%iex radam  0.01 1 Sim 0.973 0.922 (40.031) 0.991 0.955 0.945 0.9
%‘;fi e radam  0.01 2 Sim 0.984 0.919 (£0.039) 0.991 0.977 0.971 0.868
ﬁ:ﬁ 6x radam  0.01 3 Sim 0.984 0.93 (40.028) 0.991 0.977 0.969 0.892
Ezfiex radam  0.01 4 Sim 0.989 0.928 (£0.038) 1.0 0.977 0.954 0.902

O RandAugment trouxe uma varidncia menor nas métricas, principalmente na mé-

trica principal AUC. Os resultados demostram que Data Augmentation é uma ferramenta

robusta para lidar com o problema de sobreajuste (Segao 3.5.9) dos modelos e variabili-

dade do desempenho.
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5.3 Explicabilidade

Serdo analisadas, nesta secao, a explicabilidade e a interpretacao dos melhores
modelos. O objetivo é verificar a interacao dos modelos com os dados, tanto os de imagem
quanto os tabulares, para ser possivel entender o porqué da decisao do modelo. Foram
avaliadas tanto as imagens do fundo de olho, quanto os valores tabelados contendo as

medicoes do exame OCT e as caracteristicas criadas e descritas na secao 4.6.

5.3.1 Explicabilidade Visual

A figura abaixo 5.6 compara a explicabilidade de duas arquiteturas de modelos.
A explicabilidade da coluna da esquerda é de uma arquitetura que utiliza somente uma
imagem e a da direita utiliza duas imagens como entrada. Na imagem superior esquerda
existe uma concentracao de pontos no meio dos circulos e também na parte inferior da
imagem. Isto se da ao fato de que a arquitetura que utiliza somente uma entrada deve
aprender padroes dos dois tipos de imagem citadas anteriormente 4.1. Para o modelo
que utiliza duas imagens, imagens da direita, existe um Backbone para cada tipo de
imagem. Na imagem da linha inferior, todas as duas arquiteturas de modelos deram a
mesma explicabilidade para a imagem do fundo de olho. O modelo que utiliza somente
uma imagem consegue se adaptar a diferentes tipos e recortes de imagens geradas pela

Fundoscopia.
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Figura 5.6: Imagem com explicabilidade do modelo. A coluna da esquerda se refere a
arquitetura do modelo utilizando somente uma imagem e, a da direita, utiliza duas imagens.
Foto contendo a borda preta

Fonte: Elaborado pelo autor.

Figura 5.7: Imagem com explicabilidade do modelo. A coluna da esquerda mostra o modelo
utilizando somente uma imagem; a da direita, duas imagens. Fonte recortada sem a borda
preta

Fonte: Elaborado pelo autor.

A segunda figura 5.7 traz a explicabilidade para as imagens sem a margem preta
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presente no primeiro tipo de imagem de fundo de olho 5.6. A primeira arquitetura de
modelo, na coluna da esquerda, adaptou a explicabilidade para extrair caracteristicas desse
tipo de imagem, formandos circulos e uma pequena concentracao de pontos vermelhos e
azuis arrendondada no meio. Da mesma forma, como na figura anterior 5.6, a primeira
arquitetura de modelo possui uma concentragdo de pontos na parte inferior da imagem.
Estas concentragoes inferiores se devem ao fato de que o disco e o copo Optico podem
estar em qualquer posicao da imagem, e, para isto, o modelo precisa analisar todos os
cantos possiveis. E importante ressaltar que a arquitetura utilizando duas imagens como
entrada, na coluna da direita, praticamente nao extraiu nenhum beneficio da segunda
foto. Isto corrobora com os resultados obtidos nesta tabela 5.2, onde a utilizagdo de duas
imagens nada acrescenta para o desempenho da tarefa.

A explicabilidade se concentrada nas mesmas regides para identificar tanto a pre-
senga como a auséncia do glaucoma. Isto ocorre pela mistura de pontos azuis (diagnéstico
negativo) e pontos vermelhos (diagnéstico positivo) na drea da imagem em geral, e como

elemento principal, os pontos se concentram onde fica o disco e escavacao do disco éptico.

5.3.2 Importancia das Caracteristicas

Nesta secao serd respondido a questao Q2 (Se¢ao 1.3) explanando a importancia
de cada uma das caracteristicas do exame OCT, bem como as demograficas, utilizadas
pelo modelo, serao analisadas, inclusive aquelas criadas por engenharia de caracteristicas.
As andlises a seguir mostram quais foram as caracteristicas mais importantes para o

modelo quanto ao diagnostico.
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Figura 5.8: Importancia das caracteristicas no melhor modelo em desempenho relativo a
AUC. O modelo atingiu AUC de 0.99 usando dados do OCT
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Fonte: Elaborado pelo autor.

A figura 5.8 mostra, de cima para baixo, as caracteristicas mais importantes para
os modelos. O gréfico da esquerda ¢ do conjunto AC (Amostra Conhecida) e o da direita
do AD (Amostra Desconhecida). As 3 primeiras caracteristicas, valor médio global (G),
temporal superior (TS) e temporal inferior (TI) estao na mesma posi¢ao de importéancia
para os dois conjuntos de dados. Isto mostra que, nos dois conjuntos de dados, o im-
pacto médio dessas caracteristicas nao sofre alteragoes bruscas. Com relacao as outras
caracteristicas, suas posi¢oes de importancia mudam entre os dois conjuntos de dados, no
entanto, nenhuma mudanca ¢ significativa.

Ainda analisando a figura 5.8, os valores altos das caracteristicas TS/G/TI repre-
sentando camada de fibras nervosas mais espessas, esta associado a auséncia do glaucoma.
Outro ponto importante a ser considerado é que os dados mostram que quanto mais avan-
cada a idade do paciente, maiores sao as chances do glaucoma ser diagnosticado. Com
relagao ao género do paciente, o modelo nao trouxe nenhum tipo de relacao importante.
Para as caracteristicas criadas sinteticamente, quando a razao T /TS aumenta, o modelo
mostra que a espessura de TS degenera mais rapido. Para N/TI pode ser o oposto, ou

seja, significa que a camada de fibras nervosas se degradam mais rapido na area temporal
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comparado a Nasal (N).

Figura 5.9: Mapa de calor importancia (importancia normalizada entre 0 e 1) das caracte-
risticas para cada Backbones presentes na etapa de validacao cruzada. As caracteristicas
estao ordenadas de acordo com sua importancia média geral.
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Backbones

Fonte: Elaborado pelo autor.

O mapa de calor 5.9 mostra que TS assume um papel importante em quase todos
os Backbones. Pode-se dizer, entdo, que esta caracteristica é de fato importante para o
diagnostico do glaucoma pelo exame OCT e, por isso, deve ser analisada com cuidado pelos
profissionais. Em suma, todas as caracteristicas relacionadas a area temporal, com excecao
das criadas sinteticamente, ficaram acima das caracteristicas nasais, dando ainda mais
relevancia para esta regiao. A area TI assumiu um papel importante quando se utilizou o
Backbone Mobile. Outra analise relevante é que este mesmo Backbone trouxe importancia
para as carateristicas que envolvem género e idade, diferentemente do que ocorreu nos
outros Backbones. Algumas outras caracteristicas parecem ser irrelevantes para qualquer
modelo, como por exemplo: TS/NI, T/NI, TS/NS, NS/NI, T/N, NS/N e TS/TI. Para
caracteristicas nao-sintéticas e regionais, a menos relevante para a modelagem foi a area

nasal geral (N).
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5.3.3 Analise de casos individuais

Nesta se¢ao, casos individuais de pacientes serao avaliados, tendo em vista a decisao
tomada pelo modelo. Na primeira parte, serao analisados dois casos confirmados de
glaucoma. Observou-se que, em um, o modelo tomou a decisdo correta; em outro, o
modelo errou em sua decisdo. Para isto, um gréfico de cascata (waterfall) do SHAP foi
utilizado. Este grafico contém as informacgoes das caracteristicas do paciente e como cada
uma delas contribuiu, em magnitude, para a decisdo do modelo, de acordo com os valores

atribuidos as caracteristicas.

Figura 5.10: Grafico de cascata para casos com presenca de glaucoma.
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Fonte: Elaborado pelo autor.

A figura 5.10 possui dois graficos de cascata, sendo o da direita, o modelo que
tomou a decisao correta e, o da esquerda, a decisao errada. O valor na parte inferior
da figura mostra o valor esperado E[f(z)], ou seja, a média de decisdo do modelo. Para
valores acima dessa média, o modelo decide o diagnoéstico como positivo, caso contrario,
negativo. A saida do modelo é vista na parte superior do grafico f(x).Na imagem da
direita, a média global G foi a caracteristica que mais contribuiu para a decisao do modelo.

Pela distribuicao da figura 4.3, é possivel verificar que os valores de G entre 40 e 70 sado
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um grupo composto majoritariamente por pessoas diagnosticadas com o glaucoma. O
mesmo vale para TS e para T, apesar de a tltima estar no limiar entre a populacdo com
glaucoma e sem glaucoma. A idade de 75 anos foi um fator também que contribuiu para
o modelo diagnosticar como positivo. No gréafico de cascata da esquerda, a caracteristica
mais importante foi NS com um valor de 155. Este valor, na figura 4.3, esta na cauda
direita da populacao, onde existe uma concentracao maior de casos negativados, levando

o modelo a decidir erradamente.

Figura 5.11: Grafico de cascata para casos com auséncia de glaucoma.
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Fonte: Elaborado pelo autor.

Na figura 5.11a o valor de TS e razao entre T /TS na imagem da esquerda foram os
causadores da distor¢ao na decisao do modelo. Com a medicao de TS igual a 12, a razao
ficou 6 vezes maior entre T e TS. O valor coletado de TS pode ser um possivel outlier,
tendo em vista a figura 4.3, um problema de medi¢ao ou apenas um erro esporadico na
anotacao dos dados. O modelo foi impactado por este valor e, como consequéncia, foi
dado um diagnéstico positivo errado. Quanto ao diagnéstico da imagem da direita 5.11b,
TT tem mais que o dobro de espessura que a regiao N. A partir dessa informagcao, o modelo

diagnosticou corretamente a auséncia do glaucoma.
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Capitulo 6

Conclusao

Dentre os 28 melhores modelos em relacdo ao desempenho da métrica AUC, o modelo
RegNet aparece 16 usando diferentes arquiteturas de modelos e configuragdes de hiper-
parametros. O modelo se mostrou uma escolha robusta quanto a deteccao do glaucoma
utilizando imagens de fundo de olho e o exame OCT. Seu melhor desempenho apresentou
uma AUC de 0.99, sendo o melhor modelo de todos utilizando a versao RegNet16X.

O RandAugment mostrou beneficios quanto a variabilidade dos resultados, sendo
uma ferramenta essencial para evitar o sobreajuste. A técnica de Learning Rate Decay e
Farly Stopping trouxeram um incremento no desempenho dos modelos, aumentando os
valores maximos das métricas AUC, SP e SN.

A arquitetura que utiliza somente uma imagem como entrada consegue extrair
caracteristicas de diferentes fotos de fundo de olho, sem a necessidade de se ter um segundo
modelo para processamento de uma segunda imagem. As caracteristicas G, T e T'S foram

as mais importantes para os modelos utilizando dados tabulares do exame OCT.
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Apéndice A
Validacao Cruzada Resultados

A tabela a seguir mostra os resultados completos obtidos pela utilizagdo do Learning Rate

Decay/Farly Stopping (LRD) comparado aos experimentos sem sua utilizacao (C).
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