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A ficha catalográfica será fornecida pela biblioteca. Ela deve estar em formato PDF e deve ser
passada como argumento do comando ppgccufmg no arquivo principal .tex, conforme o

exemplo abaixo:

\ppgccufmg{

...

fichacatalografica={ficha.pdf}

}



[Folha de Aprovação em formato PDF]

A folha de aprovação deve estar em formato PDF e deve ser passada como argumento do
comando ppgccufmg no arquivo principal .tex, conforme o exemplo abaixo:

\ppgccufmg{

...

folhadeaprovacao={folha.pdf}

}



Dedico este trabalho aos meus pais falecidos, por terem me
dado a base e o suporte necessários para que eu me tornasse
a pessoa que sou hoje.



Agradecimentos

Agradeço, primeiramente, a minha esposa Isabel, por sempre ter me apoiado, oferecido
suporte e companheirismo durante a minha jornada acadêmica. Agradeço às minhas
tias pelo cuidado que tiveram comigo durante a minha formação e por valorizarem o
meu esforço nos estudos. Agradeço ao meu orientador, Adriano, por todo o auxílio e
por ter me proporcionado grandes oportunidades durante o meu trajeto acadêmico. Por
fim, agradeço à Universidade Federal de Minas Gerais pela sua excelência no ensino e
pesquisa.



“”
()



Resumo

O glaucoma é uma doença ocular que se desenvolve em decorrência de uma alteração no
nervo óptico, que o torna mais frágil. Como resultado, as fibras nervosas são danificadas de
forma irreversível, o que faz com que o paciente perca o seu campo visual gradativamente
e, nos casos mais avançados, fique cego.

É recomendável uma visita anual ao médico oftalmologista a partir dos 40 com o
intuito de descartar a presença da doença, ou, em caso positivo, iniciar o tratamento em
suas fases iniciais e os devidos cuidados sejam tomados para que danos maiores ao globo
ocular sejam evitados. Quanto mais idoso, maior probabilidade de incidência da doença.
Os principais fatores de riscos são: pressão, idade e fatores genéticos.

A Fundoscopia e a Tomografia de Coerência Óptica são exames laboratoriais co-
mumente utilizados para a detecção do glaucoma. Considerando diversos estudos que
concluíram que ocorrerá, nos próximos anos, um grande aumento de casos positivos da
doença, novos métodos para a detecção e tratamento do glaucoma vêm sendo desenvolvi-
dos, com o objetivo de dar suporte aos especialistas.

Este trabalho estuda a utilização de algoritmos de aprendizado de máquina, através
do uso de dados clínicos e de imagens da retina, para detectar o glaucoma de ângulo aberto,
com diagnósticos rápidos, eficientes e automatizados. Além disso, o trabalho também
apresenta diagnósticos e decisões do modelo que suportam explicabilidade, dando ainda
mais recursos para o profissional ter uma decisão mais assertiva junto ao paciente.

Ao final, os experimentos mostraram que diferentes arquiteturas de modelos ti-
veram assertividade alta quanto ao diagnóstico, inclusive modelos que utilizam recurso
computacional de forma mais eficiente, dando flexibilidade de sua utilização em diferentes
tipos de infraestrutura computacional disponível, sendo este um smartphone ou conjunto
de computadores centralizados.

Palavras-chave: Aprendizado de Máquina. Computação Visual. Modelagem. Glau-
coma. Diagnóstico. Explicabilidade.



Abstract

Glaucoma is an eye disease that develops due to a change in the optic nerve, making it
more fragile. As a result, the nerve fibers are irreversibly damaged, causing the patient
to lose their visual field gradually and, in more advanced cases, to go blind.

An annual visit to the ophthalmologist from the age of 40 is recommended to rule
out the presence of the disease or, if positive, to start treatment in its early stages and the
proper care taken so that more significant damage to the eyeball is avoided. The older
you are, the more likely the disease is to occur. The main risk factors are pressure, age,
and genetic factors.

Fundoscopy and Optical Coherence Tomography are laboratory tests commonly
used to detect glaucoma. Considering several studies that have concluded that there will
be a significant increase in positive cases of the disease in the coming years, new methods
for detecting and treating glaucoma are being developed to withstand specialists.

This paper studies the use of machine learning algorithms using clinical and retinal
imaging data to detect open-angle glaucoma with fast, efficient, and automated diagnosis.
In addition, the work also presents diagnoses and model decisions that withstand explai-
nability, giving even more resources for the professional to have a more assertive decision
with the patient.

In the end, the experiments indicated that different model architectures had high
assertiveness regarding diagnosis, including models that use computational resources more
efficiently, giving flexibility of use in various types of computational infrastructure avai-
lable, whether a smartphone or a set of centralized computers.

Keywords: Machine Learning. Computer Vision. Modeling. Glaucoma. Diagnostic.
Explainability
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Capítulo 1

Introdução

O glaucoma é uma doença que acomete os olhos caracterizada pela degeneração das células
ganglionares e do nervo óptico (ONH, do inglês optic nerve head), o que pode levar a perda
progressiva de visão. É uma doença grave que, em seu estágio mais avançado, pode levar
a cegueira, e, por isso, faz-se imprescindível que o paciente receba o diagnóstico nas fases
iniciais da doença, para os sintomas não evoluam para a perda total e irreversível da
visão. Sabe-se, no entanto, que o diagnóstico precoce da doença se torna prejudicado
devido às fases assintomáticas da doença. Por isso, o número de pessoas que não recebem
um diagnóstico adequado é alto [82], o que contribui para o agravamento da doença e
para o paciente ter a perda completa de sua visão.

O glaucoma do tipo ângulo aberto é um dos principais tipos de glaucoma e está
relacionado pelo aumento e/ou descontrole da pressão intraocular (PIO). Sendo este tipo
de glaucoma o mais comum encontrado em pacientes com mais de 49 anos. É possível
utilizar intervenções médicas para diminuir a pressão e/ou controlar a PIO por colírios,
laser ou cirurgia, e evitar que a doença avance para estágios mais severos e a perda da visão
[9]. Em seguida, está o glaucoma secundário, causado por fatores externos, o glaucoma
congênito e o glaucoma de ângulo fechado, sendo este último o mais agressivo entre eles
[76].

O diagnóstico do glaucoma é efetuado por especialistas, através da realização de
exames clínicos, como a Fundoscopia e a Tomografia de Coerência Óptica. A Fundoscopia
é realizada via aparelhos de retinografia. Esse exame é bastante utilizado por não ser
invasivo e por ser de fácil acesso ao profissional de saúde [52], sendo possível ser feita por
um smartphone e uma lente especial[52, 39]. Este exame de imagem consegue capturar
características importantes nas imagens do fundo de olho, como, por exemplo, os vasos
sanguíneos e o disco óptico (DO), fornecendo dados úteis para a detecção do glaucoma
[52].

A Tomografia de Coerência Óptica (OCT, do inglês Optical Coherence Tomo-
graphy) também é utilizada para avaliar o paciente quanto a presença do glaucoma. Tal
procedimento, assim como a Fundoscopia, não é invasivo e gera imagens de cortes secci-
onais da retina com alta resolução e detalhamento [10]. As imagens seccionais fornecem
a espessura da camada de fibras nervosa da retina, possibilitando a verificação da de-
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gradação da camada de fibras nervosas retinais do paciente com diagnóstico positivo de
glaucoma.

Estudos comprovam que o número de pessoas com glaucoma aumentará em 111,8
milhões até 2040 [54], portanto, métodos que utilizam inteligência artificial vem sendo
desenvolvidos para automatizar o processo de diagnóstico do glaucoma [7], dentre eles
técnicas baseadas em aprendizado de máquina (ML, do inglês, Machine Learning). ML
vem se destacando no campo de ciência e tecnologia, tornando-se referência, inclusive
na área médica. Uma das principais aplicações e técnicas de aprendizado de máquina
utilizado no campo médico são os modelos de classificação. Isto porque o uso de mo-
delos classificadores possibilita o diagnóstico de doenças utilizando dados demográficos,
clínicos, imagens e até mesmo áudio. Estes modelos podem ser baseados em técnicas de
aprendizado estatístico ou aprendizado profundo [7]. Sistemas inteligentes de diagnósti-
cos conseguem prover interpretações clínicas para auxiliar o especialista em suas decisões
quanto aos tratamentos do paciente, aumentando as chances de sucesso [32, 67].

1.1 Aprendizado de máquina aplicado a
diagnósticos com imagens

O desenvolvimento de novas tecnologias envolvendo inteligência artificial e apren-
dizado de máquina vem possibilitando grandes avanços em várias áreas do conhecimento,
reforçando a importância da interdisciplinaridade para a criação de aplicações como solu-
ção eficiente de problemas complexos. Dentre as soluções, técnicas de reconhecimento de
voz, reconhecimento de objetos, predição de demanda e veículos autônomos têm se mos-
trado eficientes. Na área médica, além do diagnóstico, é possível utilizar IA para descobrir
novas drogas, melhorar a comunicação entre médico e paciente, transcrever documentos
(como receita de medicamentos) e realizar cirurgias e tratamentos a longa distância.

O aprendizado de máquina é uma área de IA que utiliza dados como pilar central
em suas aplicações. Em alguns casos, o desempenho de modelo de ML consegue ser melhor
do que a do humano, como, por exemplo, na detecção de objetos [65], jogos eletrônicos
[49], imitação de estilo e de arte [24] e em previsão comportamental [25].

O presente trabalho analisa o uso de diversos modelos de ML para diagnóstico de
glaucoma através do estudo de artigos publicados entre o ano 2014 e 2019 em que existe um
problema de classificação (presença ou ausência do glaucoma) [6]. Os modelos analisados
se dividem em métodos que extraem as características da imagem e fazem redução de
dimensionalidade do espaço amostral e modelos de aprendizado profundo utilizando redes
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convolucionais (CNN, do inglês, Convolution Neural Network)[29] para análise de imagens.
A maior influência da escolha do método se resume ao número de dados disponíveis e o
recurso computacional disponível.

1.2 Motivação

Este trabalho apresenta uma análise detalhada do uso de diferentes arquiteturas de
modelos de aprendizado profundo que consigam auxiliar no diagnóstico do glaucoma de
ângulo aberto eficientemente. Foram exploradas diferentes arquiteturas de modelos, com
diferentes técnicas de sofisticação e uso de recurso computacional. Podendo este recurso
ser supercomputadores ou combinações de computadores (cluster1) ou, até mesmo, um
smartphone com acesso a uma câmera. Além do diagnóstico, o uso dos modelos também
traz o benefício da explicabilidade, fornecendo racionabilidade na decisão.

1.2.1 Explicabilidade

A explicabilidade dos modelos será explorada tanto nas arquiteturas mais simples,
utilizando somente uma imagem do fundo de olho, quanto nas arquiteturas mais comple-
xas, que utilizam múltiplas imagens do fundo de olho e as mensurações extraídas pelo
exame OCT do paciente. O especialista irá entender quais foram os fatores ou caracterís-
ticas mais importantes para a decisão do modelo e o quão influente, em magnitude, cada
uma delas foram.

Para explicar os modelos, foi utilizada uma biblioteca conhecida como SHAP [68].
Esta biblioteca será abordada na seção 3.14 com maiores detalhes, contudo, a ideia do
SHAP é calcular o impacto médio de cada uma das características da imagem ou dos
dados clínicos quanto ao diagnóstico do modelo.

1Um cluster (do inglês cluster : ’grupo, aglomerado’) consiste em computadores fortemente ligados
trabalhando em conjunto, de modo que, em muitos aspectos, podem ser considerados um único sistema.
Diferentemente dos computadores em grade, computadores em cluster têm cada conjunto de nós, para
executar a mesma tarefa, controlado e programado por software. Fonte: Wikipedia
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1.2.2 Flexibilidade

O Brasil, por ser um país de escala continental, carece de acesso à saúde em locais
remotos ou que não se adéquam a realidade social daqueles que lá vivem [17]. Soluções
que sejam acessíveis em questão de custo e mobilidade são as melhores opções a serem
utilizadas. Com isso, o trabalho, além de trazer o aspecto explicativo para o diagnóstico
da doença, também irá trazer diferentes arquiteturas que se encaixam em diferentes usos
e acessos a recursos computacionais.

Regiões remotas do Brasil, onde a infra-estrutura de saúde possui poucos recursos
acessíveis, modelos que consigam ser executados em dispositivos móveis como um celular
são recomendados. Outra opção é adotar um servidor central que ficará responsável por
executar todo o processo de diagnóstico e tratamento dos dados e retornar os resultados
para o especialista responsável. Cada uma das opções anteriores possui seus benefícios,
mas como requerimento, independentemente da opção, modelos eficientes e com baixo
custo são necessários.

1.3 Declaração de Dissertação

As principais perguntas a serem respondidas neste projeto são: (Q1) Modelos
computacionalmente eficientes e flexíveis (em termos de acesso à infra-estrutura) desem-
penham a tarefa, de forma eficaz, igual, ou melhor, do que modelos computacionalmente
mais caros e menos flexíveis? (Q2) De acordo com a explicabilidade do modelo, quais são
os fatores ou características mais pertinentes quanto a sua decisão?

1.4 Contribuição

Este projeto contribui com diferentes modelagens de aprendizado profundo e aná-
lise dos resultados para o diagnóstico do glaucoma de ângulo aberto. Os modelos aqui
apresentados são focados em tarefas que envolvem computação visual, ou seja, quando se
utiliza de imagens para resolver uma tarefa.

• Automatização do processo de detecção do glaucoma utilizando modelos de apren-
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dizado profundo

• Flexibilidade e explicabilidade

– Diferentes arquiteturas de modelos implementadas, dando enfase nas arquite-
turas mais eficientes e eficazes

– Utilização do SHAP para trazer explicabilidade para os modelos

• Aplicação e experimentação de técnicas de aprendizado de máquina para criação de
modelos mais robustos e performáticos (RandAugment/Early Stopping)

• Análise de resultados quanto as métricas escolhidas e também quanto ao uso de
recurso computacional e a eficiência do modelo

Observação: A partir deste momento o glaucoma de ângulo aberto será identifi-
cado somente como glaucoma como forma de simplificar a escrita e a leitura do texto.

1.5 Organização

O segundo capítulo 2 contém referências teóricas quanto a utilização de modelos
de aprendizado de máquina para diagnóstico e detecção de doenças. O terceiro capítulo 3
explicita conceitos de aprendizado de máquina e do glaucoma, das métricas utilizadas,
das arquiteturas testadas e das técnicas aplicadas. O quarto capítulo 4 contém todos
os passos realizados antes da experimentação dos modelos, que envolve processamento e
aquisição dos dados, configurações de hiperparâmetros e softwares utilizados. O quinto
capítulo 5 contém os resultados dos experimentos realizados e suas avaliações. Também
está incluído a explicabilidade do modelo. O último capítulo 6 conclui esta dissertação.
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Capítulo 2

Referências Teóricas

O uso de inteligência artificial vem revolucionando o mercado mundial, base para o desen-
volvimento de diversas aplicações inovadoras. O aprendizado de máquina, área promissora
da inteligência artificial, tem sido cada vez mais estudado por pesquisadores de todo o
mundo, devido às contribuições trazidas a múltiplas áreas do conhecimento. Na medicina,
vários tipos de modelos de aprendizado de máquina auxiliam os profissionais de saúde na
detecção de doenças e outras aplicações, beneficiando não só os especialistas da área, mas
os pacientes e a sociedade como um todo.

Na seção 2.1 serão avaliados alguns trabalhos voltados para o diagnóstico de do-
enças de forma geral, enquanto na seção 2.2 serão apresentados trabalhos focados no
diagnóstico do glaucoma.

2.1 Aplicações de Aprendizado de Máquina Geral

Modelos de redes neurais convolucionais possuem múltiplas aplicações, inclusive
na detecção de doenças de pele [84]. Os autores exploram diferentes arquiteturas de
redes neurais convolucionais, entre elas estão RegNet [83] e EfficientNet [77], que apare-
cem como modelos mais eficientes, e também modelos tradicionais como ResNet [35] e
VGG [45]. Os autores também trouxeram uma versão modificada do RandAugment, apli-
cado neste projeto e explicitado na seção 3.13, para melhorar o desempenho do modelo
utilizando técnicas de Data Augmentation. Utilizando um conjunto de dados extrema-
mente desbalanceado, os autores implementaram uma função de custo (Seção 3.5.6) que
considera o desbalanceamento dos dados. Ao final, os resultados dos diferentes modelos
serão apresentados. Os modelos computacionalmente mais eficientes, como o RegNet,
demostraram um desempenho próximo, ou melhor, do que os modelos menos eficientes
computacionalmente (ResNet, VGG) com uma acurácia balanceada de 0.858.

É possível identificar doenças nas folhas da maçã utilizando modelos profundos,
conforme citado no artigo [42]. Na referida pesquisa, os autores utilizaram um conjunto de
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dados que possui um total de 2200 imagens, aproximadamente, e 5 diferentes doenças para
serem detectadas. Os modelos testados foram ShuffleNet, EfficienteNet-B0, MobileNetV3,
RegNet e ViT [89, 77, 83, 37, 92]. Dentre os modelos citados, o que atingiu a melhor
acurácia de 0.99 foi o modelo RegNet. Todos os modelos foram treinados com 4 diferentes
otimizadores, que serão explicados na seção 3.5.7, e 5 diferentes taxas de aprendizagem
(Seção 3.5.3).

A partir da combinação de imagens e dados demográficos/clínicos, modelos de
aprendizado profundo foram utilizados para detectar o câncer de mama [75]. Uma rede
neural convolucional (Seção 3.5.10) processa múltiplas imagens com diferentes ângulos
de uma tomografia do tórax. Cada imagem é processada por um modelo independente,
ou seja, eles não compartilham os parâmetros entre si (Seção 3.5.2). Os dados clínicos,
contendo idade, histórico familiar em relação ao câncer e presença de diabetes, são pro-
cessados por outra rede neural multicamadas (Seção 3.6). Ao final, os dados processados
pela rede neural convolucional e da rede neural multicamadas são concatenados por outra
rede neural multicamadas e, em seguida, o modelo efetua o diagnóstico quanto a presença
de câncer. Os autores concluem que a adição de um modelo convolucional com múltiplas
entradas (multi-input) e dados clínicos conseguem trazer resultados melhores do que o
modelo utilizando somente uma imagem (single-input) frontal do tórax, com uma AUC
de 0.99 e acurácia de 0.97.

Utilizando modelos de aprendizado profundo, os autores conseguiram detectar do-
enças cardiovasculares [3]. Os modelos foram divididos em dois grupos: single-input e
multi-input. As arquiteturas de modelo single-input utilizaram o a rede neural Inception-
V3 [74] quando os dados são imagens, e redes neurais multicamadas com modelos de
árvore de decisão [8] quando os dados são clínicos. A arquitetura multi-input utiliza o
Inception-V3 para os dados de imagem e o de redes neurais multicamadas para processar
os dados clínicos e, também, como classificador. A arquitetura de modelo multi-input
atingiu uma acurácia 0.79, enquanto o single-input atingiu uma acurácia de 0.75.

Com o uso de Visual Tranformers (ViT) apresentados na seção 3.6, foi possível
a detecção de pneumonia nos pulmões, inclusive quando advindo da Covid-19 [13]. As
imagens foram coletadas de uma tomografia computadorizada e divididas em vários pe-
daços menores. Cada um destes pedaços foram codificados no modelo ViT e, em seguida,
repassados para uma rede neural multicamadas para detectar a presença de Pneumonia
(ocasionada pelo vírus da COVID-10 ou outro vírus). O modelo dos autores apresentou
uma acurácia de 0.97 na detecção da doença.

O trabalho apresentado a seguir traz uma forma diferente de trabalhar com re-
des neurais convolucionais utilizando o modelo DCGAN [70]. Os modelos DCGAN são
baseados em modelos neurais generativos [29, 30]. O intuito destes modelos é utilizar
dados reais para criar dados que sejam sintéticos e similares aos dados reais. Para isso,
o modelo se divide em duas partes: codificador e decodificador. O modelo codificador
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aprende uma representação vetorial dos dados de entrada, no caso as imagens, enquanto
o decodificador processa essa representação vetorial e tenta recriar uma imagem parecida
com a original. Neste artigo [70], os autores utilizam o codificador para criar a represen-
tação vetorial mais próxima possível as imagens do fundo de olho. Em seguida, os autores
utilizaram essa representação vetorial em um modelo classificador baseado em regressão
logística para detectar a presença de Alzheimer nos pacientes. Os dados utilizados pelo
modelo DCGAN são imagens neurais multimodais.

2.2 Aplicações de Aprendizado de Máquina para
glaucoma

Conforme os autores, que utilizaram redes neurais convolucionais, mais especifi-
camente uma ResNet34, o modelo conseguiu prever a espessura das camadas de fibras
nervosas do disco óptico [48]. Para evitar que haja qualquer tipo de vazamento de dados
entre os dados de treino e de teste (Seção 3.10), a divisão dos dados foi feita por paciente,
desta forma, nenhum dado de paciente está presente no treino e no teste em simultâneo.
As imagens foram padronizadas com altura e largura de 256×256 píxeis, e os valores de
píxeis foram normalizados entre 0 e 1. Foram utilizadas algumas técnicas de Data Aug-
mentation para aumentar a variabilidade das amostras do conjunto de dados, diminuindo
a chance de sobreajuste do modelo (Seção 3.5.9). Um segundo modelo classificador biná-
rio foi treinado para detectar anormalidades (ou normalidades) na espessura da camada
de fibras utilizando fotografias do disco óptico. As métricas utilizadas foram MAE (Mean
Absolute Error) para predição da espessura da camada de fibras nervosas e AUC (Area
under the ROC curve) para a classificação binária. Foram utilizados aproximadamente
1200 pacientes como amostras e um total de 2312 olhos. Os modelos apresentaram resul-
tados de 0.944 para curva ROC, uma acurácia de 0.84 e erro de predição da espessura da
camada de fibras nervosas de aproximadamente 7,39 micromilímetros.

Neste trabalho, a imagem do fundo de olho foi utilizada para extrair uma carac-
terística utilizando redes CNN, que o autor deu o nome de CNN Degree [53]. Além da
característica extraída pelas redes CNNs, foram também utilizados dados clínicos para
um segundo modelo, com o papel de diagnosticar o glaucoma, como, por exemplo: es-
pessura da camada de fibras nervosas (temporal, nasal, inferior, superior), espessura da
córnea, tamanho da escavação do disco óptico (CDO, do inglês, Physiologic Cup ou Optic
Cup) e do disco óptico, idade, sexo do paciente, etc. Para o modelo diagnosticador, foram
utilizados modelos com estruturas diferentes. Dentre eles, estão: Support Vector Machine
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(SVM), Random Forest, C5.0 e XGBoost. As métricas utilizadas foram AUC, ROC, sen-
sibilidade e especificidade. Os autores constataram que o melhor modelo foi o XGBoost,
apresentando AUC igual a 0.945, sensibilidade de 0.950 e especificidade de 0.945. Além
disso, os autores apresentaram explicabilidade para o modelo, sendo a característica mais
importante a espessura das camadas das fibras nervosas da retina superior (RFNLsupe-
rior). Pacientes com glaucoma apresentam valores menores para essa característica e
pessoas saudáveis apresentam valores altos. As características apontadas pelo modelo
como a segunda e terceira mais importantes são RNFLinferior (espessura da camada de
fibras nervosas inferior) e a pressão intraocular (PIO).

Outro trabalho que vale a pena ser analisado para a detecção do glaucoma é a
aplicação do modelo Inception-V3 [74] para detecção do glaucoma [43]. Os autores trazem
técnicas de Data Augmentation (Seção 3.13) para aumentar heterogeneidade dos dados.
As fotos foram padronizadas para o tamanho 299×299 e os píxeis foram normalizados entre
0 e 1. Quanto ao Data Augmentation, foram aplicadas as seguintes operações: rotações
randomizadas de 90, 180 e 270 graus e também um deslocamento entre 0 e 3 píxeis na
horizontal. Este último é aplicado para aumentar o detalhe de captura das imagens sem
a necessidade de aumentar o número de píxeis das imagens. Quanto aos hiperparâmetros
do treino, o autor utilizou o otimizador Adam [40] com uma taxa de aprendizagem de
0.002 e um, tamanho de batch de 32 imagens. Estes hiperparâmetros serão explicados na
seção 3.5. Com um total de 48 mil imagens e em um intervalo de confiança de 0.95, o
autor atinge um desempenho de AUC entre 0.984 e 0.988. Além disso, o autor aponta
quais foram as características que mais geraram falso negativo:

• O glaucoma normalmente aparece com outras doenças, como, por exemplo, miopia,
retinopatia diabética e degeneração macular devido à idade.

• Defeito nas camadas das fibras nervosas da retina ou disco óptico causado por uma
hemorragia.

Para um uso mais extensivo ao público, foi implementado uma framework de di-
agnóstico do glaucoma utilizando a combinação de dados públicos e privados com acesso
ao modelo de aprendizado de máquina profundo [23]. Esta framework1 é acessível para o
público geral, que envia as fotos do fundo de olho e, em seguida, recebe o resultado de-
cisório do modelo. Quando negativo, o resultado é enviado diretamente para o paciente.
Quando positivo, este é enviado para um oftalmologista para uma análise mais profunda
e o paciente encaminhado. A framework é dívida em duas partes: a parte pública, onde

1Um framework em desenvolvimento de software, é uma abstração que une códigos comuns entre
vários projetos de software provendo uma funcionalidade genérica. Um framework pode atingir uma
funcionalidade específica, por configuração, durante a programação de uma aplicação. Ao contrário das
bibliotecas, o framework é quem dita o fluxo de controle da aplicação, chamado de Inversão de Controle.
Fonte: Wikipedia
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as pessoas podem carregar as imagens do fundo de olho e a parte privada, onde é reali-
zado todo o processamento e a geração do relatório. O acesso público pode ser pela web
ou por um dispositivo MobileNet. O resultado é baseado na proporção entre o disco e
escavação do disco óptico: cup-to-disc ratio (CDR). Se o valor da CDR é maior que 0.5
o modelo retorna a possibilidade de glaucoma. Para segmentar e classificar a imagem, os
modelos utilizados foram: EfficientNet [77] (Codificador) e UNet++ [92] (Decodificador).
O codificador cria um mapa de características que será decodificado, pelo decodificador,
de forma que cada segmento da imagem seja separado e o valor da CDR seja calculado.
O acesso ao banco de dados também é manuseado por um servidor público, de forma que
todas as pessoas tenham acesso. Enquanto o processamento da imagem é feito por um
servidor privado.

O seguinte trabalho faz uma comparação da acurácia do modelo de aprendi-
zado de máquina com fotos coletadas nos centro ópticos e fotos coletadas utilizando um
smartphone e um aparelho acoplado D-Eye Lens [50]. O autor descreve que a utilização
do smartphone possibilita que mais pessoas sejam avaliadas devido ao fácil acesso e lo-
comoção do dispositivo. Para captar as fotos pelo smartphone, um vídeo de 1 minuto é
gravado, e do vídeo. A partir do video, uma imagem é extraída, sendo esta imagem a
que melhor captura o disco óptico. Isto possibilita que pacientes com demência também
sejam diagnosticados. Os autores utilizaram uma ResNet para classificar a presença do
glaucoma. Quanto aos dados, foram utilizadas técnicas de Data Augmentation, abordado
na seção 3.13, para diversificar o dado e por consequência melhorar o desempenho do mo-
delo quanto a generalização. Dentre as operações realizadas nas imagens, estão: rotação
da imagem (10 graus), translação vertical e horizontal, mudança de contraste e saturação
de forma randômica e variação do tamanho das bordas da imagem. O modelo apresentou
um desempenho AUC de 0.98 para a câmera padrão e 0.84 para o uso do smartphone. Os
autores discutem que a diferença dos desempenhos, que apesar de serem suficientemente
bons para uma análise, se dá pela capacidade de foco da câmera, gerando imagens que
nem sempre possuem qualidade adequada para uma avaliação mais assertiva.
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Capítulo 3

Fundamentação Teórica

3.1 Estrutura Ocular

O conhecimento sobre a anatomia do olho humano é importante para um melhor
entendimento dos resultados que serão apresentados no capítulo 5. O olho é um órgão
sensorial complexo, capaz de capturar relações espaciais e temporais de algum objeto,
captando a energia luminosa refletida e transformada em sinais elétricos. A energia lumi-
nosa passa pela retina e através do nervo óptico, onde se encontra o disco óptico (DO), a
energia transformada em impulsos elétricos é enviada para o cérebro [55].

A figura a seguir 3.1 mostra o olho humano com uma geometria similar a um globo.
O globo ocular possui formato esférico, revestido por três camadas: externa, intermediária
e interna.

Figura 3.1: Estrutura interna do olho

Fonte: Imagem retirada de [72]

A retina (do inglês, retina) é a membrana mais interna do olho e se estende por
toda a porção posterior da parede, composta por células fotossensíveis (cones e bastonetes)
que recebem o estímulo, luminoso, transformando-o em estímulo elétrico. Desta forma, a
retina é responsável pela sensação da imagem visual projetada pelas estruturas frontais
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do olho [55, 28, 56].
Na retina existe uma pequena região conhecida como fóvea (do inglês, fovea) onde

a imagem se torna mais detalhada e nítida. A fóvea possui a capacidade de capturar as
cores dos objetos e se encontra na região central da mácula (do inglês, macula) [36].

A luz que penetra no olho percorre o meio óptico composto pela córnea (do inglês,
cornea), íris (do inglês, iris), cristalino (do inglês, lens), humor vítreo (do inglês, vitreous
humour) e humor aquoso (do inglês, aqueous humour) antes de chegar na retina. A íris é
responsável por controlar a quantidade de luz que penetra no olho através da pupila (do
inglês, pupil) [56, 55].

3.2 Glaucoma

O glaucoma é uma neuropatia que degenera as células ganglionares da retina (RGC,
do inglês, retinal ganglion cells) e seus axônios, resultando em uma aparência diferenciada
para a região central do nervo óptico, conhecida como escavação papilar ou escavação do
disco óptico [81].

Dentre os principais fatores relacionados ao aparecimento do glaucoma estão: idade
acima de 49 anos, portadores de miopia, pessoas de origem africana, pessoas com histórico
familiar da doença, pressão intraocular alta, pessoas com diabetes, pessoas que utilizam
ou já utilizaram esteroides/cortisona, pessoas lesionadas visualmente, com hipertensão
arterial alta e desregulação vascular [51, 27].

A incidência do glaucoma está diretamente relacionada ao humor aquoso, um fluido
que circula na parte interna do olho, com o objetivo de nutrir a região da íris e da córnea
e exercer pressão para manter o formato do olho. Esse líquido é secretado constantemente
e, quando não é drenado adequadamente, aumenta a pressão intraocular. Consequente-
mente, o nervo óptico é danificado, como mostra a figura abaixo.
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Figura 3.2: Glaucoma progredindo e danificando o nervo óptico

Fonte: Imagem retirada de Medium

Uma das formas de detecção do glaucoma é o cálculo da razão conhecida como
cup-to-disc ratio (CDR) [2].

CDR = CDO

DO
(3.1)

A equação 3.1 mostra como é feito o cálculo do valor da CDR que nada mais é do
que a razão do diâmetro vertical da escavação do disco óptico e do diâmetro vertical do
disco óptico.

Figura 3.3: Disco óptico e escavação do disco óptico de um olho normal e outro com
glaucoma.

Fonte: Imagem retirada de [6]

https://medium.com/oficina-de-escrita-criativa-em-ci%C3%AAncia/terapia-g%C3%AAnica-como-forma-de-tratamento-contra-o-glaucoma-8d32a6101e70
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A figura acima 3.3 possui 4 imagens de 2 retinas diferentes. As duas imagens na
linha inferior possui a escavação do disco óptico modificada pela presença do glaucoma.
Nestas duas imagens, a altura do diâmetro da escavação do disco óptico (cup height) está
próxima da altura do diâmetro do disco, e consequentemente, a equação 3.1 assume valores
maiores. Casos positivos do glaucoma podem ser considerados quando a razão for maior
0.5 [2] ou 0.7 [90]. De qualquer forma, este método é sensível à diferença de iluminação e
o especialista pode demorar de 1 até 3 minutos para fazer uma análise subjetiva [18].

Outra forma de fazer o diagnóstico do glaucoma é utilizando a regra ISNT (Infe-
rior, Superior, Nasal e Temporal) [34]. Para cada quadrante da região do disco óptico é
calculado uma energia wavelet através de diferentes sub-bandas, usando diferentes famí-
lias wavelet. Em seguida, é coletado a espessura da camada de fibras nervosas de cada
uma das regiões. Um olho sem a presença do glaucoma deve apresentar a seguinte ordem
de espessura da camada de fibras: inferior ≥ superior ≥ nasal ≥ temporal.

Figura 3.4: Disco óptico e escavação do disco óptico de um olho normal e outro com
glaucoma e o valor da CDR e a regra ISNT.

Fonte: Image retirada de [6]

A figura 3.4 mostra o valor da CDR e a ordem ISNT do olho glaucoma. O olho
com glaucoma não segue a ordem estabelecida para um olho saudável quanto a ordenação
da espessura da camada de fibras nervosas nos 4 setores ISNT.

Para se obter as duas informações citadas anteriormente, ISNT e CDR, os exames
de Fundoscopia e Tomografia de Coerência Óptica são utilizados para diagnosticar os pa-
cientes com suspeita de glaucoma. Estes dois exames serão detalhados nas duas próximas
seções.
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3.3 Fundoscopia

Atualmente, um dos recursos mais utilizados para detectar a doença é a imagem
da retina ou imagem do fundo de olho (Fundoscopia). A Fundoscopia é um exame que
avalia a parte posterior do olho e, através da imagem, é possível verificar o formato
e o tamanho do disco óptico e da escavação do disco óptico, já que este último sofre
alterações na presença da doença [88, 71, 5, 93]. Além disso, a Fundoscopia detecta os
vasos sanguíneos, a mácula e a fóvea, dando recursos para detectar outras doenças e lesões
como, por exemplo, microaneurismas, sangramentos, exsudatos e manchas de algodão [79].

Existem dois tipos de imagens geradas pela Fundoscopia apresentada na figura 3.5
[16]:

• Colorida: Documenta possíveis alterações retinianas por intermédio das imagens,
realizado em toda a faixa do espectro visível, permitindo que o DO seja capturado.

• Fluorescente ou Angiofluoresceinografia: Usa uma iluminação especial e fil-
tros, podendo ser realizado com ou sem contraste, ajudando a detectar melhor os
vasos sanguíneos.

Figura 3.5: Exemplos de imagem de fundo de olho colorida e fluorescente

Fonte: Imagem retirada de [16]

A figura 3.6 traz duas imagens de fundo de olho, uma delas com a presença do
glaucoma. É possível conferir na imagem inferior do fundo de olho, em que há o diag-
nóstico de glaucoma, o aumento do valor da CDR. Já a figura 3.7 traz a diferença de
espessura do ISNT da escavação do disco.
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Figura 3.6: Exemplos de imagem do fundo de olho com presença e ausência de glaucoma.

Fonte: Nature, 2021

Figura 3.7: Exemplo de ISNT capturado por uma Fundoscopia. (a) Olho normal, (b) Olho
com glaucoma

Fonte: Imagem retirada de [64]

Por mérito do avanço tecnológico de dispositivos móveis e o uso de redes neurais efi-
cientes, é possível que o glaucoma seja detectado utilizando Smartphones [11]. Utilizando
uma lente e um smartphone (Android ou IOS) os autores desenvolveram um aplicativo
que extraí a imagem do fundo de olho e, em seguida, um modelo de aprendizado de má-
quina profundo faz a segmentação do disco e da escavação do disco óptico. A segmentação
fornecia os valores da CDR, e por fim, o diagnóstico do glaucoma era dado conforme o
valor da razão, atingindo uma acurácia de 0.78. A figura a seguir mostra os dispositi-

https://www.nature.com/articles/s41598-021-81554-4
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vos (imagem a e b) utilizados pelos autores para detectar o glaucoma com a aplicação
desenvolvida:

Figura 3.8: Smartphone com câmera de imagem de fundo de olho.

Fonte: Imagem retirada de [31]

3.4 Tomografia de Coerência Óptica

O exame OCT, Tomografia de Coerência Óptica, mensura a espessura da camada
de fibras nervosas da retina peri-papilares assim como o tamanho da escavação do disco
óptico. Estas medições fornecem aos profissionais inúmeras informações, dando mais
recurso para uma melhor avaliação do glaucoma.

A obtenção de imagens pelo exame OCT baseia-se na técnica de interferometria1. O
interferômetro óptico usa o princípio de comparação entre feixes de luz para alta resolução
de estruturas, ou seja, mede o tempo de atraso em escala de femtossegundos. Um feixe
é refletido e o outro é transmitido ao olho, refletido por estruturas oculares a partir de
distâncias axiais variadas. O feixe de luz que reflete do olho é composto por ecos que
informam a distância e espessura das estruturas interiores dos olhos. O segundo feixe é
refletido a partir de um espelho de referência situado a uma determinada distância. A

1Interferometria é uma técnica que utiliza a interferência de ondas sobrepostas para extrair informa-
ções. Fonte: Wikipedia
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chave do processo consiste no fato de que o interferômetro pode medir o tempo de atraso
de ecos ópticos pela comparação do feixe de luz refletido com o feixe de luz padrão de
referência [69].

A figura 3.9 mostra um exame OCT, com suas respectivas medidas de espessura
da camada de fibras nervosas da retina, e o valor G, sendo a média dos setores. Quanto
menor o valor G, maior a probabilidade de se ter glaucoma. A camada de fibras nervosas
é divida em 6 setores: nasal (N), nasal superior (NS), nasal inferior (NI), temporal (T),
temporal superior (TS) e temporal inferior (TI). A figura nos mostra que o olho direito
está com as camadas de fibras nervosas danificadas e pode ter glaucoma, enquanto o olho
esquerdo está saudável.

Figura 3.9: Exemplo do exame OCT, sendo o olho direito (OD) com a presença de glaucoma
e o esquerdo (OS) em estado saudável.

Fonte: Glaucoma Today, 2016

https://Glaucomatoday.com/articles/2016-may-june/optical-coherence-tomography-as-a-Glaucoma-screening-tool
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3.5 Conceitos de Aprendizado de Máquina

3.5.1 Camadas

As camadas são onde se encontram os neurônios ou unidades de processamento.
Uma rede neural normalmente possui múltiplas camadas, ou, pelo menos, duas camadas
de entrada e saída. Quanto mais camadas na rede neural, mais profunda ela é, ou seja,
mais neurônios são utilizados. No entanto, é necessário um cuidado, pois quanto mais
neurônios mais operações matemáticas são realizadas e, por consequência, mais dados são
necessários para utilizar o modelo, demandando mais poder computacional.

3.5.2 Pesos ou Parâmetros

As redes neurais são compostas por várias unidades de processamento, cujo fun-
cionamento é o mais simples possível. As unidades de processamento das redes neurais,
conhecidas também como neurônios, são interligadas entre si, e cada uma dessas uni-
dades possui um parâmetro associado, também conhecido como peso. As unidades de
processamento fazem operações matemáticas com os dados recebidos de outras unidades
de processamento ou das tabelas de dados se a unidade estiver na primeira camada do
modelo, também conhecida como camada de entrada (do inglês, input layer).

A figura 3.10 representa uma rede neural multicamada (MLP, do inglês, Multi Layer
Perceptron) contendo três camadas. Uma camada de entrada, uma camada intermediária
e uma camada de saída. Cada uma dessas camadas possui um número N de neurônios.
Cada neurônio, ou unidade de processamento, possui conexões com outras unidades, sendo
que essa conexão seria o peso ou parâmetro. O parâmetro então é multiplicado pela saída
de um neurônio que entra em um próximo neurônio. No neurônio, todas as entradas são
somadas. Em seguida, o resultado da soma passa em uma função de ativação, como, por
exemplo, uma sigmoid [29], para transformar ou limitar os valores. Todos os neurônios
de uma camada possuem ligações com todos os neurônios da próxima camada.
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Figura 3.10: Uma rede neural MLP, com 3 camadas. Uma de entrada com 3 neurônios,
uma camada intermediária com 4 neurônios e uma de saída com dois neurônios.

Fonte: Imagem elaborada pelo autor.

3.5.3 Taxa de aprendizagem

A taxa de aprendizagem(LR, do inglês, Learning Rate), é o valor de atualização
dos parâmetros. Toda vez que uma rede neural erra sua previsão ou resposta, é necessário
que estes parâmetros se ajustem, para diminuir o valor do erro em uma próxima iteração.
A taxa de aprendizagem é a magnitude desta atualização. Quanto mais alta a taxa de
aprendizagem, maior será o valor adicionado ou subtraído do parâmetro. É necessário
balancear o valor desta taxa, para as atualizações acontecerem de acordo e em direção da
diminuição do erro do modelo [29].



3.5. Conceitos de Aprendizado de Máquina 36

3.5.4 Treino, Teste e Inferência

O processo para se obter e usar um modelo de aprendizado de máquina se divide
em três fases: treino, teste e inferência. O treino é a fase onde se ajusta os parâmetros
do modelo para que ele complete uma tarefa da melhor forma possível, que neste projeto
seria diagnosticar o glaucoma. O teste é a fase onde irá ser avaliado o desempenho
do modelo, utilizando as métricas previamente estabelecidas. E a fase de inferência é
quando um modelo já treinado e avaliado segundo as métricas estabelecidas já está sendo
utilizado pelo público alvo. Normalmente, os modelos na fase de inferência são colocados
na nuvem2 ou em alguma infraestrutura computacional local para poderem ser acessados
por diferentes aplicações e profissionais que queiram agregar valor ao negócio [29].

Cada uma dessas fases trabalha com um conjunto de dados único que não se
intersectam. É necessário ressaltar que se deve ter cuidado em dividir o conjunto de dados
do treinamento e do teste para não haver vazamento de dados entre os dois conjuntos e
o modelo atinja um desempenho que não representa a realidade. O conjunto de dados
da inferência é coletado quando o modelo já está em produção, ou seja, todos aqueles
dados que não estavam presentes no conjunto de treino e teste e ainda não possuem um
ground truth3. Após um certo tempo, normalmente os dados coletados na inferência são
adicionados aos dados de treino e teste e o modelo é retreinado já que o modelo pode
sofrer de Distribution Shift4.

3.5.5 Batch e Época

O treinamento se divide em épocas. Cada época é um processamento completo
dos dados de treino e de teste pelo modelo. Logo, consegue-se atualizar seus parâmetros
e avaliar o modelo. No entanto, não é possível passar todos os dados para o modelo
de uma única vez devido ao custo computacional e ao tamanho limitado da memória.
Portanto, os dados são separados em batches que nada mais são que um subgrupo de
um grupo de dados. O tamanho deste subgrupo é ajustado conforme a tarefa e recursos
computacionais disponíveis. Há algumas restrições quanto a este tamanho. O ideal é que

2Infraestrutura de computação necessários para rodar uma aplicação que seja acessada através da
internet. Os recursos virtuais refletem uma infraestrutura física local, com servidores, memórias, clusters
e armazenamentos. Tudo isso voltado para uma aplicação que seja escalável e de fácil uso.

3Ground truth é uma informação estabelecida como real utilizando métricas ou através da observação.
4Distribution Shift é quando a distribuição de dados muda durante um tempo devido às sazonalidades

dos dados ou mudança de comportamento do grupo de amostra.
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o tamanho dos batches seja menor que a totalidade dos dados do conjunto e maior do
que 1. Neste último caso, o modelo precisará fazer por cada amostra processada e usará
recurso computacional excessivamente, além de que, a generalização poderá ser afetada
para pior, já que 1 amostra dificilmente irá representar ou aproximar minimamente a
distribuição do conjunto de dados [29].

3.5.6 Função de custo

A função de custo mede o quão longe o modelo está da resposta correta presente
nos dados. Também conhecida como função de perda, esta função irá indicar a qualidade
do modelo e quais são os valores de atualização necessários para os parâmetros utilizando
um número real como indicador. O que esta função faz é comparar oground truth com
a decisão do modelo e será analisado a proximidade ou igualdade entre dois elementos.
Neste projeto, o ground truth é a classe dos dados, indicando presença ou ausência do
glaucoma.

3.5.7 Otimizadores

Os otimizadores são algoritmos ou funções responsáveis por atualizar os parâmetros
dos modelos usando o número gerado pela função de custo. O otimizador calcula os
melhores valores para cada um dos parâmetros visando diminuir o erro do modelo em
uma devida tarefa. Para realizar este cálculo são necessários os parâmetros do modelo,
a taxa de aprendizado e o erro calculado na função de custo. O otimizador conseguinte
escolhe a melhor atualização para os parâmetros. Todavia, é essencial escolher o melhor
otimizador para cada uma das tarefas ou modelos a serem utilizados, não existindo um
otimizador que seja global e eficiente em todos os contextos.
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3.5.8 Hiperparâmetros

Os hiperparâmetros dos modelos são configurações ligadas ao processo de apren-
dizado. Por exemplo, como citado anteriormente, a taxa de aprendizagem (Seção 3.5.3) é
um hiperparâmetro a ser escolhido e sinaliza a magnitude de atualização dos parâmetros.
Outro hiperparâmetro é o tamanho do batch (Seção 3.5.5) e também qual otimizador (Se-
ção 3.5.7) será utilizado [29]. Normalmente, para encontrar os melhores hiperparâmetros
para o modelo é necessário repetir o processo de treino e teste múltiplas vezes, tornando
este processo extremamente caro.

3.5.9 Sobreajuste

O sobreajuste (do inglês, overfitting) é um cenário onde o modelo se ajusta de
forma quase que perfeita para um conjunto de dados X e, por consequência, acaba tendo
uma perda de desempenho no conjunto de dados Y que possui uma distribuição diferente
de X. O ideal é que o modelo consiga generalizar bem para todos os conjuntos de da-
dos disponíveis, no entanto, é praticamente impossível, já que qualquer comportamento
diferente nos dados pode causar distribuições totalmente diferentes entre eles. Logo, se
os conjuntos de dados X e Y possuem distribuições próximas, mas não iguais, é possível
utilizar de um para conseguir inferir o outro. Portanto, se o modelo sobreajusta para X e
tenta inferir Y , este modelo irá ter um erro grande quanto a sua inferência, já que apesar
de as distribuições serem próximas, estas diferem entre si [29].

Para se evitar o sobreajuste do modelo, este projeto aplicou uma técnica conhecida
como Early Stopping (ES) (Seção 3.10). A técnica tem como intuito parar o processo de
treinamento quando o modelo começa a aumentar seu desempenho no conjunto de dados
de treino (X) e sofre uma piora significativa no conjunto de dados de teste (Y ) utilizado
para avaliação. A figura 3.11 a seguir mostra visualmente como acontece o sobreajuste.
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Figura 3.11: Uma imagem representando o problema de sobreajuste e subajuste.

Fonte: IBM

3.5.10 Convolução

As convoluções funcionam como filtros que enxergam pequenos quadrados e vão
“escorregando” por toda a imagem, captando os traços mais marcantes. Explicando
melhor, com uma imagem 32×32×3 e um filtro que cobre uma área de 5×5 da imagem
com movimento de 2 saltos (chamado de stride), o filtro passará pela imagem inteira, por
cada um dos canais, formando no final um feature map ou activation map de 28×28×1.
A imagem 3.12 mostra como uma convolução funciona.

https://www.ibm.com/cloud/learn/overfitting
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Figura 3.12: Exemplo de uma convolução com filtro 5×5. Cada quadrado com este tamanho
produz um número utilizando operações matemáticas. Em seguida, o quadrado é deslocado
para o lado ou para baixo e um novo filtro é formado.

Fonte: Yale

A profundidade da saída de uma convolução é igual à quantidade de filtros apli-
cados (total de canais). Quanto mais profundas são as camadas das convoluções, mais
detalhados são os traços identificados com o activation map. No entanto, quanto maior o
número de canais, maior será o número de operações matemáticas e, consequentemente,
uma demanda maior de hardware.

3.6 Modelos

Os modelos mencionados a seguir são modelos focados em visão computacional.
Todos os modelos são baseados em redes neurais convolucionais, com exceção do modelo
Vision Transformers (ViT). Com intuito de trazer mais flexibilidade ao diagnóstico de
glaucoma, foram testados modelos com número total de parâmetros (Seção 3.5.2) variável
e por consequência, o uso computacional destes modelos. Alguns dos modelos conseguem
ser executados em dispositivos menores, como, por exemplo, um smartphone. Outros
modelos trazem rápida inferência quando é necessário que a resposta do modelo seja
eficiente. Toda a experimentação é com objetivo de trazer diferentes arquiteturas de
redes neurais que se encaixam em diferentes contextos e infraestrutura disponível. Logo, os
modelos testados foram: RegNet, MobileNet, ShuffleNet, EfficientNet, ResNet, Inception-
V3, ViT [83, 37, 89, 35, 74, 21, 77]

Cada um dos modelos citados anteriormente possui suas vantagens. A MobileNet,
como o próprio nome já diz, é otimizada para rodar em celulares ou dispositivos menores
do que um computador [37]. As redes MobileNet, são menores dos que as redes convolu-
cionais tradicionais, utilizando menos energia para atender recursos limitados e também
possuem baixa latência para ter respostas rápidas. A EfficientNet é bastante eficiente

http://euler.stat.yale.edu/~tba3/stat665/lectures/lec18/lecture18.pdf
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em tarefas que envolvem o reconhecimento visual, dando respostas rápidas. Estas redes
podem ser escaladas facilmente para serem utilizadas em larga escala ou melhorar seu de-
sempenho sem trazer custos adicionais exagerados e de forma simples [77]. A ShuffleNet
traz uma rede neural que seria o extremo de redução de custo tentando manter a acurácia
do modelo. A ShuffleNet pode ter uma eficiência 13 vezes maior que uma ResNet sem
perder muito do seu desempenho quanto a acurácia do modelo. As ShuffleNet possuem o
número de operações por segundo reduzidas (MFLops5) e também o tempo de resposta
[89].

Quanto aos modelos mais custosos, foram testados ViT, Inception-V3 e ResNet.
A ResNet traz um modelo robusto com o foco em assertividade alta devido ao número de
parâmetros [35]. As ViT são redes neurais que conseguem trazer capacidade de aprendi-
zado mesmo com um número pequeno de dados, mas mantendo o poder computacional
das redes neurais convolucionais mais profundas, como a ResNet, citada anteriormente.
Como toda rede neural, quanto mais dados disponíveis, melhor será o poder de generali-
zação da rede, no entanto, redes neurais ViT apresentam resultados melhores utilizando
técnicas de Self-Attention [41, 21]. A Inception-V3 utiliza um classificador auxiliar que
evita o problema de Vanish Gradient, ou, quando as camadas mais próximas da entrada
não conseguem modificar seus parâmetros, com objetivo de diminuir o erro, devido à
profundidade da rede.

E, além dos modelos convolucionais citados anteriormente, foram utilizados tam-
bém modelos de redes neurais de múltiplas camadas (MLP, do inglês, Multi Layer Per-
ceptron). As redes MLP são redes neurais mais simples, no entanto, com alto poder de
generalização. Neste projeto, as MLP serão utilizadas na parte de classificação e conca-
tenação dos resultados das arquiteturas que serão citadas na próxima seção 3.8.

3.7 RegNet: O modelo mais flexível para visão
computacional

O modelo RegNet é um tipo de rede neural criada via um Network Design Space
(NDS). Diferente dos modelos de arquitetura padrão, em que uma arquitetura de rede
neural foi descoberta por NAS6 [94], o RegNet é um espaço contendo todas as redes neurais
possíveis com as configurações de hiperparâmetros disponíveis. Ou seja, NDS fornece um

5Medida de operação de ponto flutuante por segundo. Quanto menor este número para uma rede
neural, menos energia é gasta para serem calculados os resultados.

6Neural Architecture Search é uma técnica de automatizar o processo de busca de arquitetura de redes
neurais, desempenhando melhor do que redes neurais montadas manualmente.
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mecanismo de testagem de arquiteturas mais sofisticado, sem a necessidade de testar
cada uma das arquiteturas, mas sim uma amostragem robusta do espaço, reduzindo custo
computacional e, simultaneamente, fornece modelos simples e eficazes.

O NDS é um conjunto de possíveis arquiteturas em um espaço de busca. Em
cada iteração, esse espaço de amostragem é restringido pelos hiperparâmetros, com o
intuito de querer obter redes neurais com desempenho maior ou pelo menos igual, no
entanto, utilizando uma arquitetura muito mais simples. Desta forma, com a amostragem,
verifica-se que utilizando uma certa combinação de grupo de hiperparâmetros, é possível
testar se uma população amostral de arquitetura de redes neurais consegue ter um bom
desempenho em tarefa ao invés de procurar uma arquitetura única que traga o melhor
resultado possível, conforme utilizado na metodologia NAS [94].

A composição dos hiperparâmetros e estruturas de uma RegNet serão abordados
nos seguintes tópicos.

3.7.1 Hiperparâmetros

• Total de blocos: Cada bloco é composto por um grupo de convoluções (Seção 3.5.10).

• Largura do bloco: Total de canais (Seção 3.5.10) de cada um das convoluções.

• Razão do gargalo: Utilizado para diminuir o número de canais entre uma convolução
e outra, diminuindo o total de operações a serem executadas.

• Largura do grupo: Total de operações de convoluções para cada bloco.

3.7.2 Estrutura

• Tronco (Stem): Contém as camadas (Seção 3.5.1) de entrada da rede neural.

• Corpo (Body): A parte principal da rede neural, sendo esta a estrutura influenciada
pelos parâmetros citados acima.

• Cabeça (Head): Camada de saída do modelo, contendo o classificador.

A figura a seguir 3.13, apresenta um modelo RegNet.
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Figura 3.13: Corpo de um modelo RegNet contendo 4 (Fixo) estágios. Cada estágio contém
número X de blocos.

Fonte: Imagem retirada do artigo [61].

Um ponto de atenção citado pelos autores é a decisão de manter todos os blocos
iguais e com a mesma estrutura de uma ResNet [35]. A imagem 3.14 a seguir exemplifica:

Figura 3.14: Exemplo de um bloco X baseado em uma rede residual.

Imagem retirada do artigo [61].

Tabela 3.1: Tabela de restrições dos modelos até chegar no modelo RegNet [61]. O índice
i é o estágio, fixado em 4. O bi representa razão do gargalo, gi representa o total de canais
da convolução, di representa o total de blocos e o wi representa o tamanho do bloco.

Versão Restrições Dim Combinações Total

AnyNet A none 16 ((16 · 128 · 3 · 6)4) ∼ 1.8 · 1018

AnyNet B (+bi + 1 = bi) 13 ((16 · 128 · 6)4 · 3) ∼ 6.8 · 1016

AnyNet C (+gi + 1 = gi) 10 ((16 · 128)4 · 3 · 6) ∼ 3.2 · 1014

AnyNet D (+wi + 1 ≥ wi) 10 ((16 · 128)4 · 3 · 6/(4!)) ∼ 1.3 · 1013

AnyNet (+di + 1 ≥ di) 10 ((16 · 128)4 · 3 · 6/(4!)2) ∼ 5.5 · 1011

RegNet quantized linear 6 (∼ 644 · 6 · 3) ∼ 3.0 · 108

Fonte: Desiging Design Network Spaces

A tabela 3.1 explica um pouco como o modelo RegNet é construído. Como citado
anteriormente, são infinitas as combinações de arquitetura de redes neurais, a depender

https://arxiv.org/abs/2003.13678
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dos hiperparâmetros a serem testados. A primeira arquitetura de rede neural, AnyNetA,
não possui nenhuma restrição, totalizando, aproximadamente, 1.8 · 1018 combinações pos-
síveis. A cada nova versão de AnyNet mais restrições são adicionadas ao NDS. No último
modelo, após adicionar todas as restrições e avaliar todas as AnyNets, o modelo enfim
chega no RegNet utilizando uma metodologia conhecida como quantized linear paramete-
rization, para que todos os blocos do mesmo estágio tenham o mesmo tamanho.

O desempenho dos modelos amostrados do NDS é calculado por um procedimento
que se resume em treinar o modelo no conjunto de dados ImageNet [20] por 10 épocas
(Seção 3.5.5) e calcular o erro de inferência nesse mesmo conjunto de dados. É amostrado
em torno de 100 modelos para cada NDS com seu conjunto de parâmetros e restrições.

Figura 3.15: A imagem da esquerda mostra os Design Spaces A, B, e C, sendo o C mais
restritivo entre eles. A imagem da direita mostra a distribuição de erro de cada desses
espaços, sendo o C aquele que possui o melhor desempenho entre eles.

Fonte: Imagem retirada do artigo [61].

Ao final, os autores chegam a conclusão que os modelos amostrados do espaço
RegNet possuem desempenho melhor do que os modelos amostrados do AnyNet para
qualquer valor dos parâmetros escolhidos. Além disso, os autores apresentam o modelo
RegNetY que é uma variação do RegNetX contendo uma técnica conhecida como squeeze-
and-excitation [38] para que cada bloco adapte os pesos para capturar as partes mais
importantes da imagem com um adicional de custo computacional baixo.

3.8 Arquiteturas de Modelos

Neste projeto, 4 arquiteturas de modelos foram testadas. Diferentes das arquite-
turas de redes neurais, uma arquitetura de modelo combina uma ou mais redes neurais.
Cada uma das arquiteturas de modelos apresentados a seguir será testada com diferentes
combinações de hiperparâmetros. O intuito de testar diferentes arquiteturas é que cada
uma delas pode se sair melhor a depender da tarefa a ser realizada e dos dados disponíveis.
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Foram testadas as seguintes arquiteturas mostradas na figura 3.16.

Figura 3.16: Arquitetura de modelos. O Backbone pode ser um dos modelos citados
anteriormente (RegNet, ResNet, Inception e “etc”), e o Classifier é uma rede neural de
múltiplas camadas (MLP), assim como o modelo MLP que recebe os dados tabelados e
também o que faz a operação de concatenar (concat) juntando todas as saídas e passando
para o classificador.

(a) Arquitetura utilizando uma imagem de
olho

(b) Arquitetura utilizando uma imagem do
olho e os dados tabulados

(c) Arquitetura utilizando duas imagens do
mesmo olho (d) Arquitetura utilizando duas imagens do

mesmo olho e os dados tabulados

Fonte: Imagem elaborada pelo autor.

Todas as arquiteturas de modelos citados na figura 3.16, representados por um
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retângulo e com exceção do Backbone, são modelos MLP. Os modelos Backbone, com
tradução literária de espinha dorsal, são os modelos principais utilizados para extrair os
padrões mais importantes dos dados de imagens de fundo de olho.

A primeira arquitetura 3.16a usou somente uma imagem do fundo de olho. Entre
as arquiteturas citadas na figura 3.16 esta é a arquitetura mais simples que utiliza a menor
quantidade de recurso computacional. A segunda arquitetura, além de uma imagem do
fundo de olho, também utilizou os dados tabelados do exame OCT 3.16b. Esta segunda
arquitetura junta os dados de imagens e os dados clínicos para trazer mais informações e
ajudar na classificação/diagnóstico da presença/ausência do glaucoma.

A terceira arquitetura 3.16c utilizou duas imagens do fundo de olho. Para que isso
fosse possível, foi feita uma limpeza dos dados e uma avaliação manual de cada uma das
fotos para cada paciente da base de dados. Foram escolhidas dois tipos de imagens: uma
mais distante, contendo as bordas pretas; outra mais focada e próxima do disco óptico.
A quarta e última arquitetura é a que utiliza duas imagens do fundo de olho e dados
clínicos. Esta é a arquitetura que utiliza mais recurso computacional, já que o modelo de
imagem é duplicado (Backbone), utilizando o dobro de memória e uma rede MLP para
processar os dados do exame OCT e demográficos.

Um ponto de atenção é que a arquitetura de modelo, que utiliza somente uma
imagem, seleciona aleatoriamente um dos dois tipos de imagens disponíveis para processar.
Desta forma, este modelo aprende a trabalhar com imagens com bordas e sem bordas.
Para o modelo que utiliza duas imagens, cada tipo de imagem passa por um Backbone
diferente. Logo, o mesmo padrão de imagem deve passar pelos seus respectivos Backbones
em todas as etapas e iterações, inclusive no momento de inferência.

3.9 Métricas de Avaliação

Para a modelagem de diagnóstico na área médica, as métricas certas devem ser
utilizadas para que se possa avaliar a qualidade do modelo com robustez. Para isso, faz-se
necessário o entendimento dos seguintes conceitos: Verdadeiros Positivos (TP, do inglês,
True Positive), Falsos Negativos (FN, do inglês, False Negative), Falsos Positivos (FP,
do inglês, False Positive) e Verdadeiros Negativos (TN, do inglês, True Negative) [19],
conforme explicitado a seguir:

• Verdadeiros Positivos (TP): Casos positivos de glaucoma, identificados pelo modelo
como positivo.
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• Falsos Negativos (FN): Casos positivos de glaucoma, identificados pelo modelo como
negativo.

• Falso Positivos (FP): Casos negativos de glaucoma, identificados pelo modelo como
positivo.

• Verdadeiros Negativos (TN): Casos negativos de glaucoma, identificados pelo mo-
delo como negativo.

Tabela 3.2: Matriz de confusão identificando
Verdadeiro

Glaucoma Normal

Predição Glaucoma TP FP
Normal FN TN

Fonte: Tabela retirada de [19]

A tabela acima sumariza os conceitos de TP, TN, FP e FN utilizando uma matriz de
confusão 3.2. Abaixo, verificam-se as métricas utilizadas para a avaliação das arquiteturas
de modelos sugeridas:

• Especificidade (SP): É a capacidade do modelo em detectar casos que são negativos.

TN

TN + FP
(3.2)

• Sensibilidade (SN): É a capacidade do modelo em detectar todos os casos verdadeiros
de glaucoma.

TP

TP + FN
(3.3)

• Característica de Operação do Receptor (ROC): Esta curva ajuda os profissionais
e desenvolvedores do modelo a escolher um limiar de corte entre sensibilidade e
especificidade que concorde com o problema de negócio. Esta métrica é a mais
importante e utilizada em diagnósticos, pois como citado anteriormente, é possível
se ter uma flexibilidade consoante a regra de negócio, dando mais importância para
sensibilidade ou para especificidade [33]. .

• Área sob a curva ROC (AUC): Permite verificar o quão bom o modelo classificador
binário desempenha no problema. O cálculo é feito utilizando a área sob a curva
ROC. Quanto maior este valor, mais flexível o modelo consegue ser quanto a especi-
ficidade e sensibilidade. Esta métrica varia de 0 a 1, sendo o melhor modelo aquele
que tem valor igual a 1.
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Figura 3.17: AUC e curva ROC.

(a) Curva ROC

(b) Area sobre a curva (AUC)

Fonte: Ciências e Negócios, 2020

Para selecionar o melhor modelo entre todos os experimentados, foi utilizada a AUC
como métrica principal, já que esta métrica consegue sumarizar, utilizando somente um
número, o quão bom a curva ROC se encontra em cada um dos modelos. A figura 3.17
explica, de forma ilustrativa, como a curva ROC e a AUC funcionam. Em aplicações
médicas, é mais válido trazer o maior número de verdadeiros positivos sem aumentar
significativamente a taxa dos falsos positivos. Normalmente, é mais prejudicial deixar de
diagnosticar uma doença do que dar um diagnóstico positivo falso. Neste caso, o interesse
maior é na sensibilidade. No entanto, se abaixarmos o threshold demais, o número de falsos
positivos aumenta significativamente, o que faz com que muitos casos analisados sejam
enviados para a verificação de um especialista, gerando um maior custo, mão de obra e de
tempo 3.17a. As duas métricas, sensibilidade e especificidade, interagem entre si. Quando
se aumenta uma, movimentando threshold, é possível que se perca desempenho na outra.
Contudo, o valor da métrica AUC carrega consigo a informação de variação desse ganho e
dessa perda, ou seja, quanto melhor o AUC, mais fácil movimentar o threshold ganhando
de um lado e abdicando menos do outro. O modelo perfeito, com 100% de AUC, na
imagem da direita 3.17b, mostra que se movimentarmos o threshold não se perderia nada,
e seria possível capturar todos os casos verdadeiros sem nenhum caso de falso positivo.
No entanto, é impossível construir um modelo perfeito, e normalmente os modelos ficam
entre 50% e 100%.

Devido ao aspecto do problema, a métrica de especificidade também irá ser impor-
tante, pois esta métrica mede a capacidade do modelo de capturar todos os casos positivos,
ou seja, os verdadeiros positivos. É mais prejudicial para o paciente, com glaucoma, ser
diagnosticado como falso negativo e não receber o tratamento adequado, podendo evoluir
sintomas mais graves da doença, como a cegueira.

https://cienciaenegocios.com/curva-roc-e-auc-em-machine-learning
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3.10 Treinamento e Avaliação dos Modelos

Os modelos foram treinados e avaliados utilizando uma técnica conhecida como
validação cruzada (do inglês, cross-validation). A validação cruzada avalia a capacidade
de generalização de um modelo a partir de diferentes combinações do conjunto de dados.
Busca-se, então, estimar o quão preciso é este modelo quando a avaliação é feita em um
conjunto de dados nunca visto antes pelo modelo. Foi utilizado a metodologia K-Fold [62],
sendo este método mais o utilizadas para se obter modelos confiáveis quanto ao aspecto
de desempenho do diagnóstico [6].

O método K-Fold consiste em separar os dados em K partes, sendo que K-1 partes
serão utilizadas para o treino do modelo e a parte restante será utilizada para a validação
do modelo. Em uma próxima iteração, um novo grupo é selecionado para teste e os outros
K-1 para treino, até que todos os grupos passem pela fase de teste. Com isto, é possível
que o modelo seja avaliado com mais robustez e com variabilidade controlada.

Figura 3.18: Imagem ilustrando a validação cruzada. Cada parte assume o papel de teste
uma vez e treino K-1 vezes.

Fonte: Elaborado pelo autor.
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A imagem 3.18 mostra como os dados são divididos. Existem dois conjuntos de
dados que são AC (Amostras Conhecidas) e o AD (Amostras Desconhecidas). Utilizando
o conjunto AC, aplica-se a metodologia de validação cruzada, avaliando os melhores mo-
delos. Em seguida, o melhor modelo é avaliado no conjunto AD para mensurar seu
desempenho real. Este conjunto AD não entra nas iterações da validação cruzada, por-
tanto é possível avaliar a capacidade de generalização do modelo em dados que simulam
os dados na etapa de inferência.

3.11 Fine-Tunning

Os modelos utilizados como Backbones são modelos que já foram ajustados ante-
riormente com algum conjunto de dados de imagens (não necessariamente similares aos
utilizados neste projeto). Existem três formas mais utilizadas para fazer o treinamento
para cada modelo. A primeira, conhecida como Scratch, é um treinamento onde os mo-
delos são inicializados com parâmetros de forma randômica e, em seguida, os dados são
processados para o modelo conseguir aprender padrões do zero. O segundo método é
conhecido como Feature Extraction, onde somente a última camada do modelo é, nor-
malmente, a camada classificadora, com seus parâmetros ajustados para o conjunto de
dados que deseja. Neste caso, todo o treinamento será conduzido apenas nessa última
camada adicionada, enquanto todas as outras camadas terão os seus parâmetros conge-
lados. Existe, também, um terceiro modo, conhecido como Fine-Tunning, onde todos os
pesos sofrem um ajuste fino para os dados da tarefa a ser realizada.

Dos métodos citados acima, as literaturas apontam que o Fine-Tunning consegue
desempenhar melhor na grande maioria das tarefas. No treinamento em que se utiliza o
método Scratch, é necessário um grande volume de dados para ajuste do modelo. Desta
forma, quanto mais parâmetros, mais dados são necessários para o modelo desempenhar
da melhor forma. No segundo método, utilizando Feature Extraction, o modelo não con-
segue se especializar da melhor forma já que se têm algumas poucas adaptações dos pesos,
limitado em pequenas mudanças nesta última camada classificadora. Já no terceiro mé-
todo, o Fine-Tunning, consegue aproveitar a complexidade do modelo treinado em um
conjunto de dados mais volumoso e heterogêneo e, em seguida, se adaptar para o conjunto
de dado desejado [44, 26, 4, 1, 86].

Logo, para este projeto, foi utilizado somente o Fine-Tunning como método de
treinamento dos modelos.
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3.12 Learning Rate Decay

Learning Rate Decay (LRD) é uma técnica de treinamento de rede neural. O
modelo começa com uma taxa de aprendizagem e vai decaindo essa taxa múltiplas ve-
zes durante o treinamento. Dessa maneira, o modelo começa atualizando os pesos mais
rapidamente até que se chega em um certo ponto, em que é necessário trabalhar com
magnitudes de atualizações diferentes. A taxa de aprendizagem do modelo modifica, po-
dendo aumentar ou reduzir a magnitude dos valores de atualização dos parâmetros atingir
valores melhores quanto ao desempenho.

Os seguintes trabalhos trazem um pouco do benefício do Learning Rate Decay
[87, 35]. A imagem na figura 3.19 mostra que em um certo momento os modelos ResNet-
18 e ResNet-34 chegam em um platô onde o erro do modelo não decrementa. A partir
deste momento, a taxa de aprendizagem é subtraída por um valor e, após esta mudança
de valor, o modelo volta a melhorar seu desempenho. Com isso, o modelo utilizando taxas
menores de aprendizado consegue fazer ajustes mais finos, ou, em outras palavras, dar
passos menores para um mínimo local da função de erro.

Figura 3.19: Learning Rate Decay aplicado a modelos visuais.

Fonte: Towards Data Science

3.13 RandAugment

Data Augmentation [58] é uma técnica de aumento da heterogeneidade dos dados
de forma sintética. Neste caso, operações são aplicadas na imagem de forma que novas

https://towardsdatascience.com/the-subtle-art-of-fixing-and-modifying-learning-rate-f1e22b537303
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imagens sejam criadas a partir das originais, aumentando a variabilidade dos dados para
modelagem. Com os dados mais heterogêneos, é possível atingir desempenhos melhores
para o modelo sem aumentar de forma exponencial o custo computacional (mais poder
computacional) que será refletido em custo real.

Para realizar o Data Augmentation foi utilizado neste projeto o RandAugment [15].
Conforme os autores, o RandAugment traz benefícios como: diminuir drasticamente o uso
computacional, pois não se utiliza políticas para escolher as operações a serem aplicadas
nas imagens, mas sim uma probabilidade X de acontecer para cada uma delas. É possível
manter a diversidade das imagens e ter um custo baixo para isso. As transformações
possíveis são: transformação, identidade, alto-contraste, equalizador, rotação, solarização,
cor tremida, mudança de contraste, mudança de brilho, posterização, mudança de formato,
translações e cortes.

3.14 Explicabilidade: SHAP

O Shapley Additive Explanations (SHAP) é uma das ferramentas mais utilizadas
quando o assunto é explicabilidade. O objetivo por trás do SHAP é trazer um enten-
dimento quanto a decisão de modelos complexos, modelos antes conhecidos como caixa
preta devido sua falta de interpretabilidade. Logo, modelos estatísticos como XGBo-
ost, LightGBM e modelos profundos como redes neurais convolucionais (CNN) agora são
possíveis de serem entendidos ou interpretados por pessoas [46].

A interpretação dos modelos trouxe uma forma inovadora de aplicar modelos de
aprendizado de máquina, principalmente na área da saúde. O modelo interpretável traz
informações extras para que o profissional consiga tomar melhores decisões quanto ao
problema que enfrenta.

Diferentes modelos foram propostos para diagnosticar e verificar a progressão da
evolução da doença de Alzheimer [22]. Os autores aplicaram o modelo SHAP para pegar as
características que são mais críticas para o modelo e entender como essa doença evoluiu
durante o tempo. Além disso, o modelo também forneceu explicações individuais dos
pacientes. Logo após, foi utilizado um sistema baseado em lógica fuzzy [80] e linguagem
natural para poder criar um formulário que os médicos e os pacientes utilizassem e o
especialista conseguisse explicar de forma mais completa e concisa os fatores que causaram
a doença e sua evolução.

Utilizando modelos mais simples, como Árvores de Decisão [60], Regressão Logís-
tica [14] e kNN [78] e modelos mais complexos, como SVM [66], XGBoost [12], e RF [8],
os autores criaram um sistema de prognóstico da doença de hepatite [57]. Utilizando o
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modelo SHAP, fornecem explicação para cada um dos pacientes e também geraram grá-
ficos de dependência entre as variáveis (características) de entrada e o rótulo dos dados
(presença ou ausência de hepatite).

Foram utilizados modelos XGBoost [12] para selecionar qual cirurgia refratária
deve ser feita em um paciente [85]. A escolha certa de uma cirurgia aumenta a satisfa-
ção do paciente no final do processo. Antes da escolha da cirurgia, o paciente consulta
um especialista da área e, em seguida, 80 características da tomografia da córnea são
extraídas, 40 características demográficas são coletadas e mais de 22 características de
exames oftalmológicos, como, por exemplo, diâmetro da pupila. Ao final, os autores fa-
zem uma validação cruzada de 10 grupos e atingem uma acurácia média de 72% quanto
a cirurgia a ser aplicada. Os autores também apresentam as características gerais mais
importantes para cada um dos 3 tipos de cirurgias possíveis: LASEK, LASIK, SMILE e
contraindicação.

O SHAP utiliza os Shapley Values ou valores de Shapley. Os valores de Shapley
são uma média ponderada da contribuição marginal de cada uma das características
[68]. Sumarizando, ele mede o impacto que cada uma destas características tem no valor
decisivo do modelo [73].

Figura 3.20: Gráfico sumarizado para o conjunto de dados Boston Housing ordenado pelas
características mais importantes do modelo.

Fonte: SHAP
Github

A figura 3.20 representa um gráfico SHAP para previsão dos preços de moradias

https://github.com/slundberg/shap
https://github.com/slundberg/shap
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em Boston-MA. Cada um dos pontos é uma amostra com o valor de suas características.
Se o ponto é azul, essa amostra apresenta um valor baixo para esta característica, se o
ponto é vermelho ela apresenta um valor alto, se o ponto está do lado direito quer dizer
que aquele valor da variável contribui para a resposta ser positiva ou maior; se do lado
esquerdo, negativa ou menor. Por exemplo, a variável mais importante é a LSTAT, que
corresponde a proporção de adultos sem ensino superior e a proporção de trabalhadores
braçais do sexo masculinos em uma área. Significa que quanto maior essa proporção,
menor será o preço das casas na vizinhança. Enquanto a variável RM é a quantidade de
quartos na casa. Quanto mais quartos na casa, maior será o valor atribuído para aquela
residência.

Figura 3.21: Explicação de uma imagem utilizando SHAP. Os pontos vermelhos e azuis
mostram onde o modelo julgou como parte importante para a imagem. Seguindo a mesma
lógica do 3.20, pontos vermelhos aumentam a probabilidade na saída do modelo, enquanto
pontos azuis diminuem.

Fonte: SHAP Github

Na figura 3.21 a explicabilidade do modelo forneceu quais são as áreas das ima-
gens mais importantes para a identificação de um animal. Por exemplo, para o pássaro,
observa-se que existem vários pontos vermelhos fortes na mesma área do bico, indicando
que essa parte foi uma das mais importantes para a identificação do pássaro.

https://github.com/slundberg/shap
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3.14.1 Explicabilidade para o glaucoma

A explicabilidade no glaucoma se dará de duas formas:

• O modelo de imagem irá apontar as áreas mais importantes para diagnosticar o
glaucoma. Será possível verificar, em imagens, se o modelo consegue capturar a
escavação do disco óptico e o disco óptico em si. Esta visualização se dará com
acúmulo de pontos nestas regiões, demonstrando que o modelo se adapta a diferente
posições da retina, como também diferentes recortes de imagens do fundo de olho.

• As medições mensuradas pelo exame OCT irá fornecer espessuras das camadas
em diferentes regiões. O especialista irá utilizar da explicabilidade para verificar
suas teorias quanto a degeneração das fibras em diferentes setores. Além disso, o
especialista irá poder de dialogar com o paciente utilizando recursos visuais que
facilitam o entendimento do diagnóstico da doença.

O objetivo é que o modelo explicativo dê suporte ao especialista quanto as decisões
do tratamento. A explicabilidade, além de fortalecer argumentos, consegue ainda fornecer
informações para que novos métodos sejam estudados e criados e que métodos antigos
sejam validados ou confrontados baseados em resultados interpretáveis do modelo.
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Capítulo 4

Metodologia

4.1 Setup

Todos os experimentos foram executados em uma máquina com processador i7-
3770, 16 gigabytes de RAM e uma placa de vídeo Nvidia RTX-3060 com 12 gigabytes de
memória.

Dentre os softwares utilizados estão as seguintes bibliotecas de Python1: Pytorch2,
Seaborn3, SHAP 4 e Pandas5. Para execução das análises foi utilizada o Jupyter Note-
book6.

4.2 Aquisição dos Dados

Os dados foram coletados de pacientes por especialistas do Hospital São Geraldo,
especializado em atendimento médico nas áreas de Oftalmologia e Otorrinolaringologia.
Os exames foram armazenados em um banco de dados contendo a data do exame e a
identificação do paciente. Todos os dados, que possuem casos confirmados de glaucoma,
são do tipo glaucoma primário de ângulo aberto.

Os exames OCT foram realizados por um dispositivo da Heidelberg (Spectralis
SD-OCT, Software Version 5.4.7.0) e os exames de Fundoscopia foram realizados por um
dispositivo da Cannon (CR2, Canon USA).

1https://www.python.org/
2https://pytorch.org/
3https://seaborn.pydata.org/
4https://github.com/slundberg/shap
5https://pandas.pydata.org/
6https://jupyter.org/
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4.2.1 Critérios de Inclusão

• Pacientes com glaucoma de ângulo aberto

• Pacientes com idade entre 3 e 96 anos

• Pacientes com incidência de glaucoma em somente um dos olhos ou nos dois olhos

4.2.2 Critério de Exclusão

• Todos os pacientes que possuem glaucoma de ângulo fechado, secundário e congênito

• Pacientes que realizaram exames de retinografia utilizando dispositivos móveis

• Pacientes que não realizaram os dois exames: OCT e Fundoscopia

4.3 Sumário dos dados

Os dados recebidos possuem múltiplas imagens de fundo de olho. As imagens estão
separadas por paciente, conforme o olho em que foi realizado o exame, direito ou esquerdo.
Há dados de 442 pacientes e 887 imagens de olhos. Entre os dados, consta uma tabela
com as seguintes informações: informações demográficas do paciente e do exame OCT.
Na tabela recebida contém os seguintes dados:

• dados demográficos: nome, idade, gênero;

• presença ou ausência do glaucoma;

• indicação do olho examinado: esquerdo ou direito. Quando não há indicação, ambos
os olhos foram examinados;

• medições de espessura da camada de fibras nervosas coletadas do exame OCT: região
nasal (N), nasal inferior (NI), nasal superior (NI), temporal (T), temporal inferior
(TI), temporal superior (TS) e a média de todos os quadrantes (G);
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Um exemplo na figura 4.1 contendo duas imagens do fundo de olho:

Figura 4.1: Duas imagens do fundo de olho com distâncias diferentes

(a) Imagem do fundo de olho distante do disco
e copo

(b) Imagem do fundo de olho próxima do
disco e copo

Fonte: Imagem extraída do conjunto de dados.

A primeira imagem 4.1a é uma imagem de fundo de olho contendo bordas pretas
e engloba toda retina. A segunda imagem é focada no centro da retina e possui o disco e
escavação do disco óptico mais próximo e também a mácula e a fóvea 4.1b. Cada paciente
testado neste trabalho deve possuir pelo menos duas fotos similares a essa para cada olho
onde o exame OCT foi realizado.

Portanto, faz-se necessária a realização da limpeza dos dados, observando-se os re-
quisitos dos experimentos executados neste projeto. Na próxima seção, será descrito todo
o processo de limpeza dos dados realizado como requisitos dos experimentos executados
neste projeto.

4.4 Limpeza

Conforme explicitado acima, foi realizada a padronização dos dados utilizados,
para que todo o processo fique mais simples, automatizado e consistente. Assim, algumas
manipulações manuais foram aplicadas aos dados, conforme se observa a seguir:

• verificação de duas vias: foi verificado se o paciente está presente nos dados tabulares
do exame OCT e se existe uma pasta contendo as fotos do fundo de olho (Esquerdo
e/ou Direito);

• contabilização do número de fotos: foi contabilizado o número de fotos para cada
um dos pacientes, considerando o requisito de, no mínimo, duas fotos de cada olho.
Todos que possuíam somente uma foto ou nenhuma foram eliminados;
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• proximidade da imagem: foram selecionadas, manualmente, duas fotos para cada
olho de cada paciente. Uma foto mais distante, contendo a parte marginal preta,
e uma segunda foto mais próxima, sem a parte marginal preta. As fotos foram
renomeadas para indicar qual das duas imagens é a mais próxima ou distante, de
forma que a arquitetura do modelo, que utiliza duas imagens, sempre receba o
mesmo tipo de foto;

• cor das imagens: foram selecionadas somente fotos coloridas. Fotos preto e branco
foram eliminadas, já que a maioria dos pacientes não possuía este tipo de foto;

• data dos exames: alguns pacientes possuem diferentes datas dos exames OCT e
Fundoscopia. Foram consideradas as fotos de fundoscopia tiradas em datas próximas
à realização do exame OCT.

No total de 442 pacientes e 885 olhos, após a limpeza dos dados, restaram 426
pacientes e 758 amostras de olhos utilizados na modelagem.

4.5 Exploração

Para um melhor entendimento do problema, faz-se necessário que os dados sejam
explorados e que a sua distribuição seja compreendida. Nesta seção, os dados serão
avaliados, observando-se suas características, como, por exemplo, a correlação entre as
espessuras da camada de fibras nervosas e a presença do glaucoma, a idade e o gênero dos
pacientes, dentre outras características importantes que deram base para a obtenção dos
resultados apresentados na seção 5.3.
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Figura 4.2: Contagem de casos de glaucoma por gênero e por olhos

(a) Total de pacientes por gênero
(b) Total de pacientes com presença de glau-
coma em 0(ausência), 1, 2

(c) Total de olhos com e sem glaucoma
(d) Total de olhos com ou sem glaucoma por
gênero

Fonte: Elaborado pelo autor.

Os histogramas da figura 4.2 demostram que os dados possuem mais casos de
pessoas contendo glaucoma em somente um dos olhos do que nos dois olhos. Há mais
pacientes do gênero feminino do que do masculino. No entanto, proporcionalmente, a
presença de glaucoma é maior em homens do que em mulheres. Possivelmente, tal fato se
deve a fatores culturais observados em pessoas do sexo feminino que, conforme a Pesquisa
Nacional de Saúde [59], são as mulheres que têm mais hábito de ir ao médico manter-se
saudável. Assim, apesar de as mulheres serem a maioria dos pacientes que realizaram
os exames, são as que menos registram a presença do glaucoma. Na seção de resultados,
será avaliado se o modelo coloca a variável gênero como uma das principais características
para a predição do glaucoma.
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Figura 4.3: Distribuição do glaucoma por variável

Fonte: Elaborado pelo autor.

Os gráficos da figura 4.3 mostram a distribuição das variáveis do exame OCT
quanto a presença de glaucoma. Existe uma separação visível das distribuições das ca-
racterísticas G, TS, N e TI quando há ou não glaucoma.
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Figura 4.4: Boxplot do glaucoma por variável.

Fonte: Elaborado pelo autor.

Observou-se a presença de valores atípicos mostrados na figura 4.4. As caraterís-
ticas idade, NI, G e NS são as que mais possuem valores fora do comportamento padrão
da distribuição. A idade é, como se vê na figura, um bom divisor, já que existe uma
tendência a esquerda (menor idade) quanto a ausência do glaucoma. As variáveis TI, G
e TS são as que mais distanciam os casos quanto a presença ou não do glaucoma.
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Figura 4.5: Correlação absoluta das características entre 0 e 1, sendo 1 correlação perfeita.

Fonte: Elaborado pelo autor.

Existe uma forte correlação entre a variável TS e G 4.5. Sendo G uma média
global, existe a possibilidade de que a variável TS tenha uma influência forte na média.
As variáveis que mais se correlacionam com a classe são: TS, TI e G. A sumarização dos
dados após a limpeza está descrita abaixo:

Tabela 4.1: Tabela contendo sumarização dos dados utilizando as estatísticas: máximo,
mínimo, média, desvio e contagem.

Classe G T NS TS N NI TI Idade

Contagem 758.00 758.00 758.00 758.00 758.00 758.00 758.00 758.00 758.00

Média 0.28 87.73 62.65 98.15 117.77 67.15 103.76 122.49 58.57

Desvio Padrão 0.45 18.82 14.26 28.11 31.97 16.94 28.63 34.75 15.90

Mínimo 0.00 27.00 20.00 13.00 12.00 9.00 25.00 17.00 3.00

25% 0.00 79.00 54.00 80.00 101.00 57.00 87.00 106.00 50.00

50% 0.00 91.00 63.00 100.00 122.00 68.00 104.00 129.00 61.00

75% 1.00 100.00 71.00 117.00 139.00 78.00 121.00 145.75 70.00

Máximo 1.00 145.00 129.00 188.00 228.00 136.00 204.00 228.00 96.00
Fonte: Elaborado pelo autor.

4.6 Engenharia de características e Normalização

Quanto a engenharia de características, apenas uma operação matemática foi apli-
cada. Sabendo que uma das características importantes para a detecção do glaucoma é
o valor da CDR (Equação 3.1) presente na imagem de fundo de olho, as características
criadas são a razão entre as medições numéricas do exame do OCT [91]. Cada carate-
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rística numérica do exame OCT irá criar uma característica de razão entre pares com as
outras. No total, 15 novas características foram criadas para serem utilizadas nos mode-
los. Além de serem características facilmente criadas, são fáceis de serem interpretadas
pelos profissionais responsáveis ao analisar os resultados e a explicabilidade do modelo.

A normalização é um processo de redimensionar os valores das características nu-
méricas para limites entre 0 e 1. A importância da normalização nas redes neurais está
diretamente ligada ao fator de atualização dos parâmetros e otimização do modelo. Os
algoritmos de otimização utilizam a descida gradiente7 para encontrar os melhores valo-
res para diminuir o erro. Na fórmula de descida gradiente, os valores de cada uma das
características são utilizados para atualizar os parâmetros e diminuir o erro do modelo.
Contudo, se os valores das características não forem normalizados e os dados possuírem
características com valores de magnitude diferentes, as características com magnitudes
maiores terão mais importância, o que não pode se assumir como verdade conforme os
dados. Portanto, para evitar que tal fato ocorra e prejudique o desempenho do modelo,
o ideal é que todas as caraterísticas tenham a mesma magnitude e o modelo escolha a
importância de cada uma delas durante o processo de treinamento.

Uma comparação de aplicação da técnica de normalização foi realizada entre os
modelos de redes neurais, modelos de árvore de decisão como Tree Decision, Regressão
Logística e modelos matemáticos como SVM [47]. Para os modelos que não são redes
neurais, 22 características foram extraídas do exame OCT. Uma destas características é a
razão entre o copo e o disco óptico. Todas as características foram normalizadas antes de
serem processadas pelos modelos. Os resultados foram benéficos para os modelos de redes
neurais profundas e invariante para os outros modelos. Uma observação é que todas
as estatísticas para aplicar a normalização devem ser calculadas utilizando o conjunto de
dados de treino. Por exemplo, na normalização entre 0 e 1, os valores mínimo e máximos
são calculados usando os dados de treino e aplicados nos dados de teste, evitando-se que
haja vazamento de dados entre os dois conjuntos.

Todas as características numéricas, como a idade, as mensurações do exame OCT
e as características sintéticas derivadas do exame OCT mencionadas foram anterior-
mente normalizadas entre 0 e 1 para serem processadas pelo modelo. Quanto ao gê-
nero do paciente, foi utilizado 1 para o gênero masculino e 0 para o gênero feminino.
https://www.facebook.com/messages/t/100002734850472/

7O método do gradiente (ou método do máximo declive) é um método numérico usado em otimização.
Para encontrar um mínimo (local) de uma função usa-se um esquema iterativo, onde em cada passo se
toma a direção (negativa) do gradiente, que corresponde à direção de declive máximo. Pode ser encarado
como o método seguido por um curso da água, na sua descida pela força da gravidade. Fonte: Wikipedia
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Figura 4.6: Correlação das características criadas pela operação razão.

Fonte: Elaborado pelo autor.

A figura 4.6 mostra a correlação das características criadas sinteticamente com a
operação de razão. Duas características que mais apresentam correlação com a classe
(presença ou ausência de glaucoma) são: N/TI e T/TI. No capítulo de resultados 5,
mais especificamente na seção de explicabilidade 5.3, será averiguado se alguma destas
características criadas foram importantes para o modelo.

4.7 Experimentação

Os experimentos foram faseados, da seguinte forma:

• Primeiro, utilizando diferentes configurações de hiperparâmetros, foram testados os
seguintes modelos: Mobile, RegNet (X e Y), ShuffleNet, EfficientNet, Inception-
V3, ResNet, e ViT. Cada um dos modelos citados foram testados com 4 diferente
otimizadores (Adam, RAdam, SGD, Ranger) de parâmetros e 4 valores de taxa de
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aprendizagem (0,01, 0,001, 0,0001, 0,0005). Ao final desta etapa, foram selecionados
os melhores modelos conforme a métrica AUC para a próxima etapa. Esta etapa
também forneceu o melhor momento para aplicar o Learning Rate Decay e o Early
Stopping para ser utilizado nas próximas etapas.

• Em seguida, os melhores K modelos selecionados foram re-executados com validação
cruzada e divididos em dois grupos. Um grupo utilizando as técnicas Learning Rate
Decay e Early Stopping e outro grupo sem incluir estas técnicas.

• E, por último, os melhores M modelos dos K foram selecionados e aplicado o Ran-
dAugment (Seção 3.13) para trazer mais diversidade para os dados de treino e veri-
ficar o impacto, em questão de desempenho e variabilidade, do Data Augmentation.

A partir do segundo passo, todos os testes foram feitos utilizando a metodologia de
validação cruzada com o parâmetro de divisão de grupos igual a 5. A decisão de aplicar
somente a partir do segundo passo é o número exponencial de modelos a serem treinados
caso fosse aplicado desde o primeiro passo. Em todas as etapas, o número de épocas
padrão é 100 e a função de custo é uma entropia cruzada binária[63].

Uma observação importante é que a separação dos dados de treino e teste acon-
teceu na granularidade de paciente e não de olho, para que, assim, um paciente não esteja
presente no conjunto de treino e teste em simultâneo, evitando vazamento de dados e o
modelo demostre um desempenho irreal.

Tabela 4.2: Versões dos modelos visuais utilizados como Backbones e o total de parâmetros
de cada um. O modelo ViT é o que possui maior número de parâmetros, aproximadamente
86 milhões, enquanto o modelo ShuffleNet possui somente 2.5 milhões.

Versão Backbone Parâmetros

RegNet800MFX RegNetX 6.586.329

RegNet800MFY RegNetY 5.648.297

RegNet1.6GFX RegNet16X 8.279.048

RegNet1.6GFY RegNet16Y 10.314.319

RegNet3.2GFX RegNet32X 14.288.561

RegNet3.2GFY RegNet32Y 17.824.851

MobileV3Large MobileNet 4.203.313

ResNet50 ResNet 23.510.081

EfficientNetb0 EfficientNet 4.008.829

ShuffleNetV1X1.5 ShuffleNet 2.479.649

VitBase16_224 ViT 85.799.425

InceptionV3 Inception 24.346.082
Elaborado pelo autor.

A tabela 4.2 possui a versão e o total de parâmetros dos modelos citados na se-
ção 3.6 implementados na biblioteca Pytorch8.

8Biblioteca Python de aprendizado de máquina
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Capítulo 5

Resultados

Neste capítulo os resultados serão apresentados. A primeira seção abordará uma visão ge-
ral dos modelos quanto ao desempenho relacionado a métrica principal, AUC (Seção 3.9).
Além disso, pelo gráfico da função de custo (loss), um ponto ideal foi definido para ser
aplicado as técnicas de Learning Rate Decay (Seção 3.12) e Early Stopping. Na seção
seguinte 5.2 será avaliado o desempenho do modelo utilizando validação cruzada e as
técnicas mencionadas anteriormente. Nesta mesma seção será também avaliado o Ran-
dAgument. E por fim, na última seção 5.3 será avaliado a explicabilidade do modelo.
Arquiteturas de modelos utilizando duas imagens de fundo de olho são apontados como
Dual Image.

5.1 Desempenho Geral

A figura 5.1 mostra como foi o desempenho geral dos Backbones. Os Backbones
utilizando dados do exame OCT atingiram melhores resultados nas arquiteturas de uma
e duas imagens. A distribuição de desempenho dos modelos que não utilizam o exame
OCT é menos esparsa, com exceção do ViT e do Inception.
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Figura 5.1: Avaliação geral dos Backbones divididos por arquiteturas. O gráfico violino
mostra a distribuição dos valores máximos atingidos nas 4 arquiteturas de modelos testados.

Fonte: Elaborado pelo autor.

O gráfico 5.2 faz uma relação entre os valores máximo e médio que o Backbone
atinge quanto a métrica AUC para o conjunto de teste. Quando se compara os grupos,
percebe-se que os modelos estão distribuídos uniformemente no gráfico. Existe uma rela-
ção direta entre a média de AUC (Teste) e o valor máximo que essa métrica atinge durante
todas as iterações, com raros casos de discrepância. Portanto, é possível perceber que as
arquiteturas de modelos não variam seu desempenho drasticamente durante o processo
de treinamento e avaliação.
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Figura 5.2: Comparação das estatísticas da métrica AUC. O eixo y é o melhor resultado
do Backbone durante todas as épocas, enquanto o eixo x é a média do modelo durante o
treinamento.

(a) Comparação entre grupo de modelos Reg-
Net e todos os outros.

(b) Comparação entre os modelos RegNet por
si.

Fonte: Elaborado pelo autor.

As tabelas 5.1 e 5.2 sumarizam todas as execuções dos Backbone em todas as ar-
quiteturas discutidas na seção 3.16. O primeiro cabeçalho da tabela contém as colunas
Melhor AUC e AUC Média, indica o valor máximo atingido pela métrica AUC e valor
médio durante todo o processo de treinamento avaliado no conjunto de teste, respecti-
vamente; No segundo cabeçalho estão as estatísticas calculadas das duas colunas citadas
anteriormente, std, min, max, mean, significando, respectivamente: desvio padrão, va-
lor mínimo, valor máximo, a média do valor. Ou seja, na coluna Melhor AUC/min igual
0.5 significa que houve arquitetura de modelos que não conseguiram aprender utilizando
certas combinações de hiperparâmetros para aquele Backbone específico e AUC Média/-
mean significa que na média as arquiteturas de modelos para aquele Backbone específico
atingiu 0.71 na métrica AUC durante o processo de treinamento avaliado no conjunto
de dados de validação/teste. Os valores máximos atingidos pelos modelos ficaram entre
0.92 e 0.95. A AUC Média mostra como o processo de generalização do modelo é um
processo que exige experimentação, para que assim o modelo consiga alcançar resultados
que ultrapassam o desempenho médio. Quanto as arquiteturas testadas, a presença do
exame OCT é benéfico para o modelo, aumentando até em 12% o desempenho dos mode-
los 5.2. No entanto, não houve melhora dos modelos quando se utiliza duas imagens na
arquitetura. Dito isso, todas as arquiteturas avaliadas daqui para frente utilizará somente
uma imagem do fundo de olho como entrada.
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Tabela 5.1: Tabela contendo os resultados quanto à métrica AUC separado por Backbone.

Backbone Melhor AUC AUC Média

min max mean std min max mean std

EfficientNet 0.5 0.93 0.8 0.11 0.5 0.85 0.72 0.1

Inception 0.5 0.94 0.79 0.14 0.5 0.86 0.7 0.12

MobileNet 0.5 0.93 0.79 0.11 0.5 0.84 0.69 0.1

RegNet16X 0.5 0.93 0.79 0.1 0.5 0.86 0.71 0.09

RegNet16Y 0.5 0.94 0.79 0.11 0.5 0.87 0.71 0.09

RegNet32X 0.5 0.94 0.79 0.11 0.5 0.87 0.71 0.1

RegNet32Y 0.52 0.93 0.8 0.1 0.5 0.86 0.71 0.09

RegNetX 0.5 0.94 0.79 0.11 0.5 0.86 0.71 0.09

RegNetY 0.51 0.93 0.78 0.11 0.5 0.85 0.7 0.09

ResNet 0.5 0.95 0.79 0.1 0.5 0.87 0.7 0.1

ShuffleNet 0.5 0.95 0.8 0.09 0.5 0.88 0.7 0.1

ViT 0.5 0.92 0.75 0.15 0.5 0.85 0.67 0.12
Fonte: Elaborado pelo autor.

Tabela 5.2: Tabela contendo os resultados separados por grupos: OCT e Dual Image. A
tabela mostra que utilizar duas imagens não foi benéfico, enquanto o uso do exame OCT
agrega desempenho aos resultados

Dual
Image

Usando
OCT

Melhor AUC AUC Média

min max mean std min max mean std

Não Não 0.5 0.85 0.75 0.08 0.5 0.74 0.66 0.07

Não Sim 0.5 0.95 0.85 0.1 0.5 0.88 0.75 0.1

Sim Não 0.5 0.85 0.74 0.11 0.5 0.77 0.66 0.09

Sim Sim 0.5 0.95 0.83 0.11 0.5 0.87 0.74 0.1
Fonte: Elaborado pelo autor.

A distribuição dos desempenhos apresentados na figura 5.3 mostra uma separação
clara entre a utilização e não utilização do exame OCT. No entanto, como citado anterior-
mente, não há diferença do modelo utilizando uma ou duas imagens. Foram selecionados
os melhores 5% modelos baseados na AUC das arquiteturas que utilizam uma imagem
com a inclusão e não inclusão do exame OCT. Para a seleção, foi utilizado o percentil1

95 e todos os modelos abaixo das 95 partes dos dados foram filtrados. Ao final, restaram
um total de 28 arquiteturas de modelos e configurações de hiperparâmetros dos modelos.

1Em estatística descritiva, os percentis são medidas que dividem a amostra (por ordem crescente dos
dados) em 100 partes, cada uma com uma percentagem de dados aproximadamente igual. O k-ésimo
percentil Pk é o valor x (xk) que corresponde à frequência cumulativa de N.k/100, onde N é o tamanho
amostral.
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Figura 5.3: Distribuição dos desempenhos separados por arquiteturas de modelos.

Fonte: Elaborado pelo autor.

Por último, tem-se o gráfico 5.4 da função de custo durante o treinamento. O
gráfico apresenta a média global de todos os modelos treinados com intervalo de confiança
de 0.95. O gráfico mostra, ainda, que a partir de 30 iterações (épocas), os modelos não
conseguem ter uma melhora significativa no seu desempenho. Portanto, as técnicas Early
Stopping e o Learning Rate Decay foram aplicadas, a partir deste momento, na próxima
fase de experimentação, a validação cruzada.
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Figura 5.4: Comportamento da função de custo durante as épocas de treinamento. O
gráfico mostra um valor médio e um intervalo de confiança de 0.95

Fonte:
Elaborado pelo autor.

5.2 Validação Cruzada

Nesta seção, os melhores modelos selecionados na etapa anterior serão avaliados
para a verificação do seu desempenho utilizando a validação cruzada [62]. O valor de
grupos para a validação cruzada, fixo para todo o experimento, é igual a 5, ou seja, cada
configuração de hiperparâmetros e arquiteturas geraram 5 modelos diferentes, totalizando
140 modelos.

A figura 5.5 mostra a distribuição do desempenho dos modelos testados. O Lear-
ning Rate Decay e o Early Stopping, indicado nas colunas somente como LRD, trouxeram
uma melhora significativa para os resultados. Apesar de terem aumentado a variabili-
dade da AUC, as técnicas trouxeram benefícios positivos quanto ao máximo atingido pela
métrica. O salto maior foi para a arquitetura de modelos utilizando somente imagem.
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Figura 5.5: Comparação do uso do Learning Rate Decay e Early Stopping nos modelos
selecionados na primeira fase. Os melhores modelos da etapa anterior foram re-executados,
sem a utilização das técnicas citadas anteriormente, utilizando validação cruzada para uma
comparação justa.

Fonte: Elaborado pelo autor

A tabela a seguir 5.3 sumariza as melhorias nas métricas quanto a aplicação da
técnica LRDs e ES. O modelo RegNet16X teve o maior ganho na métrica AUC, no entanto,
possui uma variabilidade alta nos resultados. Esta variabilidade é considerável quando se
analisa as médias de todas as métricas, por outro lado, os valores máximos de desempenho
atingidos pelos modelos trouxeram menos variabilidade. Para a visualização completa
dos resultados, uma tabela que contém os hiperparâmetros utilizados e os resultados
detalhados será anexada ao apêndice dessa dissertação A.
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Tabela 5.3: Tabela com os resultados comparando a utilização da técnica LRD e ES na
validação cruzada. Foram calculados a média e o desvio padrão entre os Backbones dos
melhores modelos. Os Backbones com desvio padrão igual a 0 significa que só houve uma
arquitetura de modelo entre os modelos selecionados na fase anterior.

AUC (%) SN (%) SP (%)

Backbone Melhor Média Melhor Média Melhor Média

Ffficient-
Net 5.57 ± (0.0) -2.10 ± (0.0) 9.65 ± (0.0) 0.77 ± (0.0) 2.86 ± (0.0) 3.56 ± (0.0)

Inception 5.50 ± (4.44) 5.54 ± (4.06) 17.33 ± (8.1) 15.8 ± (8.74) 2.41 ± (2.1) 1.45 ± (4.19)

MobileNet 0.26 ± (0.0) 7.79 ± (0.0) 8.24 ± (0.0) 34.54 ± (0.0) 1.83 ± (0.0) -0.99 ± (0.0)

Reg-
Net16X 9.01 ± (3.92) 9.32 ± (2.13) 14.58 ± (7.09) 12.54 ± (12.77) 8.88 ± (9.09) 9.59 ± (10.42)

Reg-
Net16Y 3.41 ± (3.01) 4.34 ± (5.8) 4.66 ± (4.16) 19.1 ± (9.8) 3.43 ± (1.48) 3.32 ± (2.36)

Reg-
Net32X 2.33 ± (5.26) 6.06 ± (7.63) 9.51 ± (8.63) 17.62 ± (8.33) 0.53 ± (2.63) -0.53 ± (3.82)

Reg-
Net32Y 1.38 ± (0.23) 4.28 ± (4.73) 5.62 ± (5.87) 9.47 ± (16.26) 0.48 ± (1.92) 1.92 ± (2.57)

RegNetX 6.61 ± (1.03) 7.03 ± (3.3) 14.18 ± (3.27) 32.93 ± (13.03) 0.95 ± (1.83) 2.21 ± (0.7)

ResNet 1.56 ± (1.51) -10.57 ± (18.94) 2.73 ± (4.06) -28.48 ± (30.21) 2.31 ± (2.02) 5.26 ± (4.48)

ShuffleNet 1.36 ± (4.13) 2.14 ± (7.55) 5.48 ± (4.56) 8.53 ± (20.61) 0.88 ± (1.4) 1.23 ± (1.89)
Fonte: Elaborado pelo autor.

Quanto ao uso de memória e tempo de inferência, a tabela 5.4 mostra que os mo-
delos RegNets possuem tempo de inferência próximo a dos modelos mais eficientes, como
ShuffleNet e MobileNet, e menor do que os modelos mais complexos, como, por exemplo,
o Inception. Isto proporciona flexibilidade para o modelo RegNet possa ser utilizado em
diferentes contextos em que uma resposta rápida é necessária, tal como o processamento
de quadros de um vídeo ou algum sistema nuvem que recebe milhares de requisições si-
multaneamente. Quanto ao uso de memória, os modelos RegNets apresentam versões com
diferentes usos deste recurso. Variando de 1600 até 4182 megabytes, o modelo consegue
apresentar desempenho melhor ou próximo quando comparado aos modelos que utilizam
mais memória (ou seja, usam mais parâmetros e fazem mais operações matemáticas), e
também aqueles que são mais eficientes computacionalmente. Conclui-se, que é possível
atingir desempenho alto com modelos que utilizam recursos computacionais limitados,
dando flexibilidade para sua utilização, tanto para supercomputadores ou para dispositi-
vos móveis, e desta forma, se responde à questão Q1 (Seção 1.3).
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Tabela 5.4: Tabela contendo informações relacionadas ao tempo de inferência e o uso de
memória. A memória é medida em megabytes (mb) e o tempo de inferência em milisse-
gundos (ms).

Backbone Memória (mb) Inferência (ms) Batch

EfficientNet 3002 0.033 ± (0.002) 16

Inception 4747 0.041 ± (0.003) 16

MobileNet 1662 0.019 ± (0.000) 16

RegNet16X 2405 0.022 ± (0.001) 16

RegNet16Y 2812 0.024 ± (0.002) 16

RegNet32X 3600 0.024 ± (0.002) 16

RegNet32Y 4182 0.027 ± (0.003) 16

RegNetX 1679 0.020 ± (0.001) 16

ResNet 3762 0.044 ± (0.002) 16

ShuffleNet 1057 0.018 ± (0.001) 16
Fonte: Elaborado pelo autor.

1 model = init_pretrained_model ( model_name )
2 device = torch. device ("cuda")
3 model.to( device )
4 dummy_input = torch.randn (1, 3 ,224 ,224 , dtype=torch.float).to(

device )
5 starter , ender = torch.cuda.Event( enable_timing =True), torch.

cuda.Event( enable_timing =True)
6 repetitions = 300
7 timings =np.zeros (( repetitions ,1))
8 for _ in range (10):
9 _ = model( dummy_input )

10 with torch. no_grad ():
11 for rep in range( repetitions ):
12 starter . record ()
13 _ = model( dummy_input )
14 ender. record ()
15 torch.cuda. synchronize ()
16 curr_time = starter . elapsed_time (ender)
17 timings [rep] = curr_time
18 mean_syn = np.sum( timings ) / repetitions
19 std_syn = np.std( timings )
20

Algoritmo 5.1: Algoritmo utilizado para calcular o tempo de inferência dos modelos. Código
retirado de DECI

https://deci.ai/blog/measure-inference-time-deep-neural-networks/
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5.2.1 RandAugment

Tendo em vista os resultados da seção anterior, 3 modelos foram selecionados para
aplicar data augmentation. Um dos hiperparâmetros do RandAugument (coluna ROP)
é o número de operações de transformações sequenciais aplicado em uma foto. Por esse
motivo, foram testados diferentes valores para este hiperparâmetro: 1, 2, 3 e 4. Nesta
etapa, a validação cruzada também foi utilizada para avaliar o modelo. A tabela 5.5 a
seguir mostra os resultados dos experimentos e os respectivos hiperparâmetros associados
a este experimento.

Tabela 5.5: Experimentos utilizando diferentes parâmetros de RandAugment (coluna OP).
O número na coluna representa o número de operações seguidas aplicada na imagem.

Back-
bone

Op-
tim LR ROP OCT Melhor

AUC AUC Média Melhor
SP

Melhor
SN

SP Mé-
dio

SN Mé-
dio

Inception ranger 0.001 0 Não 0.899 0.795 (±0.066) 0.935 0.882 0.923 0.666

Inception ranger 0.001 1 Não 0.89 0.802 (±0.057) 0.971 0.882 0.914 0.69

Inception ranger 0.001 2 Não 0.847 0.787 (±0.045) 0.971 0.765 0.884 0.69

Inception ranger 0.001 3 Não 0.871 0.787 (±0.055) 0.943 0.853 0.897 0.677

Inception ranger 0.001 4 Não 0.855 0.785 (±0.056) 0.935 0.794 0.892 0.679

Reg-
Net16X radam 0.001 0 Não 0.899 0.818 (±0.052) 0.929 0.882 0.913 0.722

Reg-
Net16X radam 0.001 1 Não 0.872 0.811 (±0.038) 0.962 0.794 0.911 0.711

Reg-
Net16X radam 0.001 2 Não 0.865 0.808 (±0.049) 0.941 0.872 0.88 0.737

Reg-
Net16X radam 0.001 3 Não 0.871 0.805 (±0.047) 0.962 0.853 0.913 0.697

Reg-
Net16X radam 0.001 4 Não 0.855 0.8 (±0.046) 0.971 0.794 0.93 0.669

Reg-
Net16X radam 0.01 0 Sim 0.991 0.927 (±0.04) 0.99 1.0 0.963 0.891

Reg-
Net16X radam 0.01 1 Sim 0.973 0.922 (±0.031) 0.991 0.955 0.945 0.9

Reg-
Net16X radam 0.01 2 Sim 0.984 0.919 (±0.039) 0.991 0.977 0.971 0.868

Reg-
Net16X radam 0.01 3 Sim 0.984 0.93 (±0.028) 0.991 0.977 0.969 0.892

Reg-
Net16X radam 0.01 4 Sim 0.989 0.928 (±0.038) 1.0 0.977 0.954 0.902

O RandAugment trouxe uma variância menor nas métricas, principalmente na mé-
trica principal AUC. Os resultados demostram que Data Augmentation é uma ferramenta
robusta para lidar com o problema de sobreajuste (Seção 3.5.9) dos modelos e variabili-
dade do desempenho.
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5.3 Explicabilidade

Serão analisadas, nesta seção, a explicabilidade e a interpretação dos melhores
modelos. O objetivo é verificar a interação dos modelos com os dados, tanto os de imagem
quanto os tabulares, para ser possível entender o porquê da decisão do modelo. Foram
avaliadas tanto as imagens do fundo de olho, quanto os valores tabelados contendo as
medições do exame OCT e as características criadas e descritas na seção 4.6.

5.3.1 Explicabilidade Visual

A figura abaixo 5.6 compara a explicabilidade de duas arquiteturas de modelos.
A explicabilidade da coluna da esquerda é de uma arquitetura que utiliza somente uma
imagem e a da direita utiliza duas imagens como entrada. Na imagem superior esquerda
existe uma concentração de pontos no meio dos círculos e também na parte inferior da
imagem. Isto se dá ao fato de que a arquitetura que utiliza somente uma entrada deve
aprender padrões dos dois tipos de imagem citadas anteriormente 4.1. Para o modelo
que utiliza duas imagens, imagens da direita, existe um Backbone para cada tipo de
imagem. Na imagem da linha inferior, todas as duas arquiteturas de modelos deram a
mesma explicabilidade para a imagem do fundo de olho. O modelo que utiliza somente
uma imagem consegue se adaptar a diferentes tipos e recortes de imagens geradas pela
Fundoscopia.
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Figura 5.6: Imagem com explicabilidade do modelo. A coluna da esquerda se refere a
arquitetura do modelo utilizando somente uma imagem e, a da direita, utiliza duas imagens.
Foto contendo a borda preta

Fonte: Elaborado pelo autor.

Figura 5.7: Imagem com explicabilidade do modelo. A coluna da esquerda mostra o modelo
utilizando somente uma imagem; a da direita, duas imagens. Fonte recortada sem a borda
preta

Fonte: Elaborado pelo autor.

A segunda figura 5.7 traz a explicabilidade para as imagens sem a margem preta
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presente no primeiro tipo de imagem de fundo de olho 5.6. A primeira arquitetura de
modelo, na coluna da esquerda, adaptou a explicabilidade para extrair características desse
tipo de imagem, formandos círculos e uma pequena concentração de pontos vermelhos e
azuis arrendondada no meio. Da mesma forma, como na figura anterior 5.6, a primeira
arquitetura de modelo possui uma concentração de pontos na parte inferior da imagem.
Estas concentrações inferiores se devem ao fato de que o disco e o copo óptico podem
estar em qualquer posição da imagem, e, para isto, o modelo precisa analisar todos os
cantos possíveis. É importante ressaltar que a arquitetura utilizando duas imagens como
entrada, na coluna da direita, praticamente não extraiu nenhum benefício da segunda
foto. Isto corrobora com os resultados obtidos nesta tabela 5.2, onde a utilização de duas
imagens nada acrescenta para o desempenho da tarefa.

A explicabilidade se concentrada nas mesmas regiões para identificar tanto a pre-
sença como a ausência do glaucoma. Isto ocorre pela mistura de pontos azuis (diagnóstico
negativo) e pontos vermelhos (diagnóstico positivo) na área da imagem em geral, e como
elemento principal, os pontos se concentram onde fica o disco e escavação do disco óptico.

5.3.2 Importância das Características

Nesta seção será respondido à questão Q2 (Seção 1.3) explanando a importância
de cada uma das características do exame OCT, bem como as demográficas, utilizadas
pelo modelo, serão analisadas, inclusive aquelas criadas por engenharia de características.
As análises a seguir mostram quais foram as características mais importantes para o
modelo quanto ao diagnóstico.
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Figura 5.8: Importância das características no melhor modelo em desempenho relativo a
AUC. O modelo atingiu AUC de 0.99 usando dados do OCT

(a) Importância das características nos dados
de treino do conjunto AC.

(b) Importância das características nos dados
de teste AD.

Fonte: Elaborado pelo autor.

A figura 5.8 mostra, de cima para baixo, as características mais importantes para
os modelos. O gráfico da esquerda é do conjunto AC (Amostra Conhecida) e o da direita
do AD (Amostra Desconhecida). As 3 primeiras características, valor médio global (G),
temporal superior (TS) e temporal inferior (TI) estão na mesma posição de importância
para os dois conjuntos de dados. Isto mostra que, nos dois conjuntos de dados, o im-
pacto médio dessas características não sofre alterações bruscas. Com relação as outras
características, suas posições de importância mudam entre os dois conjuntos de dados, no
entanto, nenhuma mudança é significativa.

Ainda analisando a figura 5.8, os valores altos das características TS/G/TI repre-
sentando camada de fibras nervosas mais espessas, está associado a ausência do glaucoma.
Outro ponto importante a ser considerado é que os dados mostram que quanto mais avan-
çada a idade do paciente, maiores são as chances do glaucoma ser diagnosticado. Com
relação ao gênero do paciente, o modelo não trouxe nenhum tipo de relação importante.
Para as características criadas sinteticamente, quando a razão T/TS aumenta, o modelo
mostra que a espessura de TS degenera mais rápido. Para N/TI pode ser o oposto, ou
seja, significa que a camada de fibras nervosas se degradam mais rápido na área temporal
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comparado a Nasal (N).

Figura 5.9: Mapa de calor importância (importância normalizada entre 0 e 1) das caracte-
rísticas para cada Backbones presentes na etapa de validação cruzada. As características
estão ordenadas de acordo com sua importância média geral.

Fonte: Elaborado pelo autor.

O mapa de calor 5.9 mostra que TS assume um papel importante em quase todos
os Backbones. Pode-se dizer, então, que esta característica é de fato importante para o
diagnóstico do glaucoma pelo exame OCT e, por isso, deve ser analisada com cuidado pelos
profissionais. Em suma, todas as características relacionadas a área temporal, com exceção
das criadas sinteticamente, ficaram acima das características nasais, dando ainda mais
relevância para esta região. A área TI assumiu um papel importante quando se utilizou o
Backbone Mobile. Outra análise relevante é que este mesmo Backbone trouxe importância
para as caraterísticas que envolvem gênero e idade, diferentemente do que ocorreu nos
outros Backbones. Algumas outras características parecem ser irrelevantes para qualquer
modelo, como por exemplo: TS/NI, T/NI, TS/NS, NS/NI, T/N, NS/N e TS/TI. Para
características não-sintéticas e regionais, a menos relevante para a modelagem foi a área
nasal geral (N).
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5.3.3 Análise de casos individuais

Nesta seção, casos individuais de pacientes serão avaliados, tendo em vista a decisão
tomada pelo modelo. Na primeira parte, serão analisados dois casos confirmados de
glaucoma. Observou-se que, em um, o modelo tomou a decisão correta; em outro, o
modelo errou em sua decisão. Para isto, um gráfico de cascata (waterfall) do SHAP foi
utilizado. Este gráfico contém as informações das características do paciente e como cada
uma delas contribuiu, em magnitude, para a decisão do modelo, de acordo com os valores
atribuídos as características.

Figura 5.10: Gráfico de cascata para casos com presença de glaucoma.

(a) Decisão errada do modelo indicando au-
sência do glaucoma. (b) Decisão correta do modelo indicando pre-

sença do glaucoma.

Fonte: Elaborado pelo autor.

A figura 5.10 possui dois gráficos de cascata, sendo o da direita, o modelo que
tomou a decisão correta e, o da esquerda, a decisão errada. O valor na parte inferior
da figura mostra o valor esperado E[f(x)], ou seja, a média de decisão do modelo. Para
valores acima dessa média, o modelo decide o diagnóstico como positivo, caso contrário,
negativo. A saída do modelo é vista na parte superior do gráfico f(x).Na imagem da
direita, a média global G foi a característica que mais contribuiu para a decisão do modelo.
Pela distribuição da figura 4.3, é possível verificar que os valores de G entre 40 e 70 são
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um grupo composto majoritariamente por pessoas diagnosticadas com o glaucoma. O
mesmo vale para TS e para T, apesar de a última estar no limiar entre a população com
glaucoma e sem glaucoma. A idade de 75 anos foi um fator também que contribuiu para
o modelo diagnosticar como positivo. No gráfico de cascata da esquerda, a característica
mais importante foi NS com um valor de 155. Este valor, na figura 4.3, está na cauda
direita da população, onde existe uma concentração maior de casos negativados, levando
o modelo a decidir erradamente.

Figura 5.11: Gráfico de cascata para casos com ausência de glaucoma.

(a) Decisão errada do modelo indicando pre-
sença do glaucoma.

(b) Decisão correta do modelo indicando au-
sência do glaucoma.

Fonte: Elaborado pelo autor.

Na figura 5.11a o valor de TS e razão entre T/TS na imagem da esquerda foram os
causadores da distorção na decisão do modelo. Com a medição de TS igual a 12, a razão
ficou 6 vezes maior entre T e TS. O valor coletado de TS pode ser um possível outlier,
tendo em vista a figura 4.3, um problema de medição ou apenas um erro esporádico na
anotação dos dados. O modelo foi impactado por este valor e, como consequência, foi
dado um diagnóstico positivo errado. Quanto ao diagnóstico da imagem da direita 5.11b,
TI tem mais que o dobro de espessura que a região N. A partir dessa informação, o modelo
diagnosticou corretamente a ausência do glaucoma.
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Capítulo 6

Conclusão

Dentre os 28 melhores modelos em relação ao desempenho da métrica AUC, o modelo
RegNet aparece 16 usando diferentes arquiteturas de modelos e configurações de hiper-
parâmetros. O modelo se mostrou uma escolha robusta quanto a detecção do glaucoma
utilizando imagens de fundo de olho e o exame OCT. Seu melhor desempenho apresentou
uma AUC de 0.99, sendo o melhor modelo de todos utilizando a versão RegNet16X.

O RandAugment mostrou benefícios quanto a variabilidade dos resultados, sendo
uma ferramenta essencial para evitar o sobreajuste. A técnica de Learning Rate Decay e
Early Stopping trouxeram um incremento no desempenho dos modelos, aumentando os
valores máximos das métricas AUC, SP e SN.

A arquitetura que utiliza somente uma imagem como entrada consegue extrair
características de diferentes fotos de fundo de olho, sem a necessidade de se ter um segundo
modelo para processamento de uma segunda imagem. As características G, T e TS foram
as mais importantes para os modelos utilizando dados tabulares do exame OCT.
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Apêndice A

Validação Cruzada Resultados

A tabela a seguir mostra os resultados completos obtidos pela utilização do Learning Rate
Decay/Early Stopping (LRD) comparado aos experimentos sem sua utilização (C).
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