
UNIVERSIDADE FEDERAL DE MINAS GERAIS
Instituto de Ciências Exatas

Programa de Pós-Graduação em Ciência da Computação

Francisco Galuppo Azevedo

Programação Dinâmica Neural Estocástica

Belo Horizonte
2023

Francisco Galuppo Azevedo

Programação Dinâmica Neural Estocástica

Versão Final

Dissertação apresentada ao Programa de Pós-Graduação em
Ciência da Computação da Universidade Federal de Minas
Gerais, como requisito parcial à obtenção do t́ıtulo de Mestre
em Ciência da Computação.

Orientador: Adriano Alonso Veloso

Belo Horizonte
2023

Francisco Galuppo Azevedo

Stochastic Neural Dynamic Programming

Final Version

Thesis presented to the Graduate Program in Computer Sci-
ence of the Federal University of Minas Gerais in partial ful-
fillment of the requirements for the degree of Master in Com-
puter Science.

Advisor: Adriano Alonso Veloso

Belo Horizonte
2023

2023, Francisco Galuppo Azevedo
Todos os direitos reservados

 Azevedo, Francisco Galuppo.

A994s Stochastic neural dynamic programming [recurso
 eletrônico] / Francisco Galuppo Azevedo - 2023.
 1 recurso online (124 f. il., color.) : pdf.

 Orientador: Adriano Alonso Veloso.

 Dissertação (Mestrado) - Universidade Federal de Minas
 Gerais, Instituto de Ciências Exatas, Departamento de
 Ciência da Computação.
 Referências: f. 115-124

 1. Computação – Teses. 2. Aprendizado profundo –
 Teses. 3. Otimização matemática -Teses. 4. Programação
 dinâmica – Teses. I. Veloso, Adriano Alonso Veloso. II.
 Universidade Federal de Minas Gerais, Instituto de Ciências
 Exatas, Departamento de Ciência da Computação. III. Título.

CDU 519.6*82(043)

Ficha catalográfica elaborada pela bibliotecária Irénquer Vismeg Lucas Cruz
CRB 6/819 - Universidade Federal de Minas Gerais - ICEx

���
�������������������

��

��

“Eu vos digo: é preciso ter ainda caos dentro de si, para poder dar à luz uma estrela

dançante. Eu vos digo: tendes ainda caos dentro de vós.”

(Friedrich Nietzsche, Assim Falou Zaratustra)

Resumo

Problemas de Otimização Estocástica de Múltiplos Estágios (MSSO) são comuns em

cenários de tomada de decisão que envolvem incertezas sequenciais, abrangendo várias

áreas, como loǵıstica de transporte, configuração de infraestrutura e agricultura. Este

trabalho apresenta duas contribuições importantes: um novo algoritmo para resolver prob-

lemas MSSO, sejam eles convexos ou não, e um conjunto de metodologias para analisar o

comportamento desse algoritmo e de outros em relação à tomada de decisões.

O algoritmo proposto, Programação Dinâmica Neural Estocástica, aproveita as

capacidades preditivas das redes neurais para lidar com problemas MSSO. Superando

desafios relacionados à modelagem das funções de custo futuras como redes neurais e ao

treinamento de seus pesos, o algoritmo emprega um modelo de programação inteira e uma

nova função de perda. A avaliação experimental em diferentes problemas demonstra a

capacidade do algoritmo de treinar efetivamente os pesos da rede. No entanto, a complex-

idade computacional surge como uma limitação, especialmente em problemas com muitas

variáveis de decisão e estágios, devido à necessidade de resolver um grande número de

subproblemas de Programação Linear Mista (MILP) ou Programação Quadrática Mista

(MIQP).

Uma vantagem significativa do uso de redes neurais reside na capacidade de otimizar

além de valores médios, considerando observações, informações latentes e tendências tem-

porais, libertando-se das restrições de independência probabiĺıstica entre os estágios.

Além de resolver os problemas propostos, o texto aborda a importância de com-

preender a lógica por trás das decisões e os riscos associados a aplicações de longo prazo no

mundo real. Ele apresenta um conjunto de metodologias que utilizam o SHAP (SHapley

Additive exPlanations) e a curvatura das superf́ıcies. Essas técnicas fornecem informações

sobre o impacto dos reservatórios e outras variáveis nos custos futuros e suas interações.

Além disso, o uso de métricas de curvatura permite a quantificação do comportamento

local na função de custo futura, facilitando a análise ao migrar a poĺıtica aprendida para

cenários do mundo real.

Palavras-chave: aprendizado profundo; otimização; despacho hidrotérmico; fluxo de

potência.

Abstract

Multi-Stage Stochastic Optimization (MSSO) problems are prevalent in decision-making

scenarios involving sequential uncertainty, spanning various domains such as transport

logistics, infrastructure configuration, and agriculture. This work presents two key con-

tributions: a novel algorithm for solving MSSO problems, whether convex or not, and

a set of methodologies to analyze the behavior of this algorithm and others concerning

decision-making.

The proposed algorithm, Stochastic Neural Dynamic Programming, leverages the

predictive capabilities of neural networks to address MSSO problems. Overcoming chal-

lenges related to modeling future cost functions as neural networks and training their

weights, the algorithm employs an integer programming model and a novel loss func-

tion. Experimental evaluation on different problems demonstrates the algorithm’s ability

to train network weights effectively. However, computational complexity emerges as a

limitation, particularly in problems with numerous decision variables and stages, due to

the need to solve a substantial number of MILP (Mixed-Integer Linear Programming) or

MIQP (Mixed-Integer Quadratic Programming) subproblems.

A notable strength of using neural networks lies in their capacity to optimize be-

yond average values by considering observations, latent information, and temporal trends,

breaking free from the constraints of probabilistic independence between stages.

In addition to solving the proposed problems, the text addresses the importance

of understanding the rationale behind decisions and associated risks for long-term real-

world applications. It introduces a set of methodologies utilizing SHAP (SHapley Additive

exPlanations) and curvature of surfaces. Furthermore, the use of curvature metrics enables

the quantification of local behavior in the future cost function, facilitating analysis when

migrating the learned policy to real-world scenarios.

Keywords: deep learning; optimization; hydrothermal dispatch; power flow.

List of Figures

1.1 Topology of the New York system . 17

3.1 Convex and Non-Convex Functions . 28

3.2 Set of Cuts . 28

3.3 Piecewise Linear Dome . 29

3.4 Non-Trivial Folding . 32

3.5 Osculating Circle . 38

3.6 Grid 3× 3 . 39

3.7 Shape Index . 41

3.8 Example of a Geodesic . 42

3.9 Isomap . 43

3.10 LIME Example . 46

5.1 Conditional SNDP Schema . 60

5.2 Memory SNDP Schema . 62

5.3 Loss Function in the Alignment Example . 65

6.1 Curvature Study Schema . 70

7.1 Optimal Expected Future Cost Functions . 73

7.2 Hard Expected Future Cost Functions . 73

7.3 Soft Expected Future Cost Functions . 74

7.4 Soft Expected Future Cost Functions Evolution 74

7.5 Conditional Future Cost Functions . 75

7.6 Loss Functions for the Architecture Experiment 76

7.7 Hard and Soft Expected Future Cost Functions with k = 1 76

7.8 Squared Differences in the Architecture Experiment 77

7.9 Execution Times in the Architecture Experiment 79

7.10 Loss Functions in the Hyperparameter Experiment 79

7.11 Squared Differences for the Hyperparameter Experiment 80

7.12 Reservoir Topology . 81

7.13 Dispatch Scenarios . 82

7.14 Comparison Between Algorithm Versions . 83

7.15 Execution Times for Different Versions of the Algorithm 84

7.16 Loss Function for SNDP with 100 Cuts . 85

List of Figures 9

7.17 Loss Function for SNDP with ReLU Network 40,40 85

7.18 Loss Function for SNDP with ReLU Network of Different Architectures 86

7.19 Summary Graphs for the Dispatch Problem 87

7.20 Policy Cost for Extreme Values . 88

7.21 Input Importance for the Future Cost Function 89

7.22 Relationship Between Importance and Reservoir Levels 90

7.23 Curvature Methodology Summary . 91

7.24 Anomaly Detection SHAP . 92

7.25 Most Important Attribute by Cluster. 92

7.26 Local Shape Profiles . 93

7.27 Hyperboloid Region Fraction for Different ϵ. 93

7.28 Hyperboloid Region for Different Models . 94

7.29 Total Volumes on the Reduced Manifold . 94

7.30 Demand Scenario Sample . 95

7.31 Simple Network . 96

7.32 Generation of Synthetic Networks . 97

7.33 Loss Function for the Optimum Power Flow Problem on the Triangular Instance 98

7.34 Summary Graphs for the Optimal Power Flow Problem on the Triangular

Instance . 99

7.35 Flow Graphs for the Triangular Instance . 100

7.36 Thermal Loss Graphs for the Triangular Instance 101

7.37 Current Graphs for the Triangular Instance 101

7.38 Loss Function for the Optimum Power Flow Problem on the Planar Instance . 102

7.39 Summary Graphs for the Greedy Strategy . 103

7.40 Summary Graphs for SNDP . 104

7.41 Flow and Thermal Loss Graphs for the Planar Instance 104

7.42 Current Graphs for the Planar Instance . 105

8.1 Reparametrization Schema . 110

8.2 Curvature Future Schema . 111

8.3 Distance Between Polytopes . 112

8.4 Geometric Optimization Problems . 112

8.5 Conditional SNDP Schema . 114

List of Tables

3.1 Principal Curvatures and Local Behavior . 38

5.1 Comparison Between Manifolds . 58

7.1 Constants for the Optimal Power Flow Problem 96

7.2 Summary Table for the Triangular Instance Total Cost 98

7.3 Summary Table for the Planar Instance Total Cost 102

List of Algorithms

1 Proximal Policy Optimization . 25

2 Kelley’s Cutting Plane . 36

3 SNDP — Sampling . 57

4 SNDP — Mini-Batch . 57

5 Backward Pass — Convergence to the mean 59

6 Backward Pass — Conditioned on the Uncertainty 60

7 Backward Pass — With Memory . 62

*

Contents

1 Introduction 14

1.1 Multi-Stage Stochastic Optimization . 14

1.2 Hydrothermal Dispatch . 15

1.3 Optimal Power Flow . 16

1.4 Objectives . 17

1.5 Work Structure . 18

2 Related Work 19

2.1 State-of-the-Art . 19

2.2 Neural Networks for Optimization Problems 22

3 Theoretical Foundations 27

3.1 Manifold Geometry . 27

3.2 Stochastic Dual Dynamic Programming . 33

3.3 Surface Curvature . 37

3.4 Shapley Additive Explanations (SHAP) . 45

4 Modelling 49

4.1 Control Problem in One Dimension . 49

4.2 Hidrothermal Dispatch Problem . 49

4.3 Optimal Power Flow . 51

5 Future Cost Estimator 56

5.1 Algorithm . 56

5.2 Implementation Details . 62

6 Explainability 68

6.1 SHAP . 68

6.2 Future Cost Curvature . 69

7 Experiments and Results 72

7.1 Control Problem in One Dimension . 72

7.2 Hidrothermal Dispatch Problem . 81

7.3 Optimal Power Flow Problem . 94

Contents 13

8 Conclusion and Future Work 106

8.1 Conclusion . 106

8.2 Future Work . 108

Bibliography 115

14

Chapter 1

Introduction

Long-term decision making is a difficult task. If on the one hand you know the immediate

consequences of a decision, on the other hand the impacts of future events are uncertain.

A situation like this is the problems of resource management, in which we have a stock of

a product, a water reservoir, a financial portfolio; situations in which demand, rainfall and

future prices are uncertain. This work seeks to advance over a subset of problems of this

type, in which the decisions of each stage are limited by known restrictions, the objective

function is also known and we have realizations, historical or simulated, of the variables

with uncertain. We will call this type of problem of Multi-Stage Stochastic Optimization

(MSSO).

In this first chapter we have a general overview of problems of this type, a discussion

of the modeled problems at work, the proposed research objectives and the description of

the work structure.

1.1 Multi-Stage Stochastic Optimization

A stochastic optimization problem is an optimization program in which some or all

the model parameters are uncertain, but past realizations (scenarios) are known. A multi-

stage stochastic optimization problem (MSSO) is when we have a stochastic optimization

in which decisions are made sequentially, as more information becomes available. For the

purposes of this work, it is assumed that a MSSO is composed of three types of variables:

(a) State: variables that track a system property over time;

(b) Control: the actions taken at each stage that modify the state variables;

(c) Random: random variables observed at the beginning of a stage, before the control.

Algorithms to solve MSSOs, such as dynamic programming, usually suffer from the

need to discretize the decision space. With this, the number of combinations of decision

1.2. Hydrothermal Dispatch 15

variables increases exponentially in the size of the state and in the number of stages

[86, 23]. An algorithm that has exceeded this limitation was the so-called Stochastic Dual

Dynamic Programming (SDDP) [86], which has become the state-of-the-art for convex

MSSO [102] and is used in various hydrothermal systems around the world [31, 70].

Its solution was a decomposition of stages with the purpose of approximating to each a

future cost function, convex and piciewise linear, over the values of the state. Thus, it is

no longer necessary to discretize and list the decision variables, and it makes it possible

to find solutions for large-scale systems. The algorithm proposed here in this work is an

extension of the SDDP, in which it is sought to generalize it for non-convex functions.

Many real decision-taking situations involve sequential uncertainty, and for this

can be modeled as MSSOs. The transport logistics area has works such as the allocation

of a fleet of rental cars [47], the distribution of the collection and blood storage for

hospitals and clinics [113], the management of bus stop-skipping routes [54]. There are also

applications for the configuration of infrastructure such as the expansion of the natural

gas infrastructure [48] and the allocation of resources for the relief of natural disasters [53].

Recently, some work in the agricultural sector has adopted the modeling of multi-stage

stochastic optimization, for example for irrigation control [64], the management of a dairy

farm [34] and the labor management in the winery harvest period [7].

Although the proposed algorithm is general for the resolution of all these applica-

tions, the work focuses on two MSSOs connected to the energy sector: the hydrothermal

dispatch and the optimal power flow, discussed below.

1.2 Hydrothermal Dispatch

Hydrothermal systems are electrical energy generation systems composed of hy-

droelectric and thermal plants, which together must generate enough energy to meet a

given demand. The two types of plants differ in various points. The cost per generation

of an energy unit is considered negligible for hydroelectric plants and constant for thermal

plants, whereas the costs of these latter can vary between them. Thus, there is a direct

preference for the use of energy of hydroelectric plants, free of cost. These, however, have

their generation limited by the volume of water that is found in their reservoirs, and can

not always meet the system demand. The problem with the dispatch of hydrothermal

systems is the management of the use of this water at each stage (e.g., every month) in

order to minimize the total cost of the thermeletrics over a long operation period (e.g.,

two years).

Different factors make it difficult to make this decision in addition to this time

1.3. Optimal Power Flow 16

coupling, in particular the spatial coupling and the variability of rain. In the first, the

spatial coupling, we have to coordinate the decisions of all hydroelectric in a joint man-

ner, since the water outflowing a reservoir feeds other lower reservoirs. There is also a

stochastic component of the water inflow coming from the rain, in which we don’t know

how much more water we will have in the future. One can opt to spare water at the

current stage in order to take precautions in case the next stage is drier, but it can also

entail an additional mandatory cost if the next stage is heavy rain. It is thus a MSSO

[13].

The problem of hydrothermal systems has been formulated as a problem of opti-

mization for the first time in [21]. Since then, it has been extensively studied, resulting in

stochastic [85, 20, 100] and deterministic [101, 72] formulations, which vary depending

on whether the random nature of rainwater flows is considered or not.

By minimizing a coherent risk measure [6], more commonly the average, SDDP

seeks to find, for each stage, a function that well represents the future cost behavior

for the different historical scenarios, even if the rain trajectory are different. Under the

context of climate change [84], future rainfall becomes quite difficult to estimate by

historical data due to different effects, such as the reduction in volume and river flow

due to precipitation changes, the occurrence of extreme effects and the shift of spatial

patterns. In Brazil, for example, the frequency and intensity of droughts have grown in

the last decade, culminating in the worst drought recorded, in 2021, which peaked the

cost of energy due to the use of thermeletrics. Therefore, it is of interest not only to

learn a future cost function for each stage but also to make corrections of this conditioned

function in other information beyond the historical, such as recent rainfall and other

climate variables.

1.3 Optimal Power Flow

If on the one hand the incorporation of renewable energy sources offer a decar-

bonization of the economy, it also causes the addition of uncertainty to the electric grid

[1, 18, 16], which should adapt. A approach to dealing with this operational challenge is

the use of batteries as distributed energy reservoirs [9]. With storage technologies it is

possible to delay the need for greater generation, improve the distribution of demand, act

as energy reserve and correct frequency and power [96].

The problem of Optimal Power Flow (OPF) [17] for alternate current circuits (AC)

in its original definition relates to finding the power of the generators and the best flow

distribution on the grid to meet the various points of demand, with the aim of minimizing

1.4. Objectives 17

a cost function, which can be the cost of the generators, the losses for resistance, among

others. With the incorporation of the batteries, the system becomes a MSSO, in which you

have to decide on the charge and discharge of the batteries. The problem has multiple

restrictions, such as limits for power transfer and thermal losses, as well as physical

restrictions of the alternate current [42, 43].

Figure 1.1: Topology of the New York system, in the U.S., consisting of 1814 buses and
more than 500 generators. It is not considered a big system. Figure by [12].

1.4 Objectives

This work mainly aims to develop a new algorithm for multi-stage stochastic op-

timization problems, whether it is convex or not, with stagewise dependency between

random variables or not, through the use of neural networks. We will call this algorithm

of Stochastic Neural Dynamic Programming (SNDP). In particular, it aims to obtain such

algorithm as an extension of the SDDP algorithm. It is therefore vital to substantiate the

reader with the necessary knowledge about this latter so that the next step is as easy as

possible.

As will be discussed in more detail in section 3.2, the SDDP algorithm works by

approaching the future cost of a decision through a convex, easy-to-optimize function.

The goal of our algorithm is to approximate that future cost as a neural network, thus

being able to model a greater range of future cost functions, and allowing the use of other

entries, such as data correlated with the uncertain variables or time trends.

One interest of the researchers was also to better understand the future cost func-

tions learned by the models. This can be achieved in two ways: seeking to measure the

1.5. Work Structure 18

impact of a state on the future cost function and studying the mathematical properties

of the functions.

More specifically, the objectives of this work are to:

1) Propose a neural algorithm that learns the future cost functions like SDDP;

2) Apply the algorithm to different optimization problems, synthetic or real;

3) Check if the proposed model deals with extreme scenarios properly;

4) Study the reasons behind the actions of the algorithm with explainability techniques;

5) Study the properties of the future cost function through the function curvature.

1.5 Work Structure

The rest of the work is divided into 7 chapters. The idea is to bring a panorama of

the related work and an introduction to the necessary theoretical concepts, then present

the generated content, the experiments that testify its effectiveness and finally the con-

clusion of the work. The next two chapters, 2 e 3, act in this first part, in which the first

presents the classic work of the area of optimization as well as new neural approaches

to problems of the type; and the second brings the necessary coverage for what will be

presented later.

Chapter 4 presents the formal definition of the dispatch and the optimal power

flow problems discussed in the introduction. In addition to them, the problem of control

in one dimension is also discussed. Chapters 5 and 6 represent the theoretical content

of the work, in which the algorithm is presented and discussed, and the methodology of

explainability is enunciated. Chapter 7 is the largest in extension, with the discussion

and the results of the experiments. Chapter 8 closes the work with a conclusion of the

text and a conversation on future work.

19

Chapter 2

Related Work

In this chapter we have a summary of work related to what is proposed in this writing.

As the proposed algorithm is found in the intersection of traditional models and the use

of neural networks, this survey is divided into two parts: operational research models for

the MSSOs and neural models that try to solve optimization problems.

2.1 State-of-the-Art

There is no algorithm that guarantees convergence for any type of MSSO. Here

we will discuss three aspects of the algorithms in literature: the algorithms that solve

convex subproblems, the algorithms that solve subproblems with convex restrictions and

objective function but with integer variables and the problems with time dependence.

Our algorithm, SNDP, seeks to be able to solve arbitrary subproblems (as long as there

is a solver for such a type of problem), possibly with time dependence.

2.1.1 Convex Subproblems

MSSO algorithms usually suffer from an exponential behavior in which the number

of decision variables grows exponentially with the number of stages [23]. This factor

limits the use of these algorithms to only low-dimensional instances. As previously said,

the SDDP solves this problem by proposing a breakdown by stage and learning a future

cost function for each, without having to list all decision variables anymore [86].

Unfortunately, the worst case of SDDP still scales exponentially in the number of

stages, thus choosing for simplifications to find solutions in an acceptable computing time

[15, 49]. Among these simplifications, we have a sample stage of Monte Carlo to reduce

2.1. State-of-the-Art 20

the number of variables of decisions to be considered [77], but that can lead to a over-

adjustment in training data and a bad performance in test data. In [24], the authors

introduced a neural model, Neural Stochastic Dual Dynamic Programming (υ-SDDP),

which allows the SDDP to act in a lower-dimensional space, improving the behavior in

the test and the training time. Despite the similarity of the names, υ-SDDP and SNDP

have a little common. The first seeks to accelerate the performance of the traditional

SDDP while the second seeks to solve a new class of problems with the use of neural

networks.

Regarding the dispatch problem, it is common that the SDDP and other MSSO

algorithms use synthetic rain scenarios to represent the flow of the rivers. These scenarios

are usually of a periodic self-regressive model [69]. It is important to note that the

problems become increasingly difficult to solve as the number of these scenarios grows.

Another challenge is that the effectiveness of these algorithms depends largely on how well

these synthetic scenarios represent real inflows. To generate small samples of scenarios

representing the stochastic process, variants of the Optimal Scenario Reduction method

were proposed [81] to cut branches of the tree of the self-regressive models. However,

these hydrological models are being challenged by the impacts of climate change [29].

This is an important limitation that can damage the performance of these algorithms in

test data, since the scenarios can differ from the real.

In [32], the authors proposed robust, or risk-averse, formulations to protect the

system from critical hydrological scenarios. The formulation uses a combination of SDDP

and Benders decomposition to ensure that the policy obtained guarantees levels of the

reservoirs that are high enough to protect the system from these critical scenarios.

2.1.2 Integer Subproblems

By going from linear subproblems to integer ones we have two consequences: fu-

ture cost functions may not be convex anymore [115] and reduced costs are no longer

subgradients [76]. As it is not easy to adapt the decomposition strategies to non-convex

functions, to solve these problems, that is, MSSOs with integer variables, new approaches

are required. Three of them stand out: Stochastic Dual Dynamic Integer Programming

(SDDiP), Mixed Integer Dynamic Approximation Scheme (MIDAS) and Stochastic Lip-

schitz Dynamic Programming (SLDP).

SDDiP [115] addresses non-convexity by reformulating the subproblems in each

stage with a new class of cuts, the Lagrangian cuts. The authors demonstrate that for

problems in which states are binary variables, the algorithm has convergence in a finite

2.1. State-of-the-Art 21

number of iterations with a probability equal to 1.

The algorithm follows in a similar way to the SDDP, with a forward pass and

the backward pass. In the forward pass, the policy learned so far is simulated to have a

sample of the most visited regions in the state space. In the backward pass, the algorithm

updates the estimates of future cost on the states shown in the previous step by adding

the Lagrangian cuts.

In optimization problems, lagrangian relaxation [41] is a method that approaches a

difficult problem by one simpler, but the solution of second is still valid for first. The idea

is to relax some of the restrictions by penalties, the lagrangian multipliers. The problem,

thus, can be easier to solve, but we no longer have the guarantees of optimality.

The Mixed Integer Dynamic Approximation Scheme (MIDAS) [89] also has an

approach similar to the SDDP. The idea is to approximate the future cost function as a

step function instead of using cuts. The state space is divided into a finite number of

regions and the local value of the function is approximated as a constant. There is still

the possible extension of using cuts in these regions rather than a constant.

This approach has the premise that the future cost function is monotonous, or

approximately monotonous, in the state variables. Each subproblem is formulated as

a mixed integer programming and solved up to optimality. These subproblems are dis-

cretizations of the actual future cost function, and become more accurate as the resolution

increases.

Stochastic Lipschitz Dynamic Programming (SLDP) [3] is another strategy that

follows the SDDP archetype. Instead of cutting plans, lagrangian cuts or step functions,

the authors propose the use of Lipschitz cuts, a kind of non-linear cuts. These cuts

iteratively sub-approximate the future cost function until convergence is obtained. The

studied Lipschitz cuts families are modeled as mixed integer programming so the class of

the original problem is not changed. There are two Lipschitz cuts families studied:

• Reverse-Norm Function: cuts based on the idea of penalizing the norm of the gra-

dient of the future cost function;

• Augmented Lagrangian Cuts: cuts obtained by the augmented norm of the la-

grangian duality, which involves adding a square penalty to the lagrangian function.

The dual problem obtained can be solved by optimization techniques with subgra-

dient.

2.2. Neural Networks for Optimization Problems 22

2.1.3 Time Dependency

In the SDDP algorithm there is the assumption that the uncertainty of different

stages are independent of each other. This limits the types of problems that can be solved.

Two approaches are used in literature, autoregressive processes and markovian modeling.

In an expedition experiment in the electric system of Brazil, the policy learned by the

first was dominated by the second [67].

If uncertainty comes from a autoregressive process, it is possible to incorporate

it into the original algorithm without modifications [87], provided that the observations

appear additively in the objective function and in the constraints. For this, it is enough

to consider the past observation as a state variable, and the uncertainty of the stage is

only the noise of the process.

Another approach, but that has no guarantee of convergence, is to model uncer-

tainty as a markovian process [88]. The probability of observing a value depends on the

state that the system is located, and that state evolves following a Markov chain. The

strategy is, for each stage, to learn a different collection of cuts for each state of the chain.

2.2 Neural Networks for Optimization Problems

There is an interest in incorporating recent advances in deep learning to solve

problems of optimization. Two main approaches have emerged so far: the use of neural

networks to estimate the optimal policies of problems of control; and the use of neural

networks with external solvers to obtain semantic representations of raw data. The ap-

proach of this work, which will be discussed in subsequent chapters, is in the intersection

of both, by using neural networks to estimate policies for problems of control, but with

the help of external solvers.

2.2.1 Deep Reinforcement Learning

Reinforcement Learning is the problem of an agent having to learn a behavior

through interactions, or observations of interactions, with a dynamic environment [55].

2.2. Neural Networks for Optimization Problems 23

There are two main classes of methods to deal with reinforcement learning:

• Actor: searching through the policy space to find the one that works best in the

environment (e.g., genetic algorithms and genetic programming);

• Critic: use statistical and dynamic programming techniques to estimate the useful-

ness of taking certain actions, and create a policy that maximizes that usefulness.

There are also algorithms in the intersection of these two classes, the Ator-Critic

models [60], in which the critic is a neural network used to estimate the utility function,

and this is used to modify the parameters of a second neural network, the actor.

It is common to reinforcement learning algorithms to work on Markov’s Decision

Processes (MDP) [11]. Similar to MSSO, MDPs provide a useful conceptual structure to

capture the behavior of an optimal policy. A MDP is defined by 4 objects:

• A set S of states, called the state space;

• A set A of actions, called the action space;

• A transition probability function Pa(s, s
′) = P(st+1 = s′|st = s, at = a) of an action

to transition the stae s to s′ on the next stage;

• A immediate reward function r = Ra(s, s
′) of the transition from state s to s′ by

action a.

In this context, a policy is a mapping from any state s ∈ S to actions a ∈ A.

In MDPs, the goal is then to find a policy that maximizes a cumulative function of the

rewards, typically the sum adjusted by a discount factor γ:

ρ = r0 + γr1 + γ2r2 + . . . =
∞∑
t=0

γtrt. (2.1)

In reinforcement learning, the probabilities are unknown and not modeled explic-

itly, but rather accessed through simulations of an environment.

Policy Gradient (PG) [104] is a technique to seek for a policy in reinforcement

learning. Instead of trying to approximate a utility function and use it to compute the

policy, PG seeks for a stochastic policy πθ directly using a function approximator with

its own parameters. For example, a neural network with the representations of states as

inputs and the probability of actions as outputs. Be θ the vector of parameters and ργ

the geometric sum of rewards, then the parameters are changed by:

∆θ ≈ α
∂ργ
∂θ

(2.2)

2.2. Neural Networks for Optimization Problems 24

where α > 0 is the step length. If an estimate of this gradient can be obtained,

it is likely that we have θ converging to a local optimum of the policy space. For this,

PG methods provide the ascending gradient algorithm ĝ estimates of the θ gradients,

commonly in the form:

ĝ = Et

[
∇θ log πθ(at|st)Ât

]
, (2.3)

in which Ât is an estimator of the advantage function (i.e., how good is an action

compared to the average) at time t. Here the expectation Et[. . .] is an empirical average

on a finite number of samples. This estimate is obtained by differentiating an objective

function of the way:

L(θ) = Et

[
log πθ(at|st)Ât

]
. (2.4)

Proximal Policy Optimization (PPO) [98] is a family of policy gradients methods

for reinforcement learning proposed by OpenAI, which alternates between sampling data

when interacting with the environment, and optimizing a target function using gradient

ascent. By its performance, PPO has become the state-of-the-art [109]. The difference

is given by the target function chosen.

Let θold be the parameter vector before an iteration, and let rt(θ) = πθ(at|st)
πθold

(at|st) .

Since rt(θold) = 1, we can measure the degree of change between updates. The objective

function is

L(θ) = Et

[
πθ(at|st)
πθold(at|st)

Ât

]
= Et

[
rt(θ)Ât

]
, (2.5)

which, if unconstrained, can lead to a too large update of the to-be-maximized

policy. The question is how to modify said function in order to avoid large diversion of

rt(θ) in relation to 1. The authors propose

LCLIP (θ) = Et

[
min{rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât}

]
, (2.6)

Where ϵ is a hyperparameter. We have that the first term is still the previous

objective function, and the second modifies the function by cutting the probability ratio,

which removes the incentive to move rt(θ) out of the [1 − ϵ, 1 + ϵ] interval. As we have

the minimum of the two terms, the result is a lower limit of the non-cutting goal.

With this objective function, we can describe PPO as the algorithm 1, in a Actor-

Critic style:

This algorithm reminds the one that will be proposed, in which we have a step of

policy simulation and a step of learning. But under the established reinforcement learning

perspective, our algorithm would only be a critic.

2.2. Neural Networks for Optimization Problems 25

Algorithm 1: Proximal Policy Optimization

for iteration= 1, 2, . . . do
for actor= 1, 2, . . . , N do

Execute the policy πold on the environment for T steps;

Compute the advantage estimates Â1, . . . , ÂT ;

end
Optimize the objective function LCLIP (θ) w.r.t. θ, with K epochs and
mini-batches of size < NT ;
θold ← θ;

end

2.2.2 Gradients of Optimizations

Instead of using the neural networks as solvers, as in the case of deep reinforcement

learning, there is a second approach in which the neural network is connected to an

external problem solver. The idea is that the solver acts as a layer of the network, in

which previous layers act on the input data and provide for the first a purely semantic

data. The difficulty is in how to approximate a gradient to the output of these solver.

Disciplined convex problems [45] are a subclass of convex optimization problems,

in which a set of conventions are imposed on the model in order for their solution process

to be automated. These problems are efficiently differentiable, which allows you to use

gradient descent to optimize policies on control problems [2].

For problems with linear objective functions, such as the problem of the minimum

path [30], the traveling salesman problem [36] and the perfect matching of minimum

cost problem [28], a gradient approximation was proposed by disturbing the optimization

entries and interpolating the results [90]. Thus, the authors were able to extract useful

intermediate representations for the optimizations, for example to find the minimum path

in digital gaming terrains by estimating the locomotion costs.

For optimization problems in combinatorics, we can define a distribution of a dis-

creet exponential family over the solution space, in which the optimal solution is the

estimator of maximum likelihood. This distribution is differentiable [79] in a way similar

to the proposed in [90], however the results have superior convergence in experiments.

There are also specific approaches, in which neural networks are used in particular

algorithms, such as A* [112]. One extension [5] is to combine the general [90] and spe-

cific [112] approaches to optimize at the same time the edges weights and the heuristic.

Experimental results showed improved performance over both separately.

The idea of these algorithms is therefore not to solve an arbitrary optimization

problem and more to transform the input data into a context in which optimization

2.2. Neural Networks for Optimization Problems 26

makes sense. This differs from the challenge to be dealt with in this work, but shows that

there is ways to combine the neural networks with the solvers. If these work seek to find

the gradients of the solvers, we will use the solvers as a target in supervised learning.

27

Chapter 3

Theoretical Foundations

In this chapter we have the definition of the SDDP algorithm, the basis of our modeling,

as well as the other theoretical contextualization necessary for the understanding of the

proposed methodologies.

3.1 Manifold Geometry

In this section we describe the main properties of manifolds necessary for our work.

A manifold is a space that locally resembles an euclidian space. A d-dimensional manifold

resembles locally Rd. By resembling it is understood that each point has a homeomorphic

neighborhood, that is, there is a map between the space and an open set in the vector

space that preserves the topological properties. The concept of manifold was first studied

in [92]

In this text we will only work with manifolds that meet S = {(x, f(x)), ∀x ∈ D}
in which f : D → R is a continuous function and D is its domain, and therefore the

use of the term will often refer only to that subset of varieties. Spheres for example are

manifolds but, for the purpose of this work, won’t be considered.

3.1.1 K-Convex Manifolds

Let f : Rn → R be any function. It is called convex iif it satisfies

∀ 0 ≤ t ≤ 1 e x1, x2 ∈ Rn : f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2). (3.1)

Intuitively the above condition says that any segment that unites two points in the

3.1. Manifold Geometry 28

image of f is in the image itself, or is “above” it. A consequence of the definition is that

any local minimum of a convex function is also a global minimum.

x

y

x

y

Figure 3.1: Graphic example of a convex and a non-convex function.

An example of an important convex function for our work is a set of cuts, in which

every cut is an affine function on its arguments and the image of the function is the

maximum of all cuts, f(x) = max{βix + αi : i = 1, ..., n}. An example is given in figure

3.1.1.

x

y

Figure 3.2: Graphical example of a set of cuts function.

The functions which don’t satisfy this definition are called non-convex. We will

also consider the subset of the non-convex function that are the grouping of a finite number

of convex functions. A function f is called k-convex if

• ∃ Fk = {g1, ..., gk}, gi is convex, such that f(x) = min{gi(x) : gi ∈ Fk};

• ∄ Fk−1 = {g1, ..., gk−1}, gi is convex, such that f(x) = min{gi(x) : gi ∈ Fk−1}.

We extend the convexity attribute (convex, non-convex, k-convex) of a function to

the associated manifold.

3.1. Manifold Geometry 29

3.1.2 Piecewise Linear Function

A piecewise linear function is a real function in which its graphical representation

is defined by affine segments (lines, planes, hyperplanes etc.), like figure 3.3. For a formal

definition, we’ll use the approach by [83].

Be Γ a convex closed domain in Rn. A function f : Γ → R is piecewise linear

if there is a finite family Q of closed domains such that Γ = ∪Q and f is affine in all

domains within Q. A unique affine function g(x) = a · x+ b in Rn that coincides with f

in a given Q ∈ Q is called a component of f .

Figure 3.3: 2D piecewise linear function (top) and its domains Q ∈ Q in which it is affine
(bottom).

In [83] we have the proof for the following theorem. (a) Let f be a piecewise linear

function in Γ and {g1, ..., gn} its set of unique components. There exists a family {Sj}j∈J
of non-empty subsets {1, ..., n} such that

f(x) = min
j∈J

max
i∈j

gi(x). (3.2)

b Reciprocally, for any family of distinct affine functions {g1, ..., gn}, the above

equation define a piecewise linear function.

In this work, we will not explicitly model piecisewise linear functions in a closed

domain. However, for all the problems discussed it will be possible to limit the set of

solutions to a closed convex domain large enough.

3.1. Manifold Geometry 30

In particular for this work, we will study the convex and k-convex piecewise linear

functions. If we consider that J has only one set, set j, the equation 3.2 becomes the

maximum of affines functions. By the definition of convex function given by the equation

3.1 it is possible to observe two properties:

(a) Affine functions are convex;

(a) The maximum of two convex functions is also a convex function.

Thus, a set j, which we will call a set of cuts, defines a convex piecewise linear

function. It is easy to optimize such functions by modelling it as a linear program

min
x∈Rn

θ (3.3)

θ ≥ ai · x+ bi i ∈ j

By the uniqueness of the functions g and as ∅ /∈ J , we know that if |J | = k > 1

then the function f corresponds to a k-convex piecewise linear function, with k distinct

sets of cuts. As f is a non-convex function, it is not possible to minimize it as a linear

program, being necessary the use of integer variables.

min
x∈Rn

ω (3.4)

θj ≥ ai · x+ bi i ∈ Sj, 1 ≤ j ≤ k

ω ≤ θj 1 ≤ j ≤ k

ω ≥ θj −M · (1− yj) 1 ≤ j ≤ k

k∑
j=1

yj = 1

y ∈ {0, 1}k

where M is a sufficiently large number. Note that k integer variables are necessary

for such approach. The difficulty to solve it grows with the number of sets of cuts.

Neural networks with ReLU activation function are also non-conve piecewise linear

functions, as will be seen in the section 3.1.4. In its optics however, we don’t have the

list of all the affine regions it model, being not possible to use the same modeling 3.4. A

new approach is required.

3.1. Manifold Geometry 31

3.1.3 k-Convex Piecewise Linear Function Fitting

The optimization of a k-convex piecewise linear function fitting through gradient

descent will be given in the same way of [27]. In this work, the authors are interested

in obtaining the decomposition of 3 dimensional structures in k convex hulls. Note that

the difference between convex hulls and convex functions is the use or not of the signal

function.

Be Hh(x) = ah ·x+ bh the cut h of a set of cuts. Given a sufficiently large number

H of cuts, any convex function can be approximated by taking the maximum of the cuts.

To facilitate learning, instead of the maximum, we will use a soft maximum function,

LogSumExp, and the estimated function is defined as:

Φ(x) = log
H∑

h=1

exp (σHh(x)), (3.5)

In which the parameter σ controls the smoothness of the convex function learnt.

Thus, it is easy to add this convex approximation as an output layer of a neural network.

As seen in equation 3.2, with k convex approximations like this we can have a k-convex

approximation if we take the minimum of all of them.

3.1.4 ReLU Neural Network as a Piecewise Linear Function

In this section, we’ll discuss how neural networks with ReLU activation function

are piecewise linear functions. The number of linear regions grows exponentially in the

number of layers of the network, but their minimization requires only a number of integer

variables equal to the number of neurons of the network. However, empirically, in the

chapter 7, we see that the depth of the network affects the search time of the minimization.

If it is a ReLU network, i.e., a sequence of compositions of affine functions and

ReLU activations, to show that the network is also a piecewise linear function, it is enough

to show that:

(a) A affine combination of piecewise linear functions is also a piecewise linear function;

(b) The composition of ReLU with a piecewise linear function is also a piecewise linear

function.

3.1. Manifold Geometry 32

With the definition a piec3ewise linear function in equation 3.2, it is easy to prove

the first property:

n∑
k=1

λkfk(x) =
n∑

k=1

λk min
j∈Jk

max
i∈j

gi(x) (3.6)

=
n∑

k=1

min
j∈Jk

max
i∈j

λkgi(x)

= min
j1∈J1,...,jk∈Jk

n∑
k=1

max
i∈jk

λkgi(x)

= min
j1∈J1,...,jk∈Jk

max
i1∈j1,...,ik∈jk

n∑
k=1

λkgik(x)

= min
j1∈J ′

max
i∈j

g′i(x)

The second property is also self-evident. Let us define g0(x) = 0. Then:

ReLU(f(x)) = max{0,min
j∈Jk

max
i∈j

gi(x)} (3.7)

= min
j∈Jk

max
i∈j∪{0}

gi(x)

Thus, neural networks with ReLU activation functions are piecewise linear func-

tions.

As we know, the response of a neuron (affine function on the inputs and ReLU

activation) is a function Rn → R piecewise linear. Thus, when we compose a new piecewise

linear function in that output, i.e. a new layer of the network, we create new linear regions

that take advantage of the geometry of the previous ones. An analogy used by [74] is that

of thinking in the linear regions as foldings, such as those of paper, in the space of the

input data. Thus the composition of layers in the network would represent a sequence of

foldings, as illustrated in 3.4.

Figure 3.4: Non-trivial space folding, in 2D. The folding can potentially identify hidden
symmetries. Figure by [74].

A major corolary of [74] is described below. A neural network with ReLU ac-

tivation function with n0 input neurons and L layers with width n ≥ n0 can compute

3.2. Stochastic Dual Dynamic Programming 33

functions with Ω
(
(n/n0)

(L−1)n0nn0

)
linear regions. Thus, the number of linear regions

grows exponentially in the number of layers L and in a polynomial way in the number of

neurons per layer n. In addition, the corolary can be described according to the number

of parameters, revealing a similar result, the parameters are exponentially more efficient

than a shallow network. Note that a shallow neural network with Ln neurons is the

equivalent to a Ω(Ln)-convex manifold. So, as we will see in the modeling below, the

number of binary variables, a heuristic for the difficulty of solving an integer program, is

exponentially more efficient since it scales with the number of neurons.

In much of this work, neural networks have been used as functions estimators of

the type f : Rn → R, non-analytical, associated with the cost of a decision. In order

to find the lowest cost decision, it is necessary to minimize these estimators. Multi-layer

perceptron neural networks with activations of the type Reduced Linear Unit (ReLU) [38]

can be represented as integer programming problems and thus easily incorporated into

the solvers of this class of problem. Be W(l) and b(l) the weights and biases of the layer

l, the problem of minimizing a given network of said type is:

min
x∈Rn

h(L) (3.8)

a(0) = x,

a(l) = W(l)a(l−1) + b(l) 1 ≤ l ≤ L,

h(l) ≥ a(l) 1 ≤ l ≤ L,

h(l) ≤M (l) · y(l) 1 ≤ l < L,

h(l) ≤ a(l) +M (l) · (1− y(l)) 1 ≤ l < L,

h(l) ≥ 0 1 ≤ l ≤ L,

a(l),h(l) ∈ Rn(l)

1 ≤ l ≤ L,

y(l),∈ {0, 1}n(l)

1 ≤ l ≤ L,

in which M (l) is a sufficiently large number for layer l.

3.2 Stochastic Dual Dynamic Programming

Stochastic Dual Dynamic Programming (SDDP) is an algorithm for solving multi-

stage Stochastic optimization problems. By multi-stage it is understood as problems in

which an agent takes a sequence of decisions over time. By Stochastic, it is understood

3.2. Stochastic Dual Dynamic Programming 34

that the agent is making decisions under the presence of uncertainty that is gradually

revealed over the stages.

3.2.1 Algorithm’s Assumptions

For the modeling of systems under the SDDP structure, three types of variables

are used:

• State Variables: variables that track a system property over time (e.g., reservoir

volumes, number of items in an inventory, spatial position of a vehicle etc.). We’ll

use the x notation to describe them.

• Control Variables: the actions taken at each stage that modify the state variables

(e.g., water outflow from the reservoirs, buying stock, vehicle acceleration etc.).

We’ll use the u notation to describe them.

• Random Variables: external random variables observed at the beginning of a

stage, before the control. (e.g., rain inflow, item defects, steering errors etc.). We’ll

use the ω notation to describe them and its sample space at stage i as Ωi.

At each stage, all three variables, x, u e ω, relate to each other by a transition

function which maps the previous state, the controls and the random variables to a new

state such that x′ = Ti(x, u, ω). This transition has a cost Ci(x, u, ω), called stage ob-

jective. The agent chooses its actions following a policy u = πi(x, ω), which must satisfy

some constraints u ∈ Ui(x, u, ω).

The problem space that can be modeled under this structure is too large for an

algorithm to find solutions in a treatable way for all. SDDP, thus, has some assumptions:

1. Finite number of stages;

2. Finite and discrete random variables;

3. For a fixed ω, Ci is a convex function, Ti is linear and Ui is a closed set.

3.2. Stochastic Dual Dynamic Programming 35

3.2.2 Recursion and Subproblems

The next step is to compute the policy. A method is to use the Bellman principle

of optimality [10], the dynamic programming, and define the recurrent subproblem as:

Vi(x, ω) = min
x̄,x′,u

Ci(x̄, x
′, u) + Ej∈i+,ϕ∈Ωj

[Vj(x
′, ϕ)] (3.9)

x′ = Ti(x̄, u, ω)

u ∈ Ui(x̄, ω)

x̄ = x.

These problems are difficult to solve accurately, as they involve recurrent optimiza-

tion problems with many nested expectations. Instead of solving them accurately, SDDP

iteratively approaches the expectations of each subproblem with a future cost function.

Thus, we can think of the problem as a sequence of subproblems and for now abstract

these expectations.

3.2.3 Kelley’s Cutting Plane Algorithm

Kelley’s cutting plane algorithm is an iterative method for convex function mini-

mization. Given a convex function f(x), the algorithm builds lower approximations to the

function at its minimum f through a set of first-order Taylor expansions over the points

x1, ..., xK , called cuts:

f (K) = min
θ∈R,x∈RN

θ (3.10)

θ ≥ f(xk) +
d

dx
f(xk)

⊤(x− xk), k = 1, . . . , K

θ ≥M,

in which M is an inferior bound for the value of f(x) for all x in the domain.

By convexity, f (K) ≤ f(x) for all x. If x∗ is the point which minimizes the function,

then we have that f (K) ≤ f(x∗) ≤ min
k=1,...,K

f(xk). If that difference is small enough, we

can conclude our search e declare that we’ve found a solution close to the optimum.

the algorithm is structured in such a way that lim
K→∞

f (K) = min
x∈RN

f(x).

3.2. Stochastic Dual Dynamic Programming 36

Algorithm 2: Kelley’s Cutting Plane

Data: f(x) convex, Kmax > 0, ϵ > 0
Result: Approximation for the minimum f
ls←∞;
li← −∞;
K ← 0;

Initialize f (K);
while K ≤ Kmax e |ls− li| ≥ ϵ do

Solve f (K) and obtain a candidate solution xK+1;
ls← min{ls, f(xK+1)};
li← f (K);

Add cut θ ≥ f(xK+1) +
d
dx
f(xK+1)

⊤(x− xK+1) to create f (K+1);
K ← K + 1;

end

3.2.4 Future Cost Function Approximation

Note that in the subproblem formulation, if we exclude the expectations of future

stages costs, we have a convex program. As x appears only in the constraint x̄ = x,

Vi(x, ·) is convex in x to a fixed ω. In addition, this constraint is important because its

reduced cost, or opportunity cost, is the subgradient of Vi with respect to x. Thus, we

can use Kelley’s cutting plane algorithm to minimize the functions of Vi in a treatable

way:

Vi(x, ω) = min
x̄,x′,u

Ci(x̄, x
′, u) + θ (3.11)

x′ = Ti(x̄, u, ω)

u ∈ Ui(x̄, ω)

x̄ = x

θ ≥ Ej∈i+,ϕ∈Ωj

[
V k
j (x

′
k, ϕ) +

d

dx
V k
j (x

′
k, ϕ)

⊤(x′ − x′
k)

]
, k = 1, . . . , K

θ ≥M.

What is missing is a method to generate these cuts iteratively, and for this we

need candidate solutions x′
k. One possibility is to generate viable candidates uniformly

at random. The problem is that these samples may not represent situations of the state

variables that occur in practice. A better way to generate these candidates is by simulating

the policy. The SDDP does this in two stages:

• Forward pass: we simulate the policy stage by stage, from the beginning to the end.

3.3. Surface Curvature 37

At each stage, a realization of the random variable is observed and the approximate

subproblem is solved to generate a candidate for the next stage.

• Backward pass: To add the new cuts, visit the stages in inverse order, so that by

refining a stage, we will already have refined its successor.

Thus, SDDP works in a similar way to what happens in the deep learning area’s

backpropagation algorithm: the forward pass pushes primal information along the stages

(state variables), and the backward pass brings the dual information (cuts) back to the

stages to improve the decisions for the next iteration.

3.3 Surface Curvature

This section presents the basic concepts on the surface (two dimensional manifolds)

curvature theory, as well as the methods used to estimate computationally. Especial

attention will be given to the attributes derived from the principal curvatures.

3.3.1 Curvature Primer

Much of the study on surface curvature was given by Gauss’ work in studying the

total curvature of a point (which today is called Gaussian Curvature) according to the

maximum and minimum curvature [39]. These concepts are important for the proposed

study of the future cost functions of the dynamic programming algorithms and therefore

will be elucidated below. The notation and intuition of these will be given differently

from the original version of Gauss, in order to facilitate understanding.

Let’s begin with the curvature of differentiable curves in a euclidean space. The

osculating circle of one point in the curve, the kiss circle in Latin [63], is the limit of the

circles defined by three points in the curve that approach the original point. The figure

3.5 shows how the oscillating circle is what separates the circles on one side and on the

other of the curve, at a given point. We will define the curvature of one point in the curve

as the inverse of the radius of the osculating circle.

The curvature can also be expressed in terms of the first and second derivatives

[46]. Let γ be a parametric curve in a Rn space, its curvature is given by:

3.3. Surface Curvature 38

Figure 3.5: The osculating circle in P (of radius r) separates two types of circles tangent
to the curve P (bold): those who are on one side of the curve from those who are on the
other. Figure by [52].

κ =

√
∥γ′∥2∥γ′′∥2 − (γ′ · γ′′)2

∥γ′∥3
. (3.12)

Let us now consider differentiable surfaces. For each point on the surface we have a

normal vector. A normal hyperplane will be the one that contains the normal vector. Its

intersection with the surface will define a curve, in which we can calculate the curvature as

we saw above. Note that as we have infinite normal hyperplanes, each in one direction, we

can possibly have infinite different values of curvature to a point. This set of curvatures

is called normal curvatures. The principal curvatures, κ1 and κ2, are those of greater

and smaller absolute curvature value among the normal curvatures. The concept of total

curvature proposed by Gauss, which will be called gaussian curvature, is defined as the

product κ1 · κ2. The mean of both principal curvatures will be called mean curvature.

In surfaces, the principal curvatures define local behavior, described in table 3.1

below:

κ1

< 0 = 0 > 0

κ2

< 0 Concave Ellipsoid Concave Cylinder Hyperboloid Surface
= 0 concave Cylinder Plane Convex Cylinder
> 0 Hyperboloid Surface Convex Cylinder Convex Ellipsoid

Table 3.1: Local behavior of surfaces by its principal curvatures.

Thus, to know the principal curvatures allows us to understand the local behavior

around a point.

3.3. Surface Curvature 39

3.3.2 Numerical Computation of Curvature

There are mny ways to compute the curvatures of surfaces sampled in grids [103,

37]. We will use the method described in [93], where is performed a quadratic approxi-

mation of a point by its neighbors in the grid. Considering only a 3 × 3 neighborhood,

like in 3.6, this approximation is reduced to simple analytical equations:

Figure 3.6: Example of a 3 × 3 grid centered at Z5. This is the neighborhood used to
compute the curvatures. Figure by [93].

z = ax2 + by2 + cxy + dx+ ey + f (3.13)

a =
1

2

∂2z

∂x2
=

Z1 + Z3 + Z4 + Z6 + Z7 + Z9

12∆x2
− Z2 + Z5 + Z8

6∆x2
(3.14)

b =
1

2

∂2z

∂y2
=

Z1 + Z2 + Z3 + Z7 + Z8 + Z9

12∆x2
− Z4 + Z5 + Z6

6∆x2
(3.15)

c =
∂2z

∂x∂y
=

Z3 + Z7 − Z1 − Z9

4∆x2
(3.16)

d =
∂z

∂x
=

Z3 + Z6 + Z9 − Z1 − Z4 − Z7

6∆x
(3.17)

e =
∂z

∂y
=

Z1 + Z2 + Z3 − Z7 − Z8 − Z9

6∆x
(3.18)

f =
2(Z2 + Z4 + Z6 + Z8)− (Z1 + Z3 + Z7 + Z9) + 5Z5

9
. (3.19)

With these constants, it is easy to compute the gaussian and mean curvatures on

the quadratic approximation:

3.3. Surface Curvature 40

κg =
4ab− c2

(1 + d2 + e2)2
, (3.20)

κm =
a(1 + e2)− cde+ b(1 + d2)

(1 + d2 + e2)3/2
, (3.21)

and then solving a system of equations to obtain the principal curvatures.

3.3.3 Curvature Attributes

As we have seen, the principal curvatures describe the local behavior of a surface. In

the study of seismic data, geologists defined new curvature-based attributes that describe

or identify other local properties [93]. This research process is done by specialists with

a visual analysis. In this work, we will use the attributes for an automatic detection of

anomaly points. Below we have a brief description and the formulation, based on the

quadratic constants, of a selection of attributes:

• First Derivative Attributes: dip angle and azimuth angle are mainly used for

border detection and drastic changes of values;

Dip Angle = tan−1
(√

d2 + e2
)

(3.22)

Azimuth Angle = tan−1
(e
d

)
(3.23)

• Most Positive and Most Negative Curvatures: similar to the principal curva-

tures, but it considers the sign, which removes local shape information but accen-

tuate drastic changes;

κ+ = (a+ b) +
√

(a− b)2 + c2 (3.24)

κ− = (a+ b)−
√

(a− b)2 + c2 (3.25)

• Dip Curvature: curvature at the direction of largest slope, exaggerate local relief

[75];

κd =
2(ad2 + cde+ be2)

(d2 + e2)(1 + d2 + e2)3/2
(3.26)

3.3. Surface Curvature 41

• Strike Curvature: curvature at the perpendicular direction of the largest slope,

describes the morphology perpendicular to the slope [75];

κs =
2(ae2 − cde+ bd2)

(d2 + e2)(1 + d2 + e2)1/2
(3.27)

• Contour Curvature: similar to strike curvature, but its magnitude is less well

behaved, represents the curvature of the contour which passes through that point

[75]

κc =
2(ae2 − cde+ bd2)

(1 + d2 + e2)3/2
(3.28)

• Shape Index: combines the information of the principal curvatures in a single

index to identify local behavior [59], like the table 3.1, see figure 3.7;

Si =
2

π
tan−1

(
κ2 + κ1

κ1 − κ2

)
(3.29)

• Curvedness: describes the magnitude of the curvature, with no attention for local

shape [59].

κn =

√
κ2
1 + κ2

2

2
(3.30)

Figure 3.7: Shape index illustration for nine different surface categories, all with the same
curvedness. Figure by [59].

3.3. Surface Curvature 42

3.3.4 Manifold Learning

The idea of using data not as isolated points but as belonging to a manifold has

multiple applications in the machine learning area [51, 4]. In particular, we will be

interested in the manifold learning area for dimensionality reduction [19] in order to

estimate the curvature.

Intuitively, the learning of manifolds is interested in finding representations of

points in a n-dimensional manifold in a new n0-dimensional manifold, where n0 < n,

preserving some property of the original, such as the distance between points or neigh-

borhood. The first strategies usually were in two stages: estimate the distances; use

multidimensional, metric scaling [106, 44] or not [61, 62], to obtain a new representation.

Consider a continuous function r : [0, 1] → Rn, such that r(0) = a and r(1) = b,

and a manifold associated to function f with domain Rn. the function (f ◦ r)(t) defines
a trajectory over the manifold in study and its length L is:

L =

∫ 1

0

∥∥∥∥d(f ◦ r)(t)dt

∥∥∥∥ dt. (3.31)

the composition (f ◦ r)(t) such that r(0) = a e r(1) = b which minimizes the

length L is called the geodesic between points a and b on the manifold of f .

To find analytical solutions for the geodesics of arbitrary functions is not a simple

problem. A common strategy is to estimate numerically with the use a piecewise linear

trajectory with a finite number of segments. The coordinates of the points of the segments

can be optimized through algorithms such as Newton-Raphson or Gradient Descendent

[8]. The figure 3.8 exemplifies this method. However, these methods are expensive and

impracticable when you want to estimate the geodesics for each pair of a cloud of points

over the manifold, since they require multiple iterations to converge [8].

Figure 3.8: Example of a numerical estimate of a geodesic. In red we have the naive
straight line between the points and in yellow is the optimized trajectory. (Left) Diagonal
perspective. (Center) Top perspective. (Right) Side-view perspective.

3.3. Surface Curvature 43

Thus, it is necessary a new approach to estimate these geodesics. The first al-

gorithm to do this was Isomap [105]. Its idea, illustrated in the figure 3.9 below, is to

estimate the geodesics through the minimum distance in a graph of the nearest k neigh-

bors.

Figure 3.9: (A) Euclidean distance between two points do not represent the real distance
on the implicit lower dimensional manifold. (B) Construct a graph with the k nearest
neighbors for each point. With said graph is possible to estimate the real geodesic. (C)
Two dimensional representation which best preserves the shortest distances on the graph.
Figure by [105].

The representation that best preserves the geodesics does not necessarily preserve

other properties of the manifolds, especially the similarity in a neighborhood. In the

previous image itself we can observe that Isomap creates regions, holes, which force the

representation to have minimal distances similar to the original but that violate the genus

of the original manifold. As our proposed curvature analysis has a step of interpolation,

interpolating these regions may not have any sense.

The Locally Linear Embedding [94] has a different approach that eliminates the

need to estimate the geodesics of very distant pair of points. The algorithm is based on

simple geometric intuitions. If the manifold is sufficiently sampled, the neighborhood of

a point is close to a locally linear region. We can find the matrix W of linear coefficients

that minimizes the reconstruction error of a point by its neighbors:

ε(W) =
∑
i

∣∣∣Xi −
∑
j

WijXj

∣∣∣2, (3.32)

in which Wij = 0 if Xj is not in the neighborhood of Xi and
∑

j Wij = 1. As in

Isomap, we will define the neighborhood as the k closest points. The optimal weights W

can be found with the minimum squares method. The reconstruction errors are invariant

to rotations, rescaling, and translation of a point and its neighborhood. By this symmetry,

it follows that the reconstruction weights characterize the intrinsic geometric properties

of each neighborhood, and therefore will be the algorithm used in our analyses.

To obtain the manifold representation in a smaller dimension, one need only to

obtain the coordinates Y in this new dimension which minimize

3.3. Surface Curvature 44

Φ(Y) =
∑
i

∣∣∣Yi −
∑
j

WijYj

∣∣∣2. (3.33)

Subject to the constraints that make the problem well behaved, the reconstruction

error can be minimized by solving a sparse eigenvalue problem in the size of the number

of samples.

3.3.5 Alpha-Shape Algorithm

To calculate how the gradient of the manifold learning coordinates behaves, it is

necessary that we interpolate the values for a whole likely region, not explicitly defined.

A possible approach is to use the convex hull [14] but a large region can represent impos-

sible coordinates in the original domain, it is necessary a region that contains the points

obtained but that is tighter. Thus, the algorithm α-Shape [35] was used.

While convex hull is the smallest convex polygon that contains all the points of a

set, we now have the notion of α-shape, defined as follows:

(a) A point p in a set S is α-extreme if exists a closed disk with radius 1/α which contain

all points of S and p is in its border;

(b) Two points p and q in S are α-neighbors if there exist a closed disk of radius 1/α

which contain all points of S and p and q are on its border;

(c) The α-shape is defined as the graph of straight lines in which the vertices are α-

extremes and the edges connect two α-neighbors.

We can still extend the disk definition, in which a negative radius disk is the

complement of a disk with a radius equal to its absolute value. Thus, a α-hull may be

non-convex and possess holes.

3.3.6 Mean Value Coordinates

For better analysis of the results we will see in the section 6.2 on the curvature of

the future cost function, it will be beneficial to map an irregular polygon with an arbitrary

number of k of vertices into a regular polygon.

3.4. Shapley Additive Explanations (SHAP) 45

The Mean Value Coordinates are a generalization of the baricentric coordinates

for polygons with more than 3 vertices using a planar triangulation expressed as a convex

combination of the neighboring vertices. Unlike the triangle case, polygons with more

than 3 vertices have infinite possible coordinate systems that satisfy

k∑
i=1

λivi = u, (3.34)

k∑
i=1

λi = 1, (3.35)

in which u is a point inside the polygon, vi are the vertices and λi are its coordinates.

The advantage of this method over others is its low cost and the fact that it is a smooth

parametrization in the vertices. So, we will not have discontinuities and the analysis can

be done in the new polygon.

Be 0 < αi < π the angle in u on the triangle (u, vi−1, vi), defined in a cyclic way.

Its coordinates are given by

λi =
wi

k∑
j=1

wj

, wi =
tan(αi−1/2) + tan(αi/2)

∥vi − u∥
. (3.36)

3.4 Shapley Additive Explanations (SHAP)

When working with machine learning models, not always are clear the reasons that

led them to return one output in relation to the other. In order to verify whether the

models actually learn what they were proposed to investigate on a system, and not only

spurious patterns, it is important to understand the reasons. There are models, such

as decision trees, which naturally explain their reasons, but in those more complex and

opaques, such as the neural models, this is not trivial. Thus began the search for the

explainability and interpretability of models.

this distinction is not always explict, but [95] defines them as:

• Interpretability: development of inherently interpretable models;

• Explainability: attempt of explaining “black box” models in a post hoc way.

Neural networks are generally “black box” models of little interpretability. In this

sense, the explainability techniques make more meaning, even if there are interpretable

3.4. Shapley Additive Explanations (SHAP) 46

neural models [114, 108]. A widely used explainability technique for neural networks is

Shapley’s Additive Explanations (SHAP) [68].

SHAP combines two previous approaches, LIME [91] and Shapley regression values

[65]. A brief introduction of these will follow.

3.4.1 Local Interpretable Model Agnostic Explanations

(LIME)

The Local Interpretable Model Agnostic Explanations (LIME) seek to explain the

predictions of any classifier or regressor in a fair way by approximating it locally with

an interpretable model. Here we have explanations of single predictions and not of the

model’s behavior as a whole.

For a given instance, disturbances are sampled in its neighborhood and its predic-

tions are evaluated. An interpretable model, such as a sparse linear model, using Lasso

or Ridge, is trained on that set of disturbed samples and its predictions. From the in-

terpretation of this local model, we can get the local behavior of our original model. It

reminds the argument used with LLE in the manifold learning problem.

Figure 3.10: Synthetic intuitive example for LIME. Figure by [91].

Consider a decision function f unknown by LIME, represented by the blue and

pink regions in the figure 3.10, which is not well modeled as a linear function. In the

image, the bold red cross represents the point to be explained. LIME samples points in

the domain of f and defines weights accordingly to the proximity to the point of study.

Explanations are a linear function that explains local behavior faithfully but not globally.

3.4. Shapley Additive Explanations (SHAP) 47

The strategy to understand a model becomes how to obtain representative in-

stances of the entire domain of application, since we can study the local explanations of

each one.

3.4.2 Shapley Regression Values

In [65], we have a sensitivity analysis method to study the importance of a model

input. Here we want to consider the interactions and redundancies between the different

entries of an instance. The method considers the effect of each feature in combination

with the others by disturbing all subset of features and observing how this affects the

model prediction.

The method first trains a model on a set of data. Then for each instance, the

method disturbs all the input subset and calculates the individual contribution of each:

ϕi(x) =
∑

Q⊆S\{i}

|Q|!(|S| − |Q| − 1)!

|S|!
(∆Q∪{i}(x)−∆Q(x)), (3.37)

in which S = {1, 2, ..., n} is the input set, ∆Q(x) = fQ(x) − f{}(x) is the gain of

set Q and fQ(x) = E[f |Xi = xi,∀i ∈ Q] is the expected value of the model when only

using the inputs in Q.

Since equation 3.37 has an exponential cost to be computed, the rest of the article

is dedicated to justifying the approximate method to compute the contribution of each

feature.

The Shapley values satisfy:

(a) Local Accuracy: the explanations must be representative of a small region in the

surroundings of the instance;

(b) Absence: features with irrelevant contributions shouldn’t affect the explanations;

(c) Consistency: the explanations must be coherent between different models.

3.4.3 Shapley Additive Explanations

Shapley Additive Explanations (SHAP) [68] are a method that combines the advan-

tages of LIME and Shapley values to get a more faithful interpretation of the predictions

3.4. Shapley Additive Explanations (SHAP) 48

of a model. As discussed, LIME uses a linear explanation to approach a function f in a

small region in the instance sorroudings; and Shapley values are additive attributes that

satisfy local accuracy, absence and consistency. This means that they attribute a value

of importance to each feature individually for their contribution to the prediction.

SHAP uses Shapley values as instance weights in the linear regression of LIME.

Thus, non-linear interactions between features are considered. The authors go beyond

and present theoretical guarantees in accuracy and consistency.

49

Chapter 4

Modelling

In this chapter we have the mathematical definitions for the Control Problem in One

Dimension, the Hidrothermal Dispatch Problem and the Optimal Power Flow problem.

4.1 Control Problem in One Dimension

The Control Problem in One Dimension is a pretty simple problem, which makes

it possible to get the actual future cost functions. It is defined by:

min
x∈U

E

[
T∑
t=1

βt−1|xt|

]
(4.1)

xt = xt−1 + ct + ξt

ct ∈ {±1}.

The state xt, the control variable ct and the uncertainty ξt are one-dimensional.

The goal is to minimize the expectation of the distance between xt and the origin, subject

to the decay factor of β throughout the T planning period. In this work, it was used

T = 8, β = 0.9, x0 = 2, and the uncertainty of ξt was symmetrically sampled around zero,

as in [3]. As a simple problem, we can pay the exponential cost and calculate the actual

future cost functions for a small sample.

4.2 Hidrothermal Dispatch Problem

The objective of the Hidrothermal Dispatch Problem is to determine a operation

strategy, for each stage, given the current state of the environment, for how much each

4.2. Hidrothermal Dispatch Problem 50

plant (thermal or hydrothermal) should generate of energy. This strategy should minimize

the average operating cost, which consists in the cost of the thermal fuel and for a penalty

in case the demand is not supplied. The availability of limited amounts of hydrothermal

energy, in the form of reserve water, makes the problem quite complex. If the reservoirs

are exhausted and small rainwater flows occur, it may be necessary to use very expensive

thermal to meet the demand. On the other hand, if the reservoirs remain at high levels

and intense inflows occur, we may have spilled water, i.e. wasted energy.

4.2.1 Conventional Formulation

In this formulation of the problem, the state variables x represent the water volume

of the reservoirs; the decision variables u are how much to turbine q and spill s from each

reservoirs, how much to generate from each thermal plant g, and how much d of energy

deficit we will have in the system; and the random variables ω are the rain inflow of each

reservoirs.

Be p the cost associated with the penalty of energy deficit and c the costs for the

fuel of the thermal power plants, the cost Ci of the subproblem for stage i is simply

Ci(x, u, ω) = p · d+
∑
j∈T

cj · gj, (4.2)

constrained by

d+
∑
k∈H

ek · qk +
∑
j∈T

gj = li, (4.3)

gj ≤ ḡj ∀j ∈ T , (4.4)

qk ≤ q̄k ∀k ∈ H, (4.5)

in which T is the set of thermal plants, H is the one of hydro plants, e is the

exchange factor of water to energy, l is the demand, ḡ is the maximum thermal generation

and q̄ is the maximum turbinated outflow of the reservoir.

LetM(i) be the set of hydroelectric plants above i, the transition function Ti(x, u, ω)

is given by:

x′
j = Ti(xj, uj, ωj) = xj − qj − sj + ωj +

∑
k∈M(j)

qk + sk ∀j ∈ H, (4.6)

4.3. Optimal Power Flow 51

in which the variable x′ is limited by:

x′
j ≤ x̄j ∀j ∈ H. (4.7)

4.2.2 Extensions

The problem described above and the target of our work can be extended to better

represent a real scenario, without the need to add non-linear constraints or costs. For

example, in many locations the water of the reservoirs plays other functions for society,

such as fish production and tourism, and therefore may have a minimum required volume.

In a more complex way, the Brazilian electric system is divided into four subsys-

tems. Each of them has a demand and its own plants and reservoirs, but it is allowed to

transfer part of the energy from one subsystem to another in order to meet the different

demands. Here the subsystems have to act together and are not completely independent.

There is also the possibility of adding a water conversion to nonlinear energy,

with a piecewise linear approximation [99]. The idea is that the exchange factor in real

reservoirs depends on its water levels and is not constant.

4.3 Optimal Power Flow

In the problem of hydrothermal dispatch it is assumed that the energy generated

by any power plant is easily accessible to all users of the electric grid. The reality is

very different. The grid is highly complex and has various constraints regarding the

distribution of the energy generated at a given point. The problem of the optimal power

flow [17], differently, relates to the distribution of the energy generated, in which the

plants that generate and the customers that demand are in a graph. If in the dispatch

we abstracted the distribution, here we abstract the specific notions of the generation,

such as the reservoirs of the hydroelectric plants. For a real application, it is of interest

to optimize the problem that unites the previous two.

Given an electric grid (with physical restrictions), a set of generators and a set of

consumers, we want to minimize the generation of energy needed to satisfy the demand of

consumers. What makes the multi-stage problem is the incorporation of energy storage

systems. In its traditional formulation, it is a subproblem of non-convex optimization

4.3. Optimal Power Flow 52

with both quadratic constraints and stage objectives.

4.3.1 Constants

When dealing with physical artefacts related to electric circuits, it is only natural

to use complex numbers. We will use j to denote the square root of −1; for a complex

variable z, Re(z) and Im(z) denote the real and imaginary part of z; |z| is the magnitude

and z∗ denote the conjugate. For a square matrix A, Tr(A) denote the trace, i.e. the sum

of the values of the diagonal.

Consider the graphG = (N , E) for the electric network, in which the vertices i ∈
N , j ∈ N represent buses and the edges E are branches that connect a pair (i, j) of buses.

NG ⊆ N is the set of buses with access to generators. Set L has edges in E but in both

directions, i.e. (i, j) ∈ E =⇒ (i, j), (j, i) ∈ L. For a node i, k ∼ i denotes that node k is

connected to i.

Transmission lines lose power due to resistance (rij), which measures the opposition

to current flow. For AC circuits, there is the reactance effect (Xij), which stores and

releases power to the circuit in a delayed way. The two quantities can be quantified in

one, the impedance: zij = rij + jxij. It will be of our interest its inverse, the admittance,

which in turn can be decomposed into two values, the conductance and the susceptance,

yij = 1/zij = gij + jbij. If i ̸∼ j, then we define yij = 0.

The admittance matrix, which relates the current injection and bus power, is de-

fined as

Ybus =


−yij, i ̸= j

yii +
∑
k∼i

yik i = j
, (4.8)

where yii is the admittance to ground at bus i. let ζi be a vector of length |N |
with 1 on the i-th entry and zero otherwise:

4.3. Optimal Power Flow 53

Ybus,i := ζiζ
T
i Ybus (4.9)

Ybus,ij := yijζiζ
T
i − yijζiζ

T
j (4.10)

Yi :=
1

2

[
Re(Ybus,i + Y T

bus,i) Im(Y T
bus,i − Ybus,i)

Im(Y T
bus,i − Ybus,i) Re(Ybus,i + Y T

bus,i)

]
(4.11)

Ȳi := −
1

2

[
Im(Ybus,i + Y T

bus,i) Re(Ybus,i − Y T
bus,i)

Re(Ybus,i − Y T
bus,i) Im(Ybus,i + Y T

bus,i)

]
(4.12)

Yij :=
1

2

[
Re(Ybus,ij + Y T

bus,ij) Im(Y T
bus,ij − Ybus,ij)

Im(Y T
bus,ij − Ybus,ij) Re(Ybus,ij + Y T

bus,ij)

]
(4.13)

Ȳij := −
1

2

[
Im(Ybus,ij + Y T

bus,ij) Re(Ybus,ij − Y T
bus,ij)

Re(Ybus,ij − Y T
bus,ij) Im(Ybus,ij + Y T

bus,ij)

]
(4.14)

Mi :=

[
ζiζ

T
i 0

0 ζiζ
T
i

]
(4.15)

Mij :=

[
(ζi − ζj)(ζi − ζj)

T 0

0 (ζi − ζj)(ζi − ζj)
T

]
(4.16)

Theses constants will be important to guarantee the physical laws that rule circuits

behaviors [58, 80].

4.3.2 Original Formulation

In this problem formulation, based on the work of [43], the state variables x rep-

resent the stored energy bi and the energy generation pGi and qGi (real and imaginary

part); the decision variables u are the charge/discharge rates ri of storage, the power

vi and the flows of pij and qij (real and imaginary part); and the random variables ω

are the demands of pDi and qDi (real and imaginary part). As vi is complex, we’ll use

V =
[
Re(v)T Im(v)T

]T
. The reader might wonder why modelling the generation as a

state variable. The reason is the difference constraint, inequations 4.27 and 4.28, which

require the value of the previous stage (the same trick used for autoregressive modeling

discussed in the 2.1.3 subsection).

Let c
(k)
i ≥ 0 be the cost of order k associated to generation at i, the subproblem

cost Ci for stage i is simply

Ci(x, u, ω) =
∑
i∈N

c
(2)
i (pGi

′
)2 + c

(1)
i pGi

′
+ c

(0)
i , (4.17)

4.3. Optimal Power Flow 54

i.e. a convex quadratic function. Other costs may be chosen, like the minimum

thermal loss in transmission. The constraints for the equilibria of real and reactive power

for each bus is:

pGi
′ − pDi − ri = VTYiV i ∈ N (4.18)

qGi
′ − qDi = VT ȲiV i ∈ N (4.19)

Then, we have the constraints the govern the flow, including its magnitude (quadratic)

pij = VTYijV (i, j) ∈ L (4.20)

qij = VT ȲijV (i, j) ∈ L (4.21)

q2ij + q2ij ≤ (Smax
ij)2 (i, j) ∈ L (4.22)

The constraints that bound the energy generation

Pmin
i ≤ pGi

′ ≤ Pmax
i i ∈ NG (4.23)

Qmin
i ≤ qGi

′ ≤ Qmax
i i ∈ NG (4.24)

The constraints below bound the power magnitude and thermal loss

(V min
i)2 ≤ VTMiV ≤ (V max

i)2 i ∈ N (4.25)

VTMijV ≤ Lmax
ij (i, j) ∈ L (4.26)

Difference constraints,

∆Pmin
i ≤ pGi

′ − pGi ≤ ∆Pmax
i i ∈ NG (4.27)

∆Qmin
i ≤ qGi

′ − qGi ≤ ∆Qmax
i i ∈ NG (4.28)

And finally, the constraints that rule the storage system, the transition function

(in addition to the generation levels)

Bmin ≤ b′i ≤ Bmax i ∈ N S (4.29)

Rmin ≤ ri ≤ Rmax i ∈ N S (4.30)

b′i = bi + ηri i ∈ N S (4.31)

in which η is the battery efficiency.

4.3. Optimal Power Flow 55

4.3.3 Penalization for Temporal Consistency

The constraints at inequalities 4.27 and 4.28 impose a temporal relationship. The

current stage solution is not only affected by the future through the future cost function,

but also by the need for the future stages to have viable solutions. This is difficult to

guarantee always, even more during the beginning of training in which the future cost

function can lead the model to extreme regions of the state space. Therefore, in this work

we used a different modeling, in which the effective difference between stages (difference

past a certain level) is penalized in a quadratic form through the following inequalities

instead of 4.27 and 4.28

−∆Pi ≤ pGi
′ − pGi ≤ ∆Pi i ∈ NG (4.32)

∆Pi −∆Pmax
i ≤ ∆PE

i i ∈ NG (4.33)

−∆Qi ≤ qGi
′ − qGi ≤ ∆Qi i ∈ NG (4.34)

∆Qi −∆Qmax
i ≤ ∆QE

i i ∈ NG (4.35)

∆PE
i ,∆QE

i ≥ 0 i ∈ NG (4.36)

and the addition of quadratic components in the objective function

Ci(x, u, ω) =
∑
i∈NG

c
(2)
i (pGi

′
)2 + c

(1)
i pGi

′
+ c

(0)
i (4.37)

+
∑
i∈NG

a
(2)
i (∆PE

i)2 + a
(1)
i ∆PE

i

+
∑
i∈NG

b
(2)
i (∆QE

i)
2 + b

(1)
i ∆QE

i

56

Chapter 5

Future Cost Estimator

In this chapter we describe our algorithms for the Stochastic Neural Dynamic Program-

ming (SNDP) algorithm, with some additional discussion over implementation details.

5.1 Algorithm

The algorithm is based on the original SDDP, in which is kept the sampling of states

with a forward pass of the algorithm and the adjustment of the model with a backward

pass. What differs is that now the adjustment is done on a neural network. Thus, it is

possible to condition the future cost function with the observations of uncertainty, add

memory of the previous stages and even use external and non-structured data. In a

context of farm decision-making, for example, a satellite image of your farm can report

more than one-dimensional statistics such as rainfall.

The goal of the algorithm is to create a projection of the future cost manifold into

the set of manifolds that can be represented as integer programs, which we know how

to optimize (even though not in a polynomial way). It can therefore be thought that we

are looking for something similar to an algorithm of reinforcement learning, as described

in the subsection 2.2.1, only with single network. Instead of learning a distribution of

actions around the optimum, we use optimization to always choose the optimum.

We will describe each step individually, but its basic structure is as following:

• Forward Pass: we simulate the policy stage by stage, from the beginning to the

end. At each stage, a realization of the random variable is observed and the approx-

imate subproblem is solved to generate a candidate state for the next stage.

• Backward Pass: visit the stages in inverse order, so that by refining a stage, we

will already have refined its successor.

We sample the observations at random, but one can make the modification to

5.1. Algorithm 57

always sample in order, like a mini-batch of regular neural network training. All samples

appear the same amount of times. Algorithmically, we have both approaches below:

Algorithm 3: SNDP — Sampling

Data: Number of iterations n, number of simulated samples f , number of
random samples over the domain d, set S of scenarios and model G to be
trained.

Result: Policy for the problem.
for i = 1, ..., n do

States ← Forward-Pass(G,S, f) ∪ Sample-over-Domain(d);
G← Backward-Pass(States, G, S);

end

Algorithm 4: SNDP — Mini-Batch

Data: Number of epochs n, batch size b, number of random samples over the
domain d, set S of scenarios and model G to be trained.

Result: Policy for the problem.
for i = 1, ..., n do

for j = 1, ..., |S|/b do
States ← Forward-Pass(G,S, b, j) ∪ Sample-over-Domain(d);
G← Backward-Pass(States, G, S);

end

end

The forward pass function in the algorithm 4 receives the indices of the scenarios

that will be used, instead of how many scenarios to sample. This function only simulates

the policy for each of the scenarios and therefore will be considered as already explained.

The backward pass function will be explained in the following subsections, since it is in

it that we have a few modifications.

The architecture of the neural network that represents the future cost function

(which we will call the network to the right) is independent of the network (or rather

hyper-network) architecture that proposes the weights (the network to the left). If we

increase the complexity of the network to the left, the cost of solving the subproblem is

not affected. However, we have to pay attention to the cost of solving the optimization

of the network to the right. This value is not trivial to know and is usual to use other

values as heuristic, such as the number of binary variables and the number of constraints,

given in the table 5.1.

On SDDP we have the convergence guarantee for problems with i.i.d. uncertainty

and linear constraints and objective function; by adding binary variables, SDDiP guar-

antees the convergence to the optimum. The algorithm proposed in this work does not

offer any theoretical proof that justify its convergence. However, some intuitions are given

5.1. Algorithm 58

Type of manifold Binary variables Constraints
Convex 0 # Cuts
k-Convex k k · (# Cuts) + 2

ReLU Network # Neurons 3 · (# Neurons)− 1

Table 5.1: Comparison between the integer programming formulations for the different
kinds of manifolds.

below that seek to justify its empirical convergence in experiments. Following the idea of

learning propagation, it can be argumented inductively:

• Base: The penultimate stage has training instances {X, Y } that represent your real
future cost. If the network has enough capacity, with a finite number of iterations

it will converge to the surroundings of the real future cost function.

• Inductive step: If the k stage converged to surroundings of its real future cost

function, then the k − 1 stage may have training instances {X, Y } that represent

its real future cost. If the network has sufficient capacity and the training does

not interfere with subsequent stages, with a final number of iterations it will

converge to its real future cost function environment.

It remains to know for which problems a given network to the right has the ability

to converge to a given error tolerance and whether the proposed algorithms guarantee

that an earlier stage does not disturb much its subsequent stages.

5.1.1 Convergence to the Mean

In this formulation, we want, as in the original SDDP, to estimate the average

future cost of a given state in the current stage. Unlike SDDP, in which each stage has

an independent set of cuts, the algorithm has a single neural network (net to the left). Its

input is a binary representation of the stage and its output is the weights of the future

cost function (net to the right): a set of cuts, a set of k-cuts or the weights of a ReLU

Neural network. These functions have different possible representations (convex, k-convex

and not convex) and number of binary variables (an indication of potential difficulty to

solve). The knowledge of a specialist can be to the help of which manifold type is the

best output.

As seen earlier, both the k-convex manifolds and the ReLU networks can be in-

corporated into the subproblems and solved by integer programming solvers. Thus, the

forward pass does not need any change and is kept as described before. However, the

5.1. Algorithm 59

Algorithm 5: Backward Pass — Convergence to the mean

Data: States E, set S of scenarios and model G to be trained
Result: Future Cost Function Update
X ← ∅;
Y ← ∅;
for t = T, ..., 2 do

for s = 1, ..., S do
cost ← 0;
for r = 1, ..., |S| do

Solve the problem for stage t with initial state Et,s and observation
Ωt,r;
cost ← cost + optimal solution cost;

end
X ← X ∪ {Et,s};
Y ← Y ∪ {cost/S} ;

end

Ŷ ← G(Stage Indices, X);

loss ← Loss-Function(Y, Ŷ);
Do one step of the optimization algorithm (e.g. Gradient descent);

end

backward pass must be changed, as can be seen in the algorithm 5. The optimization

algorithm used was Adam [57].

Be σ the expected computational cost of solving a subproblem. We know that

solving integer programs is exponential in the worst case, and depends on the constraints

of each problem. So we don’t have a way to calculate its cost agnostically to the problem

or architecture of the chosen network. The cost of this bacward pass is therefore O(σTS2).

See that unlike SDDP, we have multiple simulated and optimized scenarios in parallel.

As we will see in the sub-section 5.2.1 about the loss function, it’s essential to have more

than one scenario per iteration.

The idea of the algorithm is to reinforce the information of the latter stages (which

appear first in the backward pass) compared the first ones, since the most reliable infor-

mation about the future is the closest to the end. Learning is then propagated to the

earliest stages, without allowing the network to deviate too much of the ideal for the final

stages.

A possible backward pass modification is to update the weights only once in the

backward pass, after having calculated the estimated future cost of each stage. This

modification will be investigated in the 7.2.1 sub-section of the experiments.

5.1. Algorithm 60

5.1.2 Conditioned on the Uncertainty

We know that the network to the left does not affect the complexity of the subprob-

lem to the right. Thus, as long as we manage to modify the algorithm 5 to incorporate

new data, we can use even more information and distinct and more complex architectures

for the network to the left. In this sub section, we will discuss the modification that al-

lows to incorporate the uncertainty conditioning to the network to the left. The algorithm

inference scheme is described in the figure 5.1.

Current Stage

Observed Data

Solution

Cost + Future Cost

Subproblem cost independent
of network size

Subproblem cost depends on
network size

Fully
Connected

(b)(a)

Subproblem

FCF Weights

Figure 5.1: Conditional SNDP schema.

As uncertainty possesses temporal dependence, knowing the realization for this

stage informs us about the scenario as a whole, both about the past decisions as well as

the decisions that will still have to be taken. Thus, in the backward step we will no longer

be able to sample independently to each stage, but rather to sample an entire scenario

and simulate the policy on it. The great change is over the backward pass, described in

the algorithm 6 below:

Algorithm 6: Backward Pass — Conditioned on the Uncertainty

Data: States E, set S of scenarios e modelo a ser treinado G
Result: Future Cost Function Update
X ← ∅;
Y ← ∅;
for t = T, ..., 2 do

for s = 1, ..., S do
Solve the problem for stage t with initial state Et,s and observation Ωt,s;
cost ← optimal solution cost;
X ← X ∪ {Et,s};
Y ← Y ∪ {cost} ;

end

Ŷ ← G(Stage Indices,Observations, X);

loss ← Loss-Function(Y, Ŷ);
Do one step of the optimization algorithm;

end

5.1. Algorithm 61

The main difference is therefore in the calculation of the future cost of the sampled

state. We are no longer interested in the average of that value, but the value that would

be obtained when we simulate the “future” of that observation. The goal is to optimize

the average conditioned on the observation. Note that if each stage is an i.i.d. variable,

the two expectations are equal. Thus, the algorithm acts on an even greater set of possible

problems, those that have temporal dependence. Nothing prevents us from adding even

more data, such as external information, predictions on future observations, the current

state etc.

This approach has another advantage. Solving the subproblems is the most ex-

pensive step of an iteration. In the initial version, the algorithm 5, and also in SDDP, we

calculate the future cost of a sample state for every possible realization, that is, for every

future scenario. But that is no longer the case, we only compute the cost for a single

future observation. Thus, the cost of a backward pass is O(σTS), scaling linearly in the

number of scenarios.

5.1.3 Incorporating Memory

The previous approach is interesting because it conditions the future cost function

on an observation, thus portraying much better the real future cost of that scenario. So

it would be interesting if the function was conditioned not only in the current observation

but also in all the previous observations. A possible way of doing that, portrayed in the

figure 5.2, is the use of a memory vector and a LSTM network. In practice, it is the same

previous algorithm only that conditioned in a memory vector instead of an observation.

The modified version of the backward step is described in the algorithm 7.

This modification brings a difficulty. As a backward pass of the algorithm changes

the network multiple times, the hidden state cannot be sampled along with the state

during the forward pass. Its representation changes. At each modification of the network

we have to pass again the observations by the LSTM cell in order to have an instance of

the hidden state matching with the current weights of the network.

5.2. Implementation Details 62

Algorithm 7: Backward Pass — With Memory

Data: States E, set S of scenarios and the model G to be trained
Result: Future Cost Function Update
X ← ∅;
Y ← ∅;
for t = T, ..., 2 do

for j = 1, ..., T do
Compute the hidden state for scenarios in S.

end
for s = 1, ..., S do

Solve the problem for stage t with initial state Et,s, observation Ωt,s e
corresponding hidden state;
cost ← optimal solution cots;
X ← X ∪ {Et,s};
Y ← Y ∪ {cost} ;

end

Ŷ ← G(Stage Indices,Observations,Hidden State, X);

loss ← Loss-Function(Y, Ŷ);
Do one step of the optimization algorithm;

end

Current Stage

Observed Data

Memory

Hidden State

Solution

Cost + Future Cost

Subproblem cost independent
of network size

Subproblem cost depends on
network size

Fully
ConnectedLSTM

(b)(a)

Memory

 Hidden State

Subproblem

FCF Weights

Figure 5.2: Memory SNDP schema.

5.2 Implementation Details

In this section we describe some modeling choices taken during the experimentation

process that led to a good convergence of the algorithm. These details are the result of

an empirical process and do not have formal arguments. Intuitions of possible reasons for

their effectiveness are presented for each modification.

5.2. Implementation Details 63

5.2.1 Loss Function

In the backward algorithms discussed in the previous section, the section 5.1, the

weights are updated according to the loss of multiple stages, simultaneously. As the initial

stages values involve a longer future, their future cost tends to be greater than that of

the following stages. Depending on the scale of these values, the most initial and the

most final stages have very different scales. If the T stages have a similar current cost,

the first future cost is close to T times greater than the last. When calculating the loss

function, the values relating to the initial stages will dominate and thus the signal of the

final stages becomes very weak and the algorithm has difficulty to converge.

Considering the intuition of the propagation of learning, as the algorithm does

not fix the cost of the final stages, since the firts ones dominate, learning is not longer

propagated to the initials. For problems of small temporal window, or even of sparse

costs or of small order, it is possible that losses in different stages have a similar order

of magnitude and this issue is not a problem. But in general, the use of conventional

losses functions, such as average square error or average absolute error, does not lead

convergence to a good policy.

To solve this problem it is necessary to use a loss function invariant to the mag-

nitude of the predictions. A traditional loss function for the task is the average absolute

percentage error (MAPE), equation 5.1, in which the difference is normalized by the actual

value, thus rescaling the values.

MAPE =
1

N

N∑
i=1

∣∣∣∣Ai − Fi

Ai

∣∣∣∣ . (5.1)

However, the MAPE function has its problems. If the costs assume values close to

zero, the MAPE responses are extremely high, dominating over other errors. In addition,

MAPE was criticized for penalizing more positive errors than the negative [71], it is not

a symmetrical metric. Thus, [56] propose a modification to MAPE, to use the angle

of inclination, equation 5.2. With this detail, the values close to zero are much better

behaved (because it is an angle, the function is limited above and below, from 0 to π/2)

and even though it is still asymmetric, MAPE is better distributed.

MAAPE =
1

N

N∑
i=1

arctan

(∣∣∣∣Ai − Fi

Ai

∣∣∣∣) . (5.2)

The attentive reader should be wondering about the elephant in the room. It is

possible that a stage, especially the closest to the end of the planning horizon, has future

cost zero. Both previous loss functions are not defined at that point. For problems that

the future cost is almost never exactly zero, MAAPE works well. Therefore, this is not

5.2. Implementation Details 64

really your problem. But, you may encounter another problem. As we are training a

network, we need that the gradients related to the errors lead to a fast evolution of the

network. However, the values to be predicted can take arbitrary magnitudes. MAAPE’s

derivative quickly approaches zero as the future costs increase, and thus the network

practically does not evolve.

Ideally we want a loss function that satisfy, in simple terms:

(a) invariant to stage scale;

(b) well defined around zero and its neighborhood;

(c) approximatly symmetric;

(d) derivative which does not go to zero too fast.

A function that satisfy all above is given by equation 5.3, qhich we nicked the

Mean Staged Squared Error (MSSE):

MSSE =
1

NT

NT∑
i=1

(
Ai − Fi

σt(i)

)2

(5.3)

=
1

T

T∑
t=1

1

σ2
t

1

N

tN∑
i=(t−1)N+1

(Ai − Fi)
2

=
1

T

T∑
t=1

MSEt

σ2
t

where σt(i) is the standard deviation of both the predictions and target values of

the stage the sample i is part of. Its derivative is obtained below:

∂σ2
t(i)

∂Fi

=
2(Fi − µ)(1− ∂µ

∂Fi
)

2N
+

∑
j ̸=i,σt(j)=σt(i)

2(µ− cj)
∂µ
∂Fi

2N
(5.4)

=
(Fi − µ)(1− 1

2N
)

N
+

∑
j ̸=i,σt(j)=σt(i)

(µ− cj)

2N2

=
(Fi − µ)(2N − 1)

2N2
+

(2N − 1)µ− (2Nµ− Fi)

2N2

=
(Fi − µ)

N

5.2. Implementation Details 65

∂MSSE

∂Fi

=
1

NT

 ∂

∂Fi

(Ai − Fi)
2

σ2
t(i)

+
∑

j ̸=i,σt(j)=σt(i)

∂

∂Fi

(Aj − Fj)
2

σ2
t(i)

 (5.5)

=
1

NT

(Ai − Fi)

(
−2σ2

t(i) − (Ai − Fi)
∂σ2

t(i)

∂Fi

)
σ4
t(i)

+
1

N

∂

∂Fi

1

σ2
t(i)



=
1

NT

(Ai − Fi)

(
−2σ2

t(i) − (Ai − Fi)
∂σ2

t(i)

∂Fi

)
σ4
t(i)

−
∂σ2

t(i)

∂Fi

Nσ4
t(i)


=

1

NT

(Ai − Fi)
(
−2σ2

t(i) − (Ai − Fi)
(Fi−µ)

N

)
σ4
t(i)

− (Fi − µ)

N2σ4
t(i)

 .

If we take the limit of a single sample contribution, as in equation 5.6, we see that

it converges to the gradient of the contribution of a single sample in the regular mean

squared error, scaled by the variance of its stage.

lim
N→∞

NT · ∂MSSE

∂Fi

=

(Ai − Fi)

(
−2σ2

t(i) −���������: 0

(Ai − Fi)
(Fi−µ)

N

)
σ4
t(i)

−
�
�

�
�
�>
0

(Fi − µ)

N2σ4
t(i)

=
2(Fi − Ai)

σ2
t(i)

. (5.6)

In the figure 5.3 below we have the value of the loss function for the alignment

example between a target distribution and a linear transformation (i.e., x̂ = σx+ µ), for

different sample sizes. We see that the function behavior is quite similar for all sample

sizes.

0

1

2

3

4

5

Loss

Sample Size: 4

1

2

3

Sample Size: 8

1

2

3

Sample Size: 16

1

2

3

Sample Size: 32

1

2

3

0 2 4
0

1

2

3

4

5

Mean Abs.
Gradient

0.15

0.3
0

0 2 4

0.08

0.16

0 2 4

0.04

0.
08

0 2 4

0.020.04

0

1

2

3

0.0

0.1

0.2

0.3

0.4

0

1

2

3

4

5

Loss

Sample Size: 4

1

2

3

Sample Size: 8

1

2

3

Sample Size: 16

1

2

3

Sample Size: 32

1

2

3

0 2 4
0

1

2

3

4

5

Mean Abs.
Gradient

0.15

0.3
0

0 2 4

0.08

0.16

0 2 4

0.04

0.
08

0 2 4

0.020.04

0

1

2

3

0.0

0.1

0.2

0.3

0.4

Figure 5.3: Loss function in the alignment example.

5.2. Implementation Details 66

5.2.2 Domain Sampling

If we were to use only simulated states, as in SDDP, we would encounter two

problems:

1. The initial weights of the network could be such that for all simulated states, in-

dependently of the scenario, its responses could be the same, slowing the training

process;

2. By exploring only a small region of the state space, the policy might generalize

poorly.

Both problems hinder a well behaved evolution of the network, possibly letting

it to be stuck in a region with small gradient. To solve this problem, as seen in the

algorithms 5, 6 and 7, we can use a sample of states over the domain to add exploration

to the algorithm. A specialist can determine specific regions of the state space that must

be sampled in order to direct the model to have a good resolution in these regions.

5.2.3 Soft and Hard Networks

As we saw in the sub-section 3.1.3, the k-convex manifolds can be fitted with a

smooth procedure. The fitted and factual (the one to be optimized by the solver) functions

are going to be slightly different, but the training process is accelerated. The same is of

our interest with ReLU networks.

It has been found experimentally that by optimizing the ReLU target networks,

some instances diverged and fled from the desired future cost functions. A mechanism that

helped this process was the use of the GELU activation function [50] during training. So,

as in the case of the k-convex, the trained network and the network to be optimized in the

subproblem are different, but the training process is facilitated. Another soft activation

function could have been chosen in the place of GELU, such as the SiLU [50] and the

Mish [73].

In particular for the ReLU/GELU networks, but also relevant for the optimization

of the k-convex functions, it is that as we increase their complexity (e.g., increasing the

number of layers), the two networks are going to differentiate more and more. For this,

a penalty is added, the loss function between the hard network prediction (ReLU) and

5.2. Implementation Details 67

the soft network (GELU), multiplied by a smooth regularization value. The same loss

function, the MSSE, was used.

5.2.4 Problem Scaling

When it comes to learning from neural networks, it is advisable that both inputs

and outputs are low-magnitude values. For this, it is beneficial to change the scale of the

problems so that both inputs (state) and outputs (costs) are small. Emprically, badly

scaled problems lead to bad policies. Most of the problems can be easily rescaled with

simple multiplications by constants.

68

Chapter 6

Explainability

In this chapter we describe the techniques used to study the two halves of the proposed

algorithm, the network to the left (the importance of the observations) and the network to

the right (the future cost function). First, we will discuss how SHAP can be an important

tool to explain the decisions made by the algorithm, for the two networks.

6.1 SHAP

SHAP is a powerful tool for understanding what a model takes into consideration

to make a decision. Next we will see two ways of how it can be incorporated, the first to

estimate the relationship between the states, which can be used by any MSSOmethod with

future cost functions; and the second focusing on the conditional and memory versions of

our algorithm.

6.1.1 State Interdependence

Whether with traditional methods for MSSO problems, or with the proposed here,

we can study how the values of the states affect the future cost. In particular, as these

algorithms have been trained on a specific region of the state space, we will simulate them

and study how the sampled states affect the future cost.

Having the states and the estimated future cost functions, it is easy to use SHAP

to get the explanations of each state value. By the definition of SHAP seen in section

3.4, we can think that these explanations are the marginal costs of each entry of the state

at that specific point. As we have seen from the beginning of this work, we often have

problems in which decisions are rarely made independently, in which a dimension of the

6.2. Future Cost Curvature 69

state affects and is affected by other dimensions. But how to quantify this

A recent tool used to quantify the asymmetrical relationship between two variables

is the Predictive Power Score (PPS) [110]. PPS is asymmetrical, agnostic to data, and

detects linear and non-linear relationships. The idea is simply to use a non-linear regressor

(decision trees, boosting algorithms etc.) and using only one variable as a input to try to

predict another variable. Then we see how it performs compared to a naive regressor.

Here we will adopt a similar methodology. After simulating the policy and obtain-

ing samples {State, SHAP of Future Cost}, the unidirectional PPS is calculated. In our

case, the algorithm XGBoost [22] was used. The idea is to check how much the state

itself is able to determine its marginal cost, i.e., how independent of the other states it

is. If we have a high PPS in all state entries of a stage, a operator could make a decision

based on each state independently, which is much easier to interpret and explain to other

responsible agents. Otherwise, the operator who has to make the decision should be more

cautious, now that he knows that the decision on the state is complex.

6.1.2 Observation Importance

The addition of conditional and memory variants enables a more detailed analysis

of the algorithms. Now it is possible to verify, through SHAP, how an observation affects

the future cost function, which allows operators and decision makers to quantify the

impact of hypothetical scenarios. A rural producer can estimate how the price variation

of a input affects their long-term profits and a dispatch operator can investigate how an

out-of-time drought would increase the cost.

In addition to quantifying the impact of a specific observation, it is possible to

calculate the SHAP value of the hidden state that reaches a stage. We are in practice

quantifying the impact of the observation adjusted to its past history, since the observa-

tions are not temporarily independent.

6.2 Future Cost Curvature

In addition to understanding the marginal future cost of states and observations

at specific points, we can study the curvature of the manifold defined by the future cost

function. From this analysis arise two questions: does the neighborhood of this state

6.2. Future Cost Curvature 70

change suddenly (instability)?; is the neighborhood of this state different from others and

if so do I have to worry (incertainty)? We will build the step-by-step methodology, but

the schema can be seen in the figure 6.1. These methods are not the exclusive to the

proposed algorithms and can be used to study traditional algorithms of MSSO problems.

Sample points
on the surface

Reduce dimension

using neighborhood

Interpolate in the
sampled region

Compute
Gradients

Shape regions

Anomaly
detection

Change
coordinates

Figure 6.1: Curvature Study Schema. We sample points from the manifold in a uniform
way over the domain. With manifold learning to construct a two dimensional representa-
tion. We interpolate the sampled region and compute gradients. A coordinate transform
is applied for better visualization. Local shape and anomalous points are computed.

6.2.1 Processing

The first step is to sample points on the manifold of the future cost function to be

studied. As the curvature depends on the second derivatives, calculating the curvature

directly on this manifold, which has high dimensionality, is a computationally expensive

process. The strategy adopted is to study the curvature on a surface, with reduced

dimensionality. In higher dimensions we have incomprehensible geometric behaviors that

when projected on a surface we certainly have loss of information. We expect that locally

these multidimensional artefacts are similar to those of the surface.

So the second step is to use some manifold learning algorithm to get a representa-

tion of this manifold now in only two dimensions. We use LLE, as discussed earlier. The

function image is kept for the subsequent steps.

With the two-dimensional coordinates, it is sought to find the region of this new

space that corresponds to the likely region of the projection of other points from the

original manifold. For this we use the α-shape algorithm. With the image values of the

future cost function, we can interpolate a grid over the entire region defined by α-shape.

The interpolation used was the radius-based function interpolation, with multi-quadratic

function.

6.2. Future Cost Curvature 71

In this grid, we can estimate the first and second derivatives of each interpolated

point and calculate the curvature attributes described in the sub-section 3.3. Here we

already have the necessary data to try to answer the two questions. Only to facilitate

viewing, we can transform this study region into a regular polygon using mean value

coordinates (sub-section 3.3.6).

6.2.2 Local Shape

As we saw in the table 3.1, we can characterize the local behavior of a surface

through its two principal curvatures. So we know if locally the surface is approximately

a linear, concave, convex, hyperboloid etc. With real problems, it is not always possible

to run the optimal solution obtained and it is interesting to know if disturbances in

its neighborhood have sudden changes on the value of the future cost. If we are in a

hyperbolic region of the surface and we don’t have sufficient precision to run exactly the

optimal solution, it can be better to choose a sub-optimal solution in a more linear region.

So we get a map of surface stability of the future cost function.

6.2.3 Anomalous Region

The surfaces of the future cost functions learned may have different resolutions

throughout the state space. Occasionally, a scenario can lead the optimal solution chosen

to low-resolution regions not because it represents the real optimal solution but rather

because it is a little explored region that, during training, the model erroneously extrap-

olated. Thus, we would like to find regions of the surface of the future cost function that

present characteristics that differentiate them from the others, in the hope of finding these

poorly conditioned regions.

The strategy adopted is to consider each point of the interpolation as a sample,

and each curvature attribute as a feature. Then we run the anomaly detection algorithm

Isolation Forest [66]. It selects a feature by chance and randomly chooses a value in the

interval between the minimum and maximum as a decision node of a decision tree. The

number required to isolate a sample, aggregated by the average of a forest of these trees,

is an indication of how different this sample is from the rest. When a sample consistently

needs few decisions to be isolated, it is an indication of whether it is an anomaly.

72

Chapter 7

Experiments and Results

In this chapter we put the algorithm to the test in order to verify three things: whether it

converges to the correct functions in simple problems; whether it proposes robust solutions

in real systems; and how its hyperparameters affect its performance.

7.1 Control Problem in One Dimension

The definition and modeling of the Control Problem in One Dimension is given

in the section 4.1. Because it is a pretty simple problem, with the state and uncertainty

variables both have only one dimension, it is possible to calculate the expected future cost

functions through the recurrent definition.

Let m ∈ S(n) be a scenario from the set of scenarios at stage n. We have that

Q̄n(xn) =


0 n = T∑
ξm∈S(n)

C(xn + ξm) + β · Q̄n+1(xn + ξm) n < T
(7.1)

As can be seen in figure 7.1, the future cost functions are non-convex in all stages.

This is because the discontinuity ct, in which the immediate cost C id given by min{|u−
1|, |u+ 1|}, in which u = xt−1 + ξt.

Note that since each stage has its own sample of uncertainty, even if they com

from the same distribution, the estimated expected future cost curves are not exactly the

same but for a constant, they have certain irregularities. As the subsequent experiments

also use the same sample, it will be, for our use, the real expected future cost function.

As we increase the sample size, these functions converge to the problem optimum.

7.1. Control Problem in One Dimension 73

3 2 1 0 1 2 3
0

1

2

3

4

Stage
1
2
3
4
5
6
7

Figure 7.1: Optimal Expected Future Cost Functions Q̄n for the Control Problem in One
Dimension.

7.1.1 Convergence to the Mean

The first experiment is to verify whether the algorithm is able to estimate the

expected future cost function. As it is a problem without temporal dependence, we will

limit ourselves to the simplest version of the algorithm, the convergence to the mean. The

experiment was done with a network to right (the future cost function) with two hidden

layers with 40 neurons each; with 20 random samples in the interval (-3,3); 10 samples

of forward pass, using the same sample of the figure 7.1; smooth regularization of 0.2; by

100 iterations. The figures 7.2 and 7.3 illustrate, respectively, the hard and soft future

cost functions learned.

3 2 1 0 1 2 3
0

1

2

3

4

Stage
1
2
3
4
5
6
7

Figure 7.2: Hard Expected Future Cost Functions Q̄n for the Control Problem in One
Dimension.

7.1. Control Problem in One Dimension 74

3 2 1 0 1 2 3
0

1

2

3

4

Stage
1
2
3
4
5
6
7

Figure 7.3: Soft Expected Future Cost Functions Q̄n for the Control Problem in One
Dimension.

The figure 7.4 illustrates the expected future cost functions in different iterations

of the same training, thus illustrating the evolution. Note that in the 15th iteration the

algorithm is still learning the magnitude of each function; and that in the 30th iteration

the functions already possess the approximate shape of the actual functions. From the

50th iteration onwards there is little visual improvement.

0

1

2

3

4

1st Iteration 15th Iteration
Stage

1
2
3
4
5
6
7

3 2 1 0 1 2 3
0

1

2

3

4

30th Iteration

3 2 1 0 1 2 3

50th Iteration

Figure 7.4: Soft Expected Future Cost Functions Q̄n evolution for the Control Problem
in One Dimension.

Even if there is no temporal dependence between the stages of the problem, the use

of the conditional algorithm can still make sense. In the figure 7.5 we have the hard and

7.1. Control Problem in One Dimension 75

soft conditional future cost functions conditioned in the greatest and the lowest value of

the scenarios, i.e., the two most distinct observations possible. We see that the functions

are little affected: we can use the conditional algorithm, which as we saw in the subsection

5.1.2 is S times faster, to learn policies that have no temporal dependence.

0

1

2

3

4

Min value observed - Hard Min value observed - Smooth
Stage

1
2
3
4
5
6
7

3 2 1 0 1 2 3
0

1

2

3

4

Max value observed - Hard

3 2 1 0 1 2 3

Max value observed - Smooth

Figure 7.5: Conditional Future Cost Functions Qn|ξn for the Control Problem in One
Dimension.

7.1.2 Convergence for Different Networks to the Right

One important decision to take during the training process is how to choose the

network architecture to the right. As we saw, the network can be a k-convex manifold or

a ReLU network. We have the loss function for different architectures in figure 7.6. In it,

the experiments were carried out with 10 forward pass samples (policy simulation) and

20 random over the domain. It was carried out 3 times and taken the average. In the first

graph, which shows the average of the loss function of all the k-convex architectures and

all the ReLU networks (non-convex), we have the behavior of the loss function between

the classes of network is quite different. k-convex networks have a smaller initial loss, but

decay more slowly than those of the non-convex networks.

When we see the second chart, in which the average is decomposed to the different

7.1. Control Problem in One Dimension 76

0 5 10 15 20 25

100

k-Convex vs Non-Convex
Network type

k-Convex
Non-Convex

0 5 10 15 20 25

100

k-Convex
(k, cuts)

(1, 42)
(1, 84)
(2, 21)
(2, 42)
(3, 14)
(3, 28)

0 5 10 15 20 25

100

Non-Convex
Architecture

[42]
[84]
[21, 21]
[42, 42]
[14, 14, 14]
[28, 28, 28]

Figure 7.6: Loss functions throughout 25 iterations for different k-convex and non-convex
architectures. Each architecture was trained thrice, and the average is shown above.

combinations of k and number of cuts, we see that the loss function has approximately

the same behavior, with little variation between the models. Because it is a problem with

non-convex future cost functions, we would expect that the loss function with k = 1 would

have a worse behavior, but it is not what was observed. Its functions are shown in figure

7.7 below. See that 25 iterations were not enough for the model to learn the functions

correctly, especially for stage 1. Besides, it still represents well the optimal functions.

0 10 20 30 40 50 60

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Hard

0 10 20 30 40 50 60

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Smooth

Stages
1
2
3
4
5
6
7

Figure 7.7: Hard and Soft Expected Future Cost Functions with k = 1 Q̄n for the Control
Problem in One Dimension with k = 1 and 42 cuts after 25 iterations.

The third chart already shows something different. The total number of neurons

is not a good predictor for the performance of the network, since there are situations in

which networks with the same number of layers but a smaller number of neurons per

layers win and situations that they lose to the largest. Distinctively it is noted that

networks with two hidden layers have a better loss function than the others, with the

networks with three layers coming in second place. If on the one hand the increase of

layers improves exponentially the spatial resolution of a ReLU function, it also more easily

increases the difference to its soft representation (GELU), which can lead to a breakdown

between the network learned and the network fitted. This would be an explanation for

the lower performance of the network with three layers in the experiment. A solution

could be to increas the value of the smooth regularization. Graphically, all functions are

7.1. Control Problem in One Dimension 77

approximately linear, which, considering the log scale, means they have approximately

exponential behavior.

To see how the functions generalize (thanks to a large number of samples on the

domain), the squared difference between the future cost functions learned and those of

the figure 7.1 was studied. The results, for some selected stages, are in figure 7.8. In

the first column we have the results grouped by network class, while in the rest are the

specific architectures of each class.

0 5 10 15 20 25

102

k-Convex vs Non-Convex, Stage 1

Network type
k-Convex
Non-Convex

0 5 10 15 20 25

102

k-Convex, Stage 1

(k, cuts)
(1, 84)
(1, 42)
(2, 42)
(2, 21)
(3, 28)
(3, 14)

0 5 10 15 20 25

102

Non-Convex, Stage 1

Architecture
[42]
[84]
[21, 21]
[42, 42]
[14, 14, 14]
[28, 28, 28]

0 5 10 15 20 25

102

k-Convex vs Non-Convex, Stage 3

0 5 10 15 20 25

102

k-Convex, Stage 3

0 5 10 15 20 25

102

Non-Convex, Stage 3

0 5 10 15 20 25

102

103
k-Convex vs Non-Convex, Stage 5

0 5 10 15 20 25

102

103
k-Convex, Stage 5

0 5 10 15 20 25

102

103
Non-Convex, Stage 5

0 5 10 15 20 25

101

102

k-Convex vs Non-Convex, Stage 7

0 5 10 15 20 25

101

102

k-Convex, Stage 7

0 5 10 15 20 25

101

102

Non-Convex, Stage 7

Figure 7.8: Squared differences between the estimated future cost functions and those
of figure 7.1 for 25 iterations for different k-convex and non-convex architectures. Each
architecture was trained thrice, and the average is shown above.

On the first column, we see that the convergence behaviors between the classes

and between the stages are quite different. On stage 7, which has lower magnitude values,

random cuts already have a good approximation to the future cost function and the model

quickly converges to a function close to the real. Interestingly the squared difference

initially falls below the value that eventually the function converges to, showing a slight

over-fitting to the training region. Non-convex networks take longer to converge at this

7.1. Control Problem in One Dimension 78

stage, significantly increasing in the initial iterations. This can indicate that the gradients

of the other stages, even with the reinforcement of the algorithm for the latter stages, is

greater. Eventually the squared difference begins to converge to a value close to the k-

convex one. Stage 5 has a similar behavior to the 7th one, but with a slower convergence

on the k-convex networks.

Stages 1 and 3 are different. Here the non-convex networks have no increasing phase

seen in the subsequent stages. In stage 3, the k-convex networks converge even later, with

the same behavior of converging above the minimum. The non-convex networks converge

to a different value, higher. Stage 1 is the only stage in the graph in which the non-convex

networks lead with some margin almost from the beginning. None of the networks classes

seem to have converged, more iterations would be needed, as it has already been advanced

in the figure 7.7 in which we see that stage 1 is not still well positioned.

As for the other two columns, the behavior is similar to the average of the classes,

again the non-convex networks have more variance. On the k-convex networks, the ones

with k = 1 seem to converge faster, mainly in the final stages. Considering that they have

the least numbers of parameters, it makes sense. As for the non-convex networks, in stage

7 the shallow ones have difficulty learning, while in the final stages the networks with 3

layers are the ones that have difficulty, especially that of 14 neurons in each. Those with

two layers do well in all stages.

Finally, figure 7.9 has the mean execution times for each iteration for each network

to the right architecture. We see that both for k-convex and non-convex networks what

affects the time the most is the total number of parameters (cuts and neurons) and not

the complexity (k/layer number). The latter does affect the execution times, but in a less

intense way. As expected for what was discussed in the table 5.1, non-convex networks

have a greater complexity and therefore require more time to be optimized. Note that

in the experiment were used 30 samples (10 of simulation and 20 over the domain) and

therefore the cost to solve a single instance is much lower.

7.1.3 Hyperparameters and Convergence

We can also study how it is the learning process with different combinations of

hyperparameters: the number of samples in the forward pass, the number of random

samples over the domain and the smooth regularization parameter. We have the loss

function for each each combination in the figure 7.10. Note that in situations with 10

random samples over the domain (i.e., the random signal is greater or equal to the signal

of the policy simulation) there is convergence of the models, with loss function values

7.1. Control Problem in One Dimension 79

(1,
 42

)
(2,

 21
)

(3,
 14

)
(1,

 84
)

(2,
 42

)
(3,

 28
)

[42
]

[21
, 2

1]

[14
, 1

4,
14

]
[84

]

[42
, 4

2]

[28
, 2

8,
28

]
0

20

40

60

80

100
Se

co
nd

s /
 It

er
at

io
n

k-Convex (42)
k-Convex (84)
Non-Convex (42)
Non-Convex (84)

Figure 7.9: Execution times in the architecture experiment, per iteration, for different
k-convex and non-convex. Each architecture was trained thrice, and the average is shown
above.

close to zero. The model with only the simulation signal (forward pass) in purple does not

always converge (with this many iterations), but they have a downward trend. Compared

to others, it initially has a slower drop. The red model has just a few random samples on

the domain (5) compared to the number of simulated samples (10), having an accelerated

drop but a high and stable final loss. A positive value for the smooth regularization seems

to accelerate the initial fall of all models.

0 10 20
0.5

1.0

1.5

2.0

2.5

3.0

3.5

Smooth Reg 0

0 10 20

Smooth Reg 0.2

0 10 20

Smooth Reg 0.5

0 10 20

Smooth Reg 1
Sample

(0, 10)
(5, 10)
(10, 10)
(10, 5)
(10, 0)

Figure 7.10: Loss functions for 25 iterations for different combinations of number of for-
ward pass samples, number of random samples over the domain and smooth regularization
factor. The network to the right has two hidden layers with 40 neurons each. Each com-
bination was trained thrice, and the average is shown above.

Being a parameter that increases the exploration region of the state space, it is

interesting to investigate how generalization is affected by the number of random samples

over the domain. For this, the squared difference of the estimated expected future cost

functions and those of the figure 7.1 was calculated. As the simulation begins with an

7.1. Control Problem in One Dimension 80

initial state of value 2, it is very rare that we get to explore a negative state situation.

We have the results in the figure 7.11, for some chosen stages.

102

103

104

105
Stage 1 - Smooth Reg 0 Stage 1 - Smooth Reg 0.2 Stage 1 - Smooth Reg 0.5 Stage 1 - Smooth Reg 1

Sample
(0, 10)
(5, 10)
(10, 10)
(10, 5)
(10, 0)

102

103

104

105

Stage 3 - Smooth Reg 0 Stage 3 - Smooth Reg 0.2 Stage 3 - Smooth Reg 0.5 Stage 3 - Smooth Reg 1

102

103

104

105

Stage 5 - Smooth Reg 0 Stage 5 - Smooth Reg 0.2 Stage 5 - Smooth Reg 0.5 Stage 5 - Smooth Reg 1

0 10 20

102

104

Stage 7 - Smooth Reg 0

0 10 20

Stage 7 - Smooth Reg 0.2

0 10 20

Stage 7 - Smooth Reg 0.5

0 10 20

Stage 7 - Smooth Reg 1

Figure 7.11: Squared differences between the estimated functions and those of figure 7.1
for 25 iterations for different combinations of number of forward pass samples, number of
random samples over the domain and smooth regularization factor. The network to the
right has two hidden layers with 40 neurons each. Each combination was trained thrice,
and the average is shown above.

In purple we have the parametrization with only simulated signal (forward pass).

We see that the squared difference grows with the iterations instead of decreasing. The

model suffers from over-fitting in the explored region, of positive state values. In red we

have a situation with a little signal from random samples. The squared difference seems

to grow and stabilize, but in a level quite below the purple one. All the others, with the

exception of stage 7 with regularization equal to zero, seem to converge to a low squared

difference: good generalization.

Note that in some stages, such as stage 7, the squared difference does not (ignoring

oscillations and considering just the trend) monotonically decrease. If first increases to

then drop.

With the exception of the purple parameterization, which explodes quickly, the

soft regularization with values of 0.2 and 0.5 seem to offer a better behavior (more stable,

lower magnitude) than the zero value and the value of 1.

7.2. Hidrothermal Dispatch Problem 81

7.2 Hidrothermal Dispatch Problem

The definition and modeling of the Hydrothermal Dispatch Problem are given in

section 4.2. Unlike the Control Problem with One Dimension, the Dispatch Problem

is complex enough so that the recursive approach to estimate the expected future cost

function becomes intractable. Therefore, the experiments of this section will not be

compared with a optimum, but with the model that guarantees convergence for convex

problems: SDDP. It was trained with 100 cuts.

The work has numerical results for a real hydrothermal system, the Colombian

system, consisting of 72 hydroelectric and 32 thermal plants. The system has 80 historical

scenarios.

Figure 7.12: Left: The reservoirs are arranged following the topology of the river basins.
The color of a vertex corresponds to its total volume capacity. Vertices in black are a
river mouth. Right: Distance Matrix between each pair of reservoirs. Darker points are
topologically similar pairs.

Each hydroelectric plant has a reservoir. These reservoirs are organized according

to the topology in Figure 7.12. The figure also shows the matrix of distances between

each pair of reservoirs. The expected monthly demand, historical scenarios of rain inflow,

and all the constraints of reservoirs were made available by PSR (https://www.psr-inc.

com/), and are illustrated in the figure 7.13 below. The operation period is 2 years divided

into 24 decision stages.

https://www.psr-inc.com/
https://www.psr-inc.com/

7.2. Hidrothermal Dispatch Problem 82

0 5 10 15 20
Stages

2

4

6

8

10

12

hm
3

Inflow

0 5 10 15 20
Stages

670

680

690

700

710

720

730

740

Ho
ur

s

Duration

0 5 10 15 20
Stages

5.0

5.1

5.2

5.3

5.4

5.5

5.6

M
W

h

1e6 Load

Figure 7.13: Dispatch Scenarios. First graph shows the inflow distribution, the second
shows the length in hours of each stage and the third shows the demand over time. The
last two are deterministic.

7.2.1 Algorithmic Details

Here we have experiments aimed at studying how different algorithm modifications

affect convergence and training. We will study the conditional and memory versions of

the algorithm; whether the pass through the data is in batches or by samples; and what

is the ideal frequency of updating the network weights, at each stage or only at the first

(which is the last in the backward pass). Figure 7.14 below brings the results. All and

Last refers to the frequency of updating; and Batched and Sampled refers to how the

policy simulation data are selected, in order or randomly.

We see that the conditional version and the memory one have different behaviors.

For the algorithm version in which we update the network at each stage, in green and blue

in the graphics, the two strategies quickly converge to a local minimum, regardless of the

type of sampling method. As for the frequency of update, we see a difference. While the

conditional model can converge to a lower level, the use of only one update by iteration

makes the model with memory diverge. The use of random sampling of scenarios takes

the conditional model with only one update to a level even lower than the use of the data

in ordered batches.

In addition, we see that in the conditional model the loss function and the total

cost are highly related when we have a single update.

In the figure 7.15 above we have the average execution time of the algorithms. The

use of memory and the use of ordered batches increase the time.

7.2. Hidrothermal Dispatch Problem 83

0 10 20 30 40
Iteration

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Lo
ss

Loss: Conditional

Batched, All
Batched, Last
Sampled, All
Sampled, Last

0 10 20 30 40
Iteration

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Lo
ss

Loss: Memory

0 10 20 30 40
Iteration

3

4

5

6

7

8

9

10

C
os

t (
1e

9)

Cost: Conditional

0 10 20 30 40
Iteration

3

4

5

6

7

8

9

10

C
os

t (
1e

9)

Cost: Memory

0.5 1.0 1.5 2.0 2.5
Loss

3

4

5

6

7

8

9

C
os

t (
1e

9)

Loss x Cost: Conditional

R2

0.094
0.986
0.011
0.987

0.5 1.0 1.5 2.0 2.5
Loss

3

4

5

6

7

8

9

C
os

t (
1e

9)

Loss x Cost: Memory

R2

0.742
0.0
0.668
0.014

Figure 7.14: On the left we have results with regard to the conditional version, and
on the right with regard to the version with memory. The first row illustrates the loss
function along the iterations. The second illustrates the total cost of the policy along
the iterations. The third shows the relationship between the loss function and the total
cost. All experiments have been repeated 3 times and what is shown is the average.
Parameters: soft regularization of 0.05; a single segment of 100 cuts; batch of size 20; 10
random samples on the domain.

7.2. Hidrothermal Dispatch Problem 84

Batc
h,

All,
Con

d

Batc
h,

La
st,

 C
on

d

Sam
ple

, A
ll,

Con
d

Sam
ple

, L
as

t, C
on

d

Batc
h,

All,
Mem

Batc
h,

La
st,

 M
em

Sam
ple

, A
ll,

Mem

Sam
ple

, L
as

t, M
em

0

20

40

60

80

100

120
S

ec
on

ds
 /

Ite
ra

tio
n

Figure 7.15: Execution times for different versions of the algorithm. Batch: the scenarios
are simulated in ordered batches; Sample: the scenarios are sampled randomly; All: the
network is updated at each stage; Last: the network is updated only in the last step of
the backward pass; Cond: conditional model; Mem: model with memory.

7.2.2 Policy Performance

We will now discuss how the algorithm performs on this dispatch problem. As it

is a convex problem, our baseline is the performance for SDDP, which was 1.27 × 109$.

As seen in figure 7.14, for a network to the right using 100 cuts (convex), the best policy

was that of the conditional algorithm with random samples and single updates. In the

figure, it is not clear if the algorithm has already converged and therefore we can train

it for more iterations. As we see in the figure 7.16, when the algorithm converges, it still

has a much higher expected total cost than that of SDDP, even using the same number

of cuts. So, SDDP learns a better use of these cuts than SNDP.

As though it is a problem with convex future cost function, we can see how a

non-convex policy performs, with the use of a ReLU network to the right. In figure 7.17

we have the evolution for the conditional algorithm with a ReLU network to the right

with architecture with layers 40, 40. We see that the expected total cost comes very close

to the obtained by SDDP. Thus, we can investigate other architectures for the network to

the right and see how they approach the cost of SDDP. A observation regarding the figure

7.17 is that it is not clear by the loss function whether the policy has already converged

or not.

This research regarding the performance of different architectures is illustrated in

figure 7.18. Unlike the previous two, here we show the loss and the minimum cost so

7.2. Hidrothermal Dispatch Problem 85

0 20 40 60 80 100
Iteration

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

Loss

0 20 40 60 80 100
Iteration

1

2

3

4

5

6

7

Co
st

SDDP

Cost

Figure 7.16: On the left we have the loss function over the iterations. On the right we
have the total cost of the policy over the iterations. Parameters: smooth regularization
of 0.05; a single segment of 100 cuts; 20 forward pass samples; 10 random samples on the
domain.

0 10 20 30 40
Iteration

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Lo
ss

Loss

0 10 20 30 40
Iteration

1.5

2.0

2.5

3.0

3.5

Co
st

SNDP (1.34)
SDDP (1.27)

Cost

Figure 7.17: On the left we have the loss function over the iterations. On the right we
have the total cost of the policy over the iterations. Parameters: smooth regularization of
0.05; ReLU network [40, 40]; 20 forward pass samples; 10 random samples on the domain.

far observed throughout the training. This choice was given by the stochastic nature of

the training. In the first figure we see that policies converge to close values in the loss

function, with the conditional policy [20, 20] apparently have full converged. In the second

image we see the same behavior, with the architecture with memory closest to the value

7.2. Hidrothermal Dispatch Problem 86

obtained by SDDP. Unlike SDDP, we see in the last figure that neural policies prefer a

high initial cost and a lower cost in the second peak.

0 10 20 30 40
Iteration

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Lo
ss

Loss
Cond ReLU [20,20]
Cond ReLU [40,40]
Mem ReLU [20,20]

0 10 20 30 40
Iteration

1.2

1.4

1.6

1.8

2.0

2.2

2.4

M
ea

n
To

ta
l C

os
t

SDDP

Total Cost
1.37
1.34
1.32
1.27

0 5 10 15 20
Stage

0.00

0.05

0.10

0.15

0.20

0.25

M
ea

n
Co

st

Cost

Figure 7.18: On the left we have the accumulated minimum loss function along the
iterations. On the center we have the accumulated minimum total cost. On the right
we have the average cost per stage. On grey we have the SDDP policy. Parameters:
smooth regularization of 0.05; conditional ReLU network [20, 20], [40, 40] and with memory
[20, 20]; forward sample size 20; 10 random samples on the domain; update at every stage.

We can now investigate these policy differences. In figure 7.19 we have the distri-

bution for many different variables over the simulation of all scenarios using the different

policies, including the optimal policy (where there is no uncertainty) and the greedy policy

(the immediate lowest cost). We studied total volume, turbined volume, spilled volume,

thermal energy generation and cost.

Let’s go by steps. On the first row we have the distribution of total volume.

Although they differ for specific reservoirs, SDDP has a total volume distribution very

similar to the optimum one. The neural policies follow the pattern somewhat, specially

the network with memory. For the turbined outflow volume, all trained policies stay

around the optimum region, but again SDDP is the closest to the optimum. Spillage is

where the neural policies do not deliver, with some scenarios causing the waste of high

volumes of water, specially at the ending stages.

On thermal generation we see that the optimum policy has quite a different be-

havior compared to the others, with no peak. All learned policies peak around the same

time, but the neural ones differ from SDDP. The latter has a brief moment around stage

5 with almost no thermal generation, which does not happen on the neural policies. The

total cost is similar to the thermal graph, but we see that SDDP is worse than the neural

policies for a specif scenario, showing a huge peak in costs. Considereing that the mean

total cost of all learned policies do not differ that much, is interesting to see how these

learned policies are so unique.

7.2. Hidrothermal Dispatch Problem 87

0
5

10
15

20
St

ag
es

024681012 hm3

Vo
lu

m
es

: O
pt

im
al

0
5

10
15

20
St

ag
es

024681012 hm3

Vo
lu

m
es

: G
re

ed
y

0
5

10
15

20
St

ag
es

024681012 hm3

Vo
lu

m
es

: S
DD

P

0
5

10
15

20
St

ag
es

024681012 hm3

Vo
lu

m
es

: C
on

d
Re

LU
 [2

0,
20

]

0
5

10
15

20
St

ag
es

024681012 hm3

Vo
lu

m
es

: C
on

d
Re

LU
 [4

0,
40

]

0
5

10
15

20
St

ag
es

024681012 hm3

Vo
lu

m
es

: M
em

 R
eL

U
[2

0,
20

]

0
5

10
15

20
St

ag
es

4681012 hm3

Ou
tfl

ow
: O

pt
im

al

0
5

10
15

20
St

ag
es

4681012 hm3

Ou
tfl

ow
: G

re
ed

y

0
5

10
15

20
St

ag
es

4681012 hm3

Ou
tfl

ow
: S

DD
P

0
5

10
15

20
St

ag
es

4681012 hm3

Ou
tfl

ow
: C

on
d

Re
LU

 [2
0,

20
]

0
5

10
15

20
St

ag
es

4681012 hm3

Ou
tfl

ow
: C

on
d

Re
LU

 [4
0,

40
]

0
5

10
15

20
St

ag
es

4681012 hm3

Ou
tfl

ow
: M

em
 R

eL
U

[2
0,

20
]

0
5

10
15

20
St

ag
es

5101520 hm3

Sp
ill:

 O
pt

im
al

0
5

10
15

20
St

ag
es

5101520 hm3

Sp
ill:

 G
re

ed
y

0
5

10
15

20
St

ag
es

5101520 hm3

Sp
ill:

 S
DD

P

0
5

10
15

20
St

ag
es

5101520 hm3

Sp
ill:

 C
on

d
Re

LU
 [2

0,
20

]

0
5

10
15

20
St

ag
es

5101520 hm3

Sp
ill:

 C
on

d
Re

LU
 [4

0,
40

]

0
5

10
15

20
St

ag
es

5101520 hm3

Sp
ill:

 M
em

 R
eL

U
[2

0,
20

]

0
5

10
15

20
St

ag
es

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

MWh

Th
er

m
al

 G
en

er
at

io
n:

 O
pt

im
al

0
5

10
15

20
St

ag
es

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

MWh

Th
er

m
al

 G
en

er
at

io
n:

 G
re

ed
y

0
5

10
15

20
St

ag
es

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

MWh

Th
er

m
al

 G
en

er
at

io
n:

 S
DD

P

0
5

10
15

20
St

ag
es

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

MWh

Th
er

m
al

 G
en

er
at

io
n:

 C
on

d
Re

LU
 [2

0,
20

]

0
5

10
15

20
St

ag
es

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

MWh

Th
er

m
al

 G
en

er
at

io
n:

 C
on

d
Re

LU
 [4

0,
40

]

0
5

10
15

20
St

ag
es

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

MWh

Th
er

m
al

 G
en

er
at

io
n:

 M
em

 R
eL

U
[2

0,
20

]

0
5

10
15

20
St

ag
es

0.
0

0.
5

1.
0

1.
5

2.
0

Units of Money

1e
8

To
ta

l C
os

t:
Op

tim
al

0
5

10
15

20
St

ag
es

0.
0

0.
5

1.
0

1.
5

2.
0

Units of Money

1e
8

To
ta

l C
os

t:
Gr

ee
dy

0
5

10
15

20
St

ag
es

0.
0

0.
5

1.
0

1.
5

2.
0

Units of Money

1e
8

To
ta

l C
os

t:
SD

DP

0
5

10
15

20
St

ag
es

0.
0

0.
5

1.
0

1.
5

2.
0

Units of Money

1e
8

To
ta

l C
os

t:
Co

nd
 R

eL
U

[2
0,

20
]

0
5

10
15

20
St

ag
es

0.
0

0.
5

1.
0

1.
5

2.
0

Units of Money

1e
8

To
ta

l C
os

t:
Co

nd
 R

eL
U

[4
0,

40
]

0
5

10
15

20
St

ag
es

0.
0

0.
5

1.
0

1.
5

2.
0

Units of Money

1e
8

To
ta

l C
os

t:
M

em
 R

eL
U

[2
0,

20
]

Figure 7.19: Summary graphs of the simulations for the dispatch problem for the policies
optimal, greedy, SDDP with 100 cuts, conditional SNDP ReLU [20, 20], conditional SNDP
ReLU [40, 40] and SNDP ReLU with memory [20, 20]. Grey regions represent the intervals
between the quantiles of (25%, 75%), (10%, 90%), (5%, 95%) and (min ,max).

7.2.3 Robustness on Extreme Scenarios

In addition to the average performance, we can study how the algorithms perform

on gradually more extreme cases. In figure 7.20 below, we have the policies learned dealing

7.2. Hidrothermal Dispatch Problem 88

with new scenarios. The scenarios represent the average of the β fraction of the scenarios

with the lowest total influx volume. If β = 1 then we have the average of all scenarios

and if β = 0.5 then our new scenario is the average of the half of the scenarios with the

least water.

1.0
0.875

0.75
0.625 0.5

0.375
0.25

0.125
0.0625

 value

0

1

2

3

4

To
ta

l C
os

t

SDDP
Cond ReLU [20,20]
Cond ReLU [40,40]
Mem ReLU [20,20]

0.75
0.625 0.5

0.375
0.25

0.125
0.0625

 value

0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8

To
ta

l C
os

t /
 S

DD
P

To
ta

l C
os

t

Figure 7.20: On the left we have the cost of the policies. On the right we have the ratio
between the cost of the policy and the cost of SDDP. As SDDP has zero cost for high
values of β, the x axis begins with 0.75. The scenarios represent the average of the β
fraction of the scenarios with the lowest total inflow volume.

We see that SDDP learns a zero-cost policy for the scenarios similar to the average,

slowly increasing its cost until the final quarter, where the cost grows rapidly. Thus, SDDP

learns a good policy for the average, not for the tail, what is expected since it was its

risk measurement. For the SNDP policies the opposite occurs: higher cost compared to

SDDP for average scenarios, and lower than SDDP for the tail. One of the policies comes

to be almost 70% of the cost of SDDP. Interesting to observe that for β ≤ 0.75 the policy

with memory is dominated by the conditional [40, 40].

7.2.4 Model Explanations

In this subsection we will use the techniques described in section 6.1 to analyze the

policies. As described there, we can calculate the importance of states, observations and

memory vector for the different policies. In figure 7.21 we have the absolute importance

aggregated by each of these categories.

7.2. Hidrothermal Dispatch Problem 89

The importance of the states follows the same “corcovado” shape in all policies,

with a gradual rise all the way up to a peak, around half of the planning period, and a

sharper fall. The magnitudes are similar, with the conditional model [20, 20] having a

peak higher than the others.

0 5 10 15 20
Stage

0.0

0.2

0.4

0.6

0.8

M
ea

n
|S

HA
P|

SDDP

0 5 10 15 20
Stage

0.0

0.2

0.4

0.6

0.8

M
ea

n
|S

HA
P|

Cond ReLU [20,20]

0 5 10 15 20
Stage

0.0

0.2

0.4

0.6

0.8

M
ea

n
|S

HA
P|

Cond ReLU [40,40]

0 5 10 15 20
Stage

0.0

0.2

0.4

0.6

0.8

M
ea

n
|S

HA
P|

Mem ReLU [20,20]
Total Volume
Inflow
Memory

Figure 7.21: Input importance for the future cost function of different policies.

This information is relevant for lawmakers and managers, in which a specific reser-

voir may have a greater (in absolute value) importance than the others, requiring special

attention. In real situations it is not always possible to follow the policy and therefore it

is useful to keep in mind those reservoirs of greater impact on future costs.

As for the importance of the inflow, we see that the three policies actually use

this information to adjust the future cost. The conditional policy [40, 40] even gives more

importance to the inflow observed at the beginning of the period than the current volume

of the reservoirs. If the different scenarios already differ from the beginning, the policy

can learn to identify the corresponding future and prepare for it at the present. Beyond

the peak, the importance of the inflow for the three policies decreases. Following the

previous hypothesis, as we have less future to worry, the importance of identifying in

which type of scenario we are decreases. Memory policy attributes importance to past

states, less than to the other two categories, but nonetheless taking temporal information

into consideration.

Next we have the relationship between the importance of a state entry (e.g., a

reservoir level) and the state entry itself. In figure 7.22 we have the average PP score for

each reservoir volume and its importance over the stages for all policies.

Interestingly, in the SDDP policy the relationship between the SHAP value of a

state and the value of the state itself is similar to all reservoirs and decreases with time.

That is, as the stages progress, the policy starts to use other information than the reservoir

level itself (i.e. uses the other reservoir levels) to determine the importance of a hydro.

Its importance now depends on the other states, while initially it almost only depended

on itself. In other words, the impact of a change on the volume of one of the reservoirs

depends on the volume of the other reservoirs.

This behavior does not happen in the other policies. In the conditional [20, 20]

the PP values are high in different reservoirs and stages. The importance of a reservoirs

7.2. Hidrothermal Dispatch Problem 90

0

5

10

15

20

St
ag

es
SDDP

0

5

10

15

20

St
ag

es

Cond ReLU [20,20]
0

5

10

15

20

St
ag

es

Cond ReLU [40,40]
0

5

10

15

20

St
ag

es

Mem ReLU [20,20]

0 5 10 15 20
Hydros

0 5 10 15 20
Hydros

0 5 10 15 20
Hydros

0 5 10 15 20
Hydros

0.00

0.12

0.25

0.38

0.50

0.62

0.75

0.88

1.00

Score

Figure 7.22: Relationship between importance and reservoir levels. Stage means (left)
and spatial means (bottom) are shown for all policies.

depends, in general, largely only on the state itself. The conditional policies for the [40, 40]

network and [20, 20] with memory have a few reservoirs that consistently have an impact

almost independent of the volume itself.

7.2.5 Future Cost Function Curvature

Here we will expose the proposed methodology of using the curvature to study a

given future cost function. The idea is to show as a proof of concept how the curvature

attributes can help in the analysis of the future cost functions. The figure 7.23 illustrates

the stages and results of the process, which has already been explained in section 6.2, for

the future cost function of the first stage of SDDP: points on the manifold are sampled and

these points are projected to a smaller dimension; the future cost value for a whole region

is interpolated; the different curvature attributes are calculated in the low dimension; the

surface local shape and the anomality of a point are calculated.

When we better study the image 7.23, mainly the local shape chart and the one that

shows the clusters of anomalies, we see that many of the so-called anomalous points are

in the contour of the shape regions similar to a plane. This behavior change is markedly

anomalous compared to the other points.

It becomes of our interest to investigate the reasons of a point to be classified or

not as an anomaly. The graphs of figure 7.24 show the SHAP values for the anomaly

detection algorithm. We see that some attributes (Dip Angle; Mean Curvature; Gaussian

Curvature; Max Curvature; Curvedness) have a much higher response than the others,

but not every group has the same behavior. In figure 7.25 we see which attributes had the

highest (in absolute value) average importance in the cluster. By their definitions, high

values of Curvedness (curvature magnitude), Dip Curvature (curvature in the direction

of greater change) and Contour (curvature of the contour line) show a sharp change in

7.2. Hidrothermal Dispatch Problem 91

Figure 7.23: The graphs in order: sampled points in the reduced coordinates, with the
study region in light blue; the value of the future cost for the entire interpolated region;
one of the calculated curvature attributes, the most negative curvature; same attribute
but with coordinates in a regular polygon; points classified as anomalous; anomalous
points grouped in spatial clusters (colors are repeated); and local surface shape.

at least one direction. The anomalous points are thus, at least on this lower dimensional

representation, of deserving our attention.

The group that had Most Positive Curvature as the most important on average

seems to be a more heterogeneous group, in which the spatial grouping does not correspond

to a similar curvature behavior. We see that some of the points on that group attribute

importance to other features such as Dip Curvature and Contour.

For the local shape we can check whether in general they have distinct profiles with

respect to the coordinates, that is, with the volumes of the reservoirs. In figure 7.26 we

have the profiles of each type of local shape, regardless of space proximity in the reduced

manifold. On the left we have the average levels for each reservoirs and on the right the

aggregate of all reservoirs. We see that the orders of the reservoirs of the planar regions

and of the convex ellipsoid are similar. Both have a average reservoir levels greater than

the others. Although the orders are similar, the planar regions have greater variance

between the volumes of the individual reservoirs.

The concave, ellipsoid or cylindrical, regions are those we the least total volume

and their lower-level reservoirs are those with the highest level in the other two previous

regions. They then function as the opposite behavior. The hyperbolic and convex cylin-

drical regions have more uniform volumes, closer to half. Thus, their total volumes are

between the previous two groups.

Low magnitude values can deceive us as to the real local shape. By considering

7.2. Hidrothermal Dispatch Problem 92

Figure 7.24: SHAP values of the curvature attributes for anomaly detection.

Figure 7.25: Attribute with the greatest average absolute importance for each group.

that values {x : |x| ≤ ϵ} are zero for different ϵ, we can study how local shapes change. In

figure 7.27 we have the fraction of the interpolated points that are locally hyperboloid for

all stages. We see that this behavior is less robust for the initial stages (this hyperboloid

behavior is weak), while quite robust for the final stages.

This statistics, the fraction of the interpolated points that are locally hyperboloid,

allows us to compare the different models regarding the behavior of the learned functions.

7.2. Hidrothermal Dispatch Problem 93

0 5 10 15 20
Hydros

Convex ellipsoid

Concave ellipsoid

Hyperboloid surface

Plane

Convex cylinder

Concave cylinder

Gr
ou

p

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.0 0.1 0.2 0.3 0.4 0.5
Total Volume

Convex ellipsoid

Concave ellipsoid

Hyperboloid surface

Plane

Convex cylinder

Concave cylinder

Gr
ou

p

Figure 7.26: Local Shape average profiles. The average volume for the local shapes. left:
the average volume of each reservoir with a maximum volume greater than zero. the order
of the reservoirs is the order of the average volume on the elliptical convex region. Color
represents the fraction of the volume of the reservoir. right: the fraction of the maximum
capacity occupied by water for each of the profiles.

Figure 7.27: Percentage of interpolated points which are in hyperboloid regions for dif-
ferent values of ϵ over the stages, in which {x : |x| ≤ ϵ} are considered zero.

In figure 7.28 we have this comparison. Neural models are much less locally hyperboloid

than the policy learned by SDDP.

We can also see how the new coordinates relate to the original coordinates. In

figure 7.29 below we have the total volumes set in the new coordinates. As the points

were interpolated directly from the reduced region, we can see the original coordinates

(the sum at least) of the closest sampled point in the transformed coordinates. That is,

the Voronoi diagram [107] of the sampled points.

We see that there is a relationship between the two, in which points in the upper

left region have a total volume below the average, and points in the lower right corner

have a total volume above the average. So information about the original coordinates are

preserved in this lower dimensional representation.

7.3. Optimal Power Flow Problem 94

Figure 7.28: Percentage of interpolated points which are in locally hyperboloid regions for
different models over the stage, using ϵ = 6.25 ·10−5, in which {x : |x| ≤ ϵ} are considered
zero.

Figure 7.29: Voronoi diagram of the sampled points but on the reduced manifold, colored
by the total volume of that point (a proxy for the original coordinates). On the right, the
histogram of total volumes.

7.3 Optimal Power Flow Problem

In this section we have experiments with synthetic data for the Optimal Power Flow

Problem, described in section 4.3. Because it is a problem of non-convex optimization,

its computational cost is high and we opted for the use of small instances. The intention

is only to show it as proof of concept that the proposed algorithm can be used for this

problem. To the extent to what is known by the authors, it is the first time that methods

like these are used for non-convex problems that are not MIPs. We first have a discussion

on the data used and then two sub-sections with some results.

7.3. Optimal Power Flow Problem 95

7.3.1 Test Scenarios

The Illinois Center for a Smarter Electric Grid (ICSEG), belonging to The Grainger

College of Engineering at The University of Illinois Urbana-Champaign, maintains a

repository of publicly available power flow architectures without confidentiality (https:

//icseg.iti.illinois.edu/power-cases/), including synthetic architectures and ar-

chitectures commonly used by literature. For example, the architecture used in the work

[43], used in our problem modeling, was the IEEE 57-Bus System (https://icseg.iti.

illinois.edu/ieee-57-bus-system/).

However, in this work it was chosen to use synthetic instances only as proof of

the concept that the algorithm could be used for this problem. Thus, the values and

architectures used do not represent real contexts nor necessarily plausible situations and

magnitudes.

The demands were simulated in a cosine-like way, adding gaussian noise and ad-

justing the scale. An example of sample is given in figure 7.30.

0 2 4 6 8 10 12 14

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 7.30: Demand Scenario Sample.

As for architectures, two different instances were chosen: a triangular graph (K3);

and a random planar graph. We’ll now discuss both.

The first instance is simpler. It consists of three buses, all three with generators,

with one of them having a demand greater than its own generation capacity and another

one having a battery. The third bus acts as a second possible path between the battery

and the demand. The architecture is schematized in figure 7.31 below. The cost and

constraints constants are described in table 7.1. The admittance matrix Y = 1/Z was

built from Z = R + jX in which X = R = ATA,A ∼ N (0, 0.1).

For the second experiment, the work of [40] was taken as inspiration, in which

some strategies of creating random topologies for the graphs are discussed superficially.

https://icseg.iti.illinois.edu/power-cases/
https://icseg.iti.illinois.edu/power-cases/
https://icseg.iti.illinois.edu/ieee-57-bus-system/
https://icseg.iti.illinois.edu/ieee-57-bus-system/

7.3. Optimal Power Flow Problem 96

0

1

2

Figure 7.31: Simple Network.

Constants Bus 0 Bus 1 Bus 2
Constant cost of P 0 0 0
Linear cost of P 1 1 1
Quadratic cost of P 2 2 2
Linear cost of ∆PE 2 2 2
Quadratic cost of ∆PE 4 4 4
Linear cost of ∆QE 2 2 2
Quadratic cost of ∆QE 4 4 4
Battery efficiency η - 1 -
Minimum battery charge Bmin - 0 -
Maximum battery charge Bmax - 2 -
Minimum charging rate Rmin - -0.5 -
Maximum charging rate Rmax - 0.5 -
Minimum of real generation Pmin 0 0 0
Maximum of real generation Pmax 0.5 0.5 0.5
Minimum of imaginary generation Qmin 0 0 0
Maximum of imaginary generation Qmax 0.5 0.5 0.5
Minimum of real flow Pmin

ij ∀j -0.5 -0.5 -0.5
Maximum of real flow Pmax

ij ∀j 0.5 0.5 0.5
Minimum of imaginary flow Qmin

ij ∀j -0.5 -0.5 -0.5
Maximum of imaginary flow Qmax

ij ∀j 0.5 0.5 0.5
Difference without penalization ∆P 0.05 0.05 0.05
Difference without penalization ∆Q 0.05 0.05 0.05
Maximum quadratic flow Sij ∀j 1 1 1
Maximum thermal loss Lij ∀j 0.01 0.01 0.01
Minimum of real power Re(v) 0 0 0
Maximum of real power Re(v) 100 100 100
Minimum of imaginary power Re(v) 0 0 0
Maximum of imaginary power Im(v) 100 100 100

Table 7.1: Constants for the optimal power flow problem.

It is known that the stations do not relate arbitrarily, but are limited to the physical

infrastructure, following geographical relationships. A technique that takes into account

this geographical relationship is the Delaunay Triangulation [25], which connects vertices

7.3. Optimal Power Flow Problem 97

in a neighborhood. This triangulation differs from others by creating triangles whose

circumcircles do not contain other points. In this way the triangles are well behaved

and connect vertices that are nearby, which is likely in energy systems. In addition, the

triangulation generates planar graphs with average degree which does not depend on the

size of the network.

The second experiment is thus based on the Delaunay triangulation. The method-

ology is illustrated in figure 7.32: samples are taken on the plane; the graph is created

through the triangulation; edges are drawn to be removed (without disconnecting the

graph) in order to reduce the average degree; the vertices are drawn to wether they even

have demand and/or batteries.

Delaunay triangulation
of random points

0

1

2

3

4

5

Removal of edges

0

1

2

3

4

5

Addition of load
and batteries

Figure 7.32: Generation of Synthetic Networks.

In the above figure 7.32, the green vertices represent the buses. The yellow border

vertices have demand as described above and the blue border ones are batteries. Every

node has some generating capacity.

The same constants as the triangular instance were used. The admittance matrix is

created in a manner similar to that of the previous instance, but the entries that represent

non-edges are zeroed out.

7.3.2 Triangular Instance Convergence

In this experiment and in the following one, 5 simulation samples and 5 random

samples over the domain were used. The network to the right is a 5-convex manifold with

10 cuts each and was trained by 40 iterations, in the conditional version of the algorithm.

After the training, it was possible to estimate lower and higher estimates for the total

cost:

7.3. Optimal Power Flow Problem 98

Model Min Q1 Q2 Q3 Max
Greedy 2.41 7.15 7.98 9.76 13.30
SNDP 2.88 5.82 6.61 8.38 11.58

Table 7.2: Summary table for the triangular instance total cost.

First, we have the evolution of the loss function in figure 7.33 below. We see that

it falls quickly in the first 7 iterations, stabilizing and even growing over the next 25

iterations, to finally fall again. Without the actual future cost function it is difficult to

know exactly what’s going on in the network during that period.

0 5 10 15 20 25 30 35 40

10 1

100

Figure 7.33: Loss function for the Optimum Power Flow problem on the triangular in-
stance.

As a smaller instance, we can investigate more in depth each of the control and

state variables and study the dynamics learned. In figure 7.34, we have varied summary

graphs of the simulations. The first graph shows the distribution of demand at node 0,

cosine-like with increasing variance. The second graph shows the distribution of costs per

stage. As we will see below, in the initial state the generators are in their high-generation

state of energy, much higher than the initial demand, and therefore there is a greater

initial cost. In certain stages, it is even beneficial to have a fast decay, with effective

delta greater than zero. We see that this extra energy is smartly stored in the battery,

and not simply discarded. From that moment onwards, the cost distribution is similar

to the demand, but slightly flattened by the use of the batteries energy. There is though

a scenario in which the stored energy is not enough for the flattening and the quadratic

cost shows its dangers.

When you check the graphs of the generators, the generator in the battery bus

stands out. It only generates the minimum needed while there is still energy on the

battery. We see that at the end there is a relative increase, but even the Q3 quantile

it is around 0.15, relatively low compared to the other generators. As discussed earlier,

there are scenarios of greater demand in which the battery is rapidly exhausted and that

7.3. Optimal Power Flow Problem 99

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.0

0.2

0.4

0.6

0.8

Load at bus [0]

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
Costs

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Batteries at bus [1]

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Real Power at bus [0]

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Real Power at bus [1]

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Real Power at bus [2]

0 5 10 15
0.00

0.02

0.04

0.06

0.08

0.10

0.12
Effective Power Delta at bus [0]

0 5 10 15
0.00

0.02

0.04

0.06

0.08

0.10

0.12
Effective Power Delta at bus [1]

0 5 10 15
0.00

0.02

0.04

0.06

0.08

0.10

0.12
Effective Power Delta at bus [2]

Figure 7.34: Summary graphs for the optimal power flow problem on the triangular
instance. The gray regions represent the intervals between the quantiles of (25%, 75%),
(10%, 90%), (5%, 95%) and (min ,max).

generator starts to act like the others, which causes a greater cost. For the effective

difference, in the vast majority of scenarios these values are close to zero, with some

outlier scenarios.

In the graphs of figure 7.35, we have the power flow between the network nodes.

The flows are not symmetrical because we have thermal loss during transmission, but are

approximately well similar in absolute value. What we see is a constant flow from buses

1 and 2 to bus 0, while the flow between 1 and 2 can change direction, assuming both

negative and positive values. This last flow is smaller in absolute value than the other

two. This is a less efficient way of transmission from to energy storage to the demand.

Similarly, we can study the thermal loss of the flows. Note that they are minimal,

even when there is the need, in one or another scenario, of an atypical flow. As for the

current, which is not part of any constraint of the problem and only arises by the Ohm’s

Law, it has a large variance.

7.3. Optimal Power Flow Problem 100

0 5 10 15

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Flow of Real Power at [0,1]

0 5 10 15

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Flow of Real Power at [0,2]

0 5 10 15

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Flow of Real Power at [1,0]

0 5 10 15

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Flow of Real Power at [1,2]

0 5 10 15

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Flow of Real Power at [2,0]

0 5 10 15

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Flow of Real Power at [2,1]

Figure 7.35: Flow graphs for the triangular instance. The gray regions represent the
intervals between the quantiles of (25%, 75%), (10%, 90%), (5%, 95%) and (min ,max).

7.3.3 Planar Instance Convergence

The instance tested here is illustrated in the last third of the figure 7.32. The

training parameters used were the same as in the previous experiment, with the exception

of the number of cuts that was duplicated, given that the state of the problem is twice

its size. Thus, the number of parameters to be learned is 4 times greater. Below, in the

table 7.3, we have summary statistics for the total costs in the training scenarios. We

see that in general the model learned has a lower cost than the greedy strategy, with the

exception of the most extreme case, in which the policy learned is not well adjusted. As

we see in the figure 7.38, the network seems to not yet have converged, and thus it could

be even better. Other strategies could be the use of a larger or more powerful (ReLU

netowrk) architecture for the network to the right; to sample states in the regions closer

to the ones obtained by simulation this scenario; or to increase the appeareance of this

scenario during training.

Because it’s a more complex instance, with more buses and connections than the

7.3. Optimal Power Flow Problem 101

0 5 10 15
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

Thermal Loss at [0,1]

0 5 10 15
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

Thermal Loss at [0,2]

0 5 10 15
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

Thermal Loss at [1,2]

Figure 7.36: Thermal loss graphs for the triangular instance. The gray regions represent
the intervals between the quantiles of (25%, 75%), (10%, 90%), (5%, 95%) and (min ,max).

0 5 10 15
0

2

4

6

8
Current at bus [0]

0 5 10 15
0

2

4

6

8
Current at bus [1]

0 5 10 15
0

2

4

6

8
Current at bus [2]

Figure 7.37: Current graphs for the triangular instance. The gray regions represent the
intervals between the quantiles of (25%, 75%), (10%, 90%), (5%, 95%) and (min ,max).

previous, it’s more difficult to study each variable individually. In figure 7.39 and 7.40 we

have some summary graphs for the greedy strategy and for SNDP.

7.3. Optimal Power Flow Problem 102

Model Min Q1 Q2 Q3 Max
Greedy 7.2 11.39 12.42 15.65 24.49
SNDP 6.7 9.51 11.64 13.67 27.79

Table 7.3: Summary table for the planar instance total cost.

0 10 20 30 40 50

100

Figure 7.38: Loss function for the Optimum Power Flow problem on the planar instance.

The first difference between the two is in terms of the distribution of costs. The

learned policy opts for a slightly higher cost in the early stages due, as we will see, to a

faster decrease in the levels of energy generation (initially higher than the demand). Then

the costs of the greedy strategy follow a seasonal pattern similar to that of the demand.

In the learned policy, this seasonal pattern is also observed, but, with the exception of

a more extreme scenario, the costs are lower than that of the greedy policy. The policy

learned how to flatten the costs.

In all generators, there is more variance in the early stages in the learned policy

than in the greedy one. Generators at the buses 0, 3 and 5 are similar in both policies.

Generator 1 in the learned one, with the exception of a discordant scenario, is used with

much less intensity. Generator on bus 2 is kept at much lower levels. Generator at bus 4

starts to have a larger variance.

As for the use of batteries, here we have a great difference. The learned policy

prefers to save part of the energy to amortise the peaks of seasonal demand, rather than

to use in the initial stages that do not have a lot of demand. As the cost of generation

is quadratic, flattening the costs has some utility. The battery at bus 1, which has only

a direct connection to one of the buses with demand, is less used and can provide power

during the two peaks. The other battery, connected to both load nodes (nodes with

demand), is emptied at the first peak. Here we can understand the problem of this policy

as regarding the extreme case. The two batteries are not able to maintain their levels

and finish before the first peak. At the same time, the generators are at lower levels of

generation, requiring a large quadratic cost to increase them for the first peak. See bus

7.3. Optimal Power Flow Problem 103

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.0

0.2

0.4

0.6

0.8
Load at bus [2]

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.00

0.25

0.50

0.75

Load at bus [5]

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0

1

2

3

Costs

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.0

0.1

0.2

0.3

Real Power at bus [0]

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.0

0.1

0.2

0.3

Real Power at bus [1]

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.0

0.1

0.2

0.3

Real Power at bus [2]

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.0

0.1

0.2

0.3

Real Power at bus [3]

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.0

0.1

0.2

0.3

Real Power at bus [4]

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.0

0.1

0.2

0.3

Real Power at bus [5]

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.00

0.25

0.50

0.75

1.00
Batteries at bus [1]

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.00

0.25

0.50

0.75

1.00
Batteries at bus [4]

Figure 7.39: Summary graphs for the optimal power flow problem on the planar instance
using the greedy strategy. The gray regions represent the intervals between the quantiles
of (25%, 75%), (10%, 90%), (5%, 95%) and (min ,max).

1. As the algorithm is conditioned only on the current observation, it would be possible

that, if it knew something about the trend, it learned the battery levels are going to be

insufficient and that it is necessary to increase generation earlier.

Following, we have in figure 7.41 the graphs that show the average flow of real

power and the average thermal loss. As the thermal loss is symmetrical, only one of the

directions is shown. We see that the connections (1,5) and (4,2) have the highest flow,

followed by the (4,5), (3,2) and (0,2). The first three represent the batteries powering the

demands, while the last two are power reaching bus 2 by sources other than battery in 4.

Bus 5 has the connections with the highest thermal loss, possibly by its centrality in the

grid.

Finally, we have in figure 7.42 the average current values in the stages for all buses.

With the exception of the last two stages, the current values are very small. It is possible

to see an increase in the current in the stages of lower demand (2, 3, 8 and 9).

7.3. Optimal Power Flow Problem 104

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.0

0.2

0.4

0.6

0.8
Load at bus [2]

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.00

0.25

0.50

0.75

Load at bus [5]

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0

1

2

3

Costs

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.0

0.1

0.2

0.3

0.4

Real Power at bus [0]

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.0

0.1

0.2

0.3

0.4

Real Power at bus [1]

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.0

0.1

0.2

0.3

0.4

Real Power at bus [2]

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.0

0.1

0.2

0.3

0.4

Real Power at bus [3]

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.0

0.1

0.2

0.3

0.4

Real Power at bus [4]

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.0

0.1

0.2

0.3

0.4

Real Power at bus [5]

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.0

0.5

1.0

Batteries at bus [1]

0.0 2.5 5.0 7.5 10.0 12.5 15.0
0.0

0.5

1.0

Batteries at bus [4]

Figure 7.40: Summary graphs for the optimal power flow problem on the planar in-
stance using the SNDP. The gray regions represent the intervals between the quantiles of
(25%, 75%), (10%, 90%), (5%, 95%) and (min ,max).

0 1 2 3 4 5

0

1

2

3

4

5

Mean Flow of Real Power

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0 1 2 3 4 5

0

1

2

3

4

5

Mean Thermal Loss

1e-05

2e-05

3e-05

4e-05

5e-05

Figure 7.41: Flow and thermal loss graphs for the planar instance.

7.3. Optimal Power Flow Problem 105

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Stage

0

1

2

3

4

5

Bu
s

Mean Current

10 2

10 1

100

Figure 7.42: Current graphs for the planar instance.

106

Chapter 8

Conclusion and Future Work

In this chapter we have a discussion about what has been achieved throughout the work,

as well as possible paths for its continuation.

8.1 Conclusion

The work proposed here had two main contributions: a new algorithm to solve

MSSO problems, convex or not; and a set of methodologies aimed at understanding the

behavior of this and other algorithms regarding the decisions taken.

8.1.1 Stochastic Neural Dynamic Programming

As the main object of the work we have the proposal of a new algorithm that

seeks to use the prediction power of the neural networks to solve multi-stage stochastic

optimization problems, convex or not. Based on the SDDP algorithm, the use of neural

networks imposes two main obstacles, the way to model the future cost functions as neural

networks during the inference; and the way to train the weights of the network, since

the external solvers of the subproblems are not differentiable. For the first, an integer

programming model was used and incorporated to the subproblem. For the second, a

new loss function was proposed which allows the algorithm to work similarly to SDDP,

to iteratively modify the future cost function. By experimenting the algorithm in three

different problems, we see that the proposed technique was capable of training the network

weights.

In the experiments of the control problem in one dimension we see that the network

approximates well the actual future cost function. As for the dispatch problem, which we

8.1. Conclusion 107

know is convex, the algorithm cannot reach the SDDP level, having an average total cost

about 4% greater. As for the problem of optimal power flow, there is no use in literature

of these algorithms for this non-convex problem. But we see that the learned policy is

superior to the naive one.

A limitation of the proposed algorithm is that it can be computationally expensive,

especially for problems with many decision variables and stages, since the iterative process

of improving the network requires solving a considerable number of MILP (or MIQP)

subproblems. Unlike SDDP that uses convex cuts, the networks on the right are integer

programming and the increase in their capacity implies a greater computational cost.

The use of neural networks allows us to go beyond optimizing only the average (or

other expected risk measurement), as we can condition our predictions on the observations,

in latent information or even in temporal trends (hidden states). There’s no longer the

need to limit ourselves to probabilistic independence between the stages uncertainty.

8.1.2 Future Cost Function Explanations

In addition to solving the proposed problems, being long-term applications in the

real world, it is of interest to understand the reasons why a certain decision is preferable,

as well as the risks it can bring. This is not a trivial task and its objectives are not always

clear. This work proposes a set of methodologies that can help in this analysis, but there

is no single way of using them. The approaches work with the use of two main techniques,

SHAP and curvature of surfaces. All the methodology has been applied to the problem

of hydrothermal dispatch for the Colombian System.

The use of SHAP allows us to understand two things: how the reservoirs and

other variables (observations, hidden states) affect the future cost of a decision; how the

reservoirs interact with each other. As for the first, we can see how the different models

learn quite different policies by not giving the same importance to the reservoirs over time.

In a situation in the real world, it is not always possible to replicate the decision of the

algorithm, so it is important for the operator to know what are the critical points of the

system for the current model. As for the second part, we see that the models also differ

on the relationship between the reservoirs, while SDDP is practically taking independent

decisions at the beginning, the neural models have dependency since the beginning.

The idea of using curvature metrics for the future cost function arises when mi-

grating the policy learned to the real world. In real applications, it is not always possible

to accurately replicate the best decision of the algorithm. However, we don’t know if the

neighborhood of the best decision has a similar behavior or if there is a sudden change

8.2. Future Work 108

with great long-term impacts. To quantify this, we can see how the function behaves

locally. The use of curvature opens space for a range of possible analyses of that local

shape.

8.2 Future Work

Here we have a brief discussion on possible research paths to enhance the algorithm.

The paths are 4: when do we have a convergence guarantee; what are possible performance

improvements both at the algorithm level and at the implementation level; how can we

use the insights of the curvature method during inference; and about other applications

that the method could be applied to.

8.2.1 Convergence Guarantees

This work does not deal with convergence guarantees, only delineating an inductive

argument in the section 5.1. Thus, it would be of our interest that it does not support

itself only by experiments, since the decisions taken by it possibly have great financial,

environmental etc. impacts.

The objective would be to show that for a given problem and architecture of

network to the right the model converges in a finite amount of steps to the surroundings (a

ϵ error) of the optimal policy. The better the architecture and the easier the problem, the

lower would be the surrounding region when converging. It is possible that an architecture

is not able to represent the future cost function, even if conditioned to the observations.

In this case, the model would not converge. Therefore, there would be questions if the

algorithm always converges, and if not, when does it converge.

Unlike other MSSO algorithms, which by construction create lower bounds of the

actual future cost function, SNDP algorithm has no type of theoretical technique, only

through simulation. Another question would then to study mechanisms that estimate

lower or higher bounds of the future cost function in a non-simulated way. It is not clear

at the time which would be these mechanisms.

8.2. Future Work 109

8.2.2 Computational and Algorithmic Convergence

The performance gains are divided into algorithmic changes and implementation

changes. In the first we still have another division, of how to modify the current flow of

the algorithm and using the subproblem solution data in a more efficient way; and that

of using other theoretical constraints that could ensure better efficiency.

The first question then would be about the best way to use the subproblem so-

lutions. Being the most expensive part of the algorithm, would it be possible to use

a smaller number of solutions steps? A strategy on this path is about the penultimate

stage, i.e. the last future cost function, in which each subproblem sample the actual future

cost, not an estimate. It could make sense to keep all these samples over the iterations

to strengthen the learning of this specific future cost function, in the hope that learning

propagates to the other stages.

A theoretical constraint would be on the networks to the right. This work used

the modeling 3.8 to represent the ReLU networks within the subproblems. Other mod-

elings exist. How do they compare to each other regarding their relaxations? There is a

modeling that its relaxation is always closer to the solution compared to the others? In

other words, a more compact one? In addition, throughout the experiments we treated

the architectures arbitrarily, only observing their predictive performance. Are there ar-

chitectures that, for a given modeling, their relaxations are always closer to the integral

solution? By some symmetry, the number of layers and the number of neurons per layer

could affect the relaxation of the network. Knowing that it is possible to model matrix

convolution as a matrix multiplication [78], it could be possible that a convolutional net-

work has a relaxation more or less tighter to the solution. Of course the represented state

has to possess some spatial relationship. Another architectural change is the use of rigid

attention [111]. Is its relaxation compact? We could still compare sparse networks and

verify if there is any gain. Many such questions can be studied.

We saw that neural networks can model an exponentially larger number of linear

regions. There are several integer programming problems whose modeling with an expo-

nential number of variables and constraints through the use of lazy constraints have better

experimental performance than polynomial modelings because their relaxations are more

compact. Would it be possible to list all the linear regions of a ReLU neural network and

model it with lazy constraints?

There are also theoretical improvements that can be studied over the course of

a training. As the training advances, the most explored region of the state space will

have its future cost with greater resolution than other regions. How does this affect the

optimization of a ReLU network? Is it more or less compact?

On the convergence of the weights for the network to the right, recent work [82]

8.2. Future Work 110

proposes a reparametrization of the output network weights that experimentally shows

more stable and fast convergence. The proposed modifications do not cause an increase

in cost in training or in inference and therefore show themselves as a simple modification

to the algorithm.

Figure 8.1: With the NPA reparametrization, the hyper-net input γ is first projected into
a vector space of constant norm and its predictions ∆θ are summed to a set of learned
parameters θ0 independent of the input γ. Figure by [82].

Finally, we have possible implementations improvements. In the algorithms de-

scribed in section 5.1, it is noted that the loop over the samples the samples can be easily

parallelized. But deeper changes can be tested. In the article for SDDP [86], the authors

instead of solving the subproblems as linear programs, they use an algorithm inspired

by the problem of maximum flow in networks whose performance is better. So, it would

be interesting if the modeling here proposed could be incorporated into the specific al-

gorithm of a subproblem. It doesn’t seem trivial to minimize the non-convex networks

efficiently, but the manifolds of k-convex for small k can be useful. In general, one can

still experiment other solvers besides integer programming ones. A new neural method

[33] can solve the traditional Optimum Power Flow problem (single stage, no batteries) in

a tenth of the time specific solver for the problem require, which are already faster than

the integer quadratic programming solvers used in this work. As it also require a training

step, one may wonder how to combine the two algorithms so that both train at the same

time.

8.2. Future Work 111

8.2.3 Curvature

In this work, curvature was used to study the local shape and the presence or not

of anomalies on the surfaces of the future cost functions. That is, an analysis post hoc of

the model. But would it be possible to introduce part of the analysis back to the decision

making? See image 8.2.

Model
Inference

FCF

Curvature

FCF

New Constraints

Figure 8.2: It is possible to incorporate constraints into the original model based on what
is observed in the curvature plots.

If we are able to identify unwanted regions in the state space, hyperboloid or

anomalous, we can introduce to the model during inference (model will no longer be

trained) new constraints that force the optimal choice to penalize or even avoid these

regions.

In [97], the authors study optimization problems in a geometric context. Some

of the problems can be incorporated as quadratic constraints or penalties to our sub-

problems. See for example figure 8.3. It illustrates the problem of finding the minimum

distance between two polytopes. If we know how to represent the regions to be avoided

as polytopes, we can add a quadratic penalty or constraint for this distance distance.

To minimize the distance between polytopes we have:

min
x∈Rn

xTCTCx (8.1)

r∑
i=1

xi = 1,

n∑
i=1

xi = 1,

x ≥ 0

8.2. Future Work 112

Figure 8.3: Polytope distance (primal and dual version). Figure by [97].

It may be that decision makers do not want to remove the solution from a prob-

lematic region, but rather to bring it to a well behaved region. One can then minimize

the smallest ball, ring or ellipse that contains both the solution and the points on the

area of interest. Figure 8.4 illustrates the three problems

Figure 8.4: Geometric Optimization Problems. (Top, Left) Smallest enclosing ball. (Top,
Right) Smallest enclosing Annulus. (Bottom, center) Smallest enclosing ellipse. Figures
by [97].

We have, respectively, the problems of the smallest enclosing ball 8.2, annulus 8.3

and ellipse 8.4.

8.2. Future Work 113

min
x∈Rn

xTCTCx−
n∑

i=1

pTi pixi (8.2)

n∑
i=1

xi = 1,

x ≥ 0,

in which P = {p1, ..., pn} is the set of points and C é a the matrix (p1, ..., pn). The

center of the smallest enclosing ball is given by
n∑

i=1

pix
∗
i and its radius is the square root

of the minimum cost in x∗.

min
x∈Rn

β − α (8.3)

d∑
j=1

2pijcj ≤ pTi pi − α, i = 1, ..., n

d∑
j=1

2pijcj ≥ pTi pi − β i = 1, ..., n

where P = {p1, ..., pn} is the set of points. The radii are given by r2 = α∗ + ∥c∗∥2

and R2 = β∗ + ∥c∗∥2.

min
x∈Rn

− log det (M) (8.4)

(pi − c)TM(pi − c) ≤ 1, i = 1, ..., n

M is positive definite,

in which P = {p1, ..., pn} is the set of points.

These modelings are, respectively, a quadratic program, a linear program and a

convex program. The latter, when in two dimensions, reduces to a quadratic program-

ming.

8.2.4 Other Applications

Finally, we can investigate how the algorithm proposed here can be used for other

applications other than MSSO problems.

8.2. Future Work 114

Current Stage

Observed Data

Solution

Cost + Future Cost

Subproblem cost independent
of network size

Subproblem cost depends on
network size

Fully
Connected

(b)(a)

Subproblem

FCF Weights

Constraints
Constraint values

Figure 8.5: SNDP Schema conditionated on different problem setups.

One first application would be about the impacts on the future cost of a change

in the infrastructure of a problem, for example the construction of a new reservoir or the

connection of two buses in the network. A simple strategy is to train two networks, before

and after the modification, and check how the cost changes. For the study of multiple

simultaneous modifications this strategy does not scale very well. But it would be possible

to train a single network to the left for multiple subproblems with different settings, in

which the settings themselves are part of the input of the network. So we could train a

model who knows how to find the future cost functions conditioned on the infrastructure.

The step of searching for the ideal configuration would only demand the inference on this

single model. See figure 8.5.

In this work we dealtproblems with a finite, known and constant number of stages.

However, there are optimizations of infinite horizons or finite horizons with a stochastic

number of stages. There is a varied collection of games whose actions can be modeled

as integer programs, for example Rummikub [26]. It is interesting to investigate how to

adapt the algorithm to these cases.

If we discard the time component as a whole, it would be possible to use the

algorithm strategy to solve problems such as those described in the sub-section 2.2.2, in

which we have a neural network whose output is an optimization solution. The network

to the right would predict the loss function of the optimization solution, in a completely

differentiable way. Depending on which subproblem it is concerned, the use of convex

networks or k-convex would be enough to depict the function.

115

Bibliography

[1] Thomas Ackermann. Wind power in power systems. 2005.

[2] Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond,

and J. Zico Kolter. Differentiable convex optimization layers. In H. Wallach,

H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors,

Advances in Neural Information Processing Systems, volume 32. Curran Associates,

Inc., 2019.

[3] Shabbir Ahmed, Filipe Goulart Cabral, and Bernardo Freitas Paulo da

Costa. Stochastic lipschitz dynamic programming. Mathematical Programming,

191(2):755–793, 2022.

[4] Erik J Amézquita, Michelle Y Quigley, Tim Ophelders, Elizabeth Munch, and

Daniel H Chitwood. The shape of things to come: Topological data analysis and

biology, from molecules to organisms. Developmental Dynamics, 249(7):816–833,

2020.

[5] Alberto Archetti, Marco Cannici, and Matteo Matteucci. Neural weighted a*:

Learning graph costs and heuristics with differentiable anytime a*. In Giuseppe

Nicosia, Varun Ojha, Emanuele La Malfa, Gabriele La Malfa, Giorgio Jansen,

Panos M. Pardalos, Giovanni Giuffrida, and Renato Umeton, editors, Machine

Learning, Optimization, and Data Science, pages 596–610, Cham, 2022. Springer

International Publishing.

[6] Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, and David Heath. Coherent

measures of risk. Mathematical finance, 9(3):203–228, 1999.

[7] Elbio Avanzini. Multistage Stochastic Programming as Flexibility Source in Highly

Uncertain Environments: Its Value in an Agriculture Application. PhD thesis,

Pontificia Universidad Catolica de Chile (Chile), 2022.

[8] Jongmin Baek, Anand Deopurkar, and Katherine Redfield. Finding geodesics on

surfaces. Dept. Comput. Sci., Stanford Univ., Stanford, CA, USA, Tech. Rep, 2007.

[9] John P Barton and David G Infield. Energy storage and its use with intermittent

renewable energy. IEEE transactions on energy conversion, 19(2):441–448, 2004.

Bibliography 116

[10] Richard Bellman. The theory of dynamic programming. Bulletin of the American

Mathematical Society, 60(6):503–515, 1954.

[11] Richard Bellman. A markovian decision process. Journal of mathematics and me-

chanics, pages 679–684, 1957.

[12] Daniel Bienstock. Practical solution approaches to optimization and engineering:

Case studies in mine planning and electrical power. 2022.

[13] J. Birge. Decomposition and partitioning methods for multistage stochastic linear

programs. Oper. Res., 33(5):989–1007, 1985.

[14] Garrett Birkhoff. Integration of functions with values in a banach space. Transac-

tions of the American Mathematical Society, 38(2):357–378, 1935.

[15] A. Brigatto, A. Street, and D. Valladao. Assessing the cost of time-inconsistent

operation policies in hydrothermal power systems. IEEE Transactions on Power

Systems, 32(6):4541–4550, 2017.

[16] Viktram S Budhraja, Fred Mobasheri, Margaret Cheng, Jim Dyer, Eduyng Castaño,

Stephen Hess, and J Eto. California’s electricity generation and transmission inter-

connection needs under alternative scenarios. California Energy Commission, Tech.

Rep, 2004.

[17] J Carpentier. Contribution to the economic dispatch problem. Bulletin de la Societe

Francoise des Electriciens, 3(8):431–447, 1962.

[18] Juan Manuel Carrasco, Leopoldo Garcia Franquelo, Jan T Bialasiewicz, Eduardo

Galván, Ramón Carlos PortilloGuisado, MA Martin Prats, José Ignacio León, and

Narciso Moreno-Alfonso. Power-electronic systems for the grid integration of re-

newable energy sources: A survey. IEEE Transactions on industrial electronics,

53(4):1002–1016, 2006.

[19] Lawrence Cayton. Algorithms for manifold learning. Univ. of California at San

Diego Tech. Rep, 12(1-17):1, 2005.

[20] S. Cerisola, J. Latorre, and A. Ramos. Stochastic dual dynamic programming

applied to nonconvex hydrothermal models. European Journal of Operational Re-

search, 218(3):687–697, 2012.

[21] W. Chandler, A. Glimn, P. Dandeno, and L. Kirchmayer. Short-range economic

operation of a combined thermal and hydroelectric power system. Trans. AIEE

(Power Apparatus and Systems), 72:1057–1065, 1953.

Bibliography 117

[22] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In

Proceedings of the 22nd acm sigkdd international conference on knowledge discovery

and data mining, pages 785–794, 2016.

[23] E. Chowdhury and S. Rahrnan. A review of recent advances in economic dispatch.

IEEE Transactions on Power Systems, 5(4):1248–1259, 1990.

[24] H. Dai, Y. Xue, Z. Syed, D. Schuurmans, and B. Dai. Neural stochastic dual

dynamic programming. CoRR, abs/2112.00874, 2021.

[25] Boris Delaunay. Sur la sphère vide. a la mémoire de georges voronoi (on the empty

sphere. in memory of georges voronöı). Bulletin de l’Académie des Sciences de

l’URSS. Classe des sciences mathématiques et naturelles, 6:793, 1934.

[26] Dick Den Hertog and PB Hulshof. Solving rummikub problems by integer linear

programming. The Computer Journal, 49(6):665–669, 2006.

[27] Boyang Deng, Kyle Genova, Soroosh Yazdani, Sofien Bouaziz, Geoffrey Hinton, and

Andrea Tagliasacchi. Cvxnet: Learnable convex decomposition. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages

31–44, 2020.

[28] Ulrich Derigs. The Min-Cost Perfect Matching Problem, pages 200–253. Springer

Berlin Heidelberg, Berlin, Heidelberg, 1988.

[29] V. Souza Dias, M. Pereira da Luz, G. Medero, and D. Nascimento. An overview of

hydropower reservoirs in brazil: Current situation, future perspectives and impacts

of climate change. Water, 10:592–610, 2018.

[30] Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische

mathematik, 1(1):269–271, 1959.

[31] A. Diniz, F. Costa, M. Maceira, T. Norbiato, L. Santos, and R. Cabral. Short/mid-

term hydrothermal dispatch and spot pricing for large-scale systems-the case of

brazil. In Power Systems Computation Conf. (PSCC), page 1–7, 2018.

[32] A. Diniz, M. Maceira, C. Vasconcellos, and D. Penna. A combined sddp/benders

decomposition approach with a risk-averse surface concept for reservoir operation

in long term power generation planning. Ann. Oper. Res., 292(2):649–681, 2020.

[33] Priya L Donti, David Rolnick, and J Zico Kolter. Dc3: A learning method for

optimization with hard constraints. arXiv preprint arXiv:2104.12225, 2021.

[34] Oscar Dowson, Andy Philpott, Andrew Mason, and Anthony Downward. A multi-

stage stochastic optimization model of a pastoral dairy farm. European Journal of

Operational Research, 274(3):1077–1089, 2019.

Bibliography 118

[35] Herbert Edelsbrunner, David Kirkpatrick, and Raimund Seidel. On the shape of a

set of points in the plane. IEEE Transactions on information theory, 29(4):551–559,

1983.

[36] Merrill M. Flood. The traveling-salesman problem. Operations Research, 4(1):61–75,

1956.

[37] Patrick J Flynn and Anil K Jain. On reliable curvature estimation. In CVPR,

volume 88, pages 5–9. Citeseer, 1989.

[38] Kunihiko Fukushima. Cognitron: A self-organizing multilayered neural network.

Biological Cybernetics, 20(3):121–136, Sep 1975.

[39] Carl Friedrich Gauss. Disquisitiones Generales Circa Superficies Curvas (General

Investigation into Curved Surfaces), volume 1. Typis Dieterichianis, 1827.

[40] Kathleen M Gegner, Adam B Birchfield, Ti Xu, Komal S Shetye, and Thomas J

Overbye. A methodology for the creation of geographically realistic synthetic power

flow models. In 2016 IEEE Power and Energy Conference at Illinois (PECI), pages

1–6. IEEE, 2016.

[41] A Geoffrion. Lagrangian relaxation for integer programming. Mathematical Pro-

gramming Study, 2:82–114, 1974.

[42] Ajit Gopalakrishnan, Arvind U Raghunathan, Daniel Nikovski, and Lorenz T

Biegler. Global optimization of optimal power flow using a branch & bound al-

gorithm. In 2012 50th Annual Allerton Conference on Communication, Control,

and Computing (Allerton), pages 609–616. IEEE, 2012.

[43] Ajit Gopalakrishnan, Arvind U Raghunathan, Daniel Nikovski, and Lorenz T

Biegler. Global optimization of multi-period optimal power flow. In 2013 American

Control Conference, pages 1157–1164. IEEE, 2013.

[44] John C Gower. Some distance properties of latent root and vector methods used in

multivariate analysis. Biometrika, 53(3-4):325–338, 1966.

[45] Michael Grant, Stephen Boyd, and Yinyu Ye. Disciplined Convex Programming,

pages 155–210. Springer US, Boston, MA, 2006.

[46] Alfred Gray. Modern differential geometry of curves and surfaces with mathematica,

1997.

[47] Alwin Haensel, Michael Mederer, and Henning Schmidt. Revenue management in

the car rental industry: A stochastic programming approach. Journal of Revenue

and Pricing Management, 11:99–108, 2012.

Bibliography 119

[48] Lars Hellemo, Kjetil Midthun, Asgeir Tomasgard, and Adrian Werner. Multi-stage

stochastic programming for natural gas infrastructure design with a production

perspective. In Stochastic Programming: Applications in Finance, Energy, Planning

and Logistics, pages 259–288. World Scientific, 2013.

[49] A. Helseth, M. Fodstad, and B. Mo. Optimal medium-term hydropower scheduling

considering energy and reserve capacity markets. IEEE Trans. Sustain. Energy,

7(3):934–942, 2016.

[50] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2020.

[51] Felix Hensel, Michael Moor, and Bastian Rieck. A survey of topological machine

learning methods. Frontiers in Artificial Intelligence, 4, 2021.

[52] David Hilbert and Stephan Cohn-Vossen. Anschauliche geometrie. 1932.

[53] Shaolong Hu, Chuanfeng Han, Zhijie Sasha Dong, and Lingpeng Meng. A multi-

stage stochastic programming model for relief distribution considering the state of

road network. Transportation Research Part B: Methodological, 123:64–87, 2019.

[54] Di Huang, Jiping Xing, Zhiyuan Liu, and Qinhe An. A multi-stage stochastic op-

timization approach to the stop-skipping and bus lane reservation schemes. Trans-

portmetrica A: Transport Science, 17(4):1272–1304, 2021.

[55] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement

learning: A survey. Journal of artificial intelligence research, 4:237–285, 1996.

[56] Sungil Kim and Heeyoung Kim. A new metric of absolute percentage error for

intermittent demand forecasts. International Journal of Forecasting, 32(3):669–679,

2016.

[57] D. Kingma and J. Ba. Adam: A method for stochastic optimization. In Intl Conf.

on Learning Representations, ICLR, 2015.

[58] Studiosus Kirchhoff. Ueber den durchgang eines elektrischen stromes durch eine

ebene, insbesondere durch eine kreisförmige (on the passage of an electric current

through a plane, especially a circular one). Annalen der Physik, 140(4):497–514,

1845.

[59] Jan J Koenderink and Andrea J Van Doorn. Surface shape and curvature scales.

Image and vision computing, 10(8):557–564, 1992.

[60] Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural in-

formation processing systems, 12, 1999.

Bibliography 120

[61] Joseph B Kruskal. Multidimensional scaling by optimizing goodness of fit to a

nonmetric hypothesis. Psychometrika, 29(1):1–27, 1964.

[62] Joseph B Kruskal. Nonmetric multidimensional scaling: a numerical method. Psy-

chometrika, 29(2):115–129, 1964.

[63] Gottfried Wilhelm Leibniz. Meditatio nova de natura anguli contactus et osculi:

horumque usu in practica mathesi, ad figuras faciliores succedaneas difficilioribus

substituendas (New meditation on the nature of the angles of tangency and oscu-

lation and their mathematical application in order to successfully replace complex

figures with simpler ones). Number 7. 1686.

[64] Qi Li and Guiping Hu. Multistage stochastic programming modeling for farmland

irrigation management under uncertainty. Plos one, 15(6):e0233723, 2020.

[65] Stan Lipovetsky and Michael Conklin. Analysis of regression in game theory ap-

proach. Applied Stochastic Models in Business and Industry, 17(4):319–330, 2001.

[66] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 Eighth

IEEE International Conference on Data Mining, pages 413–422, 2008.

[67] Nils Lohndorf and Alexander Shapiro. Modeling time-dependent randomness in

stochastic dual dynamic programming. European Journal of Operational Research,

273(2):650–661, 2019.

[68] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model pre-

dictions. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-

wanathan, and R. Garnett, editors, Advances in Neural Information Processing

Systems 30, pages 4765–4774. Curran Associates, Inc., 2017.

[69] M. Maceira and C. Bezerra. Stochastic streamflow model for hydroelectric systems.

In Int. Conf. on Probabilistic Methods Applied to Power Systems (PMAPS), pages

637–645, 1997.

[70] M. Maceiral, D. Penna, A. Diniz, R. Pinto, A. Melo, C. Vasconcellos, and C. Cruz.

Twenty years of application of stochastic dual dynamic programming in official and

agent studies in brazil-main features and improvements on the NEWAVE model. In

Power Systems Computation Conf. (PSCC), pages 1–7, 2018.

[71] Spyros Makridakis. Accuracy measures: Theoretical and practical concerns. Inter-

national journal of forecasting, 9(4):527–529, 1993.

[72] L. Martins and A. Azevedo amd S. Soares. Nonlinear medium-term hydro-thermal

scheduling with transmission constraints. IEEE Transactions on Power Systems,

29(4):1623–1633, 2014.

Bibliography 121

[73] Diganta Misra. Mish: A self regularized non-monotonic activation function, 2020.

[74] Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the

number of linear regions of deep neural networks. In Z. Ghahramani, M. Welling,

C. Cortes, N. Lawrence, and K.Q. Weinberger, editors, Advances in Neural Infor-

mation Processing Systems, volume 27. Curran Associates, Inc., 2014.

[75] Ian D Moore, Paul E Gessler, GAE Nielsen, and GA Peterson. Soil attribute

prediction using terrain analysis. Soil science society of america journal, 57(2):443–

452, 1993.

[76] Saral Mukherjee and A.K. Chatterjee. The average shadow price for milps with

integral resource availability and its relationship to the marginal unit shadow price.

European Journal of Operational Research, 169(1):53–64, 2006.

[77] F. Nazare and A. Street. Solving multistage stochastic linear programming via

regularized linear decision rules: An application to hydrothermal dispatch planning.

CoRR, abs/2110.03146, 2021.

[78] nbro. How can the convolution operation be implemented as a matrix multipli-

cation? Artificial Intelligence Stack Exchange, 2020. [Online:] https://ai.

stackexchange.com/a/21874.

[79] Mathias Niepert, Pasquale Minervini, and Luca Franceschi. Implicit MLE: Back-

propagating through discrete exponential family distributions. In A. Beygelzimer,

Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural In-

formation Processing Systems, 2021.

[80] Georg Simon Ohm. Die Galvanische Kette: Mathematisch Bearbeitet (The Galvanic

Circuit Investigated Mathematically). TH Riemann, 1827.

[81] W. Oliveira, C. Sagastizábal, D. Jardim Penna, M. Maceira, and J. Damázio. Opti-

mal scenario tree reduction for stochastic streamflows in power generation planning

problems. Optim. Methods Softw., 25(6):917–936, 2010.

[82] Jose Javier Gonzalez Ortiz, John Guttag, and Adrian Dalca. Non-

proportional parametrizations for stable hypernetwork learning. arXiv preprint

arXiv:2304.07645, 2023.

[83] Sergei Ovchinnikov. Max-min representation of piecewise linear functions, 2000.

[84] M. Panteli and P Mancarella. Influence of extreme weather and climate change on

the resilience of power systems: Impacts and possible mitigation strategies. Electric

Power Systems Research, 127:259–270, 2015.

https://ai.stackexchange.com/a/21874
https://ai.stackexchange.com/a/21874

Bibliography 122

[85] M. Pereira and L. Pinto. Stochastic optimization of a multireservoir hydroelectric

system: A decomposition approach. Water Resources Research, pages 779–792,

1985.

[86] M. Pereira and L. Pinto. Multi-stage stochastic optimization applied to energy

planning. Mathematical Programming, 52(2):359–375, 1991.

[87] M.V.F. Pereira. Optimal stochastic operations scheduling of large hydroelectric

systems. International Journal of Electrical Power Energy Systems, 11(3):161–169,

1989.

[88] A.B. Philpott and V.L. de Matos. Dynamic sampling algorithms for multi-stage

stochastic programs with risk aversion. European Journal of Operational Research,

218(2):470–483, 2012.

[89] Andrew B Philpott, Faisal Wahid, and J Frédéric Bonnans. Midas: A mixed integer

dynamic approximation scheme. Mathematical Programming, 181(1):19–50, 2020.

[90] Marin Vlastelica Pogancic, Anselm Paulus, Vit Musil, Georg Martius, and Michal

Rolinek. Differentiation of blackbox combinatorial solvers. In International Confer-

ence on Learning Representations, 2020.

[91] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”why should i trust

you?” explaining the predictions of any classifier. In Proceedings of the 22nd ACM

SIGKDD international conference on knowledge discovery and data mining, pages

1135–1144, 2016.

[92] Bernhard Riemann. Grundlagen für Eine Allgemeine Theorie der Functionen Einer

Veränderlichen Complexen Grösse (Foundations for a general theory of functions

of a complex variable). Huth, 1851.

[93] Andy Roberts. Curvature attributes and their application to 3d interpreted hori-

zons. First break, 19(2):85–100, 2001.

[94] Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally

linear embedding. science, 290(5500):2323–2326, 2000.

[95] Cynthia Rudin. Stop explaining black box machine learning models for high

stakes decisions and use interpretable models instead. Nature Machine Intelligence,

1(5):206–215, 2019.

[96] Susan M Schoenung, James M Eyer, Joseph J Iannucci, and Susan A Horgan.

Energy storage for a competitive power market. Annual review of energy and the

environment, 21(1):347–370, 1996.

Bibliography 123

[97] Sven Schönherr. Quadratic programming in geometric optimization: Theory, imple-

mentation, and applications. PhD thesis, ETH Zurich, 2002.

[98] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy

optimization algorithms. CoRR, abs/1707.06347, 2017.

[99] Hans Ivar Skjelbred, Jiehong Kong, and Olav Bjarte Fosso. Dynamic incorporation

of nonlinearity into milp formulation for short-term hydro scheduling. International

Journal of Electrical Power Energy Systems, 116:105530, 2020.

[100] M. Soares, A. Street, and V. Ao. On the solution variability reduction of stochas-

tic dual dynamic programming applied to energy planning. European Journal of

Operational Research, 258(3):743–760, 2017.

[101] S. Soares, C. Lyra, and H. Tavares. Optimal generation scheduling of hydrothermal

power systems. IEEE Transactions on Power Apparatus and Systems, 6(3):1107–

1118, 1980.

[102] A. Soroudi and T. Amraee. Decision making under uncertainty in energy systems:

State of the art. Renewable and Sustainable Energy Reviews, 28:376–384, 2013.

[103] SA Stewart and R Podolski. Curvature analysis of gridded geological surfaces.

Geological Society, London, Special Publications, 127(1):133–147, 1998.

[104] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy

gradient methods for reinforcement learning with function approximation. Advances

in neural information processing systems, 12, 1999.

[105] Joshua B Tenenbaum, Vin de Silva, and John C Langford. A global geometric

framework for nonlinear dimensionality reduction. science, 290(5500):2319–2323,

2000.

[106] Warren S Torgerson. Theory and methods of scaling. 1958.

[107] Georges Voronoi. Nouvelles applications des paramètres continus à la théorie des

formes quadratiques. deuxième mémoire. recherches sur les parallélloèdres primitifs.

(new applications of continuous parameters to the theory of quadratic forms.). Jour-

nal für die reine und angewandte Mathematik (Crelles Journal), 1908(134):198–287,

1908.

[108] Dong Wang, Yikai Chen, Changqing Shen, Jingjing Zhong, Zhike Peng, and Chuan

Li. Fully interpretable neural network for locating resonance frequency bands for ma-

chine condition monitoring. Mechanical Systems and Signal Processing, 168:108673,

2022.

Bibliography 124

[109] Yuhui Wang, Hao He, and Xiaoyang Tan. Truly proximal policy optimization. In

Uncertainty in Artificial Intelligence, pages 113–122. PMLR, 2020.

[110] Florian Wetschoreck, Tobias Krabel, and Surya Krishnamurthy. 8080labs/ppscore:

zenodo release, October 2020.

[111] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan

Salakhudinov, Rich Zemel, and Yoshua Bengio. Show, attend and tell: Neural image

caption generation with visual attention. In International conference on machine

learning, pages 2048–2057. PMLR, 2015.

[112] Ryo Yonetani, Tatsunori Taniai, Mohammadamin Barekatain, Mai Nishimura, and

Asako Kanezaki. Path planning using neural a* search. In Marina Meila and

Tong Zhang, editors, Proceedings of the 38th International Conference on Machine

Learning, volume 139 of Proceedings of Machine Learning Research, pages 12029–

12039. PMLR, 18–24 Jul 2021.

[113] Behzad Zahiri, S Ali Torabi, Mehrdad Mohammadi, and Mohsen Aghabegloo.

A multi-stage stochastic programming approach for blood supply chain planning.

Computers & Industrial Engineering, 122:1–14, 2018.

[114] Quanshi Zhang, Ying Nian Wu, and Song-Chun Zhu. Interpretable convolutional

neural networks. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 8827–8836, 2018.

[115] Jikai Zou, Shabbir Ahmed, and Xu Andy Sun. Stochastic dual dynamic integer

programming. Mathematical Programming, 175:461–502, 2019.

	Introduction
	Multi-Stage Stochastic Optimization
	Hydrothermal Dispatch
	Optimal Power Flow
	Objectives
	Work Structure

	Related Work
	State-of-the-Art
	Neural Networks for Optimization Problems

	Theoretical Foundations
	Manifold Geometry
	Stochastic Dual Dynamic Programming
	Surface Curvature
	Shapley Additive Explanations (SHAP)

	Modelling
	Control Problem in One Dimension
	Hidrothermal Dispatch Problem
	Optimal Power Flow

	Future Cost Estimator
	Algorithm
	Implementation Details

	Explainability
	SHAP
	Future Cost Curvature

	Experiments and Results
	Control Problem in One Dimension
	Hidrothermal Dispatch Problem
	Optimal Power Flow Problem

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

