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“Fu vos digo: € preciso ter ainda caos dentro de si, para poder dar a luz uma estrela
dangante. Eu vos digo: tendes ainda caos dentro de v0s.”

(Friedrich Nietzsche, Assim Falou Zaratustra)



Resumo

Problemas de Otimizagao Estocéstica de Multiplos Estdgios (MSSO) sdo comuns em
cenarios de tomada de decisao que envolvem incertezas sequenciais, abrangendo varias
areas, como logistica de transporte, configuracao de infraestrutura e agricultura. Este
trabalho apresenta duas contribuicoes importantes: um novo algoritmo para resolver prob-
lemas MSSO, sejam eles convexos ou nao, e um conjunto de metodologias para analisar o
comportamento desse algoritmo e de outros em relagao a tomada de decisoes.

O algoritmo proposto, Programacao Dinamica Neural Estocastica, aproveita as
capacidades preditivas das redes neurais para lidar com problemas MSSO. Superando
desafios relacionados a modelagem das funcoes de custo futuras como redes neurais e ao
treinamento de seus pesos, o algoritmo emprega um modelo de programacao inteira e uma
nova funcao de perda. A avaliagao experimental em diferentes problemas demonstra a
capacidade do algoritmo de treinar efetivamente os pesos da rede. No entanto, a complex-
idade computacional surge como uma limitagao, especialmente em problemas com muitas
variaveis de decisao e estagios, devido a necessidade de resolver um grande ntmero de
subproblemas de Programagao Linear Mista (MILP) ou Programacao Quadratica Mista
(MIQP).

Uma vantagem significativa do uso de redes neurais reside na capacidade de otimizar
além de valores médios, considerando observagoes, informacoes latentes e tendéncias tem-
porais, libertando-se das restricoes de independéncia probabilistica entre os estagios.

Além de resolver os problemas propostos, o texto aborda a importancia de com-
preender a légica por tras das decisoes e os riscos associados a aplicagoes de longo prazo no
mundo real. Ele apresenta um conjunto de metodologias que utilizam o SHAP (SHapley
Additive exPlanations) e a curvatura das superficies. Essas técnicas fornecem informagoes
sobre o impacto dos reservatérios e outras variaveis nos custos futuros e suas interagoes.
Além disso, o uso de métricas de curvatura permite a quantificacdo do comportamento
local na funcao de custo futura, facilitando a anélise ao migrar a politica aprendida para

cendrios do mundo real.

Palavras-chave: aprendizado profundo; otimizacao; despacho hidrotérmico; fluxo de

poténcia.



Abstract

Multi-Stage Stochastic Optimization (MSSO) problems are prevalent in decision-making
scenarios involving sequential uncertainty, spanning various domains such as transport
logistics, infrastructure configuration, and agriculture. This work presents two key con-
tributions: a novel algorithm for solving MSSO problems, whether convex or not, and
a set of methodologies to analyze the behavior of this algorithm and others concerning
decision-making.

The proposed algorithm, Stochastic Neural Dynamic Programming, leverages the
predictive capabilities of neural networks to address MSSO problems. Overcoming chal-
lenges related to modeling future cost functions as neural networks and training their
weights, the algorithm employs an integer programming model and a novel loss func-
tion. Experimental evaluation on different problems demonstrates the algorithm’s ability
to train network weights effectively. However, computational complexity emerges as a
limitation, particularly in problems with numerous decision variables and stages, due to
the need to solve a substantial number of MILP (Mixed-Integer Linear Programming) or
MIQP (Mixed-Integer Quadratic Programming) subproblems.

A notable strength of using neural networks lies in their capacity to optimize be-
yond average values by considering observations, latent information, and temporal trends,
breaking free from the constraints of probabilistic independence between stages.

In addition to solving the proposed problems, the text addresses the importance
of understanding the rationale behind decisions and associated risks for long-term real-
world applications. It introduces a set of methodologies utilizing SHAP (SHapley Additive
exPlanations) and curvature of surfaces. Furthermore, the use of curvature metrics enables
the quantification of local behavior in the future cost function, facilitating analysis when

migrating the learned policy to real-world scenarios.

Keywords: deep learning; optimization; hydrothermal dispatch; power flow.
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Chapter 1

Introduction

Long-term decision making is a difficult task. If on the one hand you know the immediate
consequences of a decision, on the other hand the impacts of future events are uncertain.
A situation like this is the problems of resource management, in which we have a stock of
a product, a water reservoir, a financial portfolio; situations in which demand, rainfall and
future prices are uncertain. This work seeks to advance over a subset of problems of this
type, in which the decisions of each stage are limited by known restrictions, the objective
function is also known and we have realizations, historical or simulated, of the variables
with uncertain. We will call this type of problem of Multi-Stage Stochastic Optimization
(MSSO).

In this first chapter we have a general overview of problems of this type, a discussion
of the modeled problems at work, the proposed research objectives and the description of

the work structure.

1.1 Multi-Stage Stochastic Optimization

A stochastic optimization problem is an optimization program in which some or all
the model parameters are uncertain, but past realizations (scenarios) are known. A multi-
stage stochastic optimization problem (MSSO) is when we have a stochastic optimization
in which decisions are made sequentially, as more information becomes available. For the

purposes of this work, it is assumed that a MSSO is composed of three types of variables:

(a) State: variables that track a system property over time;
(b) Control: the actions taken at each stage that modify the state variables;

(¢) Random: random variables observed at the beginning of a stage, before the control.

Algorithms to solve MSSOs, such as dynamic programming, usually suffer from the

need to discretize the decision space. With this, the number of combinations of decision
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variables increases exponentially in the size of the state and in the number of stages
[86, 23]. An algorithm that has exceeded this limitation was the so-called Stochastic Dual
Dynamic Programming (SDDP) [86], which has become the state-of-the-art for convex
MSSO [102] and is used in various hydrothermal systems around the world [31, 70].
Its solution was a decomposition of stages with the purpose of approximating to each a
future cost function, convex and piciewise linear, over the values of the state. Thus, it is
no longer necessary to discretize and list the decision variables, and it makes it possible
to find solutions for large-scale systems. The algorithm proposed here in this work is an
extension of the SDDP, in which it is sought to generalize it for non-convex functions.

Many real decision-taking situations involve sequential uncertainty, and for this
can be modeled as MSSOs. The transport logistics area has works such as the allocation
of a fleet of rental cars [47], the distribution of the collection and blood storage for
hospitals and clinics [113], the management of bus stop-skipping routes [54]. There are also
applications for the configuration of infrastructure such as the expansion of the natural
gas infrastructure [48] and the allocation of resources for the relief of natural disasters [53].
Recently, some work in the agricultural sector has adopted the modeling of multi-stage
stochastic optimization, for example for irrigation control [64], the management of a dairy
farm [34] and the labor management in the winery harvest period [7].

Although the proposed algorithm is general for the resolution of all these applica-
tions, the work focuses on two MSSOs connected to the energy sector: the hydrothermal

dispatch and the optimal power flow, discussed below.

1.2 Hydrothermal Dispatch

Hydrothermal systems are electrical energy generation systems composed of hy-
droelectric and thermal plants, which together must generate enough energy to meet a
given demand. The two types of plants differ in various points. The cost per generation
of an energy unit is considered negligible for hydroelectric plants and constant for thermal
plants, whereas the costs of these latter can vary between them. Thus, there is a direct
preference for the use of energy of hydroelectric plants, free of cost. These, however, have
their generation limited by the volume of water that is found in their reservoirs, and can
not always meet the system demand. The problem with the dispatch of hydrothermal
systems is the management of the use of this water at each stage (e.g., every month) in
order to minimize the total cost of the thermeletrics over a long operation period (e.g.,
two years).

Different factors make it difficult to make this decision in addition to this time
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coupling, in particular the spatial coupling and the variability of rain. In the first, the
spatial coupling, we have to coordinate the decisions of all hydroelectric in a joint man-
ner, since the water outflowing a reservoir feeds other lower reservoirs. There is also a
stochastic component of the water inflow coming from the rain, in which we don’t know
how much more water we will have in the future. One can opt to spare water at the
current stage in order to take precautions in case the next stage is drier, but it can also
entail an additional mandatory cost if the next stage is heavy rain. It is thus a MSSO
[13].

The problem of hydrothermal systems has been formulated as a problem of opti-
mization for the first time in [21]. Since then, it has been extensively studied, resulting in
stochastic [85, 20, 100] and deterministic [101, 72] formulations, which vary depending
on whether the random nature of rainwater flows is considered or not.

By minimizing a coherent risk measure [6], more commonly the average, SDDP
seeks to find, for each stage, a function that well represents the future cost behavior
for the different historical scenarios, even if the rain trajectory are different. Under the
context of climate change [84], future rainfall becomes quite difficult to estimate by
historical data due to different effects, such as the reduction in volume and river flow
due to precipitation changes, the occurrence of extreme effects and the shift of spatial
patterns. In Brazil, for example, the frequency and intensity of droughts have grown in
the last decade, culminating in the worst drought recorded, in 2021, which peaked the
cost of energy due to the use of thermeletrics. Therefore, it is of interest not only to
learn a future cost function for each stage but also to make corrections of this conditioned
function in other information beyond the historical, such as recent rainfall and other

climate variables.

1.3 Optimal Power Flow

If on the one hand the incorporation of renewable energy sources offer a decar-
bonization of the economy, it also causes the addition of uncertainty to the electric grid
[1, 18, 16], which should adapt. A approach to dealing with this operational challenge is
the use of batteries as distributed energy reservoirs [9]. With storage technologies it is
possible to delay the need for greater generation, improve the distribution of demand, act
as energy reserve and correct frequency and power [96].

The problem of Optimal Power Flow (OPF) [17] for alternate current circuits (AC)
in its original definition relates to finding the power of the generators and the best flow

distribution on the grid to meet the various points of demand, with the aim of minimizing
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a cost function, which can be the cost of the generators, the losses for resistance, among
others. With the incorporation of the batteries, the system becomes a MSSO), in which you
have to decide on the charge and discharge of the batteries. The problem has multiple
restrictions, such as limits for power transfer and thermal losses, as well as physical

restrictions of the alternate current [42, 43].

Figure 1.1: Topology of the New York system, in the U.S., consisting of 1814 buses and
more than 500 generators. It is not considered a big system. Figure by [12].

1.4 Objectives

This work mainly aims to develop a new algorithm for multi-stage stochastic op-
timization problems, whether it is convex or not, with stagewise dependency between
random variables or not, through the use of neural networks. We will call this algorithm
of Stochastic Neural Dynamic Programming (SNDP). In particular, it aims to obtain such
algorithm as an extension of the SDDP algorithm. It is therefore vital to substantiate the
reader with the necessary knowledge about this latter so that the next step is as easy as
possible.

As will be discussed in more detail in section 3.2, the SDDP algorithm works by
approaching the future cost of a decision through a convex, easy-to-optimize function.
The goal of our algorithm is to approximate that future cost as a neural network, thus
being able to model a greater range of future cost functions, and allowing the use of other
entries, such as data correlated with the uncertain variables or time trends.

One interest of the researchers was also to better understand the future cost func-

tions learned by the models. This can be achieved in two ways: seeking to measure the
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impact of a state on the future cost function and studying the mathematical properties
of the functions.

More specifically, the objectives of this work are to:
1) Propose a neural algorithm that learns the future cost functions like SDDP;
2) Apply the algorithm to different optimization problems, synthetic or real;
3) Check if the proposed model deals with extreme scenarios properly;
4) Study the reasons behind the actions of the algorithm with explainability techniques;

5) Study the properties of the future cost function through the function curvature.

1.5 Work Structure

The rest of the work is divided into 7 chapters. The idea is to bring a panorama of
the related work and an introduction to the necessary theoretical concepts, then present
the generated content, the experiments that testify its effectiveness and finally the con-
clusion of the work. The next two chapters, 2 e 3, act in this first part, in which the first
presents the classic work of the area of optimization as well as new neural approaches
to problems of the type; and the second brings the necessary coverage for what will be
presented later.

Chapter 4 presents the formal definition of the dispatch and the optimal power
flow problems discussed in the introduction. In addition to them, the problem of control
in one dimension is also discussed. Chapters 5 and 6 represent the theoretical content
of the work, in which the algorithm is presented and discussed, and the methodology of
explainability is enunciated. Chapter 7 is the largest in extension, with the discussion
and the results of the experiments. Chapter 8 closes the work with a conclusion of the

text and a conversation on future work.
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Chapter 2

Related Work

In this chapter we have a summary of work related to what is proposed in this writing.
As the proposed algorithm is found in the intersection of traditional models and the use
of neural networks, this survey is divided into two parts: operational research models for

the MSSOs and neural models that try to solve optimization problems.

2.1 State-of-the-Art

There is no algorithm that guarantees convergence for any type of MSSO. Here
we will discuss three aspects of the algorithms in literature: the algorithms that solve
convex subproblems, the algorithms that solve subproblems with convex restrictions and
objective function but with integer variables and the problems with time dependence.
Our algorithm, SNDP, seeks to be able to solve arbitrary subproblems (as long as there

is a solver for such a type of problem), possibly with time dependence.

2.1.1 Convex Subproblems

MSSO algorithms usually suffer from an exponential behavior in which the number
of decision variables grows exponentially with the number of stages [23]. This factor
limits the use of these algorithms to only low-dimensional instances. As previously said,
the SDDP solves this problem by proposing a breakdown by stage and learning a future
cost function for each, without having to list all decision variables anymore [86].

Unfortunately, the worst case of SDDP still scales exponentially in the number of
stages, thus choosing for simplifications to find solutions in an acceptable computing time

[15, 49]. Among these simplifications, we have a sample stage of Monte Carlo to reduce
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the number of variables of decisions to be considered [77], but that can lead to a over-
adjustment in training data and a bad performance in test data. In [24], the authors
introduced a neural model, Neural Stochastic Dual Dynamic Programming (v-SDDP),
which allows the SDDP to act in a lower-dimensional space, improving the behavior in
the test and the training time. Despite the similarity of the names, v-SDDP and SNDP
have a little common. The first seeks to accelerate the performance of the traditional
SDDP while the second seeks to solve a new class of problems with the use of neural
networks.

Regarding the dispatch problem, it is common that the SDDP and other MSSO
algorithms use synthetic rain scenarios to represent the flow of the rivers. These scenarios
are usually of a periodic self-regressive model [69]. It is important to note that the
problems become increasingly difficult to solve as the number of these scenarios grows.
Another challenge is that the effectiveness of these algorithms depends largely on how well
these synthetic scenarios represent real inflows. To generate small samples of scenarios
representing the stochastic process, variants of the Optimal Scenario Reduction method
were proposed [81] to cut branches of the tree of the self-regressive models. However,
these hydrological models are being challenged by the impacts of climate change [29].
This is an important limitation that can damage the performance of these algorithms in
test data, since the scenarios can differ from the real.

In [32], the authors proposed robust, or risk-averse, formulations to protect the
system from critical hydrological scenarios. The formulation uses a combination of SDDP
and Benders decomposition to ensure that the policy obtained guarantees levels of the

reservoirs that are high enough to protect the system from these critical scenarios.

2.1.2 Integer Subproblems

By going from linear subproblems to integer ones we have two consequences: fu-
ture cost functions may not be convex anymore [115] and reduced costs are no longer
subgradients [76]. As it is not easy to adapt the decomposition strategies to non-convex
functions, to solve these problems, that is, MSSOs with integer variables, new approaches
are required. Three of them stand out: Stochastic Dual Dynamic Integer Programming
(SDDiP), Mixed Integer Dynamic Approximation Scheme (MIDAS) and Stochastic Lip-
schitz Dynamic Programming (SLDP).

SDDiP [115] addresses non-convexity by reformulating the subproblems in each
stage with a new class of cuts, the Lagrangian cuts. The authors demonstrate that for

problems in which states are binary variables, the algorithm has convergence in a finite
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number of iterations with a probability equal to 1.

The algorithm follows in a similar way to the SDDP, with a forward pass and
the backward pass. In the forward pass, the policy learned so far is simulated to have a
sample of the most visited regions in the state space. In the backward pass, the algorithm
updates the estimates of future cost on the states shown in the previous step by adding
the Lagrangian cuts.

In optimization problems, lagrangian relaxation [41] is a method that approaches a
difficult problem by one simpler, but the solution of second is still valid for first. The idea
is to relax some of the restrictions by penalties, the lagrangian multipliers. The problem,
thus, can be easier to solve, but we no longer have the guarantees of optimality.

The Mixed Integer Dynamic Approximation Scheme (MIDAS) [89] also has an
approach similar to the SDDP. The idea is to approximate the future cost function as a
step function instead of using cuts. The state space is divided into a finite number of
regions and the local value of the function is approximated as a constant. There is still
the possible extension of using cuts in these regions rather than a constant.

This approach has the premise that the future cost function is monotonous, or
approximately monotonous, in the state variables. Each subproblem is formulated as
a mixed integer programming and solved up to optimality. These subproblems are dis-
cretizations of the actual future cost function, and become more accurate as the resolution
increases.

Stochastic Lipschitz Dynamic Programming (SLDP) [3] is another strategy that
follows the SDDP archetype. Instead of cutting plans, lagrangian cuts or step functions,
the authors propose the use of Lipschitz cuts, a kind of non-linear cuts. These cuts
iteratively sub-approximate the future cost function until convergence is obtained. The
studied Lipschitz cuts families are modeled as mixed integer programming so the class of

the original problem is not changed. There are two Lipschitz cuts families studied:

e Reverse-Norm Function: cuts based on the idea of penalizing the norm of the gra-

dient of the future cost function;

e Augmented Lagrangian Cuts: cuts obtained by the augmented norm of the la-
grangian duality, which involves adding a square penalty to the lagrangian function.
The dual problem obtained can be solved by optimization techniques with subgra-
dient.
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2.1.3 Time Dependency

In the SDDP algorithm there is the assumption that the uncertainty of different
stages are independent of each other. This limits the types of problems that can be solved.
Two approaches are used in literature, autoregressive processes and markovian modeling.
In an expedition experiment in the electric system of Brazil, the policy learned by the
first was dominated by the second [67].

If uncertainty comes from a autoregressive process, it is possible to incorporate
it into the original algorithm without modifications [87], provided that the observations
appear additively in the objective function and in the constraints. For this, it is enough
to consider the past observation as a state variable, and the uncertainty of the stage is
only the noise of the process.

Another approach, but that has no guarantee of convergence, is to model uncer-
tainty as a markovian process [88]. The probability of observing a value depends on the
state that the system is located, and that state evolves following a Markov chain. The

strategy is, for each stage, to learn a different collection of cuts for each state of the chain.

2.2 Neural Networks for Optimization Problems

There is an interest in incorporating recent advances in deep learning to solve
problems of optimization. Two main approaches have emerged so far: the use of neural
networks to estimate the optimal policies of problems of control; and the use of neural
networks with external solvers to obtain semantic representations of raw data. The ap-
proach of this work, which will be discussed in subsequent chapters, is in the intersection
of both, by using neural networks to estimate policies for problems of control, but with

the help of external solvers.

2.2.1 Deep Reinforcement Learning

Reinforcement Learning is the problem of an agent having to learn a behavior

through interactions, or observations of interactions, with a dynamic environment [55].
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There are two main classes of methods to deal with reinforcement learning:

e Actor: searching through the policy space to find the one that works best in the

environment (e.g., genetic algorithms and genetic programming);

e Critic: use statistical and dynamic programming techniques to estimate the useful-

ness of taking certain actions, and create a policy that maximizes that usefulness.

There are also algorithms in the intersection of these two classes, the Ator-Critic
models [60], in which the critic is a neural network used to estimate the utility function,
and this is used to modify the parameters of a second neural network, the actor.

It is common to reinforcement learning algorithms to work on Markov’s Decision
Processes (MDP) [11]. Similar to MSSO, MDPs provide a useful conceptual structure to
capture the behavior of an optimal policy. A MDP is defined by 4 objects:

e A set S of states, called the state space;
e A set A of actions, called the action space;

e A transition probability function P,(s,s’) = P(si11 = §'|st = s,a; = a) of an action

to transition the stae s to s’ on the next stage;

e A immediate reward function r = R,(s,s’) of the transition from state s to s’ by

action a.

In this context, a policy is a mapping from any state s € S to actions a € A.
In MDPs, the goal is then to find a policy that maximizes a cumulative function of the

rewards, typically the sum adjusted by a discount factor ~:

[e.9]

p:7’0+’yr1+727’2+...227trt. (2.1)
=0

In reinforcement learning, the probabilities are unknown and not modeled explic-
itly, but rather accessed through simulations of an environment.

Policy Gradient (PG) [104] is a technique to seek for a policy in reinforcement
learning. Instead of trying to approximate a utility function and use it to compute the
policy, PG seeks for a stochastic policy my directly using a function approximator with
its own parameters. For example, a neural network with the representations of states as
inputs and the probability of actions as outputs. Be 6 the vector of parameters and p,

the geometric sum of rewards, then the parameters are changed by:

- dpy
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where o > 0 is the step length. If an estimate of this gradient can be obtained,
it is likely that we have 6 converging to a local optimum of the policy space. For this,
PG methods provide the ascending gradient algorithm ¢ estimates of the 6 gradients,

commonly in the form:

g=1E; |Vglog Wa(at\st)flt] , (2.3)

in which A, is an estimator of the advantage function (i.e., how good is an action
compared to the average) at time t. Here the expectation E,[...] is an empirical average
on a finite number of samples. This estimate is obtained by differentiating an objective

function of the way:

L(0) = E, |log mg(ay|s,) Ay | - (2.4)

Proximal Policy Optimization (PPO) [98] is a family of policy gradients methods
for reinforcement learning proposed by OpenAl, which alternates between sampling data
when interacting with the environment, and optimizing a target function using gradient
ascent. By its performance, PPO has become the state-of-the-art [109]. The difference

is given by the target function chosen.

mg (at|st)
T6o1q (@t]5t) "
Since r(6o1a) = 1, we can measure the degree of change between updates. The objective

Let O,q be the parameter vector before an iteration, and let r,(0) =

function is

mo(ag|st)

TOo1a(at|st)

L(6) = E, { At} —E, [7}(9)121,5] , (2.5)

which, if unconstrained, can lead to a too large update of the to-be-maximized
policy. The question is how to modify said function in order to avoid large diversion of

r¢(#) in relation to 1. The authors propose

LEYTP () = B, |min{r,(0) Ay, clip(r(0),1 — €, 1 + €) A}, (2.6)

Where € is a hyperparameter. We have that the first term is still the previous
objective function, and the second modifies the function by cutting the probability ratio,
which removes the incentive to move r,(6) out of the [1 —¢,1 + €] interval. As we have
the minimum of the two terms, the result is a lower limit of the non-cutting goal.

With this objective function, we can describe PPO as the algorithm 1, in a Actor-
Critic style:

This algorithm reminds the one that will be proposed, in which we have a step of
policy simulation and a step of learning. But under the established reinforcement learning

perspective, our algorithm would only be a critic.
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Algorithm 1: Proximal Policy Optimization

for iteration=1,2,... do
for actor=1,2,..., N do
Execute the policy mq on the environment for 7' steps;
Compute the advantage estimates Ay, ... ,AT;
end
Optimize the objective function LEHF () w.r.t. 6, with K epochs and
mini-batches of size < NT;
Oola < 0;
end

2.2.2 Gradients of Optimizations

Instead of using the neural networks as solvers, as in the case of deep reinforcement
learning, there is a second approach in which the neural network is connected to an
external problem solver. The idea is that the solver acts as a layer of the network, in
which previous layers act on the input data and provide for the first a purely semantic
data. The difficulty is in how to approximate a gradient to the output of these solver.

Disciplined convex problems [45] are a subclass of convex optimization problems,
in which a set of conventions are imposed on the model in order for their solution process
to be automated. These problems are efficiently differentiable, which allows you to use
gradient descent to optimize policies on control problems [2].

For problems with linear objective functions, such as the problem of the minimum
path [30], the traveling salesman problem [36] and the perfect matching of minimum
cost problem [28], a gradient approximation was proposed by disturbing the optimization
entries and interpolating the results [90]. Thus, the authors were able to extract useful
intermediate representations for the optimizations, for example to find the minimum path
in digital gaming terrains by estimating the locomotion costs.

For optimization problems in combinatorics, we can define a distribution of a dis-
creet exponential family over the solution space, in which the optimal solution is the
estimator of maximum likelihood. This distribution is differentiable [79] in a way similar
to the proposed in [90], however the results have superior convergence in experiments.

There are also specific approaches, in which neural networks are used in particular
algorithms, such as A* [112]. One extension [5] is to combine the general [90] and spe-
cific [112] approaches to optimize at the same time the edges weights and the heuristic.
Experimental results showed improved performance over both separately.

The idea of these algorithms is therefore not to solve an arbitrary optimization

problem and more to transform the input data into a context in which optimization
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makes sense. This differs from the challenge to be dealt with in this work, but shows that
there is ways to combine the neural networks with the solvers. If these work seek to find

the gradients of the solvers, we will use the solvers as a target in supervised learning.
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Chapter 3

Theoretical Foundations

In this chapter we have the definition of the SDDP algorithm, the basis of our modeling,
as well as the other theoretical contextualization necessary for the understanding of the

proposed methodologies.

3.1 Manifold Geometry

In this section we describe the main properties of manifolds necessary for our work.
A manifold is a space that locally resembles an euclidian space. A d-dimensional manifold
resembles locally R?. By resembling it is understood that each point has a homeomorphic
neighborhood, that is, there is a map between the space and an open set in the vector
space that preserves the topological properties. The concept of manifold was first studied
in [92]

In this text we will only work with manifolds that meet S = {(z, f(x)), Vz € D}
in which f : D — R is a continuous function and ® is its domain, and therefore the
use of the term will often refer only to that subset of varieties. Spheres for example are

manifolds but, for the purpose of this work, won’t be considered.

3.1.1 K-Convex Manifolds

Let f:R"™ — R be any function. It is called convex iif it satisfies

V 0<t<lewx,zyeR": f(twg + (1 —t)z2) <tf(x1)+ (1 —1t)f(z2). (3.1)

Intuitively the above condition says that any segment that unites two points in the
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image of f is in the image itself, or is “above” it. A consequence of the definition is that
any local minimum of a convex function is also a global minimum.
Yy Y

Figure 3.1: Graphic example of a convex and a non-convex function.

An example of an important convex function for our work is a set of cuts, in which
every cut is an affine function on its arguments and the image of the function is the
maximum of all cuts, f(x) = max{f;x + a; : i = 1,...,n}. An example is given in figure
3.1.1.

Figure 3.2: Graphical example of a set of cuts function.

The functions which don’t satisfy this definition are called non-convex. We will
also consider the subset of the non-convex function that are the grouping of a finite number

of convex functions. A function f is called k-convex if
e 3 Fr=A{9g1,., g}, gi is convex, such that f(x) = min{g;(x) : ¢; € Fr};
e} Fii=1{g1, .., gk 1}, g is convex, such that f(x) = min{g;(z): g; € Fr_1}.

We extend the convexity attribute (convex, non-convex, k-convex) of a function to

the associated manifold.
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3.1.2 Piecewise Linear Function

A piecewise linear function is a real function in which its graphical representation
is defined by affine segments (lines, planes, hyperplanes etc.), like figure 3.3. For a formal
definition, we’ll use the approach by [83].

Be I' a convex closed domain in R™. A function f : I' — R is piecewise linear
if there is a finite family O of closed domains such that I' = UQ and f is affine in all
domains within Q. A unique affine function ¢g(x) = a-x + b in R” that coincides with f

in a given @) € Q is called a component of f.

Figure 3.3: 2D piecewise linear function (top) and its domains @) € Q in which it is affine
(bottom).

In [83] we have the proof for the following theorem. (a) Let f be a piecewise linear
function in I and {g1, ..., g, } its set of unique components. There exists a family {S5;};e,

of non-empty subsets {1, ...,n} such that

f(x) = minmax g;(x). (3.2)

jed i€j
b Reciprocally, for any family of distinct affine functions {¢i, ..., g,}, the above
equation define a piecewise linear function.
In this work, we will not explicitly model piecisewise linear functions in a closed
domain. However, for all the problems discussed it will be possible to limit the set of

solutions to a closed convex domain large enough.
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In particular for this work, we will study the convex and k-convex piecewise linear
functions. If we consider that J has only one set, set j, the equation 3.2 becomes the
maximum of affines functions. By the definition of convex function given by the equation

3.1 it is possible to observe two properties:

(a) Affine functions are convex;

(a) The maximum of two convex functions is also a convex function.

Thus, a set j, which we will call a set of cuts, defines a convex piecewise linear

function. It is easy to optimize such functions by modelling it as a linear program

min 6 (3.3)

xER™

0>a-x+b i€j

By the uniqueness of the functions g and as () ¢ J, we know that if |J| = k > 1
then the function f corresponds to a k-convex piecewise linear function, with £ distinct
sets of cuts. As f is a non-convex function, it is not possible to minimize it as a linear

program, being necessary the use of integer variables.

szai-x—i-bi ZESj,lgjgk
w < 0, 1<j<k

k

D ui=1

j=1

y € {0,1}*

where M is a sufficiently large number. Note that k integer variables are necessary
for such approach. The difficulty to solve it grows with the number of sets of cuts.

Neural networks with ReLLU activation function are also non-conve piecewise linear
functions, as will be seen in the section 3.1.4. In its optics however, we don’t have the
list of all the affine regions it model, being not possible to use the same modeling 3.4. A

new approach is required.
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3.1.3 k-Convex Piecewise Linear Function Fitting

The optimization of a k-convex piecewise linear function fitting through gradient
descent will be given in the same way of [27]. In this work, the authors are interested
in obtaining the decomposition of 3 dimensional structures in k& convex hulls. Note that
the difference between convex hulls and convex functions is the use or not of the signal
function.

Be Hp(x) = aj - x+ by, the cut h of a set of cuts. Given a sufficiently large number
H of cuts, any convex function can be approximated by taking the maximum of the cuts.
To facilitate learning, instead of the maximum, we will use a soft maximum function,

LogSumExp, and the estimated function is defined as:

d(x) = log Z exp (o Hp(x)), (3.5)

h=1

In which the parameter ¢ controls the smoothness of the convex function learnt.
Thus, it is easy to add this convex approximation as an output layer of a neural network.
As seen in equation 3.2, with & convex approximations like this we can have a k-convex

approximation if we take the minimum of all of them.

3.1.4 ReLU Neural Network as a Piecewise Linear Function

In this section, we’ll discuss how neural networks with ReLLU activation function
are piecewise linear functions. The number of linear regions grows exponentially in the
number of layers of the network, but their minimization requires only a number of integer
variables equal to the number of neurons of the network. However, empirically, in the
chapter 7, we see that the depth of the network affects the search time of the minimization.

If it is a ReLLU network, i.e., a sequence of compositions of affine functions and
ReLU activations, to show that the network is also a piecewise linear function, it is enough
to show that:

(a) A affine combination of piecewise linear functions is also a piecewise linear function;

(b) The composition of ReLU with a piecewise linear function is also a piecewise linear

function.
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With the definition a piec3ewise linear function in equation 3.2, it is easy to prove

the first property:

JjeJ 1€]

Z A fr(x) = Z A, min max g; (x) (3.6)
k=1 k=1

= Z min max A\ g;(x)

n
€Jr 1€]
k=1 J

= min ) max\gi(x)
]1€J17---7]kejkk !

= min  max E kG, (X)
J1€J1,-- 0k €Ik 11€J15 ik ETR B

= min max g;(x)
neJ igj

The second property is also self-evident. Let us define go(x) = 0. Then:

ReLU(f(z)) = max{0, min max g;(x)} (3.7)

jE€Jy i€j

= min max g;(x)
j€y i€juf0}

Thus, neural networks with ReLLU activation functions are piecewise linear func-
tions.

As we know, the response of a neuron (affine function on the inputs and ReLU
activation) is a function R™ — R piecewise linear. Thus, when we compose a new piecewise
linear function in that output, i.e. a new layer of the network, we create new linear regions
that take advantage of the geometry of the previous ones. An analogy used by [74] is that
of thinking in the linear regions as foldings, such as those of paper, in the space of the
input data. Thus the composition of layers in the network would represent a sequence of

foldings, as illustrated in 3.4.

Figure 3.4: Non-trivial space folding, in 2D. The folding can potentially identify hidden
symmetries. Figure by [74].

A major corolary of [74] is described below. A neural network with ReL.U ac-

tivation function with ng input neurons and L layers with width n > ng can compute
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functions with Q((n/ no)(L_l)"On"‘)) linear regions. Thus, the number of linear regions
grows exponentially in the number of layers L and in a polynomial way in the number of
neurons per layer n. In addition, the corolary can be described according to the number
of parameters, revealing a similar result, the parameters are exponentially more efficient
than a shallow network. Note that a shallow neural network with Ln neurons is the
equivalent to a €2(Ln)-convex manifold. So, as we will see in the modeling below, the
number of binary variables, a heuristic for the difficulty of solving an integer program, is
exponentially more efficient since it scales with the number of neurons.

In much of this work, neural networks have been used as functions estimators of
the type f : R” — R, non-analytical, associated with the cost of a decision. In order
to find the lowest cost decision, it is necessary to minimize these estimators. Multi-layer
perceptron neural networks with activations of the type Reduced Linear Unit (ReLU) [38]
can be represented as integer programming problems and thus easily incorporated into
the solvers of this class of problem. Be W and b® the weights and biases of the layer

[, the problem of minimizing a given network of said type is:

){2]% h( (3.8)

al®) = X,

al) = whal=1) 4 pO® 1<I< L,
h® > a® 1<I<L,
hO < MO .y 1<i<L,
h® < a® 4 pr0. (1— y(l)) 1<i< L,
h® >0 1<I<UL,
a® h® e " 1<I<L,
y®, e {0, 1}"" 1<I1<1L,

in which M® is a sufficiently large number for layer [.

3.2 Stochastic Dual Dynamic Programming

Stochastic Dual Dynamic Programming (SDDP) is an algorithm for solving multi-
stage Stochastic optimization problems. By multi-stage it is understood as problems in

which an agent takes a sequence of decisions over time. By Stochastic, it is understood
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that the agent is making decisions under the presence of uncertainty that is gradually

revealed over the stages.

3.2.1 Algorithm’s Assumptions

For the modeling of systems under the SDDP structure, three types of variables

are used:

e State Variables: variables that track a system property over time (e.g., reservoir
volumes, number of items in an inventory, spatial position of a vehicle etc.). We’ll

use the 2 notation to describe them.

e Control Variables: the actions taken at each stage that modify the state variables
(e.g., water outflow from the reservoirs, buying stock, vehicle acceleration etc.).

We’ll use the u notation to describe them.

e Random Variables: external random variables observed at the beginning of a
stage, before the control. (e.g., rain inflow, item defects, steering errors etc.). We'll

use the w notation to describe them and its sample space at stage i as €);.

At each stage, all three variables, z,u e w, relate to each other by a transition
function which maps the previous state, the controls and the random variables to a new
state such that ©' = Tj(x,u,w). This transition has a cost C;(z,u,w), called stage ob-
jective. The agent chooses its actions following a policy u = m;(x,w), which must satisfy
some constraints u € U;(z, u,w).

The problem space that can be modeled under this structure is too large for an

algorithm to find solutions in a treatable way for all. SDDP, thus, has some assumptions:

1. Finite number of stages;
2. Finite and discrete random variables;

3. For a fixed w, C; is a convex function, T; is linear and U; is a closed set.
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3.2.2 Recursion and Subproblems

The next step is to compute the policy. A method is to use the Bellman principle

of optimality [10], the dynamic programming, and define the recurrent subproblem as:

‘/;(37, W) = min C’L (3_77 SC/, U) + Ej€i+,¢>EQj [V7 (xl7 ¢)] (39)

z,x’'u
¥ =Ty (%, u,w)

u € Uy(Z,w)

Kl

= X.

These problems are difficult to solve accurately, as they involve recurrent optimiza-
tion problems with many nested expectations. Instead of solving them accurately, SDDP
iteratively approaches the expectations of each subproblem with a future cost function.
Thus, we can think of the problem as a sequence of subproblems and for now abstract

these expectations.

3.2.3 Kelley’s Cutting Plane Algorithm

Kelley’s cutting plane algorithm is an iterative method for convex function mini-
mization. Given a convex function f(z), the algorithm builds lower approximations to the
function at its minimum f through a set of first-order Taylor expansions over the points

x1, ..., Tk, called cuts:

) _ i 0 (3.10)

0cR,zcRN

in which M is an inferior bound for the value of f(x) for all z in the domain.
By convexity, f&) < f(z) for all 2. If * is the point which minimizes the function,
then we have that f) < f(z*) < k—nfian(xk)' If that difference is small enough, we

[AAS}

can conclude our search e declare that we’ve found a solution close to the optimum.

the algorithm is structured in such a way that lim f%) = min f(x).
K—oo RN
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Algorithm 2: Kelley’s Cutting Plane
Data: f(x) convex, K4 > 0, > 0
Result: Approximation for the minimum f
ls < o0;
li + —o0;
K+ 0;
Initialize f:
while K < K4, € |ls —li| > e do
Solve f (K) and obtain a candidate solution z K41}
ls < min{ls, f(xxi1)};
li « f&),
Add cut 0 > f(zgi1) + L f(zgs1) " (x — 2x41) to create fEFD:;
K<+ K +1;
end

3.2.4 Future Cost Function Approximation

Note that in the subproblem formulation, if we exclude the expectations of future
stages costs, we have a convex program. As x appears only in the constraint = = =,
Vi(z,-) is convex in x to a fixed w. In addition, this constraint is important because its
reduced cost, or opportunity cost, is the subgradient of V; with respect to . Thus, we
can use Kelley’s cutting plane algorithm to minimize the functions of V; in a treatable

way:

Vi(z,w) = min  Ci(7,2",u) + 0 (3.11)

7 !
z,x’ u

¥ =Ty(%,u,w)

u € Ui(Z,w)

&I

=x
d

0 > Ejeit geo, | V) (2. ¢) + %Vjﬂ(x;,gbf(x' —2), k=1,....K

0> M.

What is missing is a method to generate these cuts iteratively, and for this we
need candidate solutions z}. One possibility is to generate viable candidates uniformly
at random. The problem is that these samples may not represent situations of the state
variables that occur in practice. A better way to generate these candidates is by simulating
the policy. The SDDP does this in two stages:

e Forward pass: we simulate the policy stage by stage, from the beginning to the end.
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At each stage, a realization of the random variable is observed and the approximate

subproblem is solved to generate a candidate for the next stage.

e Backward pass: To add the new cuts, visit the stages in inverse order, so that by

refining a stage, we will already have refined its successor.

Thus, SDDP works in a similar way to what happens in the deep learning area’s
backpropagation algorithm: the forward pass pushes primal information along the stages
(state variables), and the backward pass brings the dual information (cuts) back to the

stages to improve the decisions for the next iteration.

3.3 Surface Curvature

This section presents the basic concepts on the surface (two dimensional manifolds)
curvature theory, as well as the methods used to estimate computationally. Especial

attention will be given to the attributes derived from the principal curvatures.

3.3.1 Curvature Primer

Much of the study on surface curvature was given by Gauss’ work in studying the
total curvature of a point (which today is called Gaussian Curvature) according to the
maximum and minimum curvature [39]. These concepts are important for the proposed
study of the future cost functions of the dynamic programming algorithms and therefore
will be elucidated below. The notation and intuition of these will be given differently
from the original version of Gauss, in order to facilitate understanding.

Let’s begin with the curvature of differentiable curves in a euclidean space. The
osculating circle of one point in the curve, the kiss circle in Latin [63], is the limit of the
circles defined by three points in the curve that approach the original point. The figure
3.5 shows how the oscillating circle is what separates the circles on one side and on the
other of the curve, at a given point. We will define the curvature of one point in the curve
as the inverse of the radius of the osculating circle.

The curvature can also be expressed in terms of the first and second derivatives

[46]. Let v be a parametric curve in a R™ space, its curvature is given by:
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Figure 3.5: The osculating circle in P (of radius r) separates two types of circles tangent
to the curve P (bold): those who are on one side of the curve from those who are on the
other. Figure by [52].

_ VIVIPIIE = (- 97)?
[edIK
Let us now consider differentiable surfaces. For each point on the surface we have a

(3.12)

normal vector. A normal hyperplane will be the one that contains the normal vector. Its
intersection with the surface will define a curve, in which we can calculate the curvature as
we saw above. Note that as we have infinite normal hyperplanes, each in one direction, we
can possibly have infinite different values of curvature to a point. This set of curvatures
is called normal curvatures. The principal curvatures, x; and ko, are those of greater
and smaller absolute curvature value among the normal curvatures. The concept of total
curvature proposed by Gauss, which will be called gaussian curvature, is defined as the
product k1 - k3. The mean of both principal curvatures will be called mean curvature.

In surfaces, the principal curvatures define local behavior, described in table 3.1

below:
K1
<0 =0 >0
< 0| Concave Ellipsoid | Concave Cylinder | Hyperboloid Surface
Ky = concave Cylinder Plane Convex Cylinder
> 0 | Hyperboloid Surface | Convex Cylinder Convex Ellipsoid

Table 3.1: Local behavior of surfaces by its principal curvatures.

Thus, to know the principal curvatures allows us to understand the local behavior

around a point.
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3.3.2 Numerical Computation of Curvature

There are mny ways to compute the curvatures of surfaces sampled in grids [103,
37]. We will use the method described in [93], where is performed a quadratic approxi-
mation of a point by its neighbors in the grid. Considering only a 3 x 3 neighborhood,

like in 3.6, this approximation is reduced to simple analytical equations:

Z Z, Z3
Z, Zs Z
Z; Zy Z

Figure 3.6: Example of a 3 x 3 grid centered at Z5. This is the neighborhood used to
compute the curvatures. Figure by [93].

z=azr’ + by’ +cry+dr+ey+ f (3.13)
a_lagz_Zl+Zg+Z4+Z6+Z7+ZQ_Z2+Z5+ZS (314)
C 2022 12Ax2 6 A2 '
20y 12Az2 6Az2 '

822’ Zg+Z7—Zl—Zg

= = 3.16
‘ 0xdy 4Ax? (3.16)

8,2 Zg+Zﬁ+Zg—Zl—Z4—Z7
d= -2 = 3.17
ox 6Ax (3:17)

0z Zl+Z2+Zg—Z7—Zg—Zg
= = = 3.18
‘ oy 6Ax (3.18)

2494+ Zy+ Zg+ Z3) — (L1 + Z3s+ Z7 + Z, 57,

R A

With these constants, it is easy to compute the gaussian and mean curvatures on

the quadratic approximation:
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dab — 2
T A&+ e (3.20)
~a(l+e®) —cde+ b(1+ d?) (3.21)

fim = (1+d?+e2)3/? ’

and then solving a system of equations to obtain the principal curvatures.

3.3.3 Curvature Attributes

As we have seen, the principal curvatures describe the local behavior of a surface. In
the study of seismic data, geologists defined new curvature-based attributes that describe
or identify other local properties [93]. This research process is done by specialists with
a visual analysis. In this work, we will use the attributes for an automatic detection of
anomaly points. Below we have a brief description and the formulation, based on the

quadratic constants, of a selection of attributes:

e First Derivative Attributes: dip angle and azimuth angle are mainly used for

border detection and drastic changes of values;

Dip Angle = tan™* (\/ d? + €2> (3.22)
Azimuth Angle = tan™* (g) (3.23)
e Most Positive and Most Negative Curvatures: similar to the principal curva-

tures, but it considers the sign, which removes local shape information but accen-

tuate drastic changes;

ke = (a+b)++/(a—b)2+c? (3.24)
ke =(a+b) —+/(a—0b)2+c? (3.25)

e Dip Curvature: curvature at the direction of largest slope, exaggerate local relief
[75];

2(ad® + cde + be?)
(d? 4 €?)(1 + d? + €2)3/2

(3.26)

Rqg =
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e Strike Curvature: curvature at the perpendicular direction of the largest slope,

describes the morphology perpendicular to the slope [75];

2(ae* — cde + bd?)
(d? + €2)(1 + d? + e2)1/2

(3.27)

Rg =

e Contour Curvature: similar to strike curvature, but its magnitude is less well
behaved, represents the curvature of the contour which passes through that point

[75]

2(ae* — cde + bd?)

2
(14 d? 4 e2)3/2 (3.28)

Re =

e Shape Index: combines the information of the principal curvatures in a single
index to identify local behavior [59], like the table 3.1, see figure 3.7;

2
S; = = tan (M) (3.29)

™ K1 — Ro

e Curvedness: describes the magnitude of the curvature, with no attention for local

shape [59].

(3.30)

Spherical cup Ridge Spherical cap

Trough Saddle rut Saddle ridge Dome

=1 ] +1

Figure 3.7: Shape index illustration for nine different surface categories, all with the same
curvedness. Figure by [59].
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3.3.4 Manifold Learning

The idea of using data not as isolated points but as belonging to a manifold has
multiple applications in the machine learning area [51, 4]. In particular, we will be
interested in the manifold learning area for dimensionality reduction [19] in order to
estimate the curvature.

Intuitively, the learning of manifolds is interested in finding representations of
points in a n-dimensional manifold in a new ng-dimensional manifold, where ny < n,
preserving some property of the original, such as the distance between points or neigh-
borhood. The first strategies usually were in two stages: estimate the distances; use
multidimensional, metric scaling [106, 44] or not [61, 62], to obtain a new representation.

Consider a continuous function r : [0,1] — R", such that r(0) = a and r(1) = b,
and a manifold associated to function f with domain R". the function (f or)(¢) defines

a trajectory over the manifold in study and its length L is:

1
b=
0 dt

the composition (f o r)(¢) such that r(0) = a e r(1) = b which minimizes the

dt. (3.31)

d(f or)(t) ‘

length L is called the geodesic between points a and b on the manifold of f.

To find analytical solutions for the geodesics of arbitrary functions is not a simple
problem. A common strategy is to estimate numerically with the use a piecewise linear
trajectory with a finite number of segments. The coordinates of the points of the segments
can be optimized through algorithms such as Newton-Raphson or Gradient Descendent
[8]. The figure 3.8 exemplifies this method. However, these methods are expensive and
impracticable when you want to estimate the geodesics for each pair of a cloud of points

over the manifold, since they require multiple iterations to converge [8].

8 o A 5 8 % & 3 8

s
ﬁn 075 050 025 000 -025 -050 -075 ~-100

Figure 3.8: Example of a numerical estimate of a geodesic. In red we have the naive
straight line between the points and in yellow is the optimized trajectory. (Left) Diagonal
perspective. (Center) Top perspective. (Right) Side-view perspective.
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Thus, it is necessary a new approach to estimate these geodesics. The first al-
gorithm to do this was Isomap [105]. Its idea, illustrated in the figure 3.9 below, is to
estimate the geodesics through the minimum distance in a graph of the nearest £ neigh-

bors.

7

Figure 3.9: (A) Euclidean distance between two points do not represent the real distance
on the implicit lower dimensional manifold. (B) Construct a graph with the k nearest
neighbors for each point. With said graph is possible to estimate the real geodesic. (C)
Two dimensional representation which best preserves the shortest distances on the graph.
Figure by [105].

The representation that best preserves the geodesics does not necessarily preserve
other properties of the manifolds, especially the similarity in a neighborhood. In the
previous image itself we can observe that Isomap creates regions, holes, which force the
representation to have minimal distances similar to the original but that violate the genus
of the original manifold. As our proposed curvature analysis has a step of interpolation,
interpolating these regions may not have any sense.

The Locally Linear Embedding [94] has a different approach that eliminates the
need to estimate the geodesics of very distant pair of points. The algorithm is based on
simple geometric intuitions. If the manifold is sufficiently sampled, the neighborhood of
a point is close to a locally linear region. We can find the matrix W of linear coefficients
that minimizes the reconstruction error of a point by its neighbors:

2

(3.32)

(W) = Z ‘Xi _ Z W, X,

in which W;; = 0 if X is not in the neighborhood of X; and Zj Wi; =1. Asin
Isomap, we will define the neighborhood as the k closest points. The optimal weights W
can be found with the minimum squares method. The reconstruction errors are invariant
to rotations, rescaling, and translation of a point and its neighborhood. By this symmetry,
it follows that the reconstruction weights characterize the intrinsic geometric properties
of each neighborhood, and therefore will be the algorithm used in our analyses.

To obtain the manifold representation in a smaller dimension, one need only to

obtain the coordinates Y in this new dimension which minimize
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2

(3.33)

oY) =)

i

Y=Y WY,
j

Subject to the constraints that make the problem well behaved, the reconstruction
error can be minimized by solving a sparse eigenvalue problem in the size of the number

of samples.

3.3.5 Alpha-Shape Algorithm

To calculate how the gradient of the manifold learning coordinates behaves, it is
necessary that we interpolate the values for a whole likely region, not explicitly defined.
A possible approach is to use the convex hull [14] but a large region can represent impos-
sible coordinates in the original domain, it is necessary a region that contains the points
obtained but that is tighter. Thus, the algorithm a-Shape [35] was used.

While convex hull is the smallest convex polygon that contains all the points of a

set, we now have the notion of a-shape, defined as follows:

(a) A point p in a set S is a-extreme if exists a closed disk with radius 1/« which contain

all points of S and p is in its border;

(b) Two points p and ¢ in S are a-neighbors if there exist a closed disk of radius 1/«

which contain all points of S and p and ¢ are on its border;

(c) The a-shape is defined as the graph of straight lines in which the vertices are a-

extremes and the edges connect two a-neighbors.

We can still extend the disk definition, in which a negative radius disk is the
complement of a disk with a radius equal to its absolute value. Thus, a a-hull may be

non-convex and possess holes.

3.3.6 Mean Value Coordinates

For better analysis of the results we will see in the section 6.2 on the curvature of
the future cost function, it will be beneficial to map an irregular polygon with an arbitrary

number of k of vertices into a regular polygon.
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The Mean Value Coordinates are a generalization of the baricentric coordinates
for polygons with more than 3 vertices using a planar triangulation expressed as a convex
combination of the neighboring vertices. Unlike the triangle case, polygons with more

than 3 vertices have infinite possible coordinate systems that satisfy

k
i=1

d =1, (3.35)

in which w is a point inside the polygon, v; are the vertices and \; are its coordinates.
The advantage of this method over others is its low cost and the fact that it is a smooth
parametrization in the vertices. So, we will not have discontinuities and the analysis can
be done in the new polygon.
Be 0 < a; < 7 the angle in u on the triangle (u,v;_1,v;), defined in a cyclic way.
Its coordinates are given by
PR Cw = tan(a;_1/2) + tan(o;/2)

k
> Wwj
j=1

(3.36)

[v; = ull

3.4 Shapley Additive Explanations (SHAP)

When working with machine learning models, not always are clear the reasons that
led them to return one output in relation to the other. In order to verify whether the
models actually learn what they were proposed to investigate on a system, and not only
spurious patterns, it is important to understand the reasons. There are models, such
as decision trees, which naturally explain their reasons, but in those more complex and
opaques, such as the neural models, this is not trivial. Thus began the search for the
explainability and interpretability of models.

this distinction is not always explict, but [95] defines them as:
e Interpretability: development of inherently interpretable models;
e Explainability: attempt of explaining “black box” models in a post hoc way.

Neural networks are generally “black box” models of little interpretability. In this

sense, the explainability techniques make more meaning, even if there are interpretable
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neural models [114, 108]. A widely used explainability technique for neural networks is
Shapley’s Additive Explanations (SHAP) [68].

SHAP combines two previous approaches, LIME [91] and Shapley regression values
[65]. A brief introduction of these will follow.

3.4.1 Local Interpretable Model Agnostic Explanations
(LIME)

The Local Interpretable Model Agnostic Explanations (LIME) seek to explain the
predictions of any classifier or regressor in a fair way by approximating it locally with
an interpretable model. Here we have explanations of single predictions and not of the
model’s behavior as a whole.

For a given instance, disturbances are sampled in its neighborhood and its predic-
tions are evaluated. An interpretable model, such as a sparse linear model, using Lasso
or Ridge, is trained on that set of disturbed samples and its predictions. From the in-
terpretation of this local model, we can get the local behavior of our original model. It

reminds the argument used with LLE in the manifold learning problem.
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Figure 3.10: Synthetic intuitive example for LIME. Figure by [91].
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Consider a decision function f unknown by LIME, represented by the blue and
pink regions in the figure 3.10, which is not well modeled as a linear function. In the
image, the bold red cross represents the point to be explained. LIME samples points in
the domain of f and defines weights accordingly to the proximity to the point of study.

Explanations are a linear function that explains local behavior faithfully but not globally.
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The strategy to understand a model becomes how to obtain representative in-
stances of the entire domain of application, since we can study the local explanations of

each one.

3.4.2 Shapley Regression Values

In [65], we have a sensitivity analysis method to study the importance of a model
input. Here we want to consider the interactions and redundancies between the different
entries of an instance. The method considers the effect of each feature in combination
with the others by disturbing all subset of features and observing how this affects the
model prediction.

The method first trains a model on a set of data. Then for each instance, the

method disturbs all the input subset and calculates the individual contribution of each:

o) = 3 =D (6gu00) - Aglo)), (3.37)
QCS\{i} ’

in which S = {1,2,...,n} is the input set, Ag(x) = fo(x) — f3(x) is the gain of
set @ and fo(x) = E[f|X; = x;,Vi € @] is the expected value of the model when only
using the inputs in Q).

Since equation 3.37 has an exponential cost to be computed, the rest of the article
is dedicated to justifying the approximate method to compute the contribution of each
feature.

The Shapley values satisfy:

(a) Local Accuracy: the explanations must be representative of a small region in the

surroundings of the instance;
(b) Absence: features with irrelevant contributions shouldn’t affect the explanations;

(c) Consistency: the explanations must be coherent between different models.

3.4.3 Shapley Additive Explanations

Shapley Additive Explanations (SHAP) [68] are a method that combines the advan-
tages of LIME and Shapley values to get a more faithful interpretation of the predictions
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of a model. As discussed, LIME uses a linear explanation to approach a function f in a
small region in the instance sorroudings; and Shapley values are additive attributes that
satisfy local accuracy, absence and consistency. This means that they attribute a value
of importance to each feature individually for their contribution to the prediction.
SHAP uses Shapley values as instance weights in the linear regression of LIME.
Thus, non-linear interactions between features are considered. The authors go beyond

and present theoretical guarantees in accuracy and consistency.
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Chapter 4

Modelling

In this chapter we have the mathematical definitions for the Control Problem in One

Dimension, the Hidrothermal Dispatch Problem and the Optimal Power Flow problem.

4.1 Control Problem in One Dimension

The Control Problem in One Dimension is a pretty simple problem, which makes

it possible to get the actual future cost functions. It is defined by:

T

Zﬁt_1|mt|

=1
Ty = X1+ + &
Ct € {:l:l}

min E
xclU

The state x;, the control variable ¢; and the uncertainty & are one-dimensional.
The goal is to minimize the expectation of the distance between z; and the origin, subject
to the decay factor of # throughout the T' planning period. In this work, it was used
T =8, 3=0.9, xg = 2, and the uncertainty of & was symmetrically sampled around zero,
as in [3]. As a simple problem, we can pay the exponential cost and calculate the actual

future cost functions for a small sample.

4.2 Hidrothermal Dispatch Problem

The objective of the Hidrothermal Dispatch Problem is to determine a operation

strategy, for each stage, given the current state of the environment, for how much each
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plant (thermal or hydrothermal) should generate of energy. This strategy should minimize
the average operating cost, which consists in the cost of the thermal fuel and for a penalty
in case the demand is not supplied. The availability of limited amounts of hydrothermal
energy, in the form of reserve water, makes the problem quite complex. If the reservoirs
are exhausted and small rainwater flows occur, it may be necessary to use very expensive
thermal to meet the demand. On the other hand, if the reservoirs remain at high levels

and intense inflows occur, we may have spilled water, i.e. wasted energy.

4.2.1 Conventional Formulation

In this formulation of the problem, the state variables x represent the water volume
of the reservoirs; the decision variables u are how much to turbine ¢ and spill s from each
reservoirs, how much to generate from each thermal plant g, and how much d of energy
deficit we will have in the system; and the random variables w are the rain inflow of each
reservoirs.

Be p the cost associated with the penalty of energy deficit and c¢ the costs for the
fuel of the thermal power plants, the cost C; of the subproblem for stage ¢ is simply

JET

constrained by

d+zek'q1c+zgj:lia (4.3)

keH JET
% < q VkEH, (4.5)

in which 7 is the set of thermal plants, H is the one of hydro plants, e is the
exchange factor of water to energy, [ is the demand, g is the maximum thermal generation
and ¢ is the maximum turbinated outflow of the reservoir.

Let M () be the set of hydroelectric plants above 7, the transition function 7;(z, u, w)

is given by:

v = Ti(xj,uj,w;) = 15 — g5 — 85 +wj + Z ar+ sk VjEH, (4.6)
keM(j)



4.3. Optimal Power Flow 51

in which the variable 2’ is limited by:

<z; VjeH. (4.7)

4.2.2 Extensions

The problem described above and the target of our work can be extended to better
represent a real scenario, without the need to add non-linear constraints or costs. For
example, in many locations the water of the reservoirs plays other functions for society,
such as fish production and tourism, and therefore may have a minimum required volume.

In a more complex way, the Brazilian electric system is divided into four subsys-
tems. Each of them has a demand and its own plants and reservoirs, but it is allowed to
transfer part of the energy from one subsystem to another in order to meet the different
demands. Here the subsystems have to act together and are not completely independent.

There is also the possibility of adding a water conversion to nonlinear energy,
with a piecewise linear approximation [99]. The idea is that the exchange factor in real

reservoirs depends on its water levels and is not constant.

4.3 Optimal Power Flow

In the problem of hydrothermal dispatch it is assumed that the energy generated
by any power plant is easily accessible to all users of the electric grid. The reality is
very different. The grid is highly complex and has various constraints regarding the
distribution of the energy generated at a given point. The problem of the optimal power
flow [17], differently, relates to the distribution of the energy generated, in which the
plants that generate and the customers that demand are in a graph. If in the dispatch
we abstracted the distribution, here we abstract the specific notions of the generation,
such as the reservoirs of the hydroelectric plants. For a real application, it is of interest
to optimize the problem that unites the previous two.

Given an electric grid (with physical restrictions), a set of generators and a set of
consumers, we want to minimize the generation of energy needed to satisfy the demand of
consumers. What makes the multi-stage problem is the incorporation of energy storage

systems. In its traditional formulation, it is a subproblem of non-convex optimization
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with both quadratic constraints and stage objectives.

4.3.1 Constants

When dealing with physical artefacts related to electric circuits, it is only natural
to use complex numbers. We will use j to denote the square root of —1; for a complex
variable z, Re(z) and Im(z) denote the real and imaginary part of z; |z| is the magnitude
and z* denote the conjugate. For a square matrix A, Tr(A) denote the trace, i.e. the sum
of the values of the diagonal.

Consider the graphG = (N, ) for the electric network, in which the vertices i €
N, j € N represent buses and the edges € are branches that connect a pair (4, j) of buses.
NG C N is the set of buses with access to generators. Set L has edges in £ but in both
directions, i.e. (i,7) € € = (i,]), (j,7) € L. For a node 4, k ~ i denotes that node k is
connected to 1.

Transmission lines lose power due to resistance (r;), which measures the opposition
to current flow. For AC circuits, there is the reactance effect (X;;), which stores and
releases power to the circuit in a delayed way. The two quantities can be quantified in
one, the impedance: z;; = r;; + jx;;. It will be of our interest its inverse, the admittance,
which in turn can be decomposed into two values, the conductance and the susceptance,
Yi; = 1/2i; = ¢i; +jbi;. I i o4 j, then we define y;; = 0.

The admittance matrix, which relates the current injection and bus power, is de-

fined as

—Yij> i FJ

yz‘ri-k;yik i=j

Yius = (4.8)

where y;; is the admittance to ground at bus 7. let (; be a vector of length ||

with 1 on the i-th entry and zero otherwise:
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Ybus,i = CZCZT}/buS (49)
Ybus,ij = yijCiC'T - yz‘jCz’C-T (4-10)
e 1 Re (YbUS i+ Ybus 1) Irn(lfbus 7 YbHS 1) (4 11)
Y 2 Im(Yijus i }/bus Z) R‘e(YbUS i+ Ybus z) .
\ e ]‘ Im(YbUS i T Ybus z) Re<YbUSi - szl—‘ls z) (4 12)
' Re(Yi)US [ bus z) Im(YbUS i+ Ybus z) .
Vi — l Re(YbUS 5] + Ybus z]) Im(ijljls i ifbus ij) (4 13)
’ 2 Im(YiDus K4 YbUS U) R‘e<YbUS ij + Yi)us ZJ)
Y' — 1 Im(YLUS ] + Ybus z]) Re(YiDUSJj - Yb?ls,ij) (4 14)
’ Re (Yi)us,z] Ybus,zj) Im(YbUS:ij + Yb?ls,ij)
- i T 0
Mi = CCZ - (4]‘5)
| 0 GG
A |GGG =) 0 (4.16)
o 0 (G — )G — &)

Theses constants will be important to guarantee the physical laws that rule circuits
behaviors [58, 80].

4.3.2 Original Formulation

In this problem formulation, based on the work of [43], the state variables z rep-
resent the stored energy b; and the energy generation p{ and ¢ (real and imaginary
part); the decision variables u are the charge/discharge rates r; of storage, the power
v; and the flows of p;; and ¢;; (real and imaginary part); and the random variables w
are the demands of pP and ¢” (real and imaginary part). As v; is complex, we’ll use
V = [Re(v)T IIH(U)T:|T. The reader might wonder why modelling the generation as a
state variable. The reason is the difference constraint, inequations 4.27 and 4.28, which
require the value of the previous stage (the same trick used for autoregressive modeling
discussed in the 2.1.3 subsection).

Let cgk) > 0 be the cost of order %k associated to generation at ¢, the subproblem

cost C; for stage ¢ is simply

(x,u,w) Zc p, *+a )pz —|—c£0), (4.17)
eN
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i.e. a convex quadratic function. Other costs may be chosen, like the minimum
thermal loss in transmission. The constraints for the equilibria of real and reactive power

for each bus is:

P —pP — 1 =VTYY ieN (4.18)
¢ —g? =VTYY ieN (4.19)

Then, we have the constraints the govern the flow, including its magnitude (quadratic)

gi; = V'Y,V (i,7) € L (4.21)
g + a5 < (S5™)? (i,5) € L (4.22)

The constraints that bound the energy generation

Pimin ﬁp,G, S Pimax Z-GNG (423)
Qrn < ¢¢' < Qe ieNC (4.24)

The constraints below bound the power magnitude and thermal loss

(Vmin2 < PTALY < (Vmex)? ieN (4.25)
VIM;Y < L9 (i,7) € L (4.26)

Difference constraints,

APimin < p’LG/ _pZG < A.Pimax 1 € NG (427)
AQr™ < qff — qf < AQ™ PN (4.28)

And finally, the constraints that rule the storage system, the transition function

(in addition to the generation levels)

B < ) < pmex i€ N® (4.29)
R™N < gy < RUax i e N? (4.30)

in which n is the battery efficiency.
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4.3.3 Penalization for Temporal Consistency

The constraints at inequalities 4.27 and 4.28 impose a temporal relationship. The
current stage solution is not only affected by the future through the future cost function,
but also by the need for the future stages to have viable solutions. This is difficult to
guarantee always, even more during the beginning of training in which the future cost
function can lead the model to extreme regions of the state space. Therefore, in this work
we used a different modeling, in which the effective difference between stages (difference
past a certain level) is penalized in a quadratic form through the following inequalities
instead of 4.27 and 4.28

—AP, < pf' —pf < AP, ie NC (4.32)
AP, — AP™> < APF i€ NY (4.33)
—AQ; < ¢ — ¢ < AQ; ie NC (4.34)
AQ; — AQM™ < AQF ieN¢ (4.35)
APE AQF >0 i€ NC (4.36)
and the addition of quadratic components in the objective function
Ci(r,u,w) = Z (2)(;0@ ) +cgl)p?/+cgo) (4.37)
ieNC
+ 3" aP(APF)? + oV APF
ieENG

+ 37 B(AQE) + bV AQF

ieENG
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Chapter 5

Future Cost Estimator

In this chapter we describe our algorithms for the Stochastic Neural Dynamic Program-

ming (SNDP) algorithm, with some additional discussion over implementation details.

5.1 Algorithm

The algorithm is based on the original SDDP, in which is kept the sampling of states
with a forward pass of the algorithm and the adjustment of the model with a backward
pass. What differs is that now the adjustment is done on a neural network. Thus, it is
possible to condition the future cost function with the observations of uncertainty, add
memory of the previous stages and even use external and non-structured data. In a
context of farm decision-making, for example, a satellite image of your farm can report
more than one-dimensional statistics such as rainfall.

The goal of the algorithm is to create a projection of the future cost manifold into
the set of manifolds that can be represented as integer programs, which we know how
to optimize (even though not in a polynomial way). It can therefore be thought that we
are looking for something similar to an algorithm of reinforcement learning, as described
in the subsection 2.2.1, only with single network. Instead of learning a distribution of
actions around the optimum, we use optimization to always choose the optimum.

We will describe each step individually, but its basic structure is as following:

e Forward Pass: we simulate the policy stage by stage, from the beginning to the
end. At each stage, a realization of the random variable is observed and the approx-

imate subproblem is solved to generate a candidate state for the next stage.

e Backward Pass: visit the stages in inverse order, so that by refining a stage, we

will already have refined its successor.

We sample the observations at random, but one can make the modification to
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always sample in order, like a mini-batch of regular neural network training. All samples

appear the same amount of times. Algorithmically, we have both approaches below:

Algorithm 3: SNDP — Sampling
Data: Number of iterations n, number of simulated samples f, number of
random samples over the domain d, set S of scenarios and model G to be
trained.
Result: Policy for the problem.
fori=1,...,n do
States <— Forward-Pass(G, S, f) U Sample-over-Domain(d);
G < Backward-Pass(States, G, S);
end

Algorithm 4: SNDP — Mini-Batch

Data: Number of epochs n, batch size b, number of random samples over the
domain d, set S of scenarios and model G to be trained.

Result: Policy for the problem.

fori=1,...,n do

for j=1,...,|5|/b do

States «— Forward-Pass(G, S, b, j) U Sample-over-Domain(d);
G <+ Backward-Pass(States, G, .S);

end

end

The forward pass function in the algorithm 4 receives the indices of the scenarios
that will be used, instead of how many scenarios to sample. This function only simulates
the policy for each of the scenarios and therefore will be considered as already explained.
The backward pass function will be explained in the following subsections, since it is in
it that we have a few modifications.

The architecture of the neural network that represents the future cost function
(which we will call the network to the right) is independent of the network (or rather
hyper-network) architecture that proposes the weights (the network to the left). If we
increase the complexity of the network to the left, the cost of solving the subproblem is
not affected. However, we have to pay attention to the cost of solving the optimization
of the network to the right. This value is not trivial to know and is usual to use other
values as heuristic, such as the number of binary variables and the number of constraints,
given in the table 5.1.

On SDDP we have the convergence guarantee for problems with i.i.d. uncertainty
and linear constraints and objective function; by adding binary variables, SDDiP guar-
antees the convergence to the optimum. The algorithm proposed in this work does not

offer any theoretical proof that justify its convergence. However, some intuitions are given
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Type of manifold ‘ Binary variables ‘ Constraints
Convex 0 # Cuts
k-Convex k k- (# Cuts) + 2
ReLU Network # Neurons 3 - (# Neurons) — 1

Table 5.1: Comparison between the integer programming formulations for the different
kinds of manifolds.

below that seek to justify its empirical convergence in experiments. Following the idea of

learning propagation, it can be argumented inductively:

e Base: The penultimate stage has training instances { X, Y} that represent your real
future cost. If the network has enough capacity, with a finite number of iterations

it will converge to the surroundings of the real future cost function.

e Inductive step: If the k stage converged to surroundings of its real future cost
function, then the k — 1 stage may have training instances {X,Y} that represent
its real future cost. If the network has sufficient capacity and the training does
not interfere with subsequent stages, with a final number of iterations it will

converge to its real future cost function environment.

It remains to know for which problems a given network to the right has the ability
to converge to a given error tolerance and whether the proposed algorithms guarantee

that an earlier stage does not disturb much its subsequent stages.

5.1.1 Convergence to the Mean

In this formulation, we want, as in the original SDDP, to estimate the average
future cost of a given state in the current stage. Unlike SDDP, in which each stage has
an independent set of cuts, the algorithm has a single neural network (net to the left). Its
input is a binary representation of the stage and its output is the weights of the future
cost function (net to the right): a set of cuts, a set of k-cuts or the weights of a ReLU
Neural network. These functions have different possible representations (convex, k-convex
and not convex) and number of binary variables (an indication of potential difficulty to
solve). The knowledge of a specialist can be to the help of which manifold type is the
best output.

As seen earlier, both the k-convex manifolds and the ReLLU networks can be in-
corporated into the subproblems and solved by integer programming solvers. Thus, the

forward pass does not need any change and is kept as described before. However, the
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Algorithm 5: Backward Pass — Convergence to the mean
Data: States E, set S of scenarios and model G to be trained
Result: Future Cost Function Update
X g
Y  o;
fort=T1T,..,2do
for s=1,...,5 do
cost < 0;
forr=1,...,|5 do
Solve the problem for stage ¢ with initial state £} ; and observation
Qt,r;
cost < cost + optimal solution cost;
end
X — XU{E: s}
Y < Y U{cost/S} ;
end
Y + G(Stage Indices, X);
loss < Loss-Function(Y, f/),
Do one step of the optimization algorithm (e.g. Gradient descent);

end

backward pass must be changed, as can be seen in the algorithm 5. The optimization
algorithm used was Adam [57].

Be o the expected computational cost of solving a subproblem. We know that
solving integer programs is exponential in the worst case, and depends on the constraints
of each problem. So we don’t have a way to calculate its cost agnostically to the problem
or architecture of the chosen network. The cost of this bacward pass is therefore O(cTS?).
See that unlike SDDP, we have multiple simulated and optimized scenarios in parallel.
As we will see in the sub-section 5.2.1 about the loss function, it’s essential to have more
than one scenario per iteration.

The idea of the algorithm is to reinforce the information of the latter stages (which
appear first in the backward pass) compared the first ones, since the most reliable infor-
mation about the future is the closest to the end. Learning is then propagated to the
earliest stages, without allowing the network to deviate too much of the ideal for the final
stages.

A possible backward pass modification is to update the weights only once in the
backward pass, after having calculated the estimated future cost of each stage. This

modification will be investigated in the 7.2.1 sub-section of the experiments.
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5.1.2 Conditioned on the Uncertainty

We know that the network to the left does not affect the complexity of the subprob-
lem to the right. Thus, as long as we manage to modify the algorithm 5 to incorporate
new data, we can use even more information and distinct and more complex architectures
for the network to the left. In this sub section, we will discuss the modification that al-
lows to incorporate the uncertainty conditioning to the network to the left. The algorithm

inference scheme is described in the figure 5.1.

a : (b
( ) Subproblem cost independent : ( ) Subproblem cost depends on
of network size : network size

Subproblem

Solution
Current Stage > Fully : —>  Cost + Future Cost
Observed Data Connected :

Figure 5.1: Conditional SNDP schema.

As uncertainty possesses temporal dependence, knowing the realization for this
stage informs us about the scenario as a whole, both about the past decisions as well as
the decisions that will still have to be taken. Thus, in the backward step we will no longer
be able to sample independently to each stage, but rather to sample an entire scenario
and simulate the policy on it. The great change is over the backward pass, described in

the algorithm 6 below:

Algorithm 6: Backward Pass — Conditioned on the Uncertainty
Data: States E, set S of scenarios e modelo a ser treinado GG
Result: Future Cost Function Update
X +— 9;

Y + o;
fort=1T,...,2 do
for s=1,...,5 do
Solve the problem for stage ¢ with initial state E; s and observation €2, s;
cost <— optimal solution cost;
X+ XU{E};
Y «+ Y U{cost} ;
end
Y« G (Stage Indices, Observations, X);

loss < Loss-Function(Y, Y);
Do one step of the optimization algorithm;

end
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The main difference is therefore in the calculation of the future cost of the sampled
state. We are no longer interested in the average of that value, but the value that would
be obtained when we simulate the “future” of that observation. The goal is to optimize
the average conditioned on the observation. Note that if each stage is an i.i.d. variable,
the two expectations are equal. Thus, the algorithm acts on an even greater set of possible
problems, those that have temporal dependence. Nothing prevents us from adding even
more data, such as external information, predictions on future observations, the current
state etc.

This approach has another advantage. Solving the subproblems is the most ex-
pensive step of an iteration. In the initial version, the algorithm 5, and also in SDDP, we
calculate the future cost of a sample state for every possible realization, that is, for every
future scenario. But that is no longer the case, we only compute the cost for a single
future observation. Thus, the cost of a backward pass is O(cT'S), scaling linearly in the

number of scenarios.

5.1.3 Incorporating Memory

The previous approach is interesting because it conditions the future cost function
on an observation, thus portraying much better the real future cost of that scenario. So
it would be interesting if the function was conditioned not only in the current observation
but also in all the previous observations. A possible way of doing that, portrayed in the
figure 5.2, is the use of a memory vector and a LSTM network. In practice, it is the same
previous algorithm only that conditioned in a memory vector instead of an observation.
The modified version of the backward step is described in the algorithm 7.

This modification brings a difficulty. As a backward pass of the algorithm changes
the network multiple times, the hidden state cannot be sampled along with the state
during the forward pass. Its representation changes. At each modification of the network
we have to pass again the observations by the LSTM cell in order to have an instance of

the hidden state matching with the current weights of the network.
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Algorithm 7: Backward Pass — With Memory
Data: States E, set S of scenarios and the model G to be trained
Result: Future Cost Function Update
X «+— g
Y  o;
fort=T1T,..,2do
for j=1,...,7T do
| Compute the hidden state for scenarios in S.
end

for s=1,...,5 do
Solve the problem for stage ¢ with initial state E} s, observation €2, ; e

corresponding hidden state;

cost < optimal solution cots;

X+ XU{E};

Y + Y U{cost} ;
end
YV G (Stage Indices, Observations, Hidden State, X);
loss «— Loss-Function(Y, }7),
Do one step of the optimization algorithm;

end

(b) Subproblem cost depends on

(a) .
Subproblem cost independent
network size

of network size

Subproblem

Memory > Memory . Solution
LSTM Fully —_— @ > Cost + Future Cost
Hidden State —» — Hidden State —» Connected :

f

Current Stage
Observed Data

Figure 5.2: Memory SNDP schema.

5.2 Implementation Details

In this section we describe some modeling choices taken during the experimentation
process that led to a good convergence of the algorithm. These details are the result of
an empirical process and do not have formal arguments. Intuitions of possible reasons for

their effectiveness are presented for each modification.
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5.2.1 Loss Function

In the backward algorithms discussed in the previous section, the section 5.1, the
weights are updated according to the loss of multiple stages, simultaneously. As the initial
stages values involve a longer future, their future cost tends to be greater than that of
the following stages. Depending on the scale of these values, the most initial and the
most final stages have very different scales. If the T stages have a similar current cost,
the first future cost is close to T' times greater than the last. When calculating the loss
function, the values relating to the initial stages will dominate and thus the signal of the
final stages becomes very weak and the algorithm has difficulty to converge.

Considering the intuition of the propagation of learning, as the algorithm does
not fix the cost of the final stages, since the firts ones dominate, learning is not longer
propagated to the initials. For problems of small temporal window, or even of sparse
costs or of small order, it is possible that losses in different stages have a similar order
of magnitude and this issue is not a problem. But in general, the use of conventional
losses functions, such as average square error or average absolute error, does not lead
convergence to a good policy.

To solve this problem it is necessary to use a loss function invariant to the mag-
nitude of the predictions. A traditional loss function for the task is the average absolute
percentage error (MAPE), equation 5.1, in which the difference is normalized by the actual

value, thus rescaling the values.

N

1
MAPE = ~ Z

i=1

A - F,

" (5.1)

However, the MAPE function has its problems. If the costs assume values close to
zero, the MAPE responses are extremely high, dominating over other errors. In addition,
MAPE was criticized for penalizing more positive errors than the negative [71], it is not
a symmetrical metric. Thus, [56] propose a modification to MAPE, to use the angle
of inclination, equation 5.2. With this detail, the values close to zero are much better
behaved (because it is an angle, the function is limited above and below, from 0 to 7/2)

and even though it is still asymmetric, MAPE is better distributed.

) . (5.2)

The attentive reader should be wondering about the elephant in the room. It is

A-F

)

N
1
MAAPE = N ; arctan (‘

possible that a stage, especially the closest to the end of the planning horizon, has future
cost zero. Both previous loss functions are not defined at that point. For problems that

the future cost is almost never exactly zero, MAAPE works well. Therefore, this is not
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really your problem. But, you may encounter another problem. As we are training a
network, we need that the gradients related to the errors lead to a fast evolution of the
network. However, the values to be predicted can take arbitrary magnitudes. MAAPE’s
derivative quickly approaches zero as the future costs increase, and thus the network
practically does not evolve.

Ideally we want a loss function that satisfy, in simple terms:

(a) invariant to stage scale;

(b) well defined around zero and its neighborhood;
(c) approximatly symmetric;

(d) derivative which does not go to zero too fast.

A function that satisfy all above is given by equation 5.3, ghich we nicked the
Mean Staged Squared Error (MSSE):

NT 2
1 Ai—F,
MSSE = i 5.3
w2 (%) &
T tN
1 &1 1 )
TN 2. AR
t=1 7 i=(t-1)N+1
1 & MSE,

where oy(;) is the standard deviation of both the predictions and target values of

the stage the sample 7 is part of. Its derivative is obtained below:
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If we take the limit of a single sample contribution, as in equation 5.6, we see that

it converges to the gradient of the contribution of a single sample in the regular mean

0
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squared error, scaled by the variance of its stage.
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In the figure 5.3 below we have the value of the loss function for the alignment
example between a target distribution and a linear transformation (i.e., & = oz + p), for
different sample sizes. We see that the function behavior is quite similar for all sample

sizes.

Sample Size: 4 Sample Size: 8 Sample Size: 16 Sample Size: 32

Figure 5.3: Loss function in the alignment example.
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5.2.2 Domain Sampling

If we were to use only simulated states, as in SDDP, we would encounter two

problems:

1. The initial weights of the network could be such that for all simulated states, in-
dependently of the scenario, its responses could be the same, slowing the training

process;

2. By exploring only a small region of the state space, the policy might generalize

poorly.

Both problems hinder a well behaved evolution of the network, possibly letting
it to be stuck in a region with small gradient. To solve this problem, as seen in the
algorithms 5, 6 and 7, we can use a sample of states over the domain to add exploration
to the algorithm. A specialist can determine specific regions of the state space that must

be sampled in order to direct the model to have a good resolution in these regions.

5.2.3 Soft and Hard Networks

As we saw in the sub-section 3.1.3, the k-convex manifolds can be fitted with a
smooth procedure. The fitted and factual (the one to be optimized by the solver) functions
are going to be slightly different, but the training process is accelerated. The same is of
our interest with ReLLU networks.

It has been found experimentally that by optimizing the ReLLU target networks,
some instances diverged and fled from the desired future cost functions. A mechanism that
helped this process was the use of the GELU activation function [50] during training. So,
as in the case of the k-convex, the trained network and the network to be optimized in the
subproblem are different, but the training process is facilitated. Another soft activation
function could have been chosen in the place of GELU, such as the SiLU [50] and the
Mish [73].

In particular for the ReLU/GELU networks, but also relevant for the optimization
of the k-convex functions, it is that as we increase their complexity (e.g., increasing the
number of layers), the two networks are going to differentiate more and more. For this,

a penalty is added, the loss function between the hard network prediction (ReLU) and
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the soft network (GELU), multiplied by a smooth regularization value. The same loss
function, the MSSE, was used.

5.2.4 Problem Scaling

When it comes to learning from neural networks, it is advisable that both inputs
and outputs are low-magnitude values. For this, it is beneficial to change the scale of the
problems so that both inputs (state) and outputs (costs) are small. Emprically, badly
scaled problems lead to bad policies. Most of the problems can be easily rescaled with

simple multiplications by constants.
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Chapter 6
Explainability

In this chapter we describe the techniques used to study the two halves of the proposed
algorithm, the network to the left (the importance of the observations) and the network to
the right (the future cost function). First, we will discuss how SHAP can be an important

tool to explain the decisions made by the algorithm, for the two networks.

6.1 SHAP

SHAP is a powerful tool for understanding what a model takes into consideration
to make a decision. Next we will see two ways of how it can be incorporated, the first to
estimate the relationship between the states, which can be used by any MSSO method with
future cost functions; and the second focusing on the conditional and memory versions of

our algorithm.

6.1.1 State Interdependence

Whether with traditional methods for MSSO problems, or with the proposed here,
we can study how the values of the states affect the future cost. In particular, as these
algorithms have been trained on a specific region of the state space, we will simulate them
and study how the sampled states affect the future cost.

Having the states and the estimated future cost functions, it is easy to use SHAP
to get the explanations of each state value. By the definition of SHAP seen in section
3.4, we can think that these explanations are the marginal costs of each entry of the state
at that specific point. As we have seen from the beginning of this work, we often have

problems in which decisions are rarely made independently, in which a dimension of the
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state affects and is affected by other dimensions. But how to quantify this

A recent tool used to quantify the asymmetrical relationship between two variables
is the Predictive Power Score (PPS) [110]. PPS is asymmetrical, agnostic to data, and
detects linear and non-linear relationships. The idea is simply to use a non-linear regressor
(decision trees, boosting algorithms etc.) and using only one variable as a input to try to
predict another variable. Then we see how it performs compared to a naive regressor.

Here we will adopt a similar methodology. After simulating the policy and obtain-
ing samples {State, SHAP of Future Cost}, the unidirectional PPS is calculated. In our
case, the algorithm XGBoost [22] was used. The idea is to check how much the state
itself is able to determine its marginal cost, i.e., how independent of the other states it
is. If we have a high PPS in all state entries of a stage, a operator could make a decision
based on each state independently, which is much easier to interpret and explain to other
responsible agents. Otherwise, the operator who has to make the decision should be more

cautious, now that he knows that the decision on the state is complex.

6.1.2 Observation Importance

The addition of conditional and memory variants enables a more detailed analysis
of the algorithms. Now it is possible to verify, through SHAP, how an observation affects
the future cost function, which allows operators and decision makers to quantify the
impact of hypothetical scenarios. A rural producer can estimate how the price variation
of a input affects their long-term profits and a dispatch operator can investigate how an
out-of-time drought would increase the cost.

In addition to quantifying the impact of a specific observation, it is possible to
calculate the SHAP value of the hidden state that reaches a stage. We are in practice
quantifying the impact of the observation adjusted to its past history, since the observa-

tions are not temporarily independent.

6.2 Future Cost Curvature

In addition to understanding the marginal future cost of states and observations
at specific points, we can study the curvature of the manifold defined by the future cost

function. From this analysis arise two questions: does the neighborhood of this state
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change suddenly (instability)?; is the neighborhood of this state different from others and
if so do I have to worry (incertainty)? We will build the step-by-step methodology, but
the schema can be seen in the figure 6.1. These methods are not the exclusive to the

proposed algorithms and can be used to study traditional algorithms of MSSO problems.

Interpolate in the

sampled region Shape regions

Sample points Reduce dimension .. Compute Change —
on the surface using neighborhood et . Gradients coordinates B

Anomaly
detection

Figure 6.1: Curvature Study Schema. We sample points from the manifold in a uniform
way over the domain. With manifold learning to construct a two dimensional representa-
tion. We interpolate the sampled region and compute gradients. A coordinate transform
is applied for better visualization. Local shape and anomalous points are computed.

6.2.1 Processing

The first step is to sample points on the manifold of the future cost function to be
studied. As the curvature depends on the second derivatives, calculating the curvature
directly on this manifold, which has high dimensionality, is a computationally expensive
process. The strategy adopted is to study the curvature on a surface, with reduced
dimensionality. In higher dimensions we have incomprehensible geometric behaviors that
when projected on a surface we certainly have loss of information. We expect that locally
these multidimensional artefacts are similar to those of the surface.

So the second step is to use some manifold learning algorithm to get a representa-
tion of this manifold now in only two dimensions. We use LLE, as discussed earlier. The
function image is kept for the subsequent steps.

With the two-dimensional coordinates, it is sought to find the region of this new
space that corresponds to the likely region of the projection of other points from the
original manifold. For this we use the a-shape algorithm. With the image values of the
future cost function, we can interpolate a grid over the entire region defined by a-shape.
The interpolation used was the radius-based function interpolation, with multi-quadratic

function.
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In this grid, we can estimate the first and second derivatives of each interpolated
point and calculate the curvature attributes described in the sub-section 3.3. Here we
already have the necessary data to try to answer the two questions. Only to facilitate
viewing, we can transform this study region into a regular polygon using mean value

coordinates (sub-section 3.3.6).

6.2.2 Local Shape

As we saw in the table 3.1, we can characterize the local behavior of a surface
through its two principal curvatures. So we know if locally the surface is approximately
a linear, concave, convex, hyperboloid etc. With real problems, it is not always possible
to run the optimal solution obtained and it is interesting to know if disturbances in
its neighborhood have sudden changes on the value of the future cost. If we are in a
hyperbolic region of the surface and we don’t have sufficient precision to run exactly the
optimal solution, it can be better to choose a sub-optimal solution in a more linear region.

So we get a map of surface stability of the future cost function.

6.2.3 Anomalous Region

The surfaces of the future cost functions learned may have different resolutions
throughout the state space. Occasionally, a scenario can lead the optimal solution chosen
to low-resolution regions not because it represents the real optimal solution but rather
because it is a little explored region that, during training, the model erroneously extrap-
olated. Thus, we would like to find regions of the surface of the future cost function that
present characteristics that differentiate them from the others, in the hope of finding these
poorly conditioned regions.

The strategy adopted is to consider each point of the interpolation as a sample,
and each curvature attribute as a feature. Then we run the anomaly detection algorithm
Isolation Forest [66]. It selects a feature by chance and randomly chooses a value in the
interval between the minimum and maximum as a decision node of a decision tree. The
number required to isolate a sample, aggregated by the average of a forest of these trees,
is an indication of how different this sample is from the rest. When a sample consistently

needs few decisions to be isolated, it is an indication of whether it is an anomaly.
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Chapter 7

Experiments and Results

In this chapter we put the algorithm to the test in order to verify three things: whether it
converges to the correct functions in simple problems; whether it proposes robust solutions

in real systems; and how its hyperparameters affect its performance.

7.1 Control Problem in One Dimension

The definition and modeling of the Control Problem in One Dimension is given
in the section 4.1. Because it is a pretty simple problem, with the state and uncertainty
variables both have only one dimension, it is possible to calculate the expected future cost
functions through the recurrent definition.

Let m € S(n) be a scenario from the set of scenarios at stage n. We have that

0 n="T

Z( )C<xn +ém)+ 0 Quia(tn+&m) n<T
Em€EeS(n

Qn(xn) = (7'1)

As can be seen in figure 7.1, the future cost functions are non-convex in all stages.
This is because the discontinuity ¢;, in which the immediate cost C' id given by min{|u —
1], |u+ 1]}, in which v = 2,1 + &.

Note that since each stage has its own sample of uncertainty, even if they com
from the same distribution, the estimated expected future cost curves are not exactly the
same but for a constant, they have certain irregularities. As the subsequent experiments
also use the same sample, it will be, for our use, the real expected future cost function.

As we increase the sample size, these functions converge to the problem optimum.
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Figure 7.1: Optimal Expected Future Cost Functions @Q,, for the Control Problem in One
Dimension.

7.1.1 Convergence to the Mean

The first experiment is to verify whether the algorithm is able to estimate the
expected future cost function. As it is a problem without temporal dependence, we will
limit ourselves to the simplest version of the algorithm, the convergence to the mean. The
experiment was done with a network to right (the future cost function) with two hidden
layers with 40 neurons each; with 20 random samples in the interval (-3,3); 10 samples
of forward pass, using the same sample of the figure 7.1; smooth regularization of 0.2; by
100 iterations. The figures 7.2 and 7.3 illustrate, respectively, the hard and soft future

cost functions learned.

Stage

— ]

No u b~ w

Figure 7.2: Hard Expected Future Cost Functions Q,, for the Control Problem in One
Dimension.
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Figure 7.3: Soft Expected Future Cost Functions @, for the Control Problem in One
Dimension.

The figure 7.4 illustrates the expected future cost functions in different iterations
of the same training, thus illustrating the evolution. Note that in the 15th iteration the
algorithm is still learning the magnitude of each function; and that in the 30th iteration
the functions already possess the approximate shape of the actual functions. From the

50th iteration onwards there is little visual improvement.

1st Iteration 15th Iteration
Stage
—]
4- - — 2
— 3
3- - — 4
— 5
- _ — 6
2 — ]
" - \_/
\
0 - 1 1 1 1 1 1 1 - 1 1 1 1 1 1 1
30th Iteration 50th Iteration

Figure 7.4: Soft Expected Future Cost Functions @Q,, evolution for the Control Problem
in One Dimension.

Even if there is no temporal dependence between the stages of the problem, the use

of the conditional algorithm can still make sense. In the figure 7.5 we have the hard and
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soft conditional future cost functions conditioned in the greatest and the lowest value of
the scenarios, i.e., the two most distinct observations possible. We see that the functions
are little affected: we can use the conditional algorithm, which as we saw in the subsection

5.1.2 is S times faster, to learn policies that have no temporal dependence.

Min value observed - Hard Min value observed - Smooth
Stage
—_—1
4- - —_—2
—_— 3
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—_—5
. . —_— 6
2 — 7
1- \//_\/\/ - w
0' 1 1 1 1 1 1 1 - 1 1 1 1 1 1 1
Max value observed - Hard Max value observed - Smooth

Figure 7.5: Conditional Future Cost Functions @,|, for the Control Problem in One
Dimension.

7.1.2 Convergence for Different Networks to the Right

One important decision to take during the training process is how to choose the
network architecture to the right. As we saw, the network can be a k-convex manifold or
a ReLLU network. We have the loss function for different architectures in figure 7.6. In it,
the experiments were carried out with 10 forward pass samples (policy simulation) and
20 random over the domain. It was carried out 3 times and taken the average. In the first
graph, which shows the average of the loss function of all the k-convex architectures and
all the ReLU networks (non-convex), we have the behavior of the loss function between
the classes of network is quite different. k-convex networks have a smaller initial loss, but
decay more slowly than those of the non-convex networks.

When we see the second chart, in which the average is decomposed to the different
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k-Convex vs Non-Convex k-Convex Non-Convex

Architecture
— [42]
= [84]
— 21, 21]
— 42, 42]
— 14, 14, 14]
- [28, 28, 28]

Network type ) (k, cuts)
= k-Convex
=== Non-Convex

— (1, 42)

= (1, 84)
— (2, 21)
—(2,42)
100 -

Figure 7.6: Loss functions throughout 25 iterations for different k-convex and non-convex
architectures. Each architecture was trained thrice, and the average is shown above.

combinations of k£ and number of cuts, we see that the loss function has approximately
the same behavior, with little variation between the models. Because it is a problem with
non-convex future cost functions, we would expect that the loss function with £ = 1 would
have a worse behavior, but it is not what was observed. Its functions are shown in figure
7.7 below. See that 25 iterations were not enough for the model to learn the functions
correctly, especially for stage 1. Besides, it still represents well the optimal functions.

Hard Smooth
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Figure 7.7: Hard and Soft Expected Future Cost Functions with k = 1 Q,, for the Control
Problem in One Dimension with £ = 1 and 42 cuts after 25 iterations.

The third chart already shows something different. The total number of neurons
is not a good predictor for the performance of the network, since there are situations in
which networks with the same number of layers but a smaller number of neurons per
layers win and situations that they lose to the largest. Distinctively it is noted that
networks with two hidden layers have a better loss function than the others, with the
networks with three layers coming in second place. If on the one hand the increase of
layers improves exponentially the spatial resolution of a ReLLU function, it also more easily
increases the difference to its soft representation (GELU), which can lead to a breakdown
between the network learned and the network fitted. This would be an explanation for
the lower performance of the network with three layers in the experiment. A solution

could be to increas the value of the smooth regularization. Graphically, all functions are
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approximately linear, which, considering the log scale, means they have approximately
exponential behavior.

To see how the functions generalize (thanks to a large number of samples on the
domain), the squared difference between the future cost functions learned and those of
the figure 7.1 was studied. The results, for some selected stages, are in figure 7.8. In
the first column we have the results grouped by network class, while in the rest are the

specific architectures of each class.
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Figure 7.8: Squared differences between the estimated future cost functions and those
of figure 7.1 for 25 iterations for different k-convex and non-convex architectures. Each
architecture was trained thrice, and the average is shown above.

On the first column, we see that the convergence behaviors between the classes
and between the stages are quite different. On stage 7, which has lower magnitude values,
random cuts already have a good approximation to the future cost function and the model
quickly converges to a function close to the real. Interestingly the squared difference
initially falls below the value that eventually the function converges to, showing a slight

over-fitting to the training region. Non-convex networks take longer to converge at this
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stage, significantly increasing in the initial iterations. This can indicate that the gradients
of the other stages, even with the reinforcement of the algorithm for the latter stages, is
greater. Eventually the squared difference begins to converge to a value close to the k-
convex one. Stage 5 has a similar behavior to the 7th one, but with a slower convergence
on the k-convex networks.

Stages 1 and 3 are different. Here the non-convex networks have no increasing phase
seen in the subsequent stages. In stage 3, the k-convex networks converge even later, with
the same behavior of converging above the minimum. The non-convex networks converge
to a different value, higher. Stage 1 is the only stage in the graph in which the non-convex
networks lead with some margin almost from the beginning. None of the networks classes
seem to have converged, more iterations would be needed, as it has already been advanced
in the figure 7.7 in which we see that stage 1 is not still well positioned.

As for the other two columns, the behavior is similar to the average of the classes,
again the non-convex networks have more variance. On the k-convex networks, the ones
with £ = 1 seem to converge faster, mainly in the final stages. Considering that they have
the least numbers of parameters, it makes sense. As for the non-convex networks, in stage
7 the shallow ones have difficulty learning, while in the final stages the networks with 3
layers are the ones that have difficulty, especially that of 14 neurons in each. Those with
two layers do well in all stages.

Finally, figure 7.9 has the mean execution times for each iteration for each network
to the right architecture. We see that both for k-convex and non-convex networks what
affects the time the most is the total number of parameters (cuts and neurons) and not
the complexity (k/layer number). The latter does affect the execution times, but in a less
intense way. As expected for what was discussed in the table 5.1, non-convex networks
have a greater complexity and therefore require more time to be optimized. Note that
in the experiment were used 30 samples (10 of simulation and 20 over the domain) and

therefore the cost to solve a single instance is much lower.

7.1.3 Hyperparameters and Convergence

We can also study how it is the learning process with different combinations of
hyperparameters: the number of samples in the forward pass, the number of random
samples over the domain and the smooth regularization parameter. We have the loss
function for each each combination in the figure 7.10. Note that in situations with 10
random samples over the domain (i.e., the random signal is greater or equal to the signal

of the policy simulation) there is convergence of the models, with loss function values
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Figure 7.9: Execution times in the architecture experiment, per iteration, for different
k-convex and non-convex. Each architecture was trained thrice, and the average is shown
above.

close to zero. The model with only the simulation signal (forward pass) in purple does not
always converge (with this many iterations), but they have a downward trend. Compared
to others, it initially has a slower drop. The red model has just a few random samples on
the domain (5) compared to the number of simulated samples (10), having an accelerated
drop but a high and stable final loss. A positive value for the smooth regularization seems

to accelerate the initial fall of all models.
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Figure 7.10: Loss functions for 25 iterations for different combinations of number of for-
ward pass samples, number of random samples over the domain and smooth regularization
factor. The network to the right has two hidden layers with 40 neurons each. Fach com-
bination was trained thrice, and the average is shown above.

Being a parameter that increases the exploration region of the state space, it is
interesting to investigate how generalization is affected by the number of random samples
over the domain. For this, the squared difference of the estimated expected future cost

functions and those of the figure 7.1 was calculated. As the simulation begins with an
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initial state of value 2, it is very rare that we get to explore a negative state situation.

We have the results in the figure 7.11, for some chosen stages.
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Figure 7.11: Squared differences between the estimated functions and those of figure 7.1
for 25 iterations for different combinations of number of forward pass samples, number of
random samples over the domain and smooth regularization factor. The network to the
right has two hidden layers with 40 neurons each. Each combination was trained thrice,
and the average is shown above.

In purple we have the parametrization with only simulated signal (forward pass).
We see that the squared difference grows with the iterations instead of decreasing. The
model suffers from over-fitting in the explored region, of positive state values. In red we
have a situation with a little signal from random samples. The squared difference seems
to grow and stabilize, but in a level quite below the purple one. All the others, with the
exception of stage 7 with regularization equal to zero, seem to converge to a low squared
difference: good generalization.

Note that in some stages, such as stage 7, the squared difference does not (ignoring
oscillations and considering just the trend) monotonically decrease. If first increases to
then drop.

With the exception of the purple parameterization, which explodes quickly, the
soft regularization with values of 0.2 and 0.5 seem to offer a better behavior (more stable,

lower magnitude) than the zero value and the value of 1.
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7.2 Hidrothermal Dispatch Problem

The definition and modeling of the Hydrothermal Dispatch Problem are given in
section 4.2. Unlike the Control Problem with One Dimension, the Dispatch Problem
is complex enough so that the recursive approach to estimate the expected future cost
function becomes intractable. Therefore, the experiments of this section will not be
compared with a optimum, but with the model that guarantees convergence for convex
problems: SDDP. It was trained with 100 cuts.

The work has numerical results for a real hydrothermal system, the Colombian

system, consisting of 72 hydroelectric and 32 thermal plants. The system has 80 historical

scenarios.
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Figure 7.12: Left: The reservoirs are arranged following the topology of the river basins.
The color of a vertex corresponds to its total volume capacity. Vertices in black are a
river mouth. Right: Distance Matrix between each pair of reservoirs. Darker points are
topologically similar pairs.

Each hydroelectric plant has a reservoir. These reservoirs are organized according
to the topology in Figure 7.12. The figure also shows the matrix of distances between
each pair of reservoirs. The expected monthly demand, historical scenarios of rain inflow,
and all the constraints of reservoirs were made available by PSR (https://www.psr-inc.
com/), and are illustrated in the figure 7.13 below. The operation period is 2 years divided

into 24 decision stages.


https://www.psr-inc.com/
https://www.psr-inc.com/
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Figure 7.13: Dispatch Scenarios. First graph shows the inflow distribution, the second
shows the length in hours of each stage and the third shows the demand over time. The
last two are deterministic.

7.2.1 Algorithmic Details

Here we have experiments aimed at studying how different algorithm modifications
affect convergence and training. We will study the conditional and memory versions of
the algorithm; whether the pass through the data is in batches or by samples; and what
is the ideal frequency of updating the network weights, at each stage or only at the first
(which is the last in the backward pass). Figure 7.14 below brings the results. A1l and
Last refers to the frequency of updating; and Batched and Sampled refers to how the
policy simulation data are selected, in order or randomly.

We see that the conditional version and the memory one have different behaviors.
For the algorithm version in which we update the network at each stage, in green and blue
in the graphics, the two strategies quickly converge to a local minimum, regardless of the
type of sampling method. As for the frequency of update, we see a difference. While the
conditional model can converge to a lower level, the use of only one update by iteration
makes the model with memory diverge. The use of random sampling of scenarios takes
the conditional model with only one update to a level even lower than the use of the data
in ordered batches.

In addition, we see that in the conditional model the loss function and the total
cost are highly related when we have a single update.

In the figure 7.15 above we have the average execution time of the algorithms. The

use of memory and the use of ordered batches increase the time.
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Figure 7.14: On the left we have results with regard to the conditional version, and
on the right with regard to the version with memory. The first row illustrates the loss
function along the iterations. The second illustrates the total cost of the policy along
the iterations. The third shows the relationship between the loss function and the total
cost. All experiments have been repeated 3 times and what is shown is the average.
Parameters: soft regularization of 0.05; a single segment of 100 cuts; batch of size 20; 10
random samples on the domain.
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Figure 7.15: Execution times for different versions of the algorithm. Batch: the scenarios
are simulated in ordered batches; Sample: the scenarios are sampled randomly; A11l: the
network is updated at each stage; Last: the network is updated only in the last step of
the backward pass; Cond: conditional model; Mem: model with memory.

7.2.2 Policy Performance

We will now discuss how the algorithm performs on this dispatch problem. As it
is a convex problem, our baseline is the performance for SDDP, which was 1.27 x 10°$.
As seen in figure 7.14, for a network to the right using 100 cuts (convex), the best policy
was that of the conditional algorithm with random samples and single updates. In the
figure, it is not clear if the algorithm has already converged and therefore we can train
it for more iterations. As we see in the figure 7.16, when the algorithm converges, it still
has a much higher expected total cost than that of SDDP, even using the same number
of cuts. So, SDDP learns a better use of these cuts than SNDP.

As though it is a problem with convex future cost function, we can see how a
non-convex policy performs, with the use of a ReLU network to the right. In figure 7.17
we have the evolution for the conditional algorithm with a ReLU network to the right
with architecture with layers 40,40. We see that the expected total cost comes very close
to the obtained by SDDP. Thus, we can investigate other architectures for the network to
the right and see how they approach the cost of SDDP. A observation regarding the figure
7.17 is that it is not clear by the loss function whether the policy has already converged
or not.

This research regarding the performance of different architectures is illustrated in

figure 7.18. Unlike the previous two, here we show the loss and the minimum cost so
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Figure 7.16: On the left we have the loss function over the iterations. On the right we
have the total cost of the policy over the iterations. Parameters: smooth regularization
of 0.05; a single segment of 100 cuts; 20 forward pass samples; 10 random samples on the
domain.
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Figure 7.17: On the left we have the loss function over the iterations. On the right we
have the total cost of the policy over the iterations. Parameters: smooth regularization of
0.05; ReLU network [40, 40]; 20 forward pass samples; 10 random samples on the domain.

far observed throughout the training. This choice was given by the stochastic nature of
the training. In the first figure we see that policies converge to close values in the loss
function, with the conditional policy [20, 20] apparently have full converged. In the second

image we see the same behavior, with the architecture with memory closest to the value
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obtained by SDDP. Unlike SDDP, we see in the last figure that neural policies prefer a

high initial cost and a lower cost in the second peak.
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Figure 7.18: On the left we have the accumulated minimum loss function along the
iterations. On the center we have the accumulated minimum total cost. On the right
we have the average cost per stage. On grey we have the SDDP policy. Parameters:
smooth regularization of 0.05; conditional ReLU network [20, 20], [40, 40] and with memory
[20, 20]; forward sample size 20; 10 random samples on the domain; update at every stage.

We can now investigate these policy differences. In figure 7.19 we have the distri-
bution for many different variables over the simulation of all scenarios using the different
policies, including the optimal policy (where there is no uncertainty) and the greedy policy
(the immediate lowest cost). We studied total volume, turbined volume, spilled volume,
thermal energy generation and cost.

Let’s go by steps. On the first row we have the distribution of total volume.
Although they differ for specific reservoirs, SDDP has a total volume distribution very
similar to the optimum one. The neural policies follow the pattern somewhat, specially
the network with memory. For the turbined outflow volume, all trained policies stay
around the optimum region, but again SDDP is the closest to the optimum. Spillage is
where the neural policies do not deliver, with some scenarios causing the waste of high
volumes of water, specially at the ending stages.

On thermal generation we see that the optimum policy has quite a different be-
havior compared to the others, with no peak. All learned policies peak around the same
time, but the neural ones differ from SDDP. The latter has a brief moment around stage
5 with almost no thermal generation, which does not happen on the neural policies. The
total cost is similar to the thermal graph, but we see that SDDP is worse than the neural
policies for a specif scenario, showing a huge peak in costs. Considereing that the mean
total cost of all learned policies do not differ that much, is interesting to see how these

learned policies are so unique.
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Figure 7.19: Summary graphs of the simulations for the dispatch problem for the policies
optimal, greedy, SDDP with 100 cuts, conditional SNDP ReL.U [20, 20], conditional SNDP
ReLU [40, 40] and SNDP ReLLU with memory [20, 20]. Grey regions represent the intervals
between the quantiles of (25%, 75%), (10%,90%), (5%, 95%) and (min , max ).

7.2.3 Robustness on Extreme Scenarios

In addition to the average performance, we can study how the algorithms perform

on gradually more extreme cases. In figure 7.20 below, we have the policies learned dealing
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with new scenarios. The scenarios represent the average of the g fraction of the scenarios
with the lowest total influx volume. If § = 1 then we have the average of all scenarios
and if § = 0.5 then our new scenario is the average of the half of the scenarios with the

least water.
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Figure 7.20: On the left we have the cost of the policies. On the right we have the ratio
between the cost of the policy and the cost of SDDP. As SDDP has zero cost for high
values of 3, the x axis begins with 0.75. The scenarios represent the average of the (8
fraction of the scenarios with the lowest total inflow volume.

We see that SDDP learns a zero-cost policy for the scenarios similar to the average,
slowly increasing its cost until the final quarter, where the cost grows rapidly. Thus, SDDP
learns a good policy for the average, not for the tail, what is expected since it was its
risk measurement. For the SNDP policies the opposite occurs: higher cost compared to
SDDP for average scenarios, and lower than SDDP for the tail. One of the policies comes
to be almost 70% of the cost of SDDP. Interesting to observe that for 5 < 0.75 the policy
with memory is dominated by the conditional [40,40].

7.2.4 Model Explanations

In this subsection we will use the techniques described in section 6.1 to analyze the
policies. As described there, we can calculate the importance of states, observations and
memory vector for the different policies. In figure 7.21 we have the absolute importance

aggregated by each of these categories.
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The importance of the states follows the same “corcovado” shape in all policies,
with a gradual rise all the way up to a peak, around half of the planning period, and a
sharper fall. The magnitudes are similar, with the conditional model [20,20] having a
peak higher than the others.
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Figure 7.21: Input importance for the future cost function of different policies.

This information is relevant for lawmakers and managers, in which a specific reser-
voir may have a greater (in absolute value) importance than the others, requiring special
attention. In real situations it is not always possible to follow the policy and therefore it
is useful to keep in mind those reservoirs of greater impact on future costs.

As for the importance of the inflow, we see that the three policies actually use
this information to adjust the future cost. The conditional policy [40,40] even gives more
importance to the inflow observed at the beginning of the period than the current volume
of the reservoirs. If the different scenarios already differ from the beginning, the policy
can learn to identify the corresponding future and prepare for it at the present. Beyond
the peak, the importance of the inflow for the three policies decreases. Following the
previous hypothesis, as we have less future to worry, the importance of identifying in
which type of scenario we are decreases. Memory policy attributes importance to past
states, less than to the other two categories, but nonetheless taking temporal information
into consideration.

Next we have the relationship between the importance of a state entry (e.g., a
reservoir level) and the state entry itself. In figure 7.22 we have the average PP score for
each reservoir volume and its importance over the stages for all policies.

Interestingly, in the SDDP policy the relationship between the SHAP value of a
state and the value of the state itself is similar to all reservoirs and decreases with time.
That is, as the stages progress, the policy starts to use other information than the reservoir
level itself (i.e. uses the other reservoir levels) to determine the importance of a hydro.
Its importance now depends on the other states, while initially it almost only depended
on itself. In other words, the impact of a change on the volume of one of the reservoirs
depends on the volume of the other reservoirs.

This behavior does not happen in the other policies. In the conditional [20,20]

the PP values are high in different reservoirs and stages. The importance of a reservoirs
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Figure 7.22: Relationship between importance and reservoir levels. Stage means (left)
and spatial means (bottom) are shown for all policies.
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depends, in general, largely only on the state itself. The conditional policies for the [40, 40]
network and [20, 20] with memory have a few reservoirs that consistently have an impact

almost independent of the volume itself.

7.2.5 Future Cost Function Curvature

Here we will expose the proposed methodology of using the curvature to study a
given future cost function. The idea is to show as a proof of concept how the curvature
attributes can help in the analysis of the future cost functions. The figure 7.23 illustrates
the stages and results of the process, which has already been explained in section 6.2, for
the future cost function of the first stage of SDDP: points on the manifold are sampled and
these points are projected to a smaller dimension; the future cost value for a whole region
is interpolated; the different curvature attributes are calculated in the low dimension; the
surface local shape and the anomality of a point are calculated.

When we better study the image 7.23, mainly the local shape chart and the one that
shows the clusters of anomalies, we see that many of the so-called anomalous points are
in the contour of the shape regions similar to a plane. This behavior change is markedly
anomalous compared to the other points.

It becomes of our interest to investigate the reasons of a point to be classified or
not as an anomaly. The graphs of figure 7.24 show the SHAP values for the anomaly
detection algorithm. We see that some attributes (Dip Angle; Mean Curvature; Gaussian
Curvature; Max Curvature; Curvedness) have a much higher response than the others,
but not every group has the same behavior. In figure 7.25 we see which attributes had the
highest (in absolute value) average importance in the cluster. By their definitions, high
values of Curvedness (curvature magnitude), Dip Curvature (curvature in the direction

of greater change) and Contour (curvature of the contour line) show a sharp change in
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Figure 7.23: The graphs in order: sampled points in the reduced coordinates, with the
study region in light blue; the value of the future cost for the entire interpolated region;
one of the calculated curvature attributes, the most negative curvature; same attribute
but with coordinates in a regular polygon; points classified as anomalous; anomalous
points grouped in spatial clusters (colors are repeated); and local surface shape.

at least one direction. The anomalous points are thus, at least on this lower dimensional
representation, of deserving our attention.

The group that had Most Positive Curvature as the most important on average
seems to be a more heterogeneous group, in which the spatial grouping does not correspond
to a similar curvature behavior. We see that some of the points on that group attribute
importance to other features such as Dip Curvature and Contour.

For the local shape we can check whether in general they have distinct profiles with
respect to the coordinates, that is, with the volumes of the reservoirs. In figure 7.26 we
have the profiles of each type of local shape, regardless of space proximity in the reduced
manifold. On the left we have the average levels for each reservoirs and on the right the
aggregate of all reservoirs. We see that the orders of the reservoirs of the planar regions
and of the convex ellipsoid are similar. Both have a average reservoir levels greater than
the others. Although the orders are similar, the planar regions have greater variance
between the volumes of the individual reservoirs.

The concave, ellipsoid or cylindrical, regions are those we the least total volume
and their lower-level reservoirs are those with the highest level in the other two previous
regions. They then function as the opposite behavior. The hyperbolic and convex cylin-
drical regions have more uniform volumes, closer to half. Thus, their total volumes are
between the previous two groups.

Low magnitude values can deceive us as to the real local shape. By considering
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Figure 7.24: SHAP values of the curvature attributes for anomaly detection.
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Figure 7.25: Attribute with the greatest average absolute importance for each group.

that values {x : |z| < €} are zero for different €, we can study how local shapes change. In
figure 7.27 we have the fraction of the interpolated points that are locally hyperboloid for
all stages. We see that this behavior is less robust for the initial stages (this hyperboloid
behavior is weak), while quite robust for the final stages.

This statistics, the fraction of the interpolated points that are locally hyperboloid,

allows us to compare the different models regarding the behavior of the learned functions.
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Figure 7.26: Local Shape average profiles. The average volume for the local shapes. left:
the average volume of each reservoir with a maximum volume greater than zero. the order
of the reservoirs is the order of the average volume on the elliptical convex region. Color
represents the fraction of the volume of the reservoir. right: the fraction of the maximum
capacity occupied by water for each of the profiles.
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Figure 7.27: Percentage of interpolated points which are in hyperboloid regions for dif-
ferent values of € over the stages, in which {z : |z| < €} are considered zero.

In figure 7.28 we have this comparison. Neural models are much less locally hyperboloid
than the policy learned by SDDP.

We can also see how the new coordinates relate to the original coordinates. In
figure 7.29 below we have the total volumes set in the new coordinates. As the points
were interpolated directly from the reduced region, we can see the original coordinates
(the sum at least) of the closest sampled point in the transformed coordinates. That is,
the Voronoi diagram [107] of the sampled points.

We see that there is a relationship between the two, in which points in the upper
left region have a total volume below the average, and points in the lower right corner
have a total volume above the average. So information about the original coordinates are

preserved in this lower dimensional representation.
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Figure 7.28: Percentage of interpolated points which are in locally hyperboloid regions for
different models over the stage, using ¢ = 6.25-107°, in which {x : |z| < €} are considered
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Figure 7.29: Voronoi diagram of the sampled points but on the reduced manifold, colored
by the total volume of that point (a proxy for the original coordinates). On the right, the
histogram of total volumes.

7.3 Optimal Power Flow Problem

In this section we have experiments with synthetic data for the Optimal Power Flow
Problem, described in section 4.3. Because it is a problem of non-convex optimization,
its computational cost is high and we opted for the use of small instances. The intention
is only to show it as proof of concept that the proposed algorithm can be used for this
problem. To the extent to what is known by the authors, it is the first time that methods
like these are used for non-convex problems that are not MIPs. We first have a discussion

on the data used and then two sub-sections with some results.
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7.3.1 Test Scenarios

The Illinois Center for a Smarter Electric Grid (ICSEG), belonging to The Grainger
College of Engineering at The University of Illinois Urbana-Champaign, maintains a
repository of publicly available power flow architectures without confidentiality (https:
//icseg.iti.illinois.edu/power-cases/), including synthetic architectures and ar-
chitectures commonly used by literature. For example, the architecture used in the work
[43], used in our problem modeling, was the IEEE 57-Bus System (https://icseg.iti.
illinois.edu/ieee-57-bus-system/).

However, in this work it was chosen to use synthetic instances only as proof of
the concept that the algorithm could be used for this problem. Thus, the values and
architectures used do not represent real contexts nor necessarily plausible situations and
magnitudes.

The demands were simulated in a cosine-like way, adding gaussian noise and ad-

justing the scale. An example of sample is given in figure 7.30.
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0.0-

Figure 7.30: Demand Scenario Sample.

As for architectures, two different instances were chosen: a triangular graph (K3);
and a random planar graph. We’ll now discuss both.

The first instance is simpler. It consists of three buses, all three with generators,
with one of them having a demand greater than its own generation capacity and another
one having a battery. The third bus acts as a second possible path between the battery
and the demand. The architecture is schematized in figure 7.31 below. The cost and
constraints constants are described in table 7.1. The admittance matrix Y = 1/Z was
built from Z = R+ jX in which X = R = ATA, A ~ N(0,0.1).

For the second experiment, the work of [40] was taken as inspiration, in which

some strategies of creating random topologies for the graphs are discussed superficially.
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Figure 7.31: Simple Network.

Constants Bus 0 | Bus 1 | Bus 2
Constant cost of P 0 0 0
Linear cost of P 1 1 1
Quadratic cost of P 2 2 2
Linear cost of APF 2 2 2
Quadratic cost of APF 4 4 4
Linear cost of AQ¥” 2 2 2
Quadratic cost of AQF 4 4 4
Battery efficiency n - 1 -
Minimum battery charge B™® - 0 -
Maximum battery charge B™* - 2 -
Minimum charging rate R™® - -0.5 -
Maximum charging rate R™** 0.5 -
Minimum of real generation P™n 0 0 0
Maximum of real generation P™** 0.5 0.5 0.5
Minimum of imaginary generation Q™" 0 0 0
Maximum of imaginary generation QQ™** 0.5 0.5 0.5
Minimum of real flow P Vj -0.5 -0.5 -0.5
Maximum of real flow P7™ Vj 0.5 0.5 0.5
Minimum of imaginary flow Q7™ Vj -0.5 -0.5 -0.5
Maximum of imaginary flow Q"™ Vj 0.5 0.5 0.5
Difference without penalization AP 0.05 0.05 0.05
Difference without penalization AQ 0.05 0.05 0.05
Maximum quadratic flow S;; Vj 1 1 1
Maximum thermal loss L;; Vj 0.01 0.01 0.01
Minimum of real power Re(v) 0 0 0
Maximum of real power Re(v) 100 100 100
Minimum of imaginary power Re(v) 0 0 0
Maximum of imaginary power Im(v) 100 100 100

Table 7.1: Constants for the optimal power flow problem.

It is known that the stations do not relate arbitrarily, but are limited to the physical
infrastructure, following geographical relationships. A technique that takes into account

this geographical relationship is the Delaunay Triangulation [25], which connects vertices
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in a neighborhood. This triangulation differs from others by creating triangles whose
circumcircles do not contain other points. In this way the triangles are well behaved
and connect vertices that are nearby, which is likely in energy systems. In addition, the
triangulation generates planar graphs with average degree which does not depend on the
size of the network.

The second experiment is thus based on the Delaunay triangulation. The method-
ology is illustrated in figure 7.32: samples are taken on the plane; the graph is created
through the triangulation; edges are drawn to be removed (without disconnecting the
graph) in order to reduce the average degree; the vertices are drawn to wether they even

have demand and/or batteries.

Delaunay triangulation Addition of load
of random points Removal of edges and batteries
]

L <] e <]

Figure 7.32: Generation of Synthetic Networks.

In the above figure 7.32, the green vertices represent the buses. The yellow border
vertices have demand as described above and the blue border ones are batteries. Every
node has some generating capacity.

The same constants as the triangular instance were used. The admittance matrix is
created in a manner similar to that of the previous instance, but the entries that represent

non-edges are zeroed out.

7.3.2 Triangular Instance Convergence

In this experiment and in the following one, 5 simulation samples and 5 random
samples over the domain were used. The network to the right is a 5-convex manifold with
10 cuts each and was trained by 40 iterations, in the conditional version of the algorithm.
After the training, it was possible to estimate lower and higher estimates for the total

cost:
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Model ‘ Min‘ Q1 ‘ Q2 ‘ Q3 ‘Max
Greedy | 241 | 7.15 | 7.98 | 9.76 | 13.30
5.82

SNDP | 2.88 6.61 | 8.38 | 11.58

Table 7.2: Summary table for the triangular instance total cost.

First, we have the evolution of the loss function in figure 7.33 below. We see that
it falls quickly in the first 7 iterations, stabilizing and even growing over the next 25
iterations, to finally fall again. Without the actual future cost function it is difficult to

know exactly what’s going on in the network during that period.

100 -
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Figure 7.33: Loss function for the Optimum Power Flow problem on the triangular in-
stance.

As a smaller instance, we can investigate more in depth each of the control and
state variables and study the dynamics learned. In figure 7.34, we have varied summary
graphs of the simulations. The first graph shows the distribution of demand at node 0,
cosine-like with increasing variance. The second graph shows the distribution of costs per
stage. As we will see below, in the initial state the generators are in their high-generation
state of energy, much higher than the initial demand, and therefore there is a greater
initial cost. In certain stages, it is even beneficial to have a fast decay, with effective
delta greater than zero. We see that this extra energy is smartly stored in the battery,
and not simply discarded. From that moment onwards, the cost distribution is similar
to the demand, but slightly flattened by the use of the batteries energy. There is though
a scenario in which the stored energy is not enough for the flattening and the quadratic
cost shows its dangers.

When you check the graphs of the generators, the generator in the battery bus
stands out. It only generates the minimum needed while there is still energy on the
battery. We see that at the end there is a relative increase, but even the ()3 quantile
it is around 0.15, relatively low compared to the other generators. As discussed earlier,

there are scenarios of greater demand in which the battery is rapidly exhausted and that
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Figure 7.34: Summary graphs for the optimal power flow problem on the triangular
instance. The gray regions represent the intervals between the quantiles of (25%, 75%),
(10%,90%), (5%, 95%) and (min, max ).

generator starts to act like the others, which causes a greater cost. For the effective
difference, in the vast majority of scenarios these values are close to zero, with some
outlier scenarios.

In the graphs of figure 7.35, we have the power flow between the network nodes.
The flows are not symmetrical because we have thermal loss during transmission, but are
approximately well similar in absolute value. What we see is a constant flow from buses
1 and 2 to bus 0, while the flow between 1 and 2 can change direction, assuming both
negative and positive values. This last flow is smaller in absolute value than the other
two. This is a less efficient way of transmission from to energy storage to the demand.

Similarly, we can study the thermal loss of the flows. Note that they are minimal,
even when there is the need, in one or another scenario, of an atypical flow. As for the
current, which is not part of any constraint of the problem and only arises by the Ohm’s

Law, it has a large variance.
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Figure 7.35: Flow graphs for the triangular instance. The gray regions represent the
intervals between the quantiles of (25%, 75%), (10%, 90%), (5%, 95%) and (min, max ).

7.3.3 Planar Instance Convergence

The instance tested here is illustrated in the last third of the figure 7.32. The
training parameters used were the same as in the previous experiment, with the exception
of the number of cuts that was duplicated, given that the state of the problem is twice
its size. Thus, the number of parameters to be learned is 4 times greater. Below, in the
table 7.3, we have summary statistics for the total costs in the training scenarios. We
see that in general the model learned has a lower cost than the greedy strategy, with the
exception of the most extreme case, in which the policy learned is not well adjusted. As
we see in the figure 7.38, the network seems to not yet have converged, and thus it could
be even better. Other strategies could be the use of a larger or more powerful (ReL.U
netowrk) architecture for the network to the right; to sample states in the regions closer
to the ones obtained by simulation this scenario; or to increase the appeareance of this
scenario during training.

Because it’s a more complex instance, with more buses and connections than the
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Figure 7.36: Thermal loss graphs for the triangular instance. The gray regions represent
the intervals between the quantiles of (25%, 75%), (10%, 90%), (5%, 95%) and (min , max ).

Current at bus [0]

Current at bus [1] Current at bus [2]

Figure 7.37: Current graphs for the triangular instance. The gray regions represent the
intervals between the quantiles of (25%, 75%), (10%, 90%), (5%, 95%) and (min, max ).

previous, it’s more difficult to study each variable individually. In figure 7.39 and 7.40 we

have some summary graphs for the greedy strategy and for SNDP.
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Model ‘ Min ‘ Q1 ‘ Q2 ‘ Q3 ‘ Max
Greedy | 7.2 | 11.39 | 12.42 | 15.65 | 24.49

SNDP | 6.7 | 9.51 | 11.64 | 13.67 | 27.79

Table 7.3: Summary table for the planar instance total cost.
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Figure 7.38: Loss function for the Optimum Power Flow problem on the planar instance.

The first difference between the two is in terms of the distribution of costs. The
learned policy opts for a slightly higher cost in the early stages due, as we will see, to a
faster decrease in the levels of energy generation (initially higher than the demand). Then
the costs of the greedy strategy follow a seasonal pattern similar to that of the demand.
In the learned policy, this seasonal pattern is also observed, but, with the exception of
a more extreme scenario, the costs are lower than that of the greedy policy. The policy
learned how to flatten the costs.

In all generators, there is more variance in the early stages in the learned policy
than in the greedy one. Generators at the buses 0, 3 and 5 are similar in both policies.
Generator 1 in the learned one, with the exception of a discordant scenario, is used with
much less intensity. Generator on bus 2 is kept at much lower levels. Generator at bus 4
starts to have a larger variance.

As for the use of batteries, here we have a great difference. The learned policy
prefers to save part of the energy to amortise the peaks of seasonal demand, rather than
to use in the initial stages that do not have a lot of demand. As the cost of generation
is quadratic, flattening the costs has some utility. The battery at bus 1, which has only
a direct connection to one of the buses with demand, is less used and can provide power
during the two peaks. The other battery, connected to both load nodes (nodes with
demand), is emptied at the first peak. Here we can understand the problem of this policy
as regarding the extreme case. The two batteries are not able to maintain their levels
and finish before the first peak. At the same time, the generators are at lower levels of

generation, requiring a large quadratic cost to increase them for the first peak. See bus
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Figure 7.39: Summary graphs for the optimal power flow problem on the planar instance
using the greedy strategy. The gray regions represent the intervals between the quantiles
of (25%, 75%), (10%,90%), (5%, 95%) and (min, max ).

1. As the algorithm is conditioned only on the current observation, it would be possible
that, if it knew something about the trend, it learned the battery levels are going to be
insufficient and that it is necessary to increase generation earlier.

Following, we have in figure 7.41 the graphs that show the average flow of real
power and the average thermal loss. As the thermal loss is symmetrical, only one of the
directions is shown. We see that the connections (1,5) and (4,2) have the highest flow,
followed by the (4,5), (3,2) and (0,2). The first three represent the batteries powering the
demands, while the last two are power reaching bus 2 by sources other than battery in 4.
Bus 5 has the connections with the highest thermal loss, possibly by its centrality in the
grid.

Finally, we have in figure 7.42 the average current values in the stages for all buses.
With the exception of the last two stages, the current values are very small. It is possible

to see an increase in the current in the stages of lower demand (2, 3, 8 and 9).
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Figure 7.40: Summary graphs for the optimal power flow problem on the planar in-
stance using the SNDP. The gray regions represent the intervals between the quantiles of
(25%, 75%), (10%,90%), (5%, 95%) and (min, max ).
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Chapter 8

Conclusion and Future Work

In this chapter we have a discussion about what has been achieved throughout the work,

as well as possible paths for its continuation.

8.1 Conclusion

The work proposed here had two main contributions: a new algorithm to solve
MSSO problems, convex or not; and a set of methodologies aimed at understanding the

behavior of this and other algorithms regarding the decisions taken.

8.1.1 Stochastic Neural Dynamic Programming

As the main object of the work we have the proposal of a new algorithm that
seeks to use the prediction power of the neural networks to solve multi-stage stochastic
optimization problems, convex or not. Based on the SDDP algorithm, the use of neural
networks imposes two main obstacles, the way to model the future cost functions as neural
networks during the inference; and the way to train the weights of the network, since
the external solvers of the subproblems are not differentiable. For the first, an integer
programming model was used and incorporated to the subproblem. For the second, a
new loss function was proposed which allows the algorithm to work similarly to SDDP,
to iteratively modify the future cost function. By experimenting the algorithm in three
different problems, we see that the proposed technique was capable of training the network
weights.

In the experiments of the control problem in one dimension we see that the network

approximates well the actual future cost function. As for the dispatch problem, which we
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know is convex, the algorithm cannot reach the SDDP level, having an average total cost
about 4% greater. As for the problem of optimal power flow, there is no use in literature
of these algorithms for this non-convex problem. But we see that the learned policy is
superior to the naive one.

A limitation of the proposed algorithm is that it can be computationally expensive,
especially for problems with many decision variables and stages, since the iterative process
of improving the network requires solving a considerable number of MILP (or MIQP)
subproblems. Unlike SDDP that uses convex cuts, the networks on the right are integer
programming and the increase in their capacity implies a greater computational cost.

The use of neural networks allows us to go beyond optimizing only the average (or
other expected risk measurement), as we can condition our predictions on the observations,
in latent information or even in temporal trends (hidden states). There’s no longer the

need to limit ourselves to probabilistic independence between the stages uncertainty.

8.1.2 Future Cost Function Explanations

In addition to solving the proposed problems, being long-term applications in the
real world, it is of interest to understand the reasons why a certain decision is preferable,
as well as the risks it can bring. This is not a trivial task and its objectives are not always
clear. This work proposes a set of methodologies that can help in this analysis, but there
is no single way of using them. The approaches work with the use of two main techniques,
SHAP and curvature of surfaces. All the methodology has been applied to the problem
of hydrothermal dispatch for the Colombian System.

The use of SHAP allows us to understand two things: how the reservoirs and
other variables (observations, hidden states) affect the future cost of a decision; how the
reservoirs interact with each other. As for the first, we can see how the different models
learn quite different policies by not giving the same importance to the reservoirs over time.
In a situation in the real world, it is not always possible to replicate the decision of the
algorithm, so it is important for the operator to know what are the critical points of the
system for the current model. As for the second part, we see that the models also differ
on the relationship between the reservoirs, while SDDP is practically taking independent
decisions at the beginning, the neural models have dependency since the beginning.

The idea of using curvature metrics for the future cost function arises when mi-
grating the policy learned to the real world. In real applications, it is not always possible
to accurately replicate the best decision of the algorithm. However, we don’t know if the

neighborhood of the best decision has a similar behavior or if there is a sudden change
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with great long-term impacts. To quantify this, we can see how the function behaves
locally. The use of curvature opens space for a range of possible analyses of that local

shape.

8.2 Future Work

Here we have a brief discussion on possible research paths to enhance the algorithm.
The paths are 4: when do we have a convergence guarantee; what are possible performance
improvements both at the algorithm level and at the implementation level; how can we
use the insights of the curvature method during inference; and about other applications
that the method could be applied to.

8.2.1 Convergence Guarantees

This work does not deal with convergence guarantees, only delineating an inductive
argument in the section 5.1. Thus, it would be of our interest that it does not support
itself only by experiments, since the decisions taken by it possibly have great financial,
environmental etc. impacts.

The objective would be to show that for a given problem and architecture of
network to the right the model converges in a finite amount of steps to the surroundings (a
e error) of the optimal policy. The better the architecture and the easier the problem, the
lower would be the surrounding region when converging. It is possible that an architecture
is not able to represent the future cost function, even if conditioned to the observations.
In this case, the model would not converge. Therefore, there would be questions if the
algorithm always converges, and if not, when does it converge.

Unlike other MSSO algorithms, which by construction create lower bounds of the
actual future cost function, SNDP algorithm has no type of theoretical technique, only
through simulation. Another question would then to study mechanisms that estimate
lower or higher bounds of the future cost function in a non-simulated way. It is not clear

at the time which would be these mechanisms.
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8.2.2 Computational and Algorithmic Convergence

The performance gains are divided into algorithmic changes and implementation
changes. In the first we still have another division, of how to modify the current flow of
the algorithm and using the subproblem solution data in a more efficient way; and that
of using other theoretical constraints that could ensure better efficiency.

The first question then would be about the best way to use the subproblem so-
lutions. Being the most expensive part of the algorithm, would it be possible to use
a smaller number of solutions steps? A strategy on this path is about the penultimate
stage, i.e. the last future cost function, in which each subproblem sample the actual future
cost, not an estimate. It could make sense to keep all these samples over the iterations
to strengthen the learning of this specific future cost function, in the hope that learning
propagates to the other stages.

A theoretical constraint would be on the networks to the right. This work used
the modeling 3.8 to represent the ReLLU networks within the subproblems. Other mod-
elings exist. How do they compare to each other regarding their relaxations? There is a
modeling that its relaxation is always closer to the solution compared to the others? In
other words, a more compact one? In addition, throughout the experiments we treated
the architectures arbitrarily, only observing their predictive performance. Are there ar-
chitectures that, for a given modeling, their relaxations are always closer to the integral
solution? By some symmetry, the number of layers and the number of neurons per layer
could affect the relaxation of the network. Knowing that it is possible to model matrix
convolution as a matrix multiplication [78], it could be possible that a convolutional net-
work has a relaxation more or less tighter to the solution. Of course the represented state
has to possess some spatial relationship. Another architectural change is the use of rigid
attention [111]. Is its relaxation compact? We could still compare sparse networks and
verify if there is any gain. Many such questions can be studied.

We saw that neural networks can model an exponentially larger number of linear
regions. There are several integer programming problems whose modeling with an expo-
nential number of variables and constraints through the use of lazy constraints have better
experimental performance than polynomial modelings because their relaxations are more
compact. Would it be possible to list all the linear regions of a ReL U neural network and
model it with lazy constraints?

There are also theoretical improvements that can be studied over the course of
a training. As the training advances, the most explored region of the state space will
have its future cost with greater resolution than other regions. How does this affect the
optimization of a ReLLU network? Is it more or less compact?

On the convergence of the weights for the network to the right, recent work [82]
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proposes a reparametrization of the output network weights that experimentally shows
more stable and fast convergence. The proposed modifications do not cause an increase
in cost in training or in inference and therefore show themselves as a simple modification

to the algorithm.

Default Parametrization | NPA Parametrization
¥—> h(;w) v — Ep > h(5w)
9 Ad
00
z—{ f(50) >y | z—  f(;0) |>y

Figure 8.1: With the NPA reparametrization, the hyper-net input + is first projected into
a vector space of constant norm and its predictions Af are summed to a set of learned
parameters 0" independent of the input v. Figure by [82].

Finally, we have possible implementations improvements. In the algorithms de-
scribed in section 5.1, it is noted that the loop over the samples the samples can be easily
parallelized. But deeper changes can be tested. In the article for SDDP [86], the authors
instead of solving the subproblems as linear programs, they use an algorithm inspired
by the problem of maximum flow in networks whose performance is better. So, it would
be interesting if the modeling here proposed could be incorporated into the specific al-
gorithm of a subproblem. It doesn’t seem trivial to minimize the non-convex networks
efficiently, but the manifolds of k-convex for small k£ can be useful. In general, one can
still experiment other solvers besides integer programming ones. A new neural method
[33] can solve the traditional Optimum Power Flow problem (single stage, no batteries) in
a tenth of the time specific solver for the problem require, which are already faster than
the integer quadratic programming solvers used in this work. As it also require a training
step, one may wonder how to combine the two algorithms so that both train at the same

time.
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8.2.3 Curvature

In this work, curvature was used to study the local shape and the presence or not
of anomalies on the surfaces of the future cost functions. That is, an analysis post hoc of
the model. But would it be possible to introduce part of the analysis back to the decision

making? See image 8.2.

FCF
Model
Inference

New Constraints

Figure 8.2: It is possible to incorporate constraints into the original model based on what
is observed in the curvature plots.

If we are able to identify unwanted regions in the state space, hyperboloid or
anomalous, we can introduce to the model during inference (model will no longer be
trained) new constraints that force the optimal choice to penalize or even avoid these
regions.

In [97], the authors study optimization problems in a geometric context. Some
of the problems can be incorporated as quadratic constraints or penalties to our sub-
problems. See for example figure 8.3. It illustrates the problem of finding the minimum
distance between two polytopes. If we know how to represent the regions to be avoided
as polytopes, we can add a quadratic penalty or constraint for this distance distance.

To minimize the distance between polytopes we have:

min 27 CTCx (8.1)
x€R”

Zﬂ?i: 1,

i=1
n
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Figure 8.3: Polytope distance (primal and dual version). Figure by [97].

It may be that decision makers do not want to remove the solution from a prob-
lematic region, but rather to bring it to a well behaved region. One can then minimize
the smallest ball, ring or ellipse that contains both the solution and the points on the

area of interest. Figure 8.4 illustrates the three problems

Figure 8.4: Geometric Optimization Problems. (Top, Left) Smallest enclosing ball. (Top,
Right) Smallest enclosing Annulus. (Bottom, center) Smallest enclosing ellipse. Figures
by [97].

We have, respectively, the problems of the smallest enclosing ball 8.2, annulus 8.3

and ellipse 8.4.
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: TAT A, T, ..
min  z C Cx ;plpl:z:l (8.2)
> wi=1,
i=1
x>0,

in which P = {py, ..., p,} is the set of points and C' é a the matrix (py, ..., p,). The

center of the smallest enclosing ball is given by > p;zf and its radius is the square root

=1
of the minimum cost in x*.
min 8-« (8.3)
d
D;iCj = P; Pi — &, 1=1,...n
j=1
d
ZQpécj > plpi — B 1=1,...,n
j=1

where P = {py, ..., p,} is the set of points. The radii are given by r? = a* + ||c*||?
and R? = 5% + |||

min  — logdet (M) (8.4)

xE€R"™
(pZ_C)TM(pl_C) < 17 L= 17"'7”
M is positive definite,
in which P = {py, ..., p,} is the set of points.
These modelings are, respectively, a quadratic program, a linear program and a

convex program. The latter, when in two dimensions, reduces to a quadratic program-

ming.

8.2.4 Other Applications

Finally, we can investigate how the algorithm proposed here can be used for other

applications other than MSSO problems.
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Subproblem cost independent : ( ) Subproblem cost depends on
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Figure 8.5: SNDP Schema conditionated on different problem setups.

One first application would be about the impacts on the future cost of a change
in the infrastructure of a problem, for example the construction of a new reservoir or the
connection of two buses in the network. A simple strategy is to train two networks, before
and after the modification, and check how the cost changes. For the study of multiple
simultaneous modifications this strategy does not scale very well. But it would be possible
to train a single network to the left for multiple subproblems with different settings, in
which the settings themselves are part of the input of the network. So we could train a
model who knows how to find the future cost functions conditioned on the infrastructure.
The step of searching for the ideal configuration would only demand the inference on this
single model. See figure 8.5.

In this work we dealtproblems with a finite, known and constant number of stages.
However, there are optimizations of infinite horizons or finite horizons with a stochastic
number of stages. There is a varied collection of games whose actions can be modeled
as integer programs, for example Rummikub [26]. Tt is interesting to investigate how to
adapt the algorithm to these cases.

If we discard the time component as a whole, it would be possible to use the
algorithm strategy to solve problems such as those described in the sub-section 2.2.2, in
which we have a neural network whose output is an optimization solution. The network
to the right would predict the loss function of the optimization solution, in a completely
differentiable way. Depending on which subproblem it is concerned, the use of convex

networks or k-convex would be enough to depict the function.
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