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Resumo

Os algoritmos de busca semântica frequentemente dependem de conjuntos de dados gen-

eralistas e abertos para treinamento. Embora essa abordagem produza bons resultados,

sua eficácia diminui quando aplicada a tarefas espećıficas de domı́nio. Portanto, uma

estratégia comum para melhorar o desempenho do modelo nesse contexto é o ajuste

fino (fine-tuning) de um modelo pré-treinado com dados especializados. Infelizmente, a

aquisição de dados espećıficos de domı́nio pode ser proibitivamente cara, pois geralmente

requer uma grande quantidade de informações produzidas por especialistas da área. O

avanço dos Modelos de Linguagem de Grande Escala (LLMs) tornou posśıvel gerar vol-

umes significativos de dados textuais sintéticos, oferecendo fontes custo-eficazes de dados

de treinamento. Essa nova abordagem traz desafios relacionados à qualidade e relevância

dos dados.

Neste trabalho, avaliamos a eficácia do fine-tuning com dados sintéticos para Busca

Semântica em um cenário real do problema de Formação de Equipes Empresariais. Nesse

contexto, buscamos identificar o funcionário mais adequado para uma tarefa espećıfica,

com base em informações como habilidades, experiências, objetivos, entre outros aspectos.

Avaliamos duas estratégias de geração de dados sintéticos: (1) aumento de dados reais

com rótulos sintéticos e (2) criação de perfis sintéticos de funcionários adaptados a tarefas

espećıficas. Para medir o impacto dessas estratégias, ajustamos um modelo pré-treinado

utilizando as técnicas de Low-Rank Adaptation (LoRA) e Agregação de Rankings. O de-

sempenho do modelo foi comparado com algoritmos de estado da arte em um conjunto de

dados curados por humanos. Nossos experimentos demonstram que um modelo treinado

com a combinação das duas estratégias de geração de dados sintéticos supera modelos

pré-treinados consolidados na tarefa de Formação de Equipes, melhorando as métricas de

ranking testadas em uma média de 30% em comparação com o modelo pré-treinado de

melhor desempenho.

Palavras-chave: geração de dados sintéticos, Recuperação de Informação, Agregação de

Rankings, fine-tuning, Large Language Models



Abstract

Semantic search algorithms often rely on open general-purpose datasets for training.

While this approach yields good results, its effectiveness diminishes when applied to

domain-specific tasks. Therefore, a common strategy for improving model performance in

this task context is fine-tuning a pretrained model with specialized data. Unfortunately,

acquiring domain-specific data can be cost-prohibitive, as it typically requires a high

amount of data produced by field experts. The advancement of Large Language Models

(LLMs) has made it possible to generate significant volumes of synthetic textual data,

which provides large sources of cost-effective training data for domain-specific semantic

search. This new approach opens new challenges regarding the quality and relevance of

the data.

In this work, we evaluate the effectiveness of synthetic data fine-tuning for Seman-

tic Search in a real-world Enterprise Team Formation problem scenario. In this problem,

we aim to retrieve the best employee for a given task, given their information regard-

ing abilities, experiences, objectives, and other aspects. We evaluate two synthetic data

generation strategies: (1) augmenting real-world data with synthetic labels and (2) gener-

ating synthetic profiles for employees tailored to specific tasks. To measure the impact of

these strategies, we fine-tune a pretrained text embedding model using Low-Rank Adap-

tation (LoRA) and Rank Aggregation techniques. We evaluate the model performance

against current state-of-the-art algorithms on a human-curated dataset. Our experiments

indicate that training a model that uses a combination of both Synthetic data generation

strategies outperforms already established pre-trained models on the Team Formation

task, improving the tested ranking metrics by an average of 30% in comparison to the

best-performing pre-trained model.

Keywords: Synthetic data generation, Information Retrieval, Rank Aggregation, fine-

tuning, Large Language Models
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Chapter 1

Introduction

A semantic search system processes text queries to retrieve and rank related documents.

This ranking process is based on extracting underlying semantic relationships between the

queries and the content of the documents by using text embeddings (Mikolov et al., 2013;

Pennington et al., 2014) to calculate the query-document similarities. This technique en-

ables a more nuanced understanding of user intent and context. Search-based Information

Retrieval systems often use this type of algorithm for reranking (Nogueira et al., 2019; Ma

et al., 2023a) and vector-based search (Johnson et al., 2019). Recently, with the boom

of Large Language Models (LLMs), semantic search systems are being used as tools for

Retrieval Augmented Generation (RAG) to improve LLM text generation (Lewis et al.,

2020b).

Search systems have evolved significantly since their inception. Early systems, such

as Boolean Search, used exact term matching between queries and document terms to

calculate similarities, struggles with synonyms, context, and user intent. Later, statistical

methods, such as TF-IDF (Salton and McGill, 1983) and BM25 (Robertson et al., 1994),

significantly improved retrieval results by introducing ways of calculating the relative

relevance of each term in the context of individual documents versus its relevance in the

entire corpus, which gave the systems the ability to focus on the most relevant words on

each query to return the right results. However, these algorithms still could not capture

the semantics of a passage, often resulting in incorrect results for queries with more

implicit meaning.

The advent of Word Embeddings allowed search systems to measure semantic simi-

larity between vectors rather than a naive lexical overlapping. The arrival of deep learning

and transformer-based models like BERT further revolutionized the field, enabling em-

beddings to capture the meanings of words and their contextual usage within sentences.

Decoder-based LLMs have recently been fine-tuned to perform dense retrieval tasks (Ma

et al., 2023a; Xiao et al., 2023; Lee et al., 2025; Wang et al., 2024a), achieving the current

state-of-the-art (SOTA) results.

Although semantic search algorithms are typically trained on open general-purpose

datasets (Wang et al., 2024a), this widely-used approach demonstrates limited effective-

ness when applied to specialized domains. One straightforward solution to this problem
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User: "Project: develop a career advancement program
for company employees."

User Input
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Figure 1.1: Schematic for the full team formation application pipeline. The pipeline starts
by a user creating a project. Then, we use an LLM to break it into tasks that can be
further edited by the user. To create the team, we extract employee data from an internal
database and use a semantic search algorithm to create the rankings for each task.

is to fine-tune pre-trained models on specialized datasets for the specific domain. How-

ever, building a training dataset can become expensive, as field specialists often need to

generate large amounts of training data for an effective fine-tuning.

With the arrival of LLMs, generating high amounts of high-quality textual data is

now possible. This opens possibilities of using synthetic textual data to fine-tune Semantic

Search Models for specific contexts. This work will focus on one domain-specific task that

uses semantic search: the Enterprise Team Formation problem. This problem involves

selecting the best employee for a given task based on their abilities, experiences, objectives,

and other aspects. Figure 1.1 shows an schematic diagram of our developed Enterprise

Team Formation framework. We start by a end-user inputing a project. Then, the system

breaks it into a set of tasks that can be edited by the user. The the user is satisfied with

the tasks, we then use all available employee data calculate the best rankings for each

task.

To create high-quality data for this domain, we need a specialist involved in multi-

ple enterprise contexts who is familiar with all employees’ positive and negative aspects.

In order to alleviate this dependence on a specialist for labeling the data, we propose two

different strategies of synthetic data generation:
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1. Augmenting real-world data with synthetic labels: In this strategy, we gen-

erate synthetic tasks and use a large language model (LLM) to label employees as

relevant or irrelevant for those tasks.

2. Generating synthetic profiles for employees tailored to specific tasks: For

this strategy, for each of the generated tasks, we use an LLM to generate the ideal

employee curriculum for that task.

We fine-tune a Qwen2-based (Li et al., 2024) semantic search model (Stella-400M

(Zhang, 2024)) using Low-Rank Adapters (Hu et al., 2022). Our experiments compare

the fine-tuned models against current SOTA pre-trained models across multiple ranking

metrics. The results show that our best fine-tuned model achieved a relative improvement

of over 35% in nDCG and 30% in Average Precision compared to strong baselines when

tested with real-world data.

1.1 Motivation

The motivation for this study derives from the growing demand for effective solu-

tions in domain-specific semantic search applications, particularly in the enterprise con-

text. We want to fill this gap, especially in team formation, which is a growing demand

for enterprises to create high-performance teams. This is a challenging task due to the

difficulties of acquiring the data needed to train a model for the enterprise domain.

We also see a growing tendency for synthetic data usage, especially in Natural

Language Processing tasks (Dong et al., 2024; Wang et al., 2024a; Yue et al., 2022; Hos-

seini et al., 2024), due to the availability of LLMs. This new tendency raises the need

for research on the effectiveness and reliability of synthetic data in specialized domains.

Despite being already proven effective in open-domain applications (Wang et al., 2024a),

the use of synthetic data on domain-specific scenarios remains underexplored, specially

in an enterprise-related context, where data is sensible and difficult to collect.

The data generation process also remains a challenge. Due to how LLMs are

trained, they develop a set of biases, such as high positivity Garćıa-Ferrero et al. (2023);

Hossain et al. (2020); Truong et al. (2022). This challenge raises questions about how to

effectively generate domain-specific data akin to that produced by a field specialist.

By investigating these aspects, this thesis seeks to contribute to the growing body

of knowledge on synthetic data applications in NLP and provide actionable insights for

enterprises looking to optimize team formation processes using semantic search technology.
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Retriever

Employee
Database

Employee
Aspects

Employee Data:

Role
Behavior
Goals
Abilities
Experience

Vector Database
(FAISS)

Embedded
Documents

Embedded Queries

Team Builder

Sentence
embedding

Stella-400M

Aspect 1

 0.73

0.74

0.87

Aspect 2

0.96

0.65

1.44

Aspect 3

1.16

0.82

0.99

Final Ranking

Employee A

Employee J

Employee C

Employee J

Employee A

Employee C

Rank Aggregation

Distance/Similarity

Figure 1.2: The complete semantic search pipeline at inference. First, we use a trained
sentence embedding model to create the vector embeddings for both queries (tasks) and
documents (employees). the employee vectors are pre-calculated and stored in a FAISS
vector database. we We generate multiple rankings (one for each employee aspect) based
on the cosine similarity between query and documents. Finally, we use a rank aggregation
algorithm to create the final Ranking.

1.2 Problem Statement

We model the Enterprise team Formation problem as a Semantic Search task. This

task revolves around finding the most relevant documents to a query by calculating the

semantic similarity between their vector representations in a shared space. To create an

effective team for a given project, we assume a different set of tasks that are tied to that

project. These tasks can be viewed as queries in the following format:

qi,j = “Project: {pi}. Task: {ti,j}” (1.1)

where each query qi,j is the concatenation of the parent project pi and a corre-

sponding task ti,j.

We model the documents as the available employee data in the enterprise’s internal

dataset. This data contains employee aspects such as their abilities, past experiences, and
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goals. We can create an extensive document that is the textual concatenation of all these

aspects, or we can treat them separately, aggregating the multiple generated ranks into a

single consensus ranking.

Figure 1.2 shows the complete pipeline for generating the final ranking for a given

task. First, we use a Sentence Embedding model to calculate the embeddings for a query

and all documents. The document embeddings are pre-calculated and stored in a vector

database (e.g. FAISS (Johnson et al., 2019)). Then, we calculate the similarities between

query and aspect documents, generating multiple rankings, one for each aspect. These

multiple rankings are then aggregated using a Rank Aggregation algorithm to create the

final Rank for that given task.

1.3 Context

This project revolves around a partnership with Dexco, a leading Brazilian com-

pany specializing in wood paneling, ceramic tiles, and bathroom fixtures. This multina-

tional company has more than 10,000 employees, in which more than 1,000 are employees

that occupate strategic roles (Senior-level +). Another challenge we encounter is the wide

variety of contexts within the same enterprise such as factories, office, sales, and many

others.

For this project, we focus on creating strategic teams, composed of only senior and

management-level employees, with the objective of tackling strategic projects.

1.4 Thesis Structure

This thesis is organized in 6 Chapters including this introduction. The remainder

of chapters is organized as follows: In Chapter 2, we provide a literature background,

presenting all concepts we use thoughout the thesis. Chapter 3 presents relevant prior

work that are related to our research. Chapter 4 describes our method and data used

during the experiments. In Chapter 5, we present our research questions alongside the

experimental results. Finally, Chapter 6 presents a brief summary of all chapters with our

conclusions or the study. This chapter also provides possible directions for future work

on this theme.
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Chapter 2

Background

This chapter introduces the methods and concepts used in this work. We explain all

methods and techniques used throughout this thesis. First, discuss the Transformer ar-

chitecture and its core components. Then, we detail the problem of Semantic Search,

introducing its concepts and types of training, such as contrastive learning. We also

explain the evaluation metrics we use in this work. After that, we explain parameter-

effcient fine-tuning using Low-rank adapters. Finally, we introduce the concept of Rank

Aggregation and explain the Condorcet algorithm.

2.1 Transformers

Prior to Transformers, Recurrent Neural Networks (RNNs) and their variants domi-

nated sequence processing tasks. As their name suggests, RNNs process sequence elements

sequentially, with each step depending on the previous one. In their architecture, RNNs

maintain a hidden state that carries information from previous timesteps to the next one.

This design is particularly suited for Natural Language processing tasks, aligning with

the sequential nature of text. Later, new architectures such as Long Short-Term Memory

(LSTM) (Hochreiter and Schmidhuber, 1997) and Gated Recurrent Units (GRUs) (Cho

et al., 2014) addressed some innate problems within the recurrent architecture, such as

the vanishing gradient problem.

However, despite their dominance, these recurrent architectures had several limi-

tations in regards to scalability. For example, due to the dependency of calculating the

previous step to calculate the next one, it was not possible to parallelize both training and

inference procedures, which limited these architectures to scale efficiently. Later, Bah-

danau et al. (2015) introduced the attention mechanism, which allowed models to focus on

different parts of the input sequence simultaneously. This discovery led to the development

of Transformers (Vaswani et al., 2017), which leverage self-attention to process sequences

in parallel, dramatically improving both training efficiency and model performance.
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Figure 2.1: Original Transformer architecture - extracted from Vaswani et al. (2017)

The Transformer architecture completely eliminates recurrence, introducing the

self-attention mechanism, which allows the model to weigh the importance of every el-

ement in a sequence against every other element, capturing both local and long-range

dependencies in parallel.

Figure 2.1 illustrates the original Transformer architecture, which consists of an

Encoder-Decoder structure with a configurable number of transformer blocks. Subsequent

models took different approaches: some, like BERT (Devlin et al., 2019), RoBERTa (Liu

et al., 2019), and DistillBERT (Sanh et al., 2020), used only encoder blocks; others, such as

the GPT Family (Radford et al., 2018, 2019; Brown et al., 2020), and LLaMA (Touvron

et al., 2023), utilized only decoder blocks; while models like T5 (Raffel et al., 2020)

and BART (Lewis et al., 2020a) maintained the complete Encoder-Decoder architecture.

Below, we examine the core components of a Transformer Block:

Positional Encodings: The self-attention mechanism is permutation-invariant, i.e., it

does not consider the position of each token in the text, treating the text sequence as

a “bag of words”. To encode the order of tokens in the sequence, we add a positional

encoding function PE to the original token embedding E to create the Transformer input:

Inputi = E + PE (2.1)
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Figure 2.2: Multi-Head Attention mechanism. The mechanism (right) consists of multi-
ple Scaled Dot-Product Attention layers (left) running in parallel. The results are then
concatenated. Extracted from Vaswani et al. (2017).

The original Transformer uses Sinusoidal Encoding, which is predefined and deter-

ministic, based on sine and cosine functions of different functions:

PE(i,2j) = sin

(
i

100002j/d

)
(2.2)

PE(i,2j+1) = cos

(
i

100002j/d

)
(2.3)

where i is the position index, j is the dimension index, and d is the dimension of the

embeddings. Later implementations like BERT and GPT use learned positional embed-

dings. Modern architectures such as Qwen2 (Yang et al., 2024) and LLaMA3 (Grattafiori

et al., 2024) adopted Rotary Positional Embeddings (RoPE) (Su et al., 2023b). Instead of

directly adding positional information to the token embeddings, RoPE applies a rotation-

based transformation to the query and key vectors in the attention mechanism. The

rotational structure allows RoPE to encode absolute and relative positions in a way that

naturally respects the periodicity and geometric properties of the embedding space.

Multi-Head Attention: Figure 2.2 shows the Multi-Head Attention mechanism. First,

we generate the query (Q), key (K), and value (V ) matrices. These matrices are the

result of individual linear layers with trainable weights WQ,WK and W V , respectively.

After obtaining the Q, K and V matrices, we can apply the Scaled Dot-Product

Attention. First, we obtain the attention scores by multiplying Q ·KT . The intuition

behind this operation is to measure the similarity between the query vector and key

vectors, which determines the importance of each key-value pair for the query. Then,

we scale the scores down by
√
dk, where dk is the dimensionality of the key vectors. The

resulting scaled score matrix is then passed through a softmax function in order to convert

the scores into a probability distribution, ensuring the scores are normalized and sum to

1. These new weights are then aggregated to the value vectors (V ), assigning higher



2.1. Transformers 21

importance to values corresponding to keys that are more relevant to the query. The

complete Scaled Dot-Product Attention equation is given as:

Attention(Q,K, V ) = softmax

(
Q ·KT

√
dk

)
V (2.4)

The Multi-Head Attention mechanism computes the self-attention operation in

parallel, using separate learned projections for Q, K, and V in each head. Each head

operates in a subspace of the input space, capturing diverse aspects of the relationships

between tokens. Then, all head outputs are concatenated and passed through a final

output Linear layer WO, producing the attention output. This can be summarized by the

following equations:

MultiHead(Q,K, V ) = concat(head1, ..., headh)W
O (2.5)

headi = Attention(QWQ
i , KWK

i , V W V
i ) (2.6)

After computing the Multi-Head Attention, we add a residual connection from the

input, followed by a layer-normalization step. The result is the input for the feed-forward

layer.

Feed Forward: The resulting matrix after the attention mechanism is processed through

a Feed-Forward layer with dropout and ReLU activation function. The fully-connected

layer is applied individually to each position. The Feed-forward layer can be represented

as:

FFN(x) = ReLU(xW1 + b1)W2 + b2 (2.7)

where x is an individual attention output, W1 and W2 are weight matrices of the

two linear transformations, and b1, b2 are bias terms. Finally, to create the output to the

next block, we perform a new residual connection followed by a layer-normalization step.

2.1.1 Large Language Models

The architectural breakthrough of Transformers allowed the construction of large

pre-trained models that scale to billions of parameters. These models are often fine-tuned

on instruction-following using Reinforcement Learning from Human Feedback (RLHF) (Chris-

tiano et al., 2017). Scaling, combined with instruction-tuning, has been shown to enable

emergent capabilities in generative tasks that smaller models do not possess.
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fd(di)fq(q)
Shared Weights

Sentence EmbeddingSentence Embedding

ϕ(vq , vdi ) Loss function 

Query Document

Figure 2.3: Siamese dual-encoder (SDE) architecture. In this setup, queries and docu-
ments share the same encoder (usually a neural network).

Recent developments have introduced techniques like Chain-of-Thought (Wei et al.,

2022) prompting and Few-Shot Learning (Brown et al., 2020), which enable these models

to perform complex reasoning tasks without task-specific fine-tuning.

2.2 Semantinc Search

Semantic Search can be defined as the process of finding the most relevant items

to a query by computing the similarity between their representations in a shared se-

mantic space. This often involves embedding both the query and documents into a

high-dimensional vector space and using mathematical operations to compute similar-

ity. Formally, given a query text q and a set of N documents D = {d1, d2, ..., dn}, we map

each document di into a vector representation vdi using an embedding function fd:
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vdi = fd(di) (2.8)

Similarly, we get the query vector representation vq of the original query q by using

a embedding function fq:

vq = fq(q) (2.9)

Often, fq and fd are the same function (e.g., a siamese dual-encoder model) but

can be distinct in some cases (e.g., an asymmetric Dual-Encoder). In our implementation,

we use the Siamese dual-encoder (SDE) architecture, as it is simpler to train (shared

weights) and generally outperforms other dual-encoder architectures (Dong et al., 2022).

Figure 2.3 illustrates the fundamental components of the SDE architecture.

After getting the query and document embeddings, as shown in Figure 2.3, we

measure the similarity between the query embedding and all document embeddings. the

most common approach is to use the cosine similarity function:

ϕ(vq, vdi) =
vq · vdi
||vq|| ||vdi ||

(2.10)

The training objective in semantic Search can be approached in two main ways.

The first approach directly optimizes the cosine similarity between positive query-document

pairs using a cosine loss function, which aims to maximize positive query-document sim-

ilarity scores. However, this method fails to account for negative examples, potentially

leading to suboptimal embedding space organization. Alternatively, contrastive learn-

ing approaches, such as InfoNCE (van den Oord et al., 2019) loss, optimize the relative

distances between positive and negative pairs. InfoNCE encourages positive pairs to

have higher similarity scores while simultaneously pushing away negative examples in

the embedding space. This contrastive approach creates more discriminative embeddings

by maintaining clear separation between relevant and irrelevant documents. The loss is

defined as:

LInfoNCE = − log
exp(ϕ(vq, vd+)/τ)

exp(ϕ(vq, vd+)/τ) +
∑

d−∈N exp(ϕ(vq, vd−)/τ)
(2.11)

where τ is a temperature parameter that controls the separation between positive and

negative examples, vd+ represents the positive document embedding, and N is the set of

negative examples.

Recently, state-of-art Decoder-based Semantic Search models (Lee et al., 2025;

Li et al., 2024; Lei et al., 2025) utilize instruction-based fine-tuning (Asai et al., 2023;

Su et al., 2023a; Wang et al., 2024a), where the input (more commonly, the queries) is

differentiated by concatenating an instruction template to the original text. This allows

the models to learn different different types of tasks simultaneously. One basic example

would be the following:
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qinst = “Instruct: {template} \n Query: ” + q (2.12)

Where {template} can be any text similarity task. One example could be “Given

a web search query, retrieve relevant passages that answer the query.”, or “Retrieve se-

mantically similar text.”.

2.3 Ranking Metrics

We usually use ranking metrics to measure the retrieval performance when eval-

uating Semantic Search algorithms. This work focuses on three key metrics: Average

Precision (AP), Hit Rate, and Normalized Discounted Cumulative Gain (NDCG).

Average Precision measures the precision at each relevant document position and

averages these values, capturing precision and recall aspects in a single metric. For a

query q with n relevant documents, AP is calculated as:

AP =
1

n

N∑
k=1

P (k) · rel(k) (2.13)

where P (k) is the precision at cutoff k, rel(k) indicates if the item at rank k

is relevant (rel(k) = 1) or irrelevant (rel(k) = 0), and N is the number of retrieved

documents.

Hit Rate (HR@k) is a simpler metric that measures whether at least one relevant

document appears in the top k results. It is particularly useful when evaluating systems

where finding any relevant result quickly is important:

HR@k =

1, if at least one relevant document in top k

0, otherwise
(2.14)

nDCG incorporates both the relevance and position of documents in the ranked

list, with a logarithmic discount factor reducing the weight of lower-ranked items. For a

ranking of k documents, nDCG is computed as:
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nDCG@k =
DCG@k

IDCG@k
(2.15)

DCG@k =
k∑

i=1

2rel(i) − 1

log2(i+ 1)
(2.16)

IDCG@k =

|RELk|∑
i=1

2rel(i) − 1

log2(i+ 1)
(2.17)

where RELk represents the list of relevant documents, ordered by relevance, and

IDCG@K is the normalization factor derived from the ideal ranking order, ensuring the

metric ranges from 0 to 1. This metric is particularly valuable when documents have

graded relevance levels rather than binary relevance judgments.

2.4 Low-rank Adapters

Low-rank Adapters (LoRA) (Hu et al., 2022) is a particular type of parameter-

efficient fine-tuning where, instead of updating the entire model’s parameters, we de-

compose each weight matrix into a product of two lower-rank matrices. These adapter

matrices are trained while keeping the original model parameters frozen, effectively re-

ducing the number of trainable parameters. Basically, we freeze all of the pretrained

network weights and inject two trainable rank decomposition matrices A and B into each

of the network’s Linear layers. Figure 2.4 shows the comparison between a standard Lin-

ear projection layer and a LoRA adaptation of that, now frozen, Linear projection. As

the figure shows, we replicate the layer input to the adapter. The adapter output is the

multiplication between the input and the two matrices. Finally, we add the adapter result

to the original output of the frozen model.

Formally, given a Linear layer with weights W0 ∈ Rd×k, an input tensor x, we have

the following:

h = (W0x+ b0) +
α

r
B0A0x (2.18)

where h is the final layer output, b0 the frozen layer’s bias, α is a scaling parameter,

r is the rank parameter, the internal dimension of B ∈ Rd×r and A ∈ Rr×k. Generally,

the rank r ≪ min(d, k) and α, which is a constant in r, can be viewed as how much the

adapter will influence the final result.
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Figure 2.4: Comparison between a standard Linear projection layer (left), and a Lin-
ear projection layer with Low-Rank adapters (right). On the Low-Rank Adaptation
setup, we freeze the original layer and train two matrices A and B - Extracted from
https://pub.towardsai.net

2.4.1 LoRA variants

Several variants of LoRA have been proposed to enhance its capabilities and ef-

ficiency. AdaLoRA (Zhang et al., 2023) adaptively allocates parameter budgets across

different layers based on their sensitivity to fine-tuning, optimizing the rank of decom-

position matrices dynamically. QLoRA (Dettmers et al., 2023) extends the approach by

using 4-bit quantization for the frozen model parameters while maintaining full precision

for the LoRA parameters, significantly reducing memory requirements. DoRA (Double

Low-Rank Adaptation) (Liu et al., 2024) introduces an additional low-rank decomposition

to model both positive and negative parameter updates separately, improving performance

on certain tasks.

2.5 Rank Aggregation

When dealing with multiple textual features, we may generate a set of different

rankings for a given query. Rank Aggregation algorithms leverage this set of rankings,

aggregating them into a single final consensus rank (Dwork et al., 2001; Wang et al.,

2024b). Formally, given a set of N items to be ranked U = {u1, u2, ..., uN}, we define

an arbitrary ranking Rt = {ui > uj > ... > uk}, i ̸= j ̸= k, with Rt(ui) denoting the

https://pub.towardsai.net/low-rank-adaptation-lora-fedf37b92026
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Aspect 1

0.73

0.74

0.87

Aspect 2

0.91

0.65

0.82

Aspect 3

0.77

0.94

0.88

Employee A

Employee J

Employee C

Pairwise comparison matrix

Employee A Employee J Employee C

Employee A 0 1 1

Employee J 2 0 1

Employee C 2 2 0

Final Condorcet scores: {"Employee A" : 2.0, "Employee J": 3.0, "Employee C": 4.0}

Figure 2.5: Example of a Condorcet rank aggregation using a similarity measure. In this
case, Employee C had the biggest Condorcet score, getting a better rank than A and J
(C > J > A).

position of item ui in the ranking. Thus, if Rt(ui) ¡ Rt(uj), then ui is more relevant

than uj under R
t. Given a set of M different basic rankings R = {R1, R2, R3, ...RM}, we

denote an aggregated consensus ranking R∗ as R∗ = f (R), where f is a Rank Aggregation

function. In this work, we focus on the Condorcet method (de Condorcet, 1785), which

has interesting properties such as granting the choice of the overall best item among all

ranks when possible (Young and Levenglick, 1978).

2.5.1 Condorcet

The Condorcet algorithm is a Rank Aggregation method derived from the theory

of voting systems, where the winner of an election is based on the ranked preferences of

voters. The method is based on pairwise comparisons between items. For each pair of

items, we calculate how many times one item “won” against each other item, creating a

pairwise matrix M of size (N,N). To calculate the Condorcet scores for each item, we

simply sum the column values of each line (R∗(ui) = sum(M[i])). Figure 2.5 shows an

example of Condorcet aggregation using a pairwise comparison matrix. The pairM[i, j]

shows how many times ui > uj across all basic rankings. In the end, the item with the

highest Condorcet score is the best item, also known as Condorcet winner.

A Condorcet winner does not always exist. For example, in cases of cyclic prefer-

ences (A beats B, B beats C, C beats A), no single candidate is preferred by a majority

in all pairwise comparisons. However, when a set of rankings has a Condorcet winner,

it is desirable to choose the Condorcet winner because it ensures the final ranking re-

sult aligns closely with the majority preference in direct comparisons, making the winner

more representative. When a Rank Aggregation algorithm always chooses the Condorcet
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winner (when one exists), we say that it satisfies the Condorcet property (Young and

Levenglick, 1978; Young, 1988).

2.5.2 Other Rank Aggregation Techniques

Rank Aggregation is an extensive research field that has made progress in recent

years (Wang et al., 2024b). Rank Aggregation techniques can be separated into un-

supervised and supervised methods. Unsupervised methods, such as Condorcet, Borda

Count (de Borda, 1781), and Kemeny-Young (Kemeny, 1959; Young, 1977), rely solely on

the input rankings to produce a consensus ranking without learning from historical data.

These methods are particularly useful in scenarios where labeled training data is scarce

or unavailable.

In contrast, supervised methods require high-quality training data but can provide

a better performance (Wang et al., 2024b). These methods often generate the consensus

rank R∗ using a weighted fusion of R. Some examples of supervised Rank Aggregation

methods are the supervised variants of Condorcet (Wu, 2013) and Borda Count (Liu et al.,

2007) and neural network-based methods such as CSRA (Yu et al., 2020).
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Chapter 3

Related Work

This chapter explores the literature on Semantic Search, Model Improvement through

Synthetic Data, and Domain-specific Language Modeling. Semantic Search uses embed-

dings, natural language understanding, and retrieval techniques to match user queries

with the most relevant information or documents, going beyond keyword-based search

to capture contextual and semantic meaning. Synthetic Data Generation, meanwhile,

aims to improve model performance on specific tasks and improve model generalization

through the use of synthetically generated examples. Finally, Domain-specific Language

Modeling aims to efficiently adapt pre-trained models to specific domains without los-

ing generalization on general-purpose tasks. Next, we briefly overview these topics and

discuss previous work in each area.

3.1 Evolution of Semantic Search Models

Early Information Retrieval methods relied exclusively on individual word occur-

rence and statistics across the document corpus. The TF-IDF (Salton and McGill, 1983)

and BM25 (Robertson et al., 1994) algorithms are the two more famous algorithms.

TF-IDF (Term Frequency-Inverse Document Frequency) quantifies the rel-

evance of a term t in a document d relative to a corpus D. It is computed as the product

of two components:

TF-IDF(t, d,D) = TF(t, d) · IDF(t,D), (3.1)

where

TF(t, d) =
ft,d∑

t′∈d ft′,d
(3.2)

represents the term frequency, i.e., the normalized frequency of t in a document d,

and
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IDF(t,D) = log

(
|D|

1 + |{d ∈ D : t ∈ d}|

)
(3.3)

is the inverse document frequency, which decreases the weight of terms appear-

ing frequently across many documents in the corpus. TF-IDF effectively balances the

importance of a term within a specific document against its prevalence across the entire

corpus.

Meanwhile, BM25 (Best Matching 25) builds upon TF-IDF by introducing

a probabilistic framework and addressing limitations of term saturation and document

length. The BM25 relevance score for a document d with respect to a query q is given by:

BM25(d, q) =
∑
t∈q

IDF(t,D) · ft,d · (k1 + 1)

ft,d + k1 ·
(
1− b+ b · |d|

avgdl

) , (3.4)

where:

• ft,d is the frequency of term t in document d,

• |d| is the length of the document d,

• avgdl is the average document length in the corpus,

• k1 controls term frequency saturation, and

• b adjusts for document length normalization.

BM25 improves upon TF-IDF by ensuring that term frequency contribution satu-

rates and by accounting for the impact of document length, making it more effective in

practical search scenarios.

With the advent of word embeddings (Mikolov et al., 2013) and Deep Learning, a

set of neural ranking models emerged. The Dual Embedding Space Model (DESM) (Mitra

et al., 2016) uses two weight matrices learned by the Continuous Bag-of-Words (CBOW)

model from word2vec: the input matrix (IN) and the output matrix (OUT). The CBOW

model is trained by maximizing the conditional probability of a word being chosen given

the context of neighboring words. The OUT matrix is typically discarded after training,

but the paper argues that both matrices contain valuable information. The query is

represented in the IN space, while the document is represented in the OUT space. The

relevance score is calculated by aggregating the cosine similarities between all query-

document word pairs. The document similarity is defined by the centroid of the normalized

word vectors in the document.

Another model that utilizes word embeddings for Semantic Search is the Duet

model (Mitra et al., 2017). This model addresses the limitations of traditional search

models, which rely on exact term matching (i.e., BM25), and recent models that use word
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embeddings, arguing that combining both approaches can be more effective. The proposed

model consists of two Deep Neural Networks: one operating on local text representations

(exact term matching) and the other on distributed representations (embeddings). Joint

training of these two networks results in superior performance compared to each network

individually and other baseline models. The Duet model consists of a local model and

a distributed model. The local model uses the interaction matrix to capture the exact

matching of terms and their position in the documents. Meanwhile, the distributed model

uses character n-gram embeddings and a convolution and pooling architecture to capture

semantic similarity. The two networks are jointly trained to maximize the likelihood of

the correct ranking (relevant document above irrelevant documents) for a given query.

The combination of the scores from each model produces a final score for ranking.

After the emergence of transformers and BERT, a set of BERT-based models was

created, establishing the new state-of-art in Semantic Search at that time. For example,

the monoBERT (Nogueira and Cho, 2019) model approaches ranking as a binary clas-

sification problem, assessing the relevance of each document individually regarding the

query. The query q is fed as sentence A while the document di is fed as sentence B. The

last hidden layer [CLS] vector is then passed through a single layer MLP to obtain the

probability of relevance of di in regards to q. The final rank is obtained by sorting the

items by their predicted probability score. MonoBERT is trained using the cross-entropy

loss:

Lmono = −
∑

j∈Jpos

log(sj)−
∑

j∈Jneg

log(1− sj) (3.5)

where Jpos and Jneg are the set of indexes of the relevant and irrelevant candidates,

respectively.

Later, a new variation of the monoBERT was created, the duoBERT (Nogueira

et al., 2019). duoBERT extends monoBERT to a pairwise approach, estimating the

probability of a document being more relevant than another. The approach is similar to

monoBERT’s, using the query as sentence A, a candidate document di as sentence B,

and another candidate document dj as sentence C. Then, the [CLS] token vector, like

monoBERT, is fed to an MLP. duoBERT’s loss is slightly different:

Lduo = −
∑

i∈Jpos,j∈Jneg

log(pi,j)−
∑

i∈Jneg ,j∈Jpos

log(1− pi,j) (3.6)

where pi,j is pairwise probability score of di being more relevant then dj. To obtain

the final scores, the results are aggregated so that each document gets an individual

score si. These two models were proposed as a multi-stage reranking pipeline, where the

monoBERT is applied to the top N BM25 ranking results, and the duoBERT is applied

to the top k ≪ N results from monoBERT.
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With the arrival of LLMs, many researchers tried to adapt their architectures

to semantic search. RankLLaMA and RepLLaMA (Ma et al., 2023a) are some of the

early examples of adapting LLMs to text retrieval in a multi-stage retrieval pipeline. Re-

pLLaMA adopts the same bi-encoder architecture proposed in DPR (Dense Passage Re-

trieval) (Karpukhin et al., 2020) but initializes the base model with LLaMA. The architec-

ture consists of a dual-encoder network with some adaptations for LLaMA’s Decoder-only

architecture. First, an eos token </s> is appended to the input queries and documents.

This token has a similar role as BERT’s [CLS] token, encoding the general meaning of the

whole passage. Therefore, a vector embedding produced by RepLLaMA can be viewed

as:

VT = Decoder(‘t1 t2 ... tk</s>’)[−1] (3.7)

where Decoder() represents the LLaMAmodel’s last hidden layer representations of

tokens t1...tk</s>. Then, the </s> vector representation is used to calculate the similarity

between queries and documents. RepLLaMA is trained using the InfoNCE contrastive

loss.

Meanwhile, RankLLaMA is trained as a pointwise reranker, similar to monoBERT.

Basically, we pass a query and a document together as input, and the model’s output is

a score that indicates the probability of relevance of document d within query q. RankL-

LaMA’s input prompt and similarity calculations are defined as follows:

input = ‘query: {q} document: {d}</s>’ (3.8)

Sim(q, d) = Linear(Decoder(input)[−1]) (3.9)

where Linear() is the linear projection of the </s> vector to a one-dimensional

scalar score. Similar to RepLLaMA, RankLLaMA uses a contrastive loss function for

training. Experimental results using the MS MARCO and BEIR datasets showed that

RepLLaMA and RankLLaMA outperformed smaller models in both retrieval and re-

ranking tasks. The complete RepLLaMA–RankLLaMA pipeline achieved state-of-the-art

results, demonstrating strong zero-shot effectiveness.

RepLLaMA and RankLLaMA, along with other LLM-based pioneer approaches,

paved the way for multiple LLM-based models that further achieved state-of-the-art re-

sults in Semantic Search tasks.

The bge-en-icl (Li et al., 2024) model leverages in-context learning (ICL) to gener-

ate more adaptable text representations by incorporating task-specific examples directly

into the query prompt. Unlike approaches that modify the model’s architecture, this

model retains the original architecture, utilizing the inherent ICL capabilities of LLMs

and using the [EOS] token from the final layer as the vector representation.
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The model was trained using a dynamic sampling method that provides a variable

number of examples for the query during training, enhancing ICL capabilities while main-

taining zero-shot performance. This training strategy, combined with batch examples to

improve the model’s ability to distinguish between examples and inputs, enables bge-en-icl

to achieve state-of-the-art (SOTA) results on the MTEB and AIR-Bench benchmarks.

Stella-400M (Zhang, 2024) achieves a high rank on the MTEB benchmark, with

only 400M parameters. The model is a distillation of gte-Qwen2-1.5B-instruct (Li et al.,

2023) and uses a dual-encoder architecture with mean-pooling over the last hidden layer.

In this work, we use Stella as our base model. Therefore, we dive into its architecture in

Chapter 4.

The LENS-d8000 model (Lexicon-based EmbeddiNgS) (Lei et al., 2025) was devel-

oped to generate lexicon-based text embeddings using large language models (LLMs).

Lexicon-based embeddings are basically sparse vector representations of the passage,

where each dimension corresponds to a token in the vocabulary. It is trained in a Masked

Language Modeling way, where we predict the likelihood of a token being relevant to each

position. Research shows that lexicon-based embeddings can be used as a complement of

dense embeddings (Chen et al., 2024) and even outperform dense embeddings on some

tasks (Déjean et al., 2023; Formal et al., 2021).

However, this approach has some drawbacks, such as the high dimensionality. This

high dimensionality is caused by a set of things, such as tokenizer subword fragmenta-

tion (“education” into “edu” and “cation”), token redundancy (“What”, “what” and

“ what” as distinct tokens), and uncommon tokens that rarely appear on the corpus. To

address this, LENS clusters the original tokens, using their centroid embeddings in order

to replace the original token embeddings of the LM head.

LENS’s training follows a single-stage training procedure and relies exclusively on

publicly available data, using an approach similar to bge-en-icl. Its architecture uses

Mistral-7B as a base model, applying bidirectional attention and LoRA. For training, the

standard InfoNCE Loss is used. LENS achieves state-of-the-art results on the MTEB

benchmark on both single and combined (LENS+bge-en-icl) setups.

Another model that reaches the top ranks in MTEB is the NV-Embed-v2 (Lee

et al., 2025) model. It presents architectural innovations, namely the latent attention

layer and the removal of the causal attention mask. It also performs a two-stage training

procedure. The latent attention layer is a new way of obtaining the grouped embeddings

that depart from the classic mean pooling or last token embedding. For the causal atten-

tion mask removal, the researchers found empirically that removing the attention mask

during contrastive learning led to enhanced results.

NV-Embed-v2’s training is divided into two phases. The first phase uses contrastive

training with instructions on retrieval datasets, applying in-batch negatives and hard

negative examples.
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The second phase combines retrieval and non-retrieval data (classification, cluster-

ing, textual similarity), disabling in-batch negatives to improve accuracy in non-retrieval

tasks. The paper states that this approach improved the performance on both retrieval

and non-retrieval tasks. Currently, NV-Embed-v2 is the overall best model on the MTEB

benchmark for text embedding-related tasks.

3.2 Improving Language Models with Synthetic

Data

Following the rapid advancement of LLMs, synthetic textual data have been in-

creasingly used to improve the performance of various NLP tasks. Synthetic data has been

used directly in the training of Semantic Search models to improve retrieval performance,

used as feedback for reward-based training, and even to prevent Language Models from

hallucinating. Next, we briefly review some of these works.

Wang et al. (2024a) explore the use of synthetic data to improve the performance

of text embeddings on general semantic search tasks. The main idea of the paper is to sim-

plify text embedding’s training pipeline by using synthetic data generated by LLMs. Basi-

cally, they use proprietary LLMs to generate a diverse corpus of synthetic text embedding-

related tasks across 93 different languages using a brainstorming prompt. Then, they use

this task corpus as input for another set of prompts to generate a user query, a positive

document, and a negative document for a specific task. In total, they generated 500k

synthetic examples.

For training, they perform an instruction-based fine-tuning approach to a Mistral-

7b (Jiang et al., 2023) model using Contrastive Learning on the generated pairs. To

represent the sentence embedding, an [EOS] token is appended to the end of each text

example. Then, the query-document similarity is measured by taking the last layer [EOS]

vector. In the training process, they apply the standard InfoNCE Loss. Their approach

surpassed previous state-of-art models on the MTEB benchmark (Muennighoff et al.,

2023), outperforming the baseline models by 2.4 points.

Another example of synthetic data’s application in Language Modeling is the On-

line AI Feedback (OAIF)(Guo et al., 2024), which tries to solve the off-policy problems

from Direct alignment from preferences (DAP) methods. The most popular DAP method

is Direct Preference Optimization (DPO), which is an alternative to the standard RLHF

on adjusting a Language Model to human preferences. In short, DPO simplifies the

process of learning preferences by optimizing the Language Model directly to adhere to
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human preferences without having to rely on an explicit reward model or reinforcement

learning. However, the training of DAP models usually uses datasets that are labeled prior

to the training itself, causing the model to not get feedback on its own generations during

training. To overcome this off-policy issue, the authors propose the OAIF methods.

The OAIF method uses an LLM as an annotator to provide online feedback on each

training iteration. Basically, the OAIF involves sampling two responses from the current

policy, getting online feedback from an LLM annotator that indicates which response is

preferable, and finally, updating the model based on the online AI feedback. This method

shows promising results, outperforming both DAP and RLHF methods.

Another method that utilizes Synthetic data to align LLMs to human preferences

is the SynPO (Dong et al., 2024). SynPO is an iterative process that induces the LLM to

create high-quality synthetic data to train itself over each iteration. The process starts

with an initial policy model πθ0 , a small Supervised Fine-Tuning (SFT) dataset to guide

the generation of synthetic preference data, a list of keywords K and a prompt generator

G. At each iteration t, G creates new prompts {xi}mi=0 using the keywords sampled from

K. The generator (which is the LLM itself) is initially trained on the SFT dataset. At

each iteration, the LLM is trained as a response improver Rt to identify discrepancies

between the model’s response and gold standard responses in the SFT data.

With all components ready, the iteration starts by generating responses from the

previous model πθt−1 for the synthetic prompts xi. These responses are then improved

by Rt. The original and improved responses are used as preference pairs in the training

of the next model πθt . The preference pairs are filtered, maintaining only the ones with

a significant difference in quality. The model optimizes the SimPO (Meng et al., 2024)

objective at each iteration.

SynPO demonstrated significant performance improvements on Llama3-8B and

Mistral-7B, substantially enhancing their instruction-following capabilities. In evalua-

tions using AlpacaEval 2.0 and ArenaHard benchmarks, the method achieved win rate

improvements of over 22.1%. Simultaneously, SynPO also improved the general perfor-

mances of both LLMs, achieving 3.2% to 5.0% performance improvements on the Open

LLM Leaderboard (Beeching et al., 2023).

Another use for synthetic data in LLMs is for reducing hallucinations. SYN-

TRA (Jones et al., 2024) is a method that creates synthetic tasks where model hallucina-

tions are frequent and easy to measure and optimizes the LLM’s system message (instead

of the model weights) using this task using prefix-tuning (Li and Liang, 2021). Then, this

optimized message is transferred to real-world tasks.

Evaluating hallucinations in LLM outputs is challenging, expensive, and prone to

errors, which makes direct optimization difficult. SYNTRA proposes the use of tasks

where hallucination is easy to evaluate automatically, and LLMs tend to hallucinate fre-

quently on them. The task the paper uses as an example is the name retrieval task:
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given a list of names, the LLM’s task is to retrieve the first n names that start with a

specific character. To train the model, a continuous postfix is appended to the system

message, and it is optimized using prefix-tuning. This postfix is a set of embeddings that

are learned through gradient descent.

The method is then used in two LLMs (Vicuna (Chiang et al., 2023) and Orca (Mukher-

jee et al., 2023)) and evaluated in three realistic tasks: web search (MS MARCO (Bajaj

et al., 2018)), meeting summarization (QMSum (Zhong et al., 2021)), and automated

clinical report generation (ACI-Bench (wai Yim et al., 2023)). Results show, on aver-

age, a reduction of 29% (7.5 points) in the hallucination rate of Orca and a 7% (2.5

points) decrease in Vicuna. For the ACI-bench, the decrease is even bigger, reducing the

hallucination rate by 16 points on Orca and 8 points on Vicuna.

3.3 Domain-specific Language Modeling

Adapting Language Models to specific domains is a critical challenge in natural

language processing. This involves techniques that refine pre-trained models to excel in

specialized contexts. Next, we highlight some of these approaches.

Mixture-of-Domain-Adapters (MixDA) (Diao et al., 2023) is a method for effi-

ciently adapting pre-trained Language Models to specific domains without doing the full

model fine-tuning. MixDA aims to mitigate the high computational costs associated with

full fine-tuning or continual pretraining while retaining the prior knowledge of the pre-

trained model. The main idea is to decouple the feed-forward networks (FFNs) in the

Transformer architecture into two parts: the original pretrained FFNs to preserve the

knowledge of the original domain and domain-specific adapters to inject domain-specific

knowledge in parallel. A mixture-of-adapters gate mechanism is used to fuse the knowl-

edge from different domain-specific adapters dynamically.

MixDA employs a two-step adapter tuning strategy: (1) tuning domain-specific

adapters on unlabeled data and (2) tuning task-specific adapters on labeled data. Ex-

perimental results demonstrate that MixDA achieves superior performance in in-domain,

out-of-domain, and knowledge-intensive tasks. The model was tested against five base-

lines: Houlsby (Houlsby et al., 2019), Pfeiffer (Pfeiffer et al., 2020), LoRA (Hu et al.,

2022), Prefix-Tuning (Li and Liang, 2021) and full fine-tuning. The models were tested

on in-domain tasks requiring general-domain knowledge, out-of-domain tasks requiring

domain-specific knowledge, and knowledge-intensive tasks requiring commonsense knowl-

edge. Overall, MixDA outperformed all tested baselines across all task types, achieving

an average improvement of 2.5% on in-domain tasks, 4.8% on out-of-domain tasks, and
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5.0% on knowledge-intensive tasks (all over the best-performing baseline).

Question Value Estimator (QVE) (Yue et al., 2022) addresses the problem of adapt-

ing question-answering (QA) models to new domains where annotated training data is

scarce. The proposed solution is a novel method for selecting automatically generated

synthetic questions that maximize the QA model’s performance in the target domain.

The process involves generating synthetic question-answer pairs and selecting the highest-

quality ones for training the QA model. In order to perform the selection, a Question

Value Estimator (QVE) is used, which evaluates the utility of each synthetic question for

training the QA model. The QVE is trained using direct feedback from the QA model in

the target domain, meaning it learns to select the synthetic questions that most contribute

to improving the QA model’s accuracy in the target domain.

The modeling pipeline is divided into three main steps: synthetic data generation,

QVE training, and the selection and use of synthetic data. First, a question generation

(QG) model is pretrained on a source domain with large amounts of QA data. This QG

model is then fine-tuned using the annotations available from the target domain. This

enables the QG model to generate synthetic questions based on contexts from the target

domain. However, the generated synthetic QA pairs may be of low quality, highlighting

the need for a selection process.

The QVEmodel is then trained to separate the good and bad generated pairs. QVE

takes a synthetic QA example (context, question, and answer) as input and produces a

score indicating the potential of that example to improve the QA model’s performance in

the target domain. QVE is a BERT-based model that concatenates the context, query,

and answer and encodes in the following way:

h = BERT [<CLS>q<ANS>a<SEP>c] (3.10)

where h is the hidden representation derived from the <CLS> token.

The training of the QVE is formulated as a reinforcement learning problem where

the model receives synthetic examples and assigns a score to each question, indicating its

potential value. The QVE then selects questions for QA model training using Bernoulli

sampling. The selected questions are used to train the QA model, and the improvement in

QA performance (measured in terms of exact match (EM) gain) serves as the reward for

training the QVE. This reward guides the optimization of the QVE, enabling it to estimate

and select the value of each question accurately. The QVE can achieve performance

comparable to fully supervised models with only 15% of the human annotations in the

target domain.

Another interesting example involving synthetic data and domain-specific tasks

is the MathGenie model (Lu et al., 2024). MathGenie is a model designed to generate

synthetic and reliable math problems to enhance the mathematical reasoning of LLMs. To
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achieve this goal, it combines iterative solution augmentation, question back-translation,

and solution filtering based on verification.

Iterative Solution Augmentation: Instead of directly augmenting the ques-

tions, MathGenie starts with existing solutions to math problems. These solutions are

iteratively augmented by a model (Mtext) fine-tuned with specific prompts to create new

solutions. This process is repeated multiple times, generating multiple augmented so-

lutions. The iteration ensures that the augmented solutions gradually deviate from the

original solutions, increasing diversity. The initial solutions come from datasets such as

GSM8K and MATH.

Question Back-Translation: The augmented solutions are then back-translated

into new math questions by a model (Mbacktrans) trained on inverted question-solution

pairs. This step leverages the constraints and logical relationships in the mathemati-

cal solutions to create a diverse and high-quality set of new problems. Question back-

translation is more reliable than direct question augmentation because it takes advantage

of the constraints present in the solutions.

Verification-Based Solution Filtering: The new questions generated do not

have reliable reference solutions, so MathGenie employs a model (Mcode) to generate inte-

grated code solutions and verify their correctness. The Mcode model generates integrated

code solutions and also verifies them through verification justifications. This model is

trained on data with integrated code verification justifications. The verification uses nat-

ural language interspersed with code to ensure accuracy. Solutions verified as correct are

retained, improving the quality of the generated data. The initial filtering also removes

questions whose solutions lead to different answers.

Then, models such as LLaMA-2, CodeLLaMA, Mistral, InternLM2, and Mixtral-

8x7B are fully fine-tuned and tested on in-domain and out-of-domain datasets. Overall,

the MathGenieLM-InternLM2 model achieves 87.7% accuracy on GSM8K and 55.7% on

MATH, representing the best overall performance among open-source language models.
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Chapter 4

Data and Method

In this chapter, we present the data, the proposed method, and its implementation details.

Then, we present the base model and our fine-tuning technique using Low-Rank Adapta-

tion and contrastive learning. We also explain our contrastive learning setup, including

the loss function used and how we set up the positive and negative examples. After that,

we focus on how we generate synthetic data for both synthetic labeling and synthetic cur-

riculum generation techniques. Later, we show how we aggregate the multiple rankings

generated by the different aspects in the dataset using the Condorcet and Borda Count

methods.

Both training procedures and rank aggregation techniques were implemented in

Python. For the fine-tuning script, we use Pytorch 2.4.1 and Huggingface Transform-

ers 4.43.3. For the LoRA implementation, we use PEFT 0.12.0. The rank aggregation

algorithm was written using Numpy 1.26.4.

4.1 Data

This section presents the real-world data utilized in this work. It includes employee

information from Dexco, specifically focusing on individuals in senior management roles

within the enterprise, which are strategically important to the company. This dataset

includes 835 employees. We also create a task-employee human feedback dataset from

scratch for our proposed methods to use as an evaluation dataset.
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4.1.1 Employee data

We collect multiple textual features for each employee, which are referred to as

aspects in this work. These aspects refer to abilities, past working experiences, behavior,

and goals. This data was collected by Dexco’s Human Resources team using a set of forms

and internal databases. Next, we detail each of these aspects.

• Role: The employee’s role in the company alongside a description of their responsi-

bilities.

• Behavior: The employee’s most recent behavior evaluation. The direct boss of each

employee performs this evaluation yearly.

• Goals: The established goals for each employee. This aspect has a mixture of

personal goals and goals established by the bosses.

• Abilities: Relevant professional abilities that the employee has.

• Experience: The employee’s previous professional experiences within or outside the

company.

This dataset includes 835 employees with strategic roles, such as coordinators and

managers. Although these individuals represent a small portion of the company, optimiz-

ing team performance in these roles has an outsized impact on the organization’s overall

success. In total, there are 280 Coordinators, 247 Senior employees, 222 Supervisors, 83

Managers, and 3 Directors.

4.1.2 Human Feedback

To validate our model’s performance on real-world applications, we have estab-

lished a human-curated evaluation dataset alongside our synthetic training data. We

built this curated dataset using two distinct applications where domain experts could

build teams for their desired project or label the relevance of specific employees for a

given task.

The first application, shown in Figure 4.1, uses the pretrained Stella-400M model

to generate the rankings for each task. The user gives a potential project and its related

tasks as input (with the option to autocomplete tasks using GPT-4o). For each of the
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Figure 4.1: Team Builder application. First, the user inputs a project and its associ-
ated tasks (with the option to use an LLM to generate them). Then, we generate the
best-ranking team with the top-1 of each ranking. The user can navigate each ranking,
“correcting” the algorithm. The results are then stored to create pairs for the evaluation
dataset. All employee information was omitted in this image.

tasks, the algorithm creates a rank with the most suitable employees for each task. In

the application, only the first employee of each rank is shown to the user. If the domain

specialist disagrees with the algorithm’s decision, she can navigate through the complete

ranking to get the most suitable employee for each task.

The interaction data was transformed into query-document pairs, with selected

employees marked as relevant and replaced employees marked as irrelevant. Although

this data collection approach was methodologically sound, the domain experts found it

overwhelming to manage multiple rankings simultaneously while also having to provide

relevant and creative projects. These limitations resulted in a small dataset of approxi-

mately 50 labeled pairs.

To address these data collection limitations, we developed an alternative approach

using a more straightforward application, shown in Figure 4.2. This refined approach

presents evaluators with randomly selected tasks from our synthetic dataset and associated
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Figure 4.2: Annotator aplication. Here, we present the user a task and an employee. The
user labels this pair as relevant/irrelevant. All generated pairs are used on our evaluation
dataset. All employee information was omitted in this image.

employee candidates. For each task, the candidate employee is selected through a balanced

sampling strategy: 50% probability of random selection from the employee pool and 50%

probability of selection from the top 10 candidates ranked by our base model. Then, the

domain specialist has to label the chosen employee as relevant/irrelevant. They can also

label multiple employees for the same task by choosing to get a new sample employee.

This new approach greatly improved the amount of data collected, resulting in a dataset

of over 500 labeled pairs.

4.2 Model

We use Stella-400M (Zhang, 2024) as our pretrained base model and use LoRA (Hu

et al., 2022) for a parameter-efficient fine-tuning for the Enterprise Team Formation task.

Stella-400M, derived from gte-Qwen2-1.5B-instruct (Li et al., 2023), uses Knowledge Dis-

tillation (Hinton et al., 2015), a neural network compression technique where a more

compact model, known as the student, tries to reproduce the behavior of a larger model,

known as the teacher. For text embedding models, Distillation loss is calculated by maxi-
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Figure 4.3: Stella-400M architecture. The zoom (left) shows the detailed decoder block,
while the right side shows the complete architecture, with 24 Transformer Decoder layers.

mizing the similarity between the embeddings generated by the frozen teacher model and

the training student model.

Stella-400M is a Decoder-based Language Model with around 440 Million param-

eters. Its architecture is shown in Figure 4.3. Its Embedding layer incorporates Rotary

Positional Embeddings (RoPE) (Su et al., 2023b), with a vocabulary size of 30,528 tokens

and a hidden dimension size of 1024. The model has 24 stacked Transformer blocks with

the standard multi-head self-attention (Vaswani et al., 2017), where the Query, Key, and

Value vectors are projected into one single linear layer (3× 1024). The MLP block has a

1024 hidden size expanding to 8192 in the up-projection, with a GELU activation.

To get the sentence-level Embedding, we pass through a Matryoshka Representa-

tion Learning (MRL) (Kusupati et al., 2024) Layer, a technique that scales embedding

dimensions to multiple dimensions. In our case, we keep the embedding dimensions at

1024. Finally, to get the sentence-level Embedding, we perform a mean-pooling operation

on the Last hidden state of the token embeddings.

We choose Stella-400M due to it being a very cost-effective model, obtaining one

of the top rankings on the MTEB Benchmark (Muennighoff et al., 2023) for sentence

embedding tasks while having a low number of parameters.
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Figure 4.4: LoRA-modified layer. On this setup, we freeze the original model and train
two matrices A and B - extracted from Hu et al. (2022).

4.2.1 LoRA

Our Fine-Tuning stage uses Low-Rank Adaptation (Hu et al., 2022) to the Linear

layers of our pre-trained model. With this technique, we freeze the 400 Million model and

train two adapter matrices A and B (Figure 4.4), reducing the memory and computation

needed to fine-tune the model. The dimensionality of these low-rank matrices is deter-

mined by rank r, which we set to 16 in our experiments. This optimization reduces the

number of trainable parameters from approximately 440 million to 8 million.

We apply the adapter matrices to all linear layers on each Decoder. For the At-

tention Block, we apply the adapters on both QKV (QKV proj) and output (o proj)

projections. The QKV proj layer projects the input tensor into three different spaces

simultaneously: one for the query, one for the key, and one for the value. Its equation

with the adapters is the following:

[Q;K;V ] = (Wqkvx+ bqkv) +BqAqx (4.1)

Where, considering a batch size B and sequence length S, we have [Q;K;V ] ∈
RB×L×3072 corresponds to the concatenated Query, Key, and Value tensors, x ∈ RB×L×1024

is the input embedding, Wqkv ∈ R3072×1024 are the frozen QKV pretrained weights, bqkv ∈
R3072 is the pretrained bias, Aq ∈ R16×1024 is the trainable LoRA down-projection and

Bq ∈ R3072×8 is the trainable LoRA up-projection.
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Similarly, the output projection has the following equation:

y = (Woutx+ bout) +BoAox (4.2)

Where y ∈ RB×L×1024 is the output tensor, x ∈ RB×L×1024 is the input from

attention operation, Wout ∈ R1024×1024 are the frozen output pretrained weights, bout ∈
R1024 is the pretrained bias, Ao ∈ R16×1024 is the trainable LoRA down-projection and

Bo ∈ R1024×16 is the trainable LoRA up-projection.

For the MLP Block, we have the following equations:

u = Wupx+BupAupx (4.3)

y = Wdown(GELU(u)) +BdownAdown(GELU(u)) (4.4)

Where u ∈ RB×L×8192 is the intermediate tensor, x ∈ RB×L×1024 is the attention

output, Wup ∈ R8192×1024 are the frozen up-projection pretrained weights, bup ∈ R8192 is

the pretrained up-projection bias, Aup ∈ R16×1024 is the trainable LoRA down-projection,

Bup ∈ R8192×16 is the trainable LoRA up-projection, y ∈ RB×L×1024 is the output tensor,

Wdown ∈ R1024×4096 are the frozen down-projection pretrained weights, bdown ∈ R1024 is the

pretrained down-projection bias, Adown ∈ R16×4096 is the trainable LoRA down-projection,

and Bdown ∈ R1024×16 is the trainable LoRA up-projection.

4.2.2 Contrastive Learning

In our training, we use a Contrastive Learning approach. The queries represent

the anchor embedding, while the employee data (documents) represent the positive (for

the relevant example) or negative (for irrelevant/random in-batch examples) embeddings.

Given a positive pair of query-document (q+, d+), we apply a simple instruction

template to the queries:

q+instr = “Instruct: {template} \n Query: ” + q+ (4.5)

where “template” represents the text embedding related task. In our case, we use

the text as an instruction template: “In an enterprise context, given a project and an

associated task, retrieve relevant employees that fill that role.”.

To train the embedding model, we employ the InfoNCE loss function (van den

Oord et al., 2019), which operates on both positive and negative examples, where negative

samples can be either hard negatives or in-batch examples. The loss is defined as:
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min L = −log

(
ϕ(q+instr, d

+)

ϕ(q+instr, d
+) +

∑
ni∈N(ϕ(q

+
instr, ni))

)
(4.6)

where ϕ represents a similarity measure, in our case, the cosine similarity, and

ni ∈ N represents a negative document. The main idea of this loss function is to maximize

the similarity between the positive pairs (ϕ(q+instr, d
+)) while minimizing the similarity of

negative pairs (ϕ(q+instr, ni)). To calculate the similarity ϕ, we first extract the sentence-

level embeddings of queries and documents by performing a mean pooling over the last

hidden state of our model. Then, we apply the cosine similarity function to the resulting

embeddings to get the similarity score ϕ. The cosine similarity equation is defined as:

ϕ(q, d) =
hq · hd

||hq|| ||hd||
(4.7)

where hq and hd represent the sentence-level embeddings for a query and a docu-

ment, respectively.

4.3 Synthetic Data

To fine-tune our model, we test two different approaches to generating synthetic

examples. In the first approach, we use an LLM to generate synthetic labels for a set of

query-document pairs. In the second approach, we leverage all queries, which are tasks

within projects, and generate an ideal employee for each task. For both approaches, we

first need to generate diverse projects and tasks relevant to the company’s context. For

all data generation tasks, we use OpenAI’s GPT-4o-mini API (OpenAI, 2024b,a).

4.3.1 Synthetic Tasks

To generate the synthetic tasks, we build a two-step generation process, illustrated

in Figure 4.5. First, we prompt the LLM to brainstorm a pool of projects. To ensure

the relevance and diversity of projects, we provide a contextualizing text to the prompt,

presenting the enterprise areas and main corporate activities. We also sample a set of

abilities present in our employee dataset to ensure that the LLM generates projects for

the various kinds of abilities present in the company. This brainstorming process is done
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Brainstorm prompt

{enterprise_context}
Your task is to brainstorm possible projects that should be undertaken by the
members of the management team described above.
Since they are only managerial-level employees, the projects should be medium
to long-term, challenging, and innovative, as well as broad in scope.

Your output should be a Python list of strings, with each string representing a
project.
Do not worry about details; just list the projects.
Each project should be described in a short and concise sentence.
Your list must contain at least 4 projects.

Output format: ["Project 1", "Project 2", "Project 3", ...]

You should suggest projects related to the theme {theme} and similar areas.
It is highly recommended that you be creative and diverse in your suggestions.
Now it's your turn: format your response as a Python list (your response will be
processed using Python's "eval" method, so return only the final list): 

Task generation prompt

{enterprise_context}
Your task is to read a project description and enumerate the tasks necessary to successfully complete
the project. You do not need to be exhaustive; just list the most important tasks with minimal details.
Do not create subtasks, only the main tasks.
You should generate between 5 and 7 tasks. The tasks should be short and informative sentences.
Your response must be in the format of a Python dictionary with the following structure (your
response will be processed using Python's "eval" method, so return only the final output):

{{
'project': "PROJECT_DESCRIPTION",
"tasks": [

"TASK 1",
"TASK 2",
"TASK 3",
...

]
}}

An example:

Project: {one-shot human-written project}

Output:

{{
"project": {one-shot human-written project},
"tasks": [

{one-shot human-written task 1}
{one-shot human-written task 2}
...
{one-shot human-written task n}

]
}}

Now it's your turn:

Project: {project_description}

Output: 

Enterprise Context

Employee
Abilities

Human-written project example
(extracted from user application)

[Project1, Project2, ..., Project N]]
[Project1, Project2, ..., Project N]]

[Project1, Project2, ..., Project N]]
[Project1, Project2, ..., Project N]]

{
    'project': Project1,
    "tasks": [
        Task1,
        Task2,
        Task3,
        ...
    ]
}

{
    'project': Project1,
    "tasks": [
        Task1,
        Task2,
        Task3,
        ...
    ]
}

{
    'project': Project1,
    "tasks": [
        Task1,
        Task2,
        Task3,
        ...
    ]
}

{
    'project': Project1,
    "tasks": [
        Task1,
        Task2,
        Task3,
        ...
    ]
}

{
    'project': Project1,
    "tasks": [
        Task1,
        Task2,
        Task3,
        ...
    ]
}

Figure 4.5: Two-stage prompt for the synthetic tasks creation. On the left, we brainstorm
a set of projects; on the right, we break the projects into tasks. The colored texts
correspond to the contextual information provided to each prompt.

multiple times, with different abilities each time. We ensure the output format is a Python

list that can be used in further steps.

For the second step, we feed the generated projects into a second prompt to extract

a set of tasks for each generated project. We guide the generation process by presenting

a one-shot example from a human-written project (extracted from our user application).

Finally, the LLM outputs a JSON containing a project and its associated tasks.
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Machine Feedback prompt

{enterprise_context}

You are responsible for the department of coordinators and managers. Your team consists of professionals from various areas, including manufacturing, sales, and human
resources.
Your task is to evaluate whether an employee is relevant or not for a specific task in a project.
You will receive the description of a project and a related task, along with the resume of an employee. Critically analyze the information to determine if the employee is
suitable to perform the described task.

Please follow these guidelines in your response:

1. Briefly summarize the Project and Task, highlighting the importance of the task for the project's success.
2. Analyze the employee's competencies directly related to the task, considering both practical and theoretical experience. Ask yourself: "How relevant are the employee's
skills and experiences to the task in question?"
3. Discuss the positives and negatives of the resume concerning the task, dividing your analysis into sections:

- Competency Analysis
- Strengths
- Weaknesses
- Conclusion

4. The last character of your response must be a score of 0 or 1, where:
- 0: irrelevant/insufficient
- 1: relevant/sufficient

Be rigorous in your evaluation and justify your decision clearly and concisely.

Now it's your turn:

Project: {project_description}
Task: {task_description}
Resume: {employee_resume}

Your response:

Figure 4.6: Machine-feedback prompt for the synthetic labeling process. We extract labels
generated by an LLM to create synthetic relevance pairs between generated tasks and real
employees.

4.3.2 Synthetic Labeling

The synthetic labeling process comprises two key steps: task and employee sam-

pling, followed by the application of a Chain-of-Thought (CoT) prompt (Wei et al., 2022)

to generate the labels.

Using the synthetic tasks generated previously, we use Stella-400M to generate

the 20 best-ranked employees for each task. To create the task-employee pairs, we first

randomly sample the tasks. The associated employee has a 50% chance of being sampled

from the top 20 and a 50% chance of being sampled from the whole database.

After generating the pairs, we feed them to the LLM with the prompt in Figure 4.6.

Similar to the task generation process, we add the enterprise context to the start of the

prompt. Then, we guide its generation process with strict analysis guidelines such as

discussing the positives and negative aspects of that employee regarding the task, followed

by a competency analysis. In the conclusion, the LLM must give the employee a score

of 0 (irrelevant/insufficient) or 1 (relevant/sufficient). Using this process, we generated

more than 30,000 labeled task-employee pairs.
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Machine Feedback base prompt (Eureka inital prompt)

{enterprise_context}

You are responsible for the department of coordinators and managers. This team consists of people from various sectors, such as manufacturing, sales, human resources,
and others.
Your task is to determine whether an employee is relevant for a specific task in a project.

You will receive as input a project description, an associated task, and an employee's resume. You must indicate whether the employee is suitable for that task.

You should explain your decision, but the last character of your response must be a score of 0 or 1, where:

0: irrelevant / insufficient
1: relevant / sufficient

You must be very strict in your decision. Consider both the strengths and weaknesses of the resume in relation to the task.

Now it's your turn:

Project: {project_description}
Task: {task_description}
Resume: {employee_resume}

Your response:

Figure 4.7: Initial handcrafted machine feedback prompt. This is the starting point for
the Eureka optimization process.

4.3.2.1 Prompt Optimization

To get to the prompt in Figure 4.6, we perform a prompt optimization step using

the EUREKA framework (Ma et al., 2023b). Briefly, EUREKA is an evolutionary search

that leverages an LLM to optimize prompts for specific tasks. We model the relevance

labeling as a prompt refinement task, providing a base handcrafted prompt (Figure 4.7)

as input. To effectively guide this optimization, we provided comprehensive evaluation

metrics, including accuracy, precision, and recall scores from the best-performing prompt,

along with representative examples spanning true positives, true negatives, false positives,

and false negatives. The complete review prompt is highlighted in Figure 4.8.

At each generation, we use GPT-4o to generate candidate prompts (individuals)

using the review prompt in Figure 4.8. Then, we evaluate each individual as a labeling

prompt for our labeling LLM (GPT-4o-mini) by (re-)labeling our evaluation dataset.

For each individual, we calculate its relevance classification metrics in the evaluation

dataset. The best prompt is then passed to the next generation’s review prompt. If

neither individual outperformed the best prompt, it is replicated to the next generation.

Algorithm 1 summarizes all these steps:
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Eureka's Review Prompt

You are Eureka, a prompt optimization algorithm for LLMs. Your task is to improve a prompt for evaluating an employee's relevance to a given task.

As input, you will receive the current prompt along with some performance metrics based on test data.
You must modify the prompt in a way that improves the metrics compared to the previous generation.

You may reason to enhance your analysis. However, your final prompt must always be enclosed within ```.

Here is an example template:

Response:
[YOUR REASONING]

Conclusion:
```[YOUR FINAL PROMPT]```

Now it's your turn. You will receive the best prompt from the previous generation and its metrics. Your mission is to refine it to improve its metrics:

Prompt:
```
{best_prompt}
```

metrics:
accuracy: {acc}, precision: {prec}, recall: {rec}

examples: 
    - True Positive: ```{tp}```
    - True Negative: ```{tn}```
    - False Positive: ```{fp}```
    - False Negative: ```{fn}```

Response:

Figure 4.8: Review prompt for the Eureka optimization process.

Algorithm 1 EUREKA for labeling prompt optimization

Input: LLM, fitness function F , initial prompt prompt
Output: SEureka

Hyperparameters: Search iteration N , number of samples K, elite size R
begin

for N Iterations do
// Sample K labeling prompts from LLM

Si, ..., SK ∼ LLM(prompt)
// Evaluate candidates
si = F (Si), ..., sk = F (SK)
// Reflection step
prompt := prompt : ReflectionRi=1(Sbesti , sbesti) where best = R− argmax

end
SEureka:= Sbesti

end

In the algorithm, the fitness function F is a function that labels the evaluation

dataset and calculates the accuracy, f1, precision, and recall metrics for a generated

prompt Sk. The metric we use to optimize the prompt in the reflection step is the

f1 score. The Reflection function use the best prompt globally to create the updated

prompt for the next iteration.

In the next chapter, we evaluate the effectiveness of this prompt optimization tech-

nique, comparing models trained on synthetic data generated by both base and EUREKA-
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Synthetic Curriculum prompt

{enterprise_context}

You are responsible for the department of coordinators and managers. This team includes people from diverse sectors such as manufacturing, sales, human
resources, and more.
Your task is to generate an ideal resume for a specific task related to a project.

The generated resume must follow this format:

"
Position: IDEAL_POSITION

Objective: IDEAL_OBJECTIVE

Behavior: IDEAL_BEHAVIOR

Experience: IDEAL_EXPERIENCE (previous professional experiences relevant to the position)

Skills: IDEAL_SKILLS (skills relevant to the position)
"

Now it's your turn:

Project: {project_description}
Task: {task_description}

Ideal resume:

Figure 4.9: Prompt for the synthetic curriculum prompt. We use our generated synthetic
tasks and generate an ideal curriculum for each task, creating similarity pairs that will
be used during training.

optimized prompts.

4.3.3 Generating Synthetic Curriculumns

Our initial idea with the Synthetic curriculums was to generate both positive and

hard negative examples for each task. However, we found that the LLMs struggle to gen-

erate negative examples, as stated in previous work (Garćıa-Ferrero et al., 2023; Hossain

et al., 2020; Truong et al., 2022). Therefore, we changed our prompt to generate only

positive examples, and during training, we used the in-batch examples as negatives, which

is shown to be a strong alternative to labeled hard negative examples (Chen et al., 2020;

Ye et al., 2019; Doersch and Zisserman, 2017).

Figure 4.9 shows the curriculum prompt. As the previous prompts, we also give an

enterprise context, followed by the task description. The curriculum format we provide

follows the aspects that are present in the real employee data. Then, we provide the

project and task description for the LLM to generate the ideal curriculum. We gener-

ated one synthetic curriculum for each of the generated tasks, totaling more than 32,000

curriculums.
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4.4 Rank Aggregation

Our employee data has different textual features, which we call aspects. Thus, our

model generates one ranking for each aspect data at inference time. For example, the

Abilities aspect creates a rank of employees different from the Experiences aspect. This

approach necessitates an aggregation method to combine these individual rankings into a

final rank.

A standard practice to skip this aggregation process is concatenating all text and

performing the ranking process using the embeddings generated with the full text. How-

ever, this approach presents two significant limitations when applied to our employee

dataset. First, the concatenated text may often exceed the model’s maximum length,

which leads to truncation and information loss. Second, forcing the model to compress

multiple aspects into a single fixed-dimension embedding reduces the representation qual-

ity, as the same embedding space must encode significantly more information. In our

approach, we use the Condorcet aggregation method (de Condorcet, 1785) to address

these limitations and improve the quality of the ranking process.

4.4.1 Condorcet

The Condorcet method operates by treating the comparison of candidates (in our

case, employees) as a pairwise ranking problem. Each aspect of the employee’s profile

(e.g., skills, experience, and projects) is individually encoded into an embedding, and

pairwise comparisons are made between candidates based on their scores for each aspect.

Algorithm 2 shows the entire process of calculating the pairwise matrix to generate the

Condorcet Scores.
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Algorithm 2 Condorcet Ranking calculation algorithm (assuming a similarity measure)

Input: input matrix: Matrix of size (num candidates, num aspects) containing the
final rank for each aspect in each column

Output: ranking: Array of Condorcet rankings
begin

Initialize condorcet scores as a zero array of size num candidates

Initialize pairwise matrix as a zero matrix of size (num candidates,

num candidates)

for i ← 0 to num candidates - 1 do
for j ← i + 1 to num candidates - 1 do

pairwise matrix[i, j] ← sum(input matrix[i] > input matrix[j])

pairwise matrix[j, i] ← sum(input matrix[i] < input matrix[j])
end

end
for i ← 0 to num candidates - 1 do

condorcet scores[i] ← sum(pairwise matrix[i])

end
Return condorcet scores

end

The algorithm has a time complexity of O(n2 ·m) where n is the number of em-

ployees and m is the number of aspects. As we have a low number of employees in our

dataset (835), the quadratic scalability regarding items to be ranked (documents) does

not hurt the overall ranking performance. However, for semantic search tasks that have

a high amount of documents (i.e., web search), it is recommended to use aggregation

algorithms that scale better in regards to the number of documents, such as the Borda

Count algorithm (de Borda, 1781).
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Chapter 5

Experiments

This chapter presents a comprehensive empirical evaluation of our proposed methodol-

ogy through a series of experiments. We begin by comparing our three synthetic data

fine-tuning strategies — label-based, curriculum-based, and their combination — against

already established models. Subsequently, we evaluate the effectiveness of our prompt op-

timization strategy by comparing the models derived from both EUREKA-optimized and

handcrafted prompts. We then investigate the performance implications of two distinct

adapter configurations to determine optimal architectural setups. Finally, to analyze the

impact of each aspect, we conduct ablation studies where we remove one aspect at a time

from training.

For convenience, we structure these experiments around the following research

questions:

(RQ1) To what extent do models fine-tuned on synthetic data demonstrate superior per-

formance compared to current state-of-the-art approaches in Enterprise Team Formation

tasks?

(RQ2) Which synthetic data generation strategy yields better performance when evalu-

ated on real-world datasets?

(RQ3) How does the implementation of Rank Aggregation methodology impact model

performance metrics?

(RQ4) What is the relationship between prompt engineering quality and model perfor-

mance outcomes?

(RQ5) How does the performance of specialized aspect-specific adapters compare to that

of a unified global adapter architecture?

(RQ6) What are the potential performance implications of removing individual aspects

from the model architecture?
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(RQ7) How does contrastive fine-tuning influence the geometric properties and semantic

organization of the embedding space?

First, we evaluate the overall impact of our three proposed synthetic data ap-

proaches on model performance. We compare models trained only on synthetic curricu-

lums, only on synthetic labels, and on a combination of both (RQ2), using the same

training arguments (LoRA r = 16, LoRA α = 16 and batch size of 24). To validate our

results, we compare our models against current SOTA algorithms in text-embedding tasks

(RQ1). We also compare against classic unsupervised models such as BM25. To measure

the impact of the Rank Aggregation algorithm (RQ3), we train the model separately that

is trained on only one big aspect, which is the concatenation of all employee aspects.

Next, we summarize each of the baselines we tested:

• TF-IDF (Salton and McGill, 1983): scores documents based on term frequency and

inverse document frequency (see Chapter 3.1).

• BM25 (Robertson et al., 1994): expands on TF-IDF by using saturation and docu-

ment length normalization (see Chapter 3.1).

• e5-large-v2 (Wang et al., 2022): a RoBERTa-based Dual-Encoder model that is

trained on unlabeled text pairs using contrastive learning. Then, the model is fine-

tuned on small, high-quality labeled datasets.

• Sentence-T5-large (Ni et al., 2021): builds upon T5 (Raffel et al., 2020), applying

contrastive learning on a Dual-Encoder setup. In this approach, the decoder is dis-

carded, and the sentence embedding is defined as the average pooling of the encoder

output.

• OpenAI-text-embedding-3small (OpenAI, 2023): proprietary model from OpenAI (no

architectural information available to the public).

• OpenAI-text-embedding-3large (OpenAI, 2023): proprietary model from OpenAI (no

architectural information available to the public).

• bge-large-en-v1.5 (Xiao et al., 2023): RoBERTa-based, similar to e5. Uses mean

pooling of the last hidden layer to generate the sentence embeddings. BGE was
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trained on large-scale datasets, including BEIR, MS MARCO, and other retrieval

benchmarks.

• gte-Qwen2-1.5B-instruct (Li et al., 2023): built upon the Qwen2-1.5B LLM, trained

on a vast multilingual text corpus. The model incorporates instruction-tuning and

bidirectional attention mechanisms.

• Stella-400M (Zhang, 2024): distillation of gte-Qwen2-1.5B-instruct, uses a Dual-

Encoder setup and mean pooling (see Chapter 4.2).

The overall results are shown in Table 5.1. We evaluate the models on a series of

ranking metrics (see Chapter 2.3). As the table shows, the synthetic fine-tuning is highly

effective, achieving a performance improvement of over 30% across all ranking metrics in

comparison to the best-performing baseline. We also see that the best strategy overall for

fine-tuning was the full data approach, where we use a combination of both curriculum

and synthetic labeling data.

Avg. Prec nDCG@1 nDCG@5 Hit@5 AUC
Unsupervised Models
BM25 (Robertson et al., 1994) 0.081 0.020 0.076 0.183 0.670
TF-IDF (Salton and McGill, 1983) 0.169 0.101 0.172 0.305 0.683
Supervised Models
e5-large-v2 (Wang et al., 2022) 0.141 0.060 0.117 0.243 0.740
Sentence-T5-large (Ni et al., 2021) 0.160 0.044 0.144 0.280 0.742
OpenAI-text-embedding-3small (OpenAI, 2023) 0.288 0.165 0.305 0.481 0.747
OpenAI-text-embedding-3large (OpenAI, 2023) 0.296 0.160 0.303 0.460 0.782
bge-large-en-v1.5 (Xiao et al., 2023) 0.195 0.105 0.188 0.322 0.703
gte-Qwen2-1.5B-instruct (Li et al., 2023) 0.236 0.143 0.220 0.340 0.734
Stella-400M (Zhang, 2024) 0.284 0.150 0.285 0.481 0.758
Ours
Stella-LoRACondorcet + full data 0.386 0.217 0.418 0.620 0.798
with synthetic curriculums only 0.296 0.140 0.323 0.544 0.758
with synthetic labels only 0.358 0.260 0.393 0.581 0.771

Concat Model 0.352 0.220 0.364 0.565 0.734

Table 5.1: Overall results of model performance on our evaluation dataset.

Separately, the synthetic curriculum approach had marginal improvements over

the Stella-400M baseline, with an average improvement of 10% on the ranking except

for NDCG@1, where there was a performance decrease of around 9%. In contrast, the

synthetic labeling data shown significant improvements over the base model, achieving an

averege improvement of 39% over Stella-400M , with a 73% improvement on NDCG@1.

In conclusion, while both data approaches seem to be complementary for the final re-
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Figure 5.1: UMAP representation of our evaluation dataset embeddings. On left, we
have the embeddings of the pre-trained model; on right, we have the embeddings of the
fine-tuned model.

sult, the synthetic labeling has a bigger performance improvement when comparing both

approaches separately.

In Table 5.1, we can also measure the impact of the Rank Aggregation approach.

When comparing the “full data” approach against the Concat Model, we see an aver-

age improvement of around 6% on the tested ranking metrics. This shows considerable

improvements of the Condorcet algorithm over the classic text concatenation approach.

To visualize the effect of our fine-tuning on the embedding space (RQ7), we com-

pare UMAP (McInnes et al., 2020) representations before and after the contrastive fine-

tuning. UMAP builds a high-dimensional weighted graph that captures the structure of

the data and then optimizes a low-dimensional representation.

Figure 5.1 shows the UMAP representations of the queries and employees (full

data) before and after the fine-tuning procedure. As we can see in the figure, before the

training, queries and documents we separated into two clusters. After fine-tuning, we can

se a “pairing” behavior between queries and documents, where these two clusters now

have elements from the other cluster close to some of its entities.

5.1 Prompt Optimization

As mentioned in 4.3.2.1, we use the Eureka framework to optimize a base hand-

crafted prompt for the Synthetic Labeling approach. To optimize the prompt, we evaluate

the candidate prompts on our eval dataset, choosing the best performing prompt at each

generation.
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Figure 5.2: Evolution of metrics of the Eureka optimization.

Figure 5.2 shows the metrics of the Eureka optimization throughout 10 generations.

We use the F1 score as the main optimization metric. If no prompt got improved upon

the current best prompt, it is repeated in the next iteration. As we can see in the figure,

we had only two evolutions over the current best, one in generation 2, and another in

generation 7.

To measure the impact of this optimization procedure (RQ4), we create two Syn-

thetic Labeling sets, one with data generated by the base handcrafted prompt, and another

with data generated by the best Eureka-generated prompt.

We then train separate models on each dataset and compare their performance at

both the aspect level and the aggregation level. Table 5.2 presents the ranking metrics

for both models. We highlight with grey the aspect which had better perfomance when

comparing the eureka/base pairs. For the Role and Behavior aspects, the original prompt

had better performance overall. However, for the Goals, Abilities, and Experience as-

pects, the Eureka-optimized model performed better. When aggregating all aspects, the

Eureka-optimized model had better results over all ranking metrics, outperforming the

base prompt model by arond 10% on average. By these results, we can conclude that

aligning the prompt with the human-curated data can provide benefits to the quality of

synthetic data generated, impacting positively the fine-tuning results.
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Avg. Prec nDCG@1 nDCG@5 Hit@5 AUC
Baseline
Stella-400M 0.284 0.150 0.285 0.481 0.758
Concat Model 0.352 0.220 0.364 0.565 0.734
Synth Label Model - Eureka-optimized prompt
Role 0.343 0.210 0.351 0.520 0.786
Behavior 0.292 0.202 0.299 0.460 0.774
Goals 0.350 0.252 0.337 0.460 0.775
Abilities 0.375 0.259 0.390 0.580 0.716
Experience 0.359 0.202 0.396 0.600 0.802
Condorcet (Aggregation) 0.358 0.260 0.393 0.581 0.771
Synth Label Model - Original prompt
Role 0.372 0.258 0.385 0.540 0.794
Behavior 0.299 0.163 0.318 0.522 0.796
Goals 0.343 0.252 0.336 0.484 0.793
Abilities 0.331 0.200 0.352 0.561 0.691
Experience 0.353 0.182 0.385 0.620 0.797
Condorcet (Aggregation) 0.346 0.225 0.350 0.521 0.782

Table 5.2: Comparison between the model trained using data from the Eureka-optimized
prompt and the model trained using data from the base handcrafted prompt. Rows in
grey represent the winning approach.
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5.2 Global Adapter and Specialized Adapters

Pre-trained
Model

Aspect 1 Aspect 2 Aspect N Aspect 2Aspect 1 Aspect N

Aspect 1
Aspect 2

Aspect N

Aspect 1
Aspect 2

Aspect N

Pre-trained
Model

. . .

. . . . . .

Figure 5.3: (left) Specialized adapters. (right) Global adapter.

We also investigate two different methods of fine-tuning our base model. The first

method uses multiple adapters, one for each aspect, while the the second method uses

one single trained adapter that is used by all aspects at inference time. Figure 5.3 shows

the difference between the two tested approaches.

For the Specialized Adapters, we have to train each adapter separately, using each

aspect as the document passages during training. Then, each trained adapter can only

be used with its corresponding aspect it was trained on.

The Single Adapter approach performs the training only once. During the adapter

training, we concatenate all aspects’ text for each employee, creating a long passage that

is all text related to that employee. The resulting adapter can further be used globally

by all aspects.

Table 5.3 shows aspect-level and aggregation-level metrics for both strategies on

the Synthetic Labeling data. The grey coloring shows the winning aspect/aggregation

between the model pairs based on the average ration across all evaluation metrics. As

expected, when looking at the aspect level, except for the Role, all other aspects had
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Avg. Prec nDCG@1 nDCG@5 Hit@5 AUC
Baseline
Stella-400M 0.284 0.150 0.285 0.481 0.758
Concat Model 0.352 0.220 0.364 0.565 0.734
Aspect Models - Specialized adapter
Role 0.343 0.210 0.351 0.520 0.786
Behavior 0.292 0.202 0.299 0.460 0.774
Goals 0.350 0.252 0.337 0.460 0.775
Abilities 0.375 0.259 0.390 0.580 0.716
Experience 0.359 0.202 0.396 0.600 0.802
Condorcet (Aggregation) 0.358 0.260 0.393 0.581 0.771
Aspect Models - Global adapter
Role 0.357 0.259 0.374 0.561 0.785
Behavior 0.262 0.150 0.271 0.443 0.755
Goals 0.254 0.161 0.248 0.380 0.749
Abilities 0.305 0.200 0.305 0.463 0.671
Experience 0.367 0.200 0.377 0.562 0.770
Condorcet (Aggregation) 0.385 0.250 0.407 0.605 0.779

Table 5.3: Comparison between a model trained with specialized adapters and a model
trained with a global adapter. Rows in grey represent the winning approach.

better overall performance when using specialized adapters over a single global adapter.

However, surprisingly, when we aggregate the rankings, the global adapter aggregation

achieves better results, achieving a marginal gain of around 3.5%, on average.

5.3 Ablation Test

Avg. Prec nDCG@1 nDCG@5 Hit@5 AUC
Baseline
Stella-400M 0.284 0.150 0.285 0.481 0.758
Model performance on removed aspect
Stella-LoRACondorcet −Role 0.381 0.260 0.407 0.60 0.771
Stella-LoRACondorcet −Behavior 0.352 0.245 0.379 0.58 0.762
Stella-LoRACondorcet −Goals 0.381 0.245 0.403 0.58 0.784
Stella-LoRACondorcet − Abilities 0.382 0.250 0.412 0.62 0.779
Stella-LoRACondorcet − Experience 0.373 0.256 0.397 0.58 0.773
Condorcet (Aggregation) 0.385 0.250 0.407 0.605 0.779
Concat Model 0.352 0.220 0.364 0.565 0.734

Table 5.4: Ablation results. At each step, we remove an aspect from training.

Finally, in order to laverage the individual importance of each aspect to model

performance, we conduct an ablation study. At each test, we remove one aspect from
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the training and aggregation process and calculate the metrics for each resulting model.

We then compare the ablation results against the full aggregation and the Concatenation

models.

Table 5.4 shows the ablation results. For this experiment, we used the Global

adapter model introduced in the previous section. The table shows that removing the

Abilities aspect, the overall performance of the model increases marginally when compared

to the full Aggregation model. This suggests that the Abilities aspect does not contribute

with useful information to the model and may even introduce noise or redundancy. The

other aspects presented a performance decrease overall when removed from training, with

some exceptions regarding the nDCG@1 when discarding Role and Experience aspects,

which had a slight increase in performance in comparison to the full aggregation model.
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Chapter 6

Conclusions

In this thesis, we present a Synthetic data Fine-tuning approach to improve the perfor-

mance of the Enterprise team Formation task. We design this task as a Semantic search

problem, where the projects and tasks are modeled as queries, and the employee with

their aspects (e.g., skills, experience, and behavior) are modeled as documents. We eval-

uate our model on a curated human-labeled dataset and conduct a series of experiments

in order to validate our proposed approach. In this chapter, we summarize the obtained

results and present some possible directions for future work.

6.1 Main Results

The core contribution of this work lies in the development of two synthetic data

fine-tuning methodologies for enterprise team formation:

1. LLM-Augmented Synthetic Labeling: We leverage large language models (LLMs)

to annotate pairs of synthetic tasks and real employee profiles.

2. Synthetic Curriculum Generation: We use LLMs to generate idealized em-

ployee curriculum tailored to synthetic tasks.

3. Hybrid: A combination of the both methods described above.

The data generation method starts by the creation of synthetic tasks. In this step,

we use a two-stage generation process. First, we prompt the LLM to brainstorm a pool of

projects, giving employee abilities as context for the LLM. In the second step, we expand

each project, breaking them down into a series of tasks. With the tasks ready, we use

another prompt to generate an ideal curriculum for each task. For the synthetic labeling

process, we sample task-employee pairs, and label the relevance of each pair using an

LLM and a Chain-of-Thought prompt.
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This labeling prompt is optimized using the evolutionary algorithm Eureka. Briefly,

Eureka leverages an LLM to optimize prompts for specific tasks, aiming to optimize a

desired metric. We model the relevance labeling as a prompt refinement task, optimizing

the prompt performance over our human-curated evaluation dataset.

During the modeling phase, we fine-tuned the Stella-400M language model using

Low-Rank Adapters (LoRA). Since our employee dataset contains multiple distinct as-

pects that need to be evaluated, we developed a Rank Aggregation approach to combine

the generated rankings. Specifically, we implemented the Condorcet algorithm to unify

these rankings into a single consensus Rank. We also test different approaches to LoRA,

where we test multiple specialized adapters (one for each aspect), or one single global

adapter (trained on the concatenation of all aspects).

We test our fine-tuning approach against a series of well-estabilished semantic

search methods on a series of ranking metrics. Our method obtained the best results

across all tested models, outperforming the current SOTA algorithms on the team for-

mation task, which suggests the effectiveness of our proposed method. Experimental

results demonstrate that combining both Synthetic Labeling and Synthetic Curriculum

approaches yields better performance, achieving the highest overall metrics in the tested

ranking metrics. Notably, while the hybrid method proved most effective, the synthetic

labeling approach alone achieved the strongest individual performance when compared to

the Synthetic curriculum approach.

We also measure the effectiveness of the Eureka framework. In this experiments,

we train two sparated models, one using data generated by the Eureka-optimized prompt,

and another using data generated by the base handcrafted prompt. We compare both

models on the aspect and aggregation level. Results show that the Eureka-optimized

prompt outperformed the handcrafted prompt across most employee aspects, and also

had a performance increase of around 10% in the tested ranking metrics when aggregating

the Ranks.

Another experiment we conducted revolves around the Low-Rank Adapter setup.

We investigate two different setups:

1. Specialized Adapters: We train one adapter for each aspect separately, using

each aspect as the document passages during training.

2. Global Adapter: We train one single global adapter with the concatenation of all

aspects. The resulting adapter is used by all aspects at inference time.

As expected, when viewing the results of each individual aspect rankings, the spe-

cialized model had a better performance across most aspects. However, for the aggregated

rankings, the global adapter model had a better metrics overall.

Finally, we conduct an ablation study to measure the effectiveness of each aspect.

In this test, we train the full model multiple times, excluding one different aspect from
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training at each time. The results show that the model trained without the Abilities

aspect had an improvement over the full model, which is a sign that this aspect contains

redundant or noisy information.

6.2 Future Work

We are currently planning to apply this method in another enterprise context that

revolves around software development and data science. This environment can be more

challenging, as the employees more similar in terms of skills and experiences, which makes

the task of finding the best fit for a certain task more difficult. This additional case study

can make the method more robust as we show it can work on a multitude of scenarios.

We also map a series of improvements on the modeling side. The Eureka optimiza-

tion approach proved effective for the Synthetic labeling approach. We plan to extend

this optimization to the Synthetic Curriculums approach. However, modeling the fitness

function for the evolutionary optimization in this case is not as trivial as the labeling

method. The Rank aggregation also presented a big improvement on model performance.

We plan to extend the experiments on this side, testing different algorithms and compare

them to the Condorcet algorithm.

We also aim to expand the investigations on the model adapters. we plan to test

evolutions and variations of LoRA, such as MixDA (see Chapter 3.3). Furthermore, we

plan to analize new configurations of adapters, such as adapters for pairs or triplets of

aspects.

We are also mapping architectural improvements to our model. The NV-Embed-

v2 (3.1), for example, introduces the latent attention layer, that substitutes the final

average pooling at the end of the dual-encoder setup with a novel attention-based layer

to create the sentence-level embeddings. Another potential improvement could be the use

of lexical-based embeddings to complement the sentence embeddings. The LENS model

showed state-of-the-art results when combining clustering-based lexical embeddings with

standard sentence embeddings.
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Pfeiffer, J., Vulić, I., Gurevych, I., and Ruder, S. (2020). MAD-X: An Adapter-Based

Framework for Multi-Task Cross-Lingual Transfer. In Webber, B., Cohn, T., He,

Y., and Liu, Y., editors, Proceedings of the 2020 Conference on Empirical Methods

in Natural Language Processing (EMNLP), pages 7654–7673, Online. Association for

Computational Linguistics.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018). Improving language

understanding by generative pre-training. OpenAI Blog.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019). Language

models are unsupervised multitask learners. OpenAI Blog.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W.,

and Liu, P. J. (2020). Exploring the limits of transfer learning with a unified text-to-text

transformer. Journal of Machine Learning Research, 21(140):1–67.

Robertson, S., Walker, S., Jones, S., Hancock-Beaulieu, M., and Gatford, M. (1994).

Okapi at trec-3. pages 0–.

Salton, G. and McGill, M. J. (1983). Introduction to Modern Information Retrieval.

McGraw-Hill, Inc., New York, NY, USA.

Sanh, V., Debut, L., Chaumond, J., and Wolf, T. (2020). Distilbert, a distilled version of

bert: smaller, faster, cheaper and lighter.

Su, H., Shi, W., Kasai, J., Wang, Y., Hu, Y., Ostendorf, M., Yih, W.-t., Smith, N. A.,

Zettlemoyer, L., and Yu, T. (2023a). One embedder, any task: Instruction-finetuned

text embeddings. In Rogers, A., Boyd-Graber, J., and Okazaki, N., editors, Findings of

the Association for Computational Linguistics: ACL 2023, pages 1102–1121, Toronto,

Canada. Association for Computational Linguistics.

Su, J., Lu, Y., Pan, S., Murtadha, A., Wen, B., and Liu, Y. (2023b). Roformer: Enhanced

transformer with rotary position embedding.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., Rozière,

B., Goyal, N., Hambro, E., Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and Lample,

G. (2023). Llama: Open and efficient foundation language models. arXiv preprint

arXiv:2302.13971.



BIBLIOGRAPHY 73

Truong, T. H., Otmakhova, Y., Baldwin, T., Cohn, T., Lau, J. H., and Verspoor, K.

(2022). Not another negation benchmark: The NaN-NLI test suite for sub-clausal

negation. In He, Y., Ji, H., Li, S., Liu, Y., and Chang, C.-H., editors, Proceedings of

the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational

Linguistics and the 12th International Joint Conference on Natural Language Processing

(Volume 1: Long Papers), pages 883–894, Online only. Association for Computational

Linguistics.

van den Oord, A., Li, Y., and Vinyals, O. (2019). Representation learning with contrastive

predictive coding.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,

L. u., and Polosukhin, I. (2017). Attention is all you need. In Guyon, I., Luxburg,

U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors,

Advances in Neural Information Processing Systems, volume 30. Curran Associates,

Inc.

wai Yim, W., Fu, Y., Abacha, A. B., Snider, N., Lin, T., and Yetisgen, M. (2023). Aci-

bench: a Novel Ambient Clinical Intelligence Dataset for Benchmarking Automatic

Visit Note Generation. Scientific Data, 10(1):586.

Wang, L., Yang, N., Huang, X., Jiao, B., Yang, L., Jiang, D., Majumder, R., and Wei, F.

(2022). Text embeddings by weakly-supervised contrastive pre-training. arXiv preprint

arXiv:2212.03533.

Wang, L., Yang, N., Huang, X., Yang, L., Majumder, R., and Wei, F. (2024a). Improving

text embeddings with large language models. In Ku, L.-W., Martins, A., and Srikumar,

V., editors, Proceedings of the 62nd Annual Meeting of the Association for Computa-

tional Linguistics (Volume 1: Long Papers), pages 11897–11916, Bangkok, Thailand.

Association for Computational Linguistics.

Wang, S., Deng, Q., Feng, S., Zhang, H., and Liang, C. (2024b). A survey on rank aggre-

gation. In Proceedings of the Thirty-Third International Joint Conference on Artificial

Intelligence, IJCAI ’24.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., ichter, b., Xia, F., Chi, E., Le, Q. V.,

and Zhou, D. (2022). Chain-of-thought prompting elicits reasoning in large language

models. In Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., and Oh, A.,

editors, Advances in Neural Information Processing Systems, volume 35, pages 24824–

24837. Curran Associates, Inc.

Wu, S. (2013). The weighted condorcet fusion in information retrieval. Information

Processing Management, 49(1):108–122.



BIBLIOGRAPHY 74

Xiao, S., Liu, Z., Zhang, P., and Muennighoff, N. (2023). C-pack: Packaged resources to

advance general chinese embedding.

Yang, A., Yang, B., Hui, B., Zheng, B., et al. (2024). Qwen2 technical report.

Ye, M., Zhang, X., Yuen, P. C., and Chang, S.-F. (2019). Unsupervised embedding

learning via invariant and spreading instance feature.

Young, H. (1977). Extending condorcet’s rule. Journal of Economic Theory, 16(2):335–

353.

Young, H. P. (1988). Condorcet’s Theory of Voting, volume 16.

Young, H. P. and Levenglick, A. (1978). A consistent extension of condorcet’s election

principle. SIAM Journal on Applied Mathematics, 35(2):285–300.

Yu, Y., Liang, C., Ruan, W., and Jiang, L. (2020). Crowdsourcing-based ranking aggrega-

tion for person re-identification. In ICASSP 2020 - 2020 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pages 1933–1937.

Yue, X., Yao, Z., and Sun, H. (2022). Synthetic question value estimation for domain

adaptation of question answering. In Muresan, S., Nakov, P., and Villavicencio, A.,

editors, Proceedings of the 60th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), pages 1340–1351, Dublin, Ireland. Association

for Computational Linguistics.

Zhang, D. (2024). Stella english 400m v5. https://huggingface.co/dunzhang/stella_

en_400M_v5/tree/main. Accessed: 2024-12-29.

Zhang, Q., Chen, M., Bukharin, A., He, P., Cheng, Y., Chen, W., and Zhao, T. (2023).

Adaptive budget allocation for parameter-efficient fine-tuning. In The Eleventh Inter-

national Conference on Learning Representations.

Zhong, M., Yin, D., Yu, T., Zaidi, A., Mutuma, M., Jha, R., Awadallah, A. H., Celiky-

ilmaz, A., Liu, Y., Qiu, X., and Radev, D. (2021). Qmsum: A new benchmark for

query-based multi-domain meeting summarization.

https://huggingface.co/dunzhang/stella_en_400M_v5/tree/main
https://huggingface.co/dunzhang/stella_en_400M_v5/tree/main

	Introduction
	Motivation
	Problem Statement
	Context
	Thesis Structure

	Background
	Transformers
	Large Language Models

	Semantinc Search
	Ranking Metrics
	Low-rank Adapters
	LoRA variants

	Rank Aggregation
	Condorcet
	Other Rank Aggregation Techniques


	Related Work
	Evolution of Semantic Search Models
	Improving Language Models with Synthetic Data
	Domain-specific Language Modeling

	Data and Method
	Data
	Employee data
	Human Feedback

	Model
	LoRA
	Contrastive Learning

	Synthetic Data
	Synthetic Tasks
	Synthetic Labeling
	Prompt Optimization

	Generating Synthetic Curriculumns

	Rank Aggregation
	Condorcet


	Experiments
	Prompt Optimization
	Global Adapter and Specialized Adapters
	Ablation Test

	Conclusions
	Main Results
	Future Work

	Bibliography

