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Resumo

Rotulagem colaborativa (collaborative tagging) permite que usuários assinalem palavras-

chave (outags) que descrevam o conteúdo de objetos, o que facilita a navegação e melhora

algoritmos de busca sem o uso de categorias pré-definidas. Emsistemas detaggingde larga

escala, sistemas de recomendação detagspodem ajudar usuários a assinalar rótulos a objetos

e ajudar a consolidar o vocabulário entre diferentes usuários. Uma abordagem promissora

para recomendação detags é explorar a co-ocorrência entre elas. Nesse caso, o enorme

tamanho do vocabulário detagsé um desafio, porque (1) a complexidade computacional

pode crescer exponencialmente com o número detagse (2) o peso atribuído a cadatagpode

ficar distorcido já que diferentestagsoperam em diferentes escalas e os seus respectivos pe-

sos podem não ser diretamente comparáveis. Neste trabalho nós propomos um método novo

de recomendação detagsque é baseado em demanda e que faz recomendações a partir de

um conjunto inicial detagspreviamente associado a um objeto. Ele reduz o espaço de pos-

síveis soluções, e, portanto, sua complexidade aumenta polinomialmente com o tamanho do

vocabulário detags. Além disso, o peso de cadatag é calibrado usando uma abordagem de

minimização de entropia que corrige possíveis distorções eprovê recomendações mais pre-

cisas. Nós conduzimos uma avaliação sistemática de métodospropostos usando três tipos

de mídia: áudio, páginas Web e vídeo. Os resultados experimentais mostram que o método

proposto é rápido e melhora a qualidade da recomendação em diferentes cenários experimen-

tais. Por exemplo, no caso de um popular site de músicas ele provê melhoras em precisão

(p@5) de6,4% a46,7% (dependendo do número detagsdadas como entrada), melhorando

métodos de recomendação detagsbaseados em co-ocorrência recentemente propostos.

Palavras-chave:Recomendação, Classificação Multilabel, Web 2.0.
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Abstract

Collaborative tagging allows users to assign arbitrary keywords (or tags) describing the con-

tent of objects, which facilitates navigation and improvessearching without dependence on

pre-configured categories. In large-scale tag-based systems, tag recommendation services

can assist a user in the assignment of tags to objects and helpconsolidate the vocabulary

of tags across users. A promising approach for tag recommendation is to exploit the co-

occurrence of tags. However, these methods are challenged by the huge size of the tag vo-

cabulary, either because (1) the computational complexitymay increase exponentially with

the number of tags or (2) the score associated with each tag may become distorted since dif-

ferent tags may operate in different scales and the scores are not directly comparable. In this

work we propose a novel method that recommends tags on a demand-driven basis according

to an initial set of tags applied to an object. It reduces the space of possible solutions, so that

its complexity increases polynomially with the size of the tag vocabulary. Further, the score

of each tag is calibrated using an entropy minimization approach which corrects possible dis-

tortions and provides more precise recommendations. We conducted a systematic evaluation

of the proposed method using three types of media: audio, Webpages and video. The exper-

imental results show that the proposed method is fast and boosts recommendation quality on

different experimental scenarios. For instance, in the case of a popular music radio Web site

it provides improvements in precision (p@5) ranging from6.4% to46.7% (depending on the

number of tags given as input), outperforming a recently proposed co-occurrence based tag

recommendation method.

Palavras-chave:Recommendation, Multi-label Classification, Web 2.0.
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Chapter 1

Introduction

Social interaction has become one of the central aspects around which World Wide Web

applications are built in the Web 2.0 era. End-users contribute with content created by them-

selves, using social applications to collaborate and interact with each other by means of blog

posts, comments, forum messages, videos, audio or other media. They work collectively to

generate, augment, correct or update the content of digitalobjects that will be consumed by

their peers.

This new paradigm has brought challenges for Information Retrieval (IR) methods.

The lack of a centralized publisher allowed the production of astonishing amounts of user-

generated data. At the same time, low-quality content composes most of this data, since

there are no quality standards in most Web 2.0 applications.Furthermore, a large fraction of

the generated content is in the form of multimedia, such as audio, image or video. Current

industrial IR technology cannot efficiently deal with multimedia objects directly, and they

usually resort to textual meta-data that surrounds each object (e.g., description or comments).

However, this textual data is often non-existent or simply too noisy to be used effectively in

IR.

In this context, social tagging has emerged as a means to allow users to describe

their objects by using a set of descriptive keywords (tags).These keywords may be used

to help users in organizing their objects, serving as a personalized, non-hierarchical cate-

gorization system. IR methods can take advantage of tags to improve the retrieval of ob-

jects through browsing or searching. In fact, recent studies have demonstrated that tags are

among the best textual features to be exploited by IR services, such as automatic classifica-

tion [Figueiredo et al., 2009].

In order to incentive the use of tags, social tagging applications have developed tag

recommendation services that aim to aid the user in the act ofassigning keywords to objects.

There are some main purposes in the implementation of such services: (1) they make the as-

1



2 CHAPTER 1. INTRODUCTION

signment of keywords an easier task, motivating users to contribute with a larger set of tags;

(2) they provoke a convergence in the use of keywords among different users [Sen et al.,

2006], reducing noise and improving the effectiveness of IR processes; (3) they remind users

of more rich or specific tags, which are descriptive despite not being among the most fre-

quently used.

This dissertation presents a new algorithm that recommendstags by exploiting tag

co-occurrence patterns. Our algorithm extracts co-occurrence patterns based on the tags

associated with previous objects in the collection, that is, tags that were associated to objects

by system users in the past. Recommendations are performed by using these patterns. An

advantage of relying only on tag co-occurrence is that the algorithm does not depend on the

content of the objects, i.e., the method is indifferent to the object media type. This feature

makes our method suitable to social tagging systems such asLastFM1, Flickr2 andYoutube3,

which contains audio, images and videos, respectively.

Typically, an object has several different tags associatedwith it, and tag recommen-

dation systems are expected to provide users with a small setof tags (3-5) to choose from.

There is an unlimited number of ways to describe an object by choosing arbitrary keywords.

Our strategy to this problem is to treat each possible tag already existent in the system as a

class for the object, modeling the problem of recommending tags as amulti-label classifica-

tion problem.

This approach is challenging since the vocabulary of tags insystems such asYouTube,

Delicious4 andLastFM is on the thousands. Current automatic classifiers cannot deal well

with problems with many thousands of classes. Multi-label classification systems also have

to consider possible combinations among these tags, which makes this problem even harder

in the tag recommendation context.

1.1 Objectives

In this dissertation we study the problem of recommending tags related to a specific object

given an initial set of tags already associated with this object. Formally, an initial set of tags

Io, which is used to describe the objecto, is provided to the recommendation method. The

method subsequently outputs a set of related tagsCo (Io ∩ Co = ∅), which are regarded as

appropriate for describing this object.

Our purpose in this dissertation is to design better tag recommendation algorithms by

1www.lastfm.com
2www.flickr.com
3www.youtube.com
4www.delicious.com
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exploiting more elaborate tag co-occurrence association rules. We are able to generate such

rules by taking an on-demand approach, that is, we generate rules on the fly according to

each provided object. This is possible because we can project the search space according to

the input object, significantly reducing the computation needed to extract rules.

A specific objective is to reduce the distortions created in the calculation of the score

of candidate tags. This problem is common in applications that need to rank tags according

to some criterion. These distortions are present speciallyin cases in which the number

of tags in an object is small, as shown in our experiments. Another specific objective is

to generate datasets that can be used in experiments with tagrecommendation, which are

datasets crawled from social bookmarking networks such as Delicious.

1.2 Contribution of the Dissertation

We present a Lazy Associative Tag REcommender, referred to as LATRE, which is an al-

gorithm based on the Lazy Associative Classifier (LAC) classifier [Veloso et al., 2006] that

has been developed to deal with large-scale problems with thousands of tags (or classes).

LATRE exploits co-occurrence of tags by extracting association rules on a demand-driven

basis. These rules are the basic components of the classification model produced by LATRE.

In this case, rules have the formX −→ y, whereX is a set of tags andy is the predicted tag.

Some of the results presented in this dissertation were published in [Menezes et al., 2010].

Rule extraction is a major issue for recommendation methodsbased on co-occurrence

[Heymann et al., 2008; Sigurbjörnsson and van Zwol, 2008], since the number of extracted

rules may increase exponentially with the number of tags. LATRE, on the other hand, ex-

tracts rules from the training data on the fly, at recommendation time. The algorithm projects

the search space for rules according to qualitative information present in each test object, al-

lowing the extraction of more elaborate rules with efficiency.

In other words, LATRE projects the training data according to the tags inIo and ex-

tracts rules from this projected data. This ensures that only rules that carry information about

objecto (i.e., a test object) are extracted from the training data, drastically bounding the num-

ber of possible rules. In fact, the computational complexity of LATRE is shown to increase

polynomially with the number of tags in the vocabulary. Thisefficiency enables LATRE to

explore portions of the rule space that could not be feasiblyexplored by other methods.

After a set of rules is extracted for objecto, LATRE uses them to rank candidate tags

that are more likely to be correctly associated with this object. Each extracted ruleX
θ
−→ y

is interpreted as a vote given for tagy and the weight of the vote is given byθ, which is the

conditional probability of objecto being associated with tagy given thato contains all tags
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in X . Weighted votes for each tag are added and tags that scored higher are placed on the

beginning of the ranking. Usually, there are many candidatetags and, thus, properly ranking

them is also a difficult issue, since different candidate tags may operate in different scales

(i.e., a popular tag may receive a large number of “weak” votes, and this tag is likely to

be placed before a specific tag which received a small number of “strong” votes). In order

to enforce all tags to operate in the same scale, so that they can be directly compared, we

employed an entropy-minimization calibration approach tocorrect possible distortions in the

scores of candidate tags.

Experimental results obtained from collections crawled from Delicious, LastFM

and YouTube show that LATRE recommends tags with a significantly higher precision

in all collections when compared to a recent co-occurrence based algorithm proposed

by Sigurbjörnsson and van Zwol[2008], which we considered our baseline method. The

study of the effectiveness of LATRE on three different collections corresponding to different

media types (i.e., Web pages, audio and video) is also an important contribution of our work,

as most of the methods in the literature are tested only with one collection and one media

type. Depending on the number of tags provided as input to LATRE, it obtained gains in pre-

cision (p@5) ranging from 10.7% to 23.9% for Delicious, from6.4% to 46.7% for LastFM,

and from 16.2% to 33.1% for YouTube.

1.3 Related Work

Social tagging systems allow users to associate keywords (tags) to any object, such as a Web

page, a video or a photo. These system have become popular in the Web 2.0 context, in which

a large amount of data is created and there is the necessity ofindexing it for later retrieval.

Tag recommendation services have emerged in social taggingsystems with the objective of

helping users to better describe the content they created. For an introductory discussion of

social tagging and tag recommendation, please see Section2.1.

Possible sources of information for tag recommendation could be: (1) tags previously

associated with objects in the collection and (2) the textual content of other features (e.g.,

title, description, user comments) associated with the object for which the recommendation

is expected. While in case of (2) there could be more input forthe sake of recommen-

dation, problems such as the lack of standardization in content format and the presence

of noisy content (e.g., non-existing words [Suchanek et al., 2008]) benefit the use of rec-

ommendation methods that exploit solely tag co-occurrenceinformation [Garg and Weber,

2008; Sigurbjörnsson and van Zwol, 2008].

We presented the related works in order of similarity to thisdissertation. The first
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two presented works ([Sigurbjörnsson and van Zwol, 2008] and [Garg and Weber, 2008])

are the most related to our work in terms of the problem they treated and the methodology

they adopted. The next three related works ([Heymann et al., 2008], [Krestel et al., 2009]

and [Wu et al., 2009]) also explored tag co-occurrence to solve other tag expansion prob-

lems (such as tag recommendation using content and the cold-start problem). The follow-

ing four related works ([Xu et al., 2006], [Weinberger et al., 2008], [Liu et al., 2009] and

[Siersdorfer et al., 2009]) used tag co-occurrence in applications different from tag expan-

sion, such as tag disambiguation. The last related works listed in this section also applied

classification in the social tagging domain.

Sigurbjörnsson and van Zwol[2008] explored tag co-occurrence with the objective of

recommending tags directly to users based on an initial set of tags already associated with the

object. In this scenario, their method first associates a list of related tags with each input tag,

and then combines the lists for all input tags in a single finalranking of related tags. The two

similarity measures used to compute co-occurrence of tags were the conditional probability

and the Jaccard coefficient. They combined the lists of related tags by summing up the

co-occurrence measures for each occurrence of a related tag. Finally, they altered the final

relatedness scores by promoting tags that are more descriptive of the content of the objects,

obtaining significant improvements. The problem they studied is very similar to ours, i.e.,

output a ranking of tags using only community knowledge (notpersonal information). For

this reason, we chose this method as a baseline in our experiments. The main difference

between the method described in [Sigurbjörnsson and van Zwol, 2008] and our’s is that we

employ a filtering process to reduce the size of the training data according to an input object.

This reduction causes an increased efficiency and allows LATRE to extract rules that are

more elaborate. The use of calibration is also a difference that improves the performance of

our method, specially for objects with a small number of tags.

Another related work is presented byGarg and Weber[2008]. They study the problem

of making personal recommendations using the history of alltags a user has applied in the

past. Given a set of tags as input, the authors use a Naive Bayes classifier to obtain a ranking

of related tags specifically for the user. This model considers the probability that a related

tag will generate the set of input tags according to the user past behavior. Additionally, they

use collective knowledge to estimate the co-occurrence of tags in the whole system, using

a scoring method which is based on TF-IDF. The best results were obtained by combining

the personal model and the collective model. They concludedthat adding personal history

can improve the effectiveness of co-occurrence tag-recommendation. Our method also mod-

els the problem as classification, but we do not explore personal history and therefore the

methods are not directly comparable.

Heymann et al.[2008] use association rules to expand a set of tags of an object. They
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only use rules of size two, i.e., one tag in the antecedent ("if") and one in the consequent

("then") of each rule. The reason is that these simple rules are easier to compute than more

complex ones, that is, rules that have more than one tag in theantecedent of consequent.

They assessed the effectiveness of their tag expansion method by measuring precision and

recall of a tag-based object search engine. They only used single tag queries, that is, they did

not need to combine the expansion list of different input tags. The experiments have shown

that the expanded set of tags can increase recall by 50% whilekeeping the same precision.

Our work differs from [Heymann et al., 2008] in that we are able to extract rules of larger

size to improve efficacy. Furthermore, we correct the final scores of candidate tags using

calibration.

Krestel et al.[2009] use Latent Dirichlet Allocation (LDA) to expand the set of tags

of objects annotated by only a few users (the cold start problem). They use LDA to uncover

the latent topics associated with each object in a dataset obtained from Delicious. Since each

object may be annotated by several users from different backgrounds, and each user may re-

gard the object as concurrently belonging to many topics, the discovered topics represent the

different semantic views of the object. After a comparison with [Heymann et al., 2008] they

concluded that their method is more accurate and yields morespecific recommendations, a

characteristic that may be useful in some applications. Even though this method also uses

tag co-occurrence, it focus on a different problem than ours.

Wu et al.[2009] model tag recommendation in Flickr as a learn-to-rank problem using

RankBoost. Their problem is to recommend tags given a set of previously assigned tags and

the content of the images. They use as tag similarity measures the conditional probability,

the Jaccard coefficient and a tag similarity measure that explores image feature similarity

in a Visual Language Model (VLM). These similarity measuresare given as features to the

learn to rank algorithm. They conclude that content features can help to ease the ambiguity,

polysemy and synonymy problems in tag recommendation. The main difference between

[Wu et al., 2009] and our method is that they use content features from pictures, combining

them with tag co-occurrence information.

Tag co-occurrence has also been used in contexts different from tag expansion. For ex-

ample, the tag recommendation algorithm described in [Xu et al., 2006] uses co-occurrence

information to select a small set of informative tags from the tags collectively used to de-

scribe an object. They give higher values to tags that have been used together by the same

user (complementary tags) and lower value to different tagsthat have been used by different

users to describe the same object (tags that describe the same concept).

Another example is the identification of ambiguous tags using co-occurrence distribu-

tions. The method in [Weinberger et al., 2008] suggests tags that help to disambiguate the

set of tags previously assigned to an object. The key observation is that very different distri-
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butions of co-occurring tags arise after adding each ambiguous tag. A third example is tag

ranking [Liu et al., 2009], in which the authors used a random walk process based on tagco-

occurrence information to generate a ranking that is shown to improve image search, tag rec-

ommendation and group recommendation. Finally, tag translation using tag co-occurrence

is described in [Siersdorfer et al., 2009]. The authors created a tag co-occurrence graph and

used network similarity measures to find candidates for translation.

Classification algorithms have been used in tag recommendation in the past.

Heymann et al.[2008] use an SVM classifier to predict whether a tagt is associated with

an objecto based on the textual content ofo. Their approach does not scale to many thou-

sands of tags since they need to build a binary classifier for each tag. In their experiments,

they use only the top 100 tags of their Delicious collection.A second approach is used by

Song et al.[2008b]. They group objects into clusters using a graph partitioning algorithm,

and they train a Naive Bayes classifier using the generated clusters as classes. When a new

object arrives, their method classifies the object into one of the clusters and use the tags of

the cluster to generate a ranking of candidate tags. A third way is to consider each tag as

a class and model tag recommendation as a multi-label classification problem. In this case,

tags are used as both features and labels, and the classification algorithm must be able to

deal with a very large number of classes. This approach is discussed in [Garg and Weber,

2008] and [Song et al., 2008a], and used in this work. WhileGarg and Weber[2008] use a

Naive Bayes classifier andSong et al.[2008a] propose a multi-label sparse Gaussian process

classification to model tag recommendation, our work is based on associative classification

(see Section2.3), which can be applied to problems with thousands of classes.

In conclusion, tag co-occurrence is a very recent and activetopic of research in Infor-

mation Retrieval. While many previous publications have focused in tag co-occurrence as a

means to solving different problems (such as tag recommendation and the cold start prob-

lem), none of them has given focus to an on-demand approach. This dissertation will cover

this aspect.

1.4 Organization of the Dissertation

The rest of the dissertation is organized as follows. In Chapter 2 we cover some basic con-

cepts. They will improve the readers’ understanding of the following chapters. In Chapter

3 we provide an in-depth description of our proposed method,whereas in Chapter 4 we de-

scribe our collections and discuss our experiments and results. Finally, in Chapter 5 we offer

conclusions and possible directions for future work.





Chapter 2

Basic Concepts

In this chapter we present some basic definitions and concepts that will help the reader to

better understand the context of this thesis. First, we discuss the characteristics of social

tagging systems and how they can be used to improve Information Retrieval tasks. Next,

we overview multi-label classification, which is used in ourmethod. Finally, we introduce

associative classification and show its application in tag recommendation.

2.1 Social Tagging

Social tagging systems allow users to annotate an object, such as a Web page, a video or a

photo, with freely chosen keywords (or tags). These systemsconstitute a new phenomenon,

specially when considered in the context of the Web 2.0, which allowed the creation of a

large amount of user generated data over the past few years. Some researchers have recently

studied the main characteristics of social tagging systemsand the corresponding data their

users generate. In this section we discuss these characteristics and give examples of how

they can be used to improve Information Retrieval (IR) tasks, such as clustering, search and

recommendation.

Social tagging systems are now popular due to the widespreadadoption of Web 2.0 ap-

plications, specially social networks (Facebook5, MySpace6, Orkut7), online media publish-

ing systems (YouTube, Flickr, LastFM) and social bookmarking systems (Delicious, Stum-

bleUpon8, Digg9, Technorati10). In fact, a survey published in 2007 has shown that 28% of

5http://www.facebook.com/
6http://www.myspace.com/
7http://www.orkut.com/
8http://www.stumbleupon.com/
9http://www.digg.com/

10http://www.technorati.com/

9
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Web users had already used tags to categorize content such asa photo, a news story or blog

posts [Rainie, 2007].

In most social tagging systems, the tagging process is related to personal organization.

For example, tags are commonly used in social bookmarking systems, which are systems

that allow users to bookmark objects on the Web, i.e., keep them stored for later access. In

this scenario, users associate a set of tags to each object they bookmark with the purpose of

easily retrieving them in the future. Another example are blogs and other sites in which users

generate their own content. Users in this case are publishers and associate tags to their own

content in order to make it easier to be retrieved by other users or by themselves.

In such a scenario, users associate keywords that are related to their personal sense of

organization, i.e., they do not need to make sense to other users in general. For example,

users may associate to a blog post the tags “philosophy” and “psychology”, but they also

may use the tags “to read” or “i37-2010”. In other words, users organize the set of objects

they have already tagged in personal classification systems, which are suited specifically for

their own context. They adapt their own classification of objects according to their language,

region, interest area, intention and personal conventions.

This personalized use of tags is possible because of the lackof a controlled vocabulary

to describe the users’ objects. This form of classification contrasts to traditional classification

systems, such as the Dewey Decimal Classification (DDC). TheDDC attempts to classify all

the human knowledge into a pre-defined hierarchy of classes (a taxonomy). This hierarchy

spans from a set of ten main classes, such as “Religion” and “Science” (see Table2.1), going

down three levels. Other well-known examples of traditional taxonomies are the Linnean

classification system, which is used to categorize all living organisms, and the Medical Sub-

ject Headings (MeSH), which is used to index journal articles and books in the medical area.

The classification systems based on tags has the advantage ofhaving a much lower barrier

to entry, which reduces the effort of classification and permits objects to be classified by

ordinary Web users.

Despite the fact that social tagging systems serve mainly tothe purpose of personal

organization, the collective use of tags causes the emergence of a more general classifica-

tion system. The reason is that users naturally converge in the way they describe objects,

regardless of their personal aspects. For example, a popular picture that depicts a cat will

probably have the keyword “cat” as one of the most frequentlyassigned tags. This general

classification system is usually referred to as afolksonomy[Wal, 2007].

The three main aspects that differentiates folksonomies from traditional taxonomies

are (1) the lack of an hierarchical organization, (2) its unconstrained nature, i.e., a user

can assign any keyword to any object, and (3) its bottom-up generation process. These

characteristics make folksonomies a constantly evolving classification system, since new
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Table 2.1.The Dewey Decimal Classification (DDC) main classes.

000 - Computer science, information and general works
100 - Philosophy and psychology
200 - Religion
300 - Social sciences
400 - Language
500 - Science
600 - Technology and applied science
700 - Arts and recreation
800 - Literature
900 - History, geography, and biography

concepts are naturally assimilated. Furthermore, folksonomies are cheaper to construct and

maintain than a traditional taxonomy, since no specializedprofessional is needed. For these

reasons, there have been an increasing interest in using this information to aid IR tasks.

However, the use of folksonomies in Information Retrieval has also caused the emer-

gence of new interesting challenges to IR methods. First, many of the tags assigned to objects

are noisy, since they may only make sense to the user who created them and do not serve

to the community as a whole. IR methods should take advantageof only informative tags,

while avoiding the destructive effect of noisy tags. objects with a small number of tags are

specially prone to the negative effects of noise, since theydo not contain enough information

to differentiate useful tags from damaging ones. This effect was observed in our experiments

(Chapter4).

Second, these systems have a huge vocabulary of different tags, since there is a large

quantity of possible sets of keywords that may describe an object. This is a challenge to

current machine learning techniques. Many classification algorithms, for example, cannot

deal efficiently with problems of thousands of classes. Moreover, issues such as synonymy

and polysemy (i.e., different keywords with the same meaning and same keywords with

a different meaning) makes the problem even more difficult from the point of view of IR

algorithms. In this work we propose a multi-label classification algorithm that can extract

more elaborate patterns with efficiency, effectively reducing the aforementioned problems.

Third, tags can be applied to objects with very different purposes. For example, users

may describe a picture of a cat objectively as “cat”, or more subjectively as “cute”. They

can also describe the picture with more specific or general keywords, such as “Siamese cat”

or “animal”. Furthermore, they can describe the process of producing the photograph, us-

ing a keyword such as “close-up”. These are only some examples in an infinity of other

possibilities. Recent research has characterized these application scenarios and proposed

methods that better organize folksonomies. For instance,Plangprasopchok and Lerman



12 CHAPTER 2. BASIC CONCEPTS

[2009] propose a method that generates taxonomies based on tag usage data. Another

example of ontology generation from community-based semantics is [Mika, 2007]. In

[Heymann and Garcia-Molina, 2006] the authors present a simple algorithm for taxonomy

generation from tag data. Semantic relatedness between tags is studied in [Cattuto et al.,

2008], which also characterizes the nature of the relationship between tags.Zhang et al.

[2006] also study how to statistically infer global semantic information from folksonomies.

An IR task that may benefit from tag data is document clustering. For example,

[Lu et al., 2009] proposes a clustering method that is based on a tripartite graph model. This

kind of graph modelling is common for methods that use tag information, and essentially

models the data as a graph with three different types of nodes: users, objects and tags. Their

method simultaneously cluster objects, users and tags by using a modified K-Means method,

which calculates the centroid in each step using information from the neighborhood of each

node. In [Ramage et al., 2009] another document clustering method based on K-Means is

proposed. The authors use an extended vector representation of each document, contain-

ing not only the terms in its content but also the tags associated to it. Li et al. [2008] use

folksonomies to find communities of users interested in similar topics.

Search is another application that uses tags in IR.Bischoff et al.[2008] study the use-

fulness of tags in search by comparing tags and the terms usedin search queries for the same

documents. They concluded that most tags can be used for search, since the tag application

usage pattern follows the searching behavior.Carman et al.[2009] extend this analysis by

observing that the distribution of tags and queries are verysimilar, but not identical. Further-

more, queries are usually more similar to the content of Web pages than tags, but queries and

tags are more similar to one another than to content. This is aclear indication that tags may

be used to improve the effectiveness of search engines.Schenkel et al.[2008] propose a new

document ranking method that exploits information from thetripartite graph to significantly

improve the search engine effectiveness. The method expands the query with a set of similar

tags before performing the search in the document index.

Another possible application for tags in IR is in object recommendation.Konstas et al.

[2009] use the tripartite graph of users, objects and tags to design a new collaborative filtering

algorithm that recommends objects to users. Their method uses a Random Walk approach

to infer relationships between objects. In [Sen et al., 2009] another approach for object rec-

ommendation using tag data is presented. The authors use thesimilarity between users and

tags to predict the similarity between users and objects. Finally, Shepitsen et al.[2008] pro-

pose another object recommendation algorithm that uses clusters of tags as intermediaries

between users and objects.
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2.2 Multi-label Classification

As observed in Section2.1, the collective use of tags causes the emergence of a global

classification system, in which each tag associated with an object is considered as a class of

that object. From this point of view, the problem of predicting which tags will be applied to

an object (tag recommendation) is similar to the problem of predicting which classes will be

assigned to that object (multi-label classification). In this section we introduce multi-label

classification and discuss the peculiarities of its use in tag recommendation.

Multi-label classification contrasts with the simpler problem of single-label classifi-

cation, in which each object can be associated with only one label from a set of disjoint

labelsL, |L| > 1. In multi-label classification, examples are associated with a set of labels

Y ⊆ L. In this framework, the algorithm associates a set of labelsYi to each test object

Xi . Multi-label classification methods are required in applications such as medical diagno-

sis, protein function classification, music categorization, semantic scene classification, and

document classification [Tsoumakas et al., 2006]. For example, a band can be classified in

many categories simultaneously, such as “alternative”, “rock”, “pop” and “indie”. Similarly,

a photograph can be classified in “sunset” and “sea” at the same time.

A common approach to multi-label classification is to train aseparate binary classi-

fier for each class. Each classifier is used to independently associate a score to each class,

and the top k classes are assigned to the test object. For example, Comité et al.[2003] use

decision trees as individual classifiers. Another approachbased on SVM is presented in

[Elisseeff and Weston, 2005]. These methods are calledproblem transformation methods,

since they transform a multi-label problem into several binary classification problems. More

formally, in these approaches the original datasetD is transformed into|L| datasetsDl that

contain all the examples in the original dataset, each one labelled asl or ¬l. A single-label

classifier is then trained in eachDl [Tsoumakas et al., 2006].

One of the drawbacks of the binary approach is that they do notexploit correlation

among labels, that is, they consider that each label is independent of each other. This is an

oversimplifying strategy in some applications. If there isambiguity in the use of a label, the

correlation among classes can help to narrow the meaning of the label. For instance, the label

“rock” may refer to a music genre or to a geological formation. If it co-occurs with the label

“music”, than we can discard the geology meaning from our candidate labels. A multi-label

classifier that do not use correlation would classify the object both as a geological formation

and music genre, disregarding any attempt of disambiguation.

Another benefit of considering correlation among labels is that the method can infer

new labels that were not explicitly given in the test instance. In the previous example, the

label “rock” may be strongly correlated with the label “rockand roll”. Therefore, training
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objects that contain the label “rock and roll” can also be used to predict new labels to objects

labeled only with “rock”.

In this dissertation, for example, we show that exploring the correlation among tags

can significantly improve the quality of the prediction, specially if objects have a relatively

large number of tags (see Chapter4). The reason is that tags are noisy labels, since they can

be freely assigned by users. Consequently, correlation in tag recommendation is paramount.

Another major drawback of the binary classifier approach is that it cannot deal with

problems of many thousands of labels, since methods must calculate a score for each label

during run-time. It means that we need to evaluate each binary classifier for each tag in the

vocabulary in order to predict a set of recommended tags. If the vocabulary of tags is big,

the binary classifier approach is not feasible. In our experiments, the dataset from Delicious

contains about 800,000 different tags. Therefore, we need amulti-label classifier that can

deal with a large vocabulary of tags.

A third drawback of the binary classifier approach is that it can not deal naturally with

a dynamic set of labels. If a new label appears, a separated binary classifier must be trained

for that specific label. There must be enough data to perform this training, otherwise the new

binary classifier would introduce noise in the method output. Therefore, there must be a way

to decide what labels are worth a classifier, and when to trainit. In applications in which

new labels are constantly being created, we need a solution that can incorporate these new

labels transparently. This is another reason why the binaryclassifier approach is not suited

to tag recommendation.

2.3 Associative Classification

In our dissertation scenario we need a multi-label classification algorithm that can scale,

that is able to exploit label correlations, and that can dealwith a dynamic set of labels.

The solution we exploited was to use an associative classifier [Liu et al., 1998]. Associative

classification methods first extract association rules fromthe training data, and then build

a classifier using these rules. These algorithms extract rules of the formX −→ y, in which

the antecedent is a set of features and the consequent is a class. The associative classifier

uses association rule mining algorithms, such as Apriori [Agrawal and Srikant, 1994] and

FPGrowth [Han et al., 2000], to find the appropriate rules in the training data. A minimum

support is used to limit the set of extracted rules, that is, the algorithms only extract rules that

occurred with a frequency higher thansupmin. Furthermore, a minimum confidence value
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θmin is also used to filter the rule set. For a ruleX −→ y, θ is given by

θ =
sup(X ∪ y)

sup(X )

The confidence of a ruleX −→ y can be though as the conditional probability that the classy

will occur given thatX has occurred.

During the test phase, the algorithm checks if each rule matches the test object. In

a single-label variation of the algorithm, one class must bechosen using the set of match-

ing rulesM. There are different approaches to make this choice. For example, a greedy

approach would be to choose only the top ranked rule according to some criterion, such as

information gain. Another strategy is to perform a poll, in which each rule is viewed as a

weighted vote. For instance, the score for classyi in a set of rulesM is given by:

s(yi) =
∑

X−→yi∈M

wi

The class with the highest score is the output. In this case, the algorithm is able to deal with

conflicting rules [Veloso et al., 2007].

A variation of the algorithm is to consider not only the topmost class in the ranking of

classes, but the top-k classes. In this case, we have a multi-label classification method. This

is the approach adopted in this dissertation. However, we had to perform some modifications

in the algorithm to adapt it to our needs. For example, in tag recommendation the domains

of X andc are the same. Therefore, there is a set of trivial rules that must be ignored in the

extraction phase. We further discuss our algorithm in Chapter3.

Associative classification has many advantages when used intag recommendation. As

stated earlier in Section2.2, we need a method that exploits correlation among tags, thatis,

that can identify the correct meaning of ambiguous tags and that can identify different tags

with the same meaning. In tag recommendation these two problems are common. Associa-

tive classification naturally deal with correlation by extracting rules that have more than one

label as an antecedent, i.e.,|X | > 1.

Furthermore, associative classification take advantage ofa well-studied research field,

which is association rule mining. Robust and efficient algorithms, such as Apriori and FP-

Growth [Han et al., 2000], can be directly exploited in associative classification.These al-

gorithms are able to deal with problems with many thousands of labels. They are specially

suited to tag recommendation problems, that have a large vocabulary of tags.

A third advantage of associative classification in tag recommendation is that it can deal

with a dynamic set of tags more easily than binary classifiers. If a new tag appears in the
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system, it is naturally incorporated into the method in the form of association rules. If the

new tag is not frequent enough, an association rule that contains it will have a low weight,

and its influence on the classifier would be small. These characteristics make associative

classifier a good option to be used in tag recommendation.

2.4 Summary

In this chapter we presented some basic definitions and concepts that allow to reader to better

understand the following chapters. First, we introduce social tagging and tag recommenda-

tion. Next, we discuss multi-label classification and associative classification, describing

their relation to tag recommendation. In Chapters3 and4 we present our approach to tag

recommendation and some experiments we performed.



Chapter 3

Proposed Method

In this chapter we present a new demand driven tag recommendation method, which we refer

to as Lazy Associative Tag REcommender (LATRE). We first formally model the problem

using associative classification. New, we present the lazy aspect of the solution, i.e. the

filtering of the training data according to an input object with the objective of increasing

the efficiency of the rule extraction process. Later, we describe how we attribute score to

candidate tags, and then we present our calibration approach, which reduces distortions in

candidate tags’ scores.

3.1 Multi-label Classification Model

We have essentially modeled the tag recommendation task as amulti-label classification

problem. In this case, we have as input thetraining data(referred to asD), which consists

of objects of the formd =<Id,Yd>, where bothId andYd are sets of tags, and initially,Id

contains all tags that are associated with objectd, whileYd is empty. Thetest set(referred

to asT ) consists of objects of the formt =<It,Yt>, where bothIt andYt are sets of tags

associated with objectt. However, while tags inIt are known in advance, tags inYt are

unknown, and functions learned fromD are used to predict (or recommend) tags that are

likely to be inYt based on tags inIt. We developed the LATRE method within this model.

Recommendation functions produced by LATRE exploit the co-occurrence of tags inD,

which are represented by association rules [Agrawal et al., 1993], as defined below.

Definition 3.1 An association rule is an implicationX
θ
−→ y, where the antecedentX is

a set of tags, and the consequenty is the predicted tag. The domain forX is denoted as

I={I1 ∪ I2 ∪ . . . ∪ Im}
∗ (i.e.,X ⊆ I), wherem= |D| + |T | and the operatorA∗ denotes

the power set ofA. The domain fory is Y={Y1 ∪ Y2 ∪ . . . ∪ Ym} (i.e.,y ∈ Y). The size of

17
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ruleX −→ y is given by the number of tags in the antecedent, that is|X |. The strength of the

association betweenX andy is given byθ, which is simply the conditional probability ofy

being inYo given thatX ⊆ Io.

We denote asR a rule-set composed of rulesX
θ
−→ y. Next we present the major steps

of LATRE: rule extraction, tag ranking, and calibration.

3.2 Demand-Driven Rule Extraction

The search space for rules is huge. Existing co-occurrence based recommendation methods,

such as the one proposed in [Sigurbjörnsson and van Zwol, 2008], impose computational

cost restrictions during rule extraction. A typical strategy to restrict the search space for rules

is to prune rules that are not sufficiently frequent (i.e., minimum support). This strategy,

however, leads to serious problems because the vast majority of the tags are usually not

frequent enough. An alternate strategy is to extract only rulesX −→ y such that|X | ≤ αmax,

whereαmax is a pre-specified threshold which limits the maximum size ofthe extracted rules.

However, in actual application scenarios, methods such asSigurbjörnsson and van Zwol’s

are only able to efficiently explore the search space for rules if αmax=1. When the value of

αmax is increased, the number of rules extracted fromD increases at a much faster pace (i.e.,

there is a combinatorial explosion).

A possible drawback of this approach (i.e.,αmax=1) is that more complex rules (i.e.,

rules with |X |>1) will be not included inR. An assumption is that these rules may pro-

vide important information for the sake of recommendation.However, in order to test this

assumption we need an efficient method that can work using arbitrary values ofαmax. One

possible solution is to extract rules on a demand-driven basis, but before discussing this

solution we need to present the definition of useful association rules.

Definition 3.2 A rule{X −→ y} ∈ R is said to be useful for objectt =<It,Yt> if X ⊆ It.

That is, rule{X −→ y} ∈ R can only be used to predict tags for objectt ∈ T if all tags inX

are included inIt.

The idea behind demand-driven rule extraction is to extractonly those rules that are

useful for objects inT . In this case, rule extraction is delayed until an objectt =<It,Yt> is

informed. Then, tags inIt are used as a filter which configuresD in a way that only rules that

are useful for objectt can be extracted. This filtering process produces a projected training

data,Dt, which is composed of objects of the formdt =< It
d,Y

t
d >, whereIt

d={Id∩It} and

Y t
d={Id − It

d}.
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We now illustrate the filtering process. In Table3.1 there are 5 objects{<Id1 ,Yd1>;

<Id2 ,Yd2>; <Id3 ,Yd3>; <Id4 ,Yd4>; <Id5 ,Yd5>} in D, and one object<It1 ,Yt1> in T .

Table3.2 showsD after being projected according toIt1 . In this case,It1
d1

={It1 ∩

Id1}={unicef}, andY t1
d1

={Id1 − It1
d1
}={children, un, united, nations}. The same procedure

is repeated for the remaining objects inD, so thatDt1 is finally obtained. For an arbitrary

objectt ∈ T , we denote asRt the rule-set extracted fromDt.

Lemma3.1states that all rules extracted from the filtered training set are useful for the

input object (according to Definition3.2). In other words, after the filtering we only keep the

objects that help us in extracting useful patterns.

Table 3.1.Training data and test set.

I Y
d1 unicef children un united nations ∅
d2 un climatechange summit environment ∅

D d3 climatechange islands environment ∅
d4 children games education math ∅
d5 education children unicef job ∅

T t1 unicef education haiti ?

Table 3.2.Projected training data for objectt1.

It Y t

dt11 unicef children un united nations
Dt1 dt14 education children games math

dt15 unicef education children job

Lemma 3.1 All rules inRt are useful for objectt =<It,Yt>.

Proof Let X −→ y be an arbitrary rule inRt. In this case,X ⊆ It. Thus, according to

Definition3.2, this rule must be useful for objectt.

For instance, any rule extracted fromDt1 (i.e., Table3.2) is useful for objectt1. Exam-

ples of rules extracted fromDt1 include:

• unicef
θ=1.00
−−−−→ children

• {unicef∧education}
θ=1.00
−−−−→ children

• education
θ=0.50
−−−−→ math

Since{unicef∧education} ⊆ It1 , all these rules are useful for objectt1. An example

of rule that is useless for objectt1 is “climatechange
θ=1.00
−−−−→ environment”, and it is easy to
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see that this rule cannot be extracted fromDt1 , since tag “climatechange” is not present in

Dt1 .

The next theorem states that LATRE efficiently extracts rules fromD. The key intuition

is that LATRE works only on tags that are known to be associated to each other, drastically

narrowing down the search space for rules.

Theorem 3.1 The complexity of LATRE increases polynomially with the number of tags in

the vocabulary.

Proof Let n be the number of tags in the vocabulary. Obviously, the number of possible

association rules that can be extracted fromD is 2n. Also, let t =<It,Yt> be an arbitrary

object inT . SinceIt contains at mostk tags (withk≪n), any rule useful for objectt can

have at mostk tags in its antecedent. Therefore, the number of possible rules that are useful

for objectt is (n-k)× (k +
(

k

2

)

+ . . .+
(

k

k

)

) = O(nk) (sincek≪n), and thus, the number of

useful rules increases polynomially inn. Since, according to Lemma 1, LATRE extracts only

useful rules for objects inT , then the complexity of LATRE also increases polynomially in

n.

An important practical aspect of LATRE is that the projection of the dataset (as shown

in the examples in Tables3.1 and3.2) greatly reduces the size of bothn andk, since we

only consider candidate tags that co-occur at least once with any tag in the test object (n is

reduced), while the size of the test object is small in practice (k is reduced). For instance, in

Tables3.1 and3.2 we havek1 = 1, k2 = 0, k3 = 0, k4 = 1 andk5 = 2 for the projected

dataset. Therefore, the averagek per object is(1 + 0 + 0 + 1 + 2)/5 = 4/5 = 0.8. This

number is much smaller than the upper bound in the number of tags in an object, which is5

in the example.

3.3 Tag Ranking

In order to select candidate tags that are more likely to be associated with objectt ∈ T , it is

necessary to sort tags by combining rules inRt. In this case, LATRE interpretsRt as a poll,

in which each ruleX
θ
−→ y ∈ Rt is a vote given by tags inX for candidate tagy. Votes have

different weights, depending on the strength of the association they represent (i.e.,θ). The

weighted votes for each tagy are summed, giving the score for tagy with regard to objectt,

as shown in Equation3.1 (whereyi is the i-th candidate tag, andθ(X −→ yi) is the valueθ

assumes for ruleX −→ yi):

s(t, yi) =
∑

θ(X −→ yi), whereX ⊆ It (3.1)
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Thus, for an objectt, the score associated with tagyi is obtained by summing the

θ values of the rules predictingyi in Rt. The likelihood oft being associated with tag

yi is obtained by normalizing the scores, as expressed by the function p̂(yi|t), shown in

Equation3.2:

p̂(yi|t) =
s(t, yi)

n
∑

j=0

s(t, yj)

(3.2)

Candidate tags for objectt are sorted according to Equation3.2, and tags appearing

first in the ranking are finally recommended.

3.4 Calibration

According to Equation3.1, the score associated with a tag is impacted by two characteristics:

(1) the number of votes it receives and (2) the strength of these votes. While both charac-

teristics are intuitively important to estimate the likelihood of association between tags and

objects, it may be difficult to decide which one is more important. In some cases, the scores

associated with different tags cannot be directly compared, because they operate in different

scales (i.e., the score associated with popular tags are likely to be higher than the scores asso-

ciated with specific tags, simply because they receive a large number of votes). This means

that the same value of score can be considered either high or low, depending on the tag.

An approach for this problem would be to inspect the expectedlikelihood p̂(y|t), in or-

der to make scores associated with different tags directly comparable. The obvious problem

with this approach is that the correct value forp̂(y|t) is not known in advance, sincet ∈ T ,

and thus we cannot verify ify ∈ Yt. An alternative is to use a validation set (denoted asV),

which is composed of objects of the formv =<Iv,Yv>, where bothIv andYv are sets of

tags associated with objectv, and{Iv ∩Yv}=∅. That is, the validation set essentially mimics

the test set, in the sense thatYv is not used for the sake of producing rules, but only to find

possible distortions in the value ofp̂(y|v).

The key intuition of our approach is to contrast values ofp̂(y|v) for whichy /∈ Yv, and

values ofp̂(y|v) for whichy ∈ Yv. In an ideal case, for a given tagy, there is a valuefy such

that:

• if p̂(y|v) ≤ fy, theny /∈ Yv

• if p̂(y|v) > fy, theny ∈ Yv
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Oncefy is calculated, it can be used to determine whether a certain value of p̂(y|v)

is low or high, so that the score associated with different tags can be directly compared.

However, more difficult cases exist, for which it is not possible to obtain a perfect separation

in the space of values for̂p(y|v). Thus, we propose a more general approach to calculate

fy. The basic idea is that any value forfy induces two partitions over the space of values

for p̂(y|v) (i.e., one partition with values that are lower thanfy, and another partition with

values that are higher thanfy). Our approach is to setfy with the value which minimizes the

average entropy of these two partitions. In the following wepresent the basic definitions in

order to detail this approach.

Definition 3.3 Let y be an arbitrary tag, and letv =<Iv,Yv> be an arbitrary object inV.

In this case, leto(y, v) be a binary function such that:

o(y, v) =

{

1 if y ∈ Yv

0 otherwise

Definition 3.4 ConsiderO(y) a list of pairs<o(y, v), p̂(y|v)>, sorted in increasing order

of p̂(y|v). That is,O(y)={. . ., <o(y, vi), p̂(y|vi)>, <o(y, vj), p̂(y|vj)>, . . .}, such that

p̂(y|vi) ≤ p̂(y|vj). Also, considerc a candidate value forfy. In this case,Oc(y,≤) is a

sub-list ofO(y), that is,Oc(y,≤)={. . ., <o(y, v), p̂(y|v)>, . . .}, such that for all pairs in

Oc(y,≤), p̂(y|v) ≤ c. Similarly,Oc(y, >)={. . ., <o(y, v), p̂(y|v)>, . . .}, such that for all

pairs inOc(y, >), p̂(y|v) > c. In other words,Oc(y,≤) andOc(y, >) are two partitions of

O(y) induced byc.

Definition 3.5 Consider N0(O(y)) the number of elements inO(y) for which o(y, v)=0.

Similarly, consider N1(O(y)) the number of elements inO(y) for whicho(y, v)=1.

In our entropy-minimization calibration approach we can calculate the entropy of tag

y in O(y) using Equation3.3.

E(O(y)) = −

(

N0(O(y))

|O(y)|
× log

N0(O(y))

|O(y)|

)

−

(

N1(O(y))

|O(y)|
× log

N1(O(y))

|O(y)|

)

(3.3)

The first step is to calculate the sum of the entropies of tagy in each partition induced

by c, according to Equation3.4.

E(O(y), c) =
|Oc(y,≤)|

|O(y)|
× E(Oc(y,≤)) +

|Oc(y, >)|

|O(y)|
× E(Oc(y, >)) (3.4)
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The second step is to setfy to the value ofc which minimizesE(O(y), c). Now, the

final step is to calibrate eacĥp(y|t) (note thatt ∈ T ) using the correspondingfy (which

was obtained using the validation set). The intuition is that fy separates values ofp̂(y|t) that

should be considered high (i.e.,p̂(y|t) > fy) from those that should be considered low (i.e.,

p̂(y|t) ≤ fy). Thus, a natural way to calibratêp(y|t) is to calculate how many timeŝp(y|t) is

greater thanfy. This can be easily done as shown in Equation3.5. The values of̂c(y|t) are

directly comparable, since the corresponding values ofp̂(y|t) were normalized byfy. Thus,

ĉ(y|t) is used to sort candidate tags that are more likely to be associated with objectt:

ĉ(y|t) =
p̂(y|t)

fy
(3.5)

In some cases, calibration may drastically improves recommendation performance, as

we will show in the next chapter.

3.5 Summary

In this chapter we have presented our Lazy Tag REcommendation (LATRE) method. We

showed how we modelled tag recommendation as an associativeclassification problem.

Next, we discussed its lazy aspect, describing how the filtering of the training data increases

the algorithm efficiency. Later, we showed how we attribute scores to candidate tags, and

how we correct distortions in the scores by using calibration. In the next chapter we will

present our experimental evaluation.





Chapter 4

Experiments

In this chapter we empirically analyze the recommendation performance of LATRE. We em-

ploy as the basic evaluation metrics precision at x (p@x), which measures the proportion of

relevant tags in the x first positions in the tag ranking, and MRR [Garg and Weber, 2008;

Sigurbjörnsson and van Zwol, 2008], which shows the capacity of a method to return rele-

vant tags early in the tag ranking. We first present the baseline and collections employed in

the evaluation, and then we discuss the recommendation performance of LATRE on these

collections.

4.1 Baseline

The baseline method used for comparison is described in [Sigurbjörnsson and van Zwol,

2008]. It is a co-occurrence method which also employs association rules. It gives less

weight to candidate tags that are either too popular or too rare. Furthermore, its algo-

rithm gives more weight to candidate tags that are higher in each candidate tag list with

the goal of smoothening the co-occurrence values decay. Themain difference between

Sigurbjörnsson and van Zwol’s and LATRE is that our method employs a filtering process

to reduce the size of the training data according to an input object. This reduction causes

an increased efficiency and allows LATRE to extract rules that are more elaborate than the

baseline.

The reason the work in [Sigurbjörnsson and van Zwol, 2008] was used as baseline is

that it is the state-of-the-art in tag recommendation usingonly tag co-occurrence and collec-

tive knowledge. Other related methods in Section1.3 were not considered as baselines be-

cause they use additional information, such as the user history [Garg and Weber, 2008], im-

age features [Wu et al., 2009] and the page content [Heymann et al., 2008; Siersdorfer et al.,

2009].

25
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4.2 Collections

Differently from related work that present results restricted to a single collec-

tion [Garg and Weber, 2008; Heymann et al., 2008; Sigurbjörnsson and van Zwol, 2008],

in this dissertation we experiment with several collections, namely, Delicious Web pages,

LastFM artists and YouTube videos. These datasets were chosen because they come from

popular Web 2.0 systems and because they represent different media types (Web pages, audio

and video). This diversity will help to validate our approach in several real scenarios. The

datasets can be obtained by e-mail request to the Laboratoryfor Treatment of Information

(LATIN) at UFMG.

4.2.1 Delicious

Delicious is a popular social bookmarking application thatpermits users to store, share and

discover bookmarks. Users can categorize their bookmarks using tags, which serve as per-

sonal indexes so that a user can retrieve its stored pages. The assignment of tags in Delicious

is collaborative, i.e., the set of tags associated with a page is generated by many users in

collaboration.

For the Delicious crawl we used its “Recent Bookmarks” page,which is a public time-

line that shows a subset of the most recently bookmarked objects. We collected unique

bookmarked page entries and extracted the set of most frequently used bookmarks for a

page (i.e., its “top bookmarks”). Delicious makes available as many as 30 “top bookmarks”.

Therefore, this is the maximum number of tags per object in our crawled dataset.

The crawl was performed in October 2009. Table4.1 presents some statistics for the

Delicious dataset.

Table 4.1. In this table we show some statistics related to the Delicious dataset. The last
three entries refer to the first, second and third quartiles of the distribution of tags per
object.

Description Value
# unique objects 560,033

# unique tags 872,502
mean # tags/object 18.27

minimum # tags/object 1
maximum # tags/object 30

# tags/object: first quartile 8
# tags/object: second quartile 17
# tags/object: third quartile 27
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4.2.2 LastFM

LastFM is a Web 2.0 music website and Internet radio. It allows users to collaboratively

contribute with tags to categorize and describe the characteristics of artists, such as the music

genre. LastFM was crawled using a snowball approach, which collects a set of seed artists

and follows links to related artists. The artists used as seeds are the ones associated with the

system most popular tags.

The crawl was performed in October 2008. Table4.2 presents some statistics for the

LastFM dataset.

Table 4.2.Some statistics related to the LastFM dataset.

Description Value
# unique objects 99,161

# unique tags 109,443
mean # tags/object 26.88

minimum # tags/object 1
maximum # tags/object 210

# tags/object: first quartile 7
# tags/object: second quartile 14
# tags/object: third quartile 31

4.2.3 YouTube

YouTube is the largest video sharing application on the Web.Users that upload videos to

YouTube can provide a set of tags that describe them for indexing purposes. YouTube is

different from Delicious and LastFM in that it is non-collaborative, that is, only the video

uploader can provide tags.

YouTube was crawled using a snowball approach, following links between related

videos. The all-time most popular videos were used as seeds.Our sample was obtained

in July 2008. In Table4.3we show some statistics for the YouTube dataset.

4.3 Pre-Processing Steps and Setup

In order to assess the recommendation performance of the evaluated methods, we equally di-

vided the tags associated with test objectt =<It,Yt>: half of the tags is included inIt, and

the other half is included inYt and used to assess the performance. This division is made by

shuffling the tags and including the first half inIt and the last half inYt. A similar approach

has been adopted in [Garg and Weber, 2008] and [Sigurbjörnsson and van Zwol, 2008]. We
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Table 4.3.Some statistics related to the YouTube dataset.

Description Value
# unique objects 180,778

# unique tags 132,694
mean # tags/object 9.98

minimum # tags/object 1
maximum # tags/object 91

# tags/object: first quartile 6
# tags/object: second quartile 9
# tags/object: third quartile 14

applied Porter’s stemming algorithm [Porter, 1980] to avoid trivial recommendations such

as plurals and small variations of the same input word.

We split each collection into three subsets: the first subsetis composed of objects with

a large number of tags, the second subset is composed of objects with a moderate number of

tags, and the third subset is composed of objects with a smallnumber of tags. The range of

tags per object was selected in a way that the corresponding subsets have approximately the

same number of objects. These subsets are characterized in Table4.4.

Then, we randomly selected 20,000 objects from each of the subsets. We divided each

group of selected objects into 5 partitions of 4,000 objectseach, and we used 5-fold cross

validation to assess recommendation performance. We use the validation set to find the best

parameters for each evaluated method.

Table 4.4. We divided each collection into three subsets according to the number of
tags per object. We show the number of objects in each of thesesubsets and the average
number of tags per object (and its standard deviation) in each subset. Note that we
excluded all objects associated with a single tag, since we need at least one tag inIt and
one tag inYt.

Collection Range # Objects Avg. # Tags

Delicious
2 to 6 tags/object 188,173 3.94± 1.38
7 to 12 tags/object 167,613 9.50± 1.73
13 to 30 tags/object 170,708 15.92± 2.53

LastFM
2 to 6 tags/object 29,622 3.96± 1.39
7 to 16 tags/object 30,215 10.55± 2.77

17 to 152 tags/object 31,492 44.99± 25.30

YouTube
2 to 5 tags/object 56,721 3.63± 1.09
6 to 9 tags/object 53,284 7.39± 1.11

10 to 74 tags/object 59,285 13.60± 5.02
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4.4 Results

All experiments were performed on a Linux PC with an Intel Core 2 Duo 2.20GHz and

4GBytes RAM. In the following sections we discuss the effectiveness and the computational

efficiency of LATRE.

4.4.1 Precision

Tables4.5, 4.6 and4.7 show the results for p@x for each subset of the three collections.

The precision at x was determined by counting how many tags inthe top x recommendations

were correct according to theY t set. We denote the number of correct tags as c. Next, we

computed the proportion of correct tags in the set of x tags, obtaining a value between0 and

1. More formally, we have the following equation (Equation4.1).

p@x=
c
x

(4.1)

If the number of recommended tags was smaller than x, we stillconsidered a fixed x.

For instance, for p@5, if only 3 tags were recommended and only the second was correct,

than our precision would be 1/5 = 0.2, i.e., 5 is fixed.

We varied x from 1 to 5, following the analysis performed in previous

work [Garg and Weber, 2008; Sigurbjörnsson and van Zwol, 2008]. The reason is that we

are interested in the performance of the methods on the top ofthe ranking (i.e., the first 5

recommendations), since in tag recommendation the user is not likely to scan a large number

of tags before choosing which ones are relevant. Furthermore, it is better to recommend good

tags earlier in the ranking (e.g., p@1), so that the user has to scan fewer tags. We executed

three algorithms over the subsets: the baseline, LATRE without calibration (referred to as

LATNC) and LATRE.

Statistical tests have shown that LATRE performs significantly better (p < 0.05) than

the baseline in all scenarios we experimented with. LATRE has shown gains in p@5 from

6.4% in LastFM to 23.9% in Delicious if we consider only the lower ranges; considering

only the middle ranges, LATRE has shown gains in p@5 from 10.7% in Delicious to 28.9%

in YouTube; and considering only the upper ranges, LATRE hasshown gains in p@5 from

17.2% in Delicious to 46.7% in LastFM. It is important to notethat the absolute precision

values shown in this paper are underestimated, since there may be additional tags that are

relevant to the user and that were not used by he/she to describe the object (and thus are not

in Yt), as discussed in [Garg and Weber, 2008].

One interesting conclusion we could draw from the experiments is that calibration has

its best performance in the lower ranges, indicating that the distortions described in Section
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Table 4.5. Delicious: results for p@1, p@3, p@5 and MRR. Statisticallysignificant
differences (p < 0.05) are shown in (1) bold face and (2) marked with an asterisk (*),
representing respectively (1) cases in which LATNC and/or LATRE performs better than
the baseline and (2) cases in which LATNC performs worse thanthe baseline. LATRE
relative gains are shown in the last column.

Baseline LATNC LATRE [% gain]

2-6 tags/object

p@1 .106 .105 .129 21.7
p@3 .063 .059∗ .077 22.2
p@5 .046 .045∗ .057 23.9
MRR .158 .154 .188 19.0

7-12 tags/object

p@1 .307 .328 .330 7.5
p@3 .196 .214 .218 11.2
p@5 .150 .160 .166 10.7
MRR .417 .426 .435 4.3

13-30 tags/object

p@1 .506 .544 .543 7.3
p@3 .362 .414 .413 14.1
p@5 .285 .335 .334 17.2
MRR .627 .659 .659 5.1

Table 4.6.LastFM: results for p@1, p@3, p@5 and MRR.

Baseline LATNC LATRE [% gain]

2-6 tags/object

p@1 .313 .320 .327 4.5
p@3 .174 .180 .187 7.5
p@5 .125 .128 .133 6.4
MRR .403 .409 .418 3.7

7-16 tags/object

p@1 .539 .574 .575 6.7
p@3 .366 .410 .411 12.3
p@5 .279 .314 .316 13.3
MRR .646 .670 .672 4.0

17-152 tags/object

p@1 .400 .564 .564 41.0
p@3 .328 .476 .475 44.8
p@5 .289 .425 .424 46.7
MRR .560 .695 .695 24.1

3 have a more damaging effect in these ranges. It is specially difficult to perform well in

the lower ranges since there is very little information to work with, e.g., when there are two

tags associated with an object, only one tag can be used as input and only one tag can be

considered to be the correct answer. Several applications that use tag co-occurrence could

benefit from calibration in these cases, such as in tag expansion for the cold start problem

[Krestel et al., 2009; Heymann et al., 2008] (see Section1.3).
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Table 4.7.YouTube: results for p@1, p@3, p@5 and MRR.

Baseline LATNC LATRE [% gain]

2-5 tags/object

p@1 .288 .328 .350 21.5
p@3 .153 .171 .184 20.3
p@5 .105 .113 .122 16.2
MRR .356 .385 .411 15.5

6-9 tags/object

p@1 .405 .485 .491 21.2
p@3 .273 .356 .365 33.7
p@5 .204 .254 .263 28.9
MRR .497 .556 .567 14.1

10-74 tags/object

p@1 .534 .626 .627 17.4
p@3 .419 .528 .530 26.5
p@5 .347 .459 .462 33.1
MRR .560 .704 .706 10.7

As the number of tags per object increases, the benefit of using more elaborated

rules becomes clearer. The gains in precision in the middle and upper ranges are mainly

due to LATNC (i.e., LATRE without calibration), and the reason is that there are more

opportunities for producing complex rules in these ranges,i.e., there is more informa-

tion available. Applications that use tag co-occurrence inobjects with a large number of

tags could benefit from these elaborated rules, such as tag expansion for index enrichment

[Sigurbjörnsson and van Zwol, 2008; Heymann et al., 2008], tag ranking [Liu et al., 2009]

or tag translation [Siersdorfer et al., 2009].

It is interesting to notice that in the range 17-152 of LastFM, the baseline has achieved

a recommendation performance which is lower than its performance in the range 7-16

(p@1=0.40 vs. p@1=0.54). The baseline does not perform wellin range 17-152 of LastFM

because this subset has a high number of tags per object (see Table4.4), and the algorithm

tends to recommend tags that are too general, such as “music”and “listen”.

Furthermore, Tables4.5, 4.6and4.7show that the absolute precision values for Deli-

cious are lower than the corresponding values in LastFM and YouTube. The reason is that

Delicious has a much more diverse set of objects, since Web pages can contain or refer to

any kind of data, information or media. As an example, YouTube and LastFM pages can

also be stored as a bookmark in Delicious. In fact, the numberof distinct tags in Delicious

in the five partitions used in our experiment (20,000 objects) is higher than in YouTube and

LastFM. In the lower ranges, Delicious has 13,247 unique tags, while LastFM and YouTube

have 5,164 and 6,860, respectively. The same relative proportions were found in the middle

and higher ranges.
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4.4.2 Mean Reciprocal Rank (MRR)

Tables4.5, 4.6 and4.7 also show the values of MRR for all ranges. Statistical significance

tests were performed (p < 0.05) and results that are statistically different from the baseline

are shown in bold face. MRR shows the capacity of a method to return relevant tags early in

the tag ranking. The reciprocal rank is the multiplicative inverse of the ranking of the first

correct answer of a ranking. The mean reciprocal rank is the average of the reciprocal rank

for all test instances. More formally, we have Equation4.2, in whichN is the number of test

instances andranki is the rank of the first correct answer in the ranking for test instancei:

MRR =
1

|N |

|N |
∑

i=1

1

ranki
(4.2)

We can see that LATRE has results significantly better than the baseline for all ranges

in all datasets. MRR measures if the method returns the first relevant tag early in the tag

ranking. It is different from p@x since it only considers thefirst tag of the ranking, which

means that relevant tags recommended later are not considered. It is also a complementary

metric in the sense that methods that recommend more relevant tags lower in the ranking can

have a lower score than methods that recommend fewer relevant tags early in the ranking.

In other words, while p@x measures if a method recommends more relevant tags, MRR

measures if the method recommends relevant tags earlier in the ranking.

The MRR results show that LATRE also have a better performance in top of the recom-

mendation rankings. In a tag recommendation system the userwould have to scan a smaller

amount of tags before finding a relevant one. Moreover, Tables 4.5, 4.6 and4.7 show that

LATRE’s gain in MRR is always smaller than its gain in precision. The reason is that LA-

TRE is better not only considering the first relevant tag, butalso considering all the relevant

tags.

4.4.3 Computational Efficiency

We evaluated LATRE performance by measuring the average execution time per object. Ta-

ble4.8shows the results for each subset. For subsets with few tags per object, the average and

maximum tagging time are in the order of few milliseconds. Asexpected, the average tagging

time increases with the ratio of tags per object. However, even for objects that are associated

with many tags, the average time spent per object is never greater than 1.8 seconds. This

makes LATRE specially well-suited for real-time tag recommendation [Song et al., 2008b].

The last set of experiments aims at verifying the increase inthe number of extracted

rules as a function ofαmax. According to Theorem 1, the number of rules extracted by
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Table 4.8.Tagging time in seconds. We also show the standard deviationof the average
tagging time.

Collection Subset Avg. Time Max. Time

Delicious
2-6 0.0023± 0.0019 0.016
7-12 0.067± 0.047 0.33
13-30 0.47± 0.24 1.23

LastFM
2-6 0.0062± 0.0055 0.039
7-16 0.20± 0.15 1.18

17-152 1.77± 0.34 2.44

YouTube
2-5 0.0023± 0.0023 0.037
6-9 0.027± 0.026 0.32

10-74 0.31± 0.27 1.56

Table 4.9.Number of extracted rules for each subset of Delicious.

αmax
2-6 tags/object 7-12 tags/object 13-30 tags/object

Baseline LATRE Baseline LATRE Baseline LATRE
1 2.108 1.106 3.108 1.107 3.108 7.107

2 2.1012 2.106 5.1012 2.107 6.1012 7.107

3 3.1016 3.106 8.1016 2.107 1.1017 8.107

Table 4.10.Number of extracted rules for each subset of LastFM.

αmax
2-6 tags/object 7-16 tags/object 17-152 tags/object

Baseline LATRE Baseline LATRE Baseline LATRE
1 2.107 3.106 5.107 2.107 5.107 5.107

2 1.1011 3.106 3.1011 3.107 4.1011 6.107

3 5.1014 3.106 2.1015 4.107 3.1015 6.107

Table 4.11.Number of extracted rules for each subset of YouTube.

αmax
2-5 tags/object 6-9 tags/object 10-74 tags/object

Baseline LATRE Baseline LATRE Baseline LATRE
1 5.107 1.106 6.107 9.106 6.107 4.107

2 3.1011 2.106 4.1011 1.107 4.1011 6.107

3 2.1015 2.106 3.1015 1.107 3.1015 7.107
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LATRE increases polynomially. Tables4.9, 4.10and4.11contrasts the number of rules ex-

tracted by LATRE with the number of rules that would be extracted by the baseline. We show

results for Delicious, LastFM and YouTube. Clearly, the number of rules extracted by the

baseline increases exponentially, while the number of rules extracted by LATRE increases at

a much slower pace, usually remaining in the same order of magnitude.

The number of extracted rules for the baseline increases only with the size of the vo-

cabulary for the range. Since the baseline must pre-computeall associations between tags,

for a vocabulary of sizeV the number of extracted rules isV αmax+1. In the case of LATRE,

the number of extracted rules also depends on the size of the test instance, and is computed

by using a counter inside LATRE program.

Table 4.12. We calculated the average extracted rule size for Delicious, LastFM and
YouTube. The average rule size is the number of tags inYt, which we denote ask.

Collection Range # Avg.k

Delicious
2 to 6 tags/object 1.017
7 to 12 tags/object 1.127
13 to 30 tags/object 1.317

LastFM
2 to 6 tags/object 1.112
7 to 16 tags/object 1.355

17 to 152 tags/object 1.157

YouTube
2 to 5 tags/object 1.049
6 to 9 tags/object 1.118

10 to 74 tags/object 1.352

In Theorem3.1we have proved that the complexity of LATRE increases polynomially

with the number of tags in the vocabulary. If the vocabulary has sizen and the maximum

size of a rule antecedent isk, the complexity of LATRE isO(nk). In Table4.12we show

the average size ofk that we obtained in our experiments. It is interesting to notice that the

averagek is never greater than1.5, meaning that our method’s complexity is almost linear in

the number of possible tags to recommend.

Another interesting observation obtained from the data in Table4.12is that in LastFM

the rule size is smaller for range 17 to 152 tags/object in relation to the previous range. After

analyzing the test and training data, we realized that the objects in this range had a great

amount of noise and many tags in the test objects were not found in the training dataset. For

this reason, LATRE could not extract complex patterns for the specific object, and the rule

size became smaller. However, it is interesting to notice that the precision did not suffer any

negative influence due to this fact.
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4.5 Limitations of LATRE

LATRE does not apply in situations in which the answer time needs to be very low and the

recommendations cannot be cached for a long time, such as in real time systems. Further-

more, LATRE does not apply if the object has no input tags, i.e., an object has just been

created and the user have not associated any tag yet. Based onour experiments, we can see

that LATRE is better suited for tag expansion applications such as index enrichment, since it

works better in a large amount of tags is given as input.

4.6 Summary

In this Chapter we show experimental results that aim to evaluate LATRE in terms of preci-

sion and efficiency. We used three different datasets to perform experiments, namely, Deli-

cious, LastFM and Youtube. We compared our method with a state-of-the-art baseline that

uses only collective knowledge. Our method obtained betterprecision and MRR scores when

compared to the baseline. Furthermore, we have shown that our method is efficient and that

it extracts a smaller number of rules due to its on demand approach. Next, we expose our

conclusions and plans for future work.





Chapter 5

Conclusions and Future Work

In this dissertation we have introduced LATRE, a novel co-occurrence based tag recommen-

dation method. Tag recommendation is a recent problem that has arisen in the context of

social tagging systems, which allow users to associate keywords to objects in Web 2.0 sys-

tems. Tag recommendation incentive users to contribute with a bigger and richer set of tags.

At the same time, it fosters convergence in the set of used tags, effectively improving the

quality of IR tasks.

We presented some background information on social taggingsystems, on multi-label

classification methods and on associative classification systems in Chapter2. We modeled

the tag recommendation problem as a multi-label classification problem, in which each label

is a tag in the system. A set of tags is given as input, and a set of related tags is given as

output.

In Chapter3 we present our method with details. First, we formalize the modeling of

the problem as a multi-label classification problem. Next, we present the lazy (on-demand)

aspect of our method with details. The on-demand approach reduces the search space for new

rules, improving efficiency in rule extraction and allowingthe use of more elaborate rules in

feasible time. LATRE interprets each extracted rule as a vote for a candidate tag. After all

votes are summed, tags are sorted according to their scores.Finally, LATRE calibrates the

scores in order to correct possible distortions in the final ranked list of tags.

We present experimental results and discussions in Chapter4. We used three different

datasets, namely, Delicious Web pages, LastFM artists and YouTube videos. These datasets

were chosen since they are from popular systems and are representative of a diversity of

media types. We compared our method with a state-of-the-artbaseline that also uses rules,

but do not explore a lazy approach.

Our method obtained significant improvements in precision at x and MRR. The reason

is that it is able to extract more elaborate rules in feasibletime (the number of extracted rules

37
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is much smaller). While our proposed calibration mechanismhas its best performance in

subsets with a few number of tags, the use of more elaborate rules improves precision in

subsets with a larger number of tags. LATRE achieved improvements in precision (p@5)

from 10.7% to 23.9% for Delicious, from 6.4% to 46.7% for LastFM, and from 16.2% to

33.1% for YouTube.

Furthermore, we measured the execution time of LATRE, concluding that it has a

feasible execution time and can be used in industrial systems. The average time spent per

object is never great than 1.8 second. In the vast majority ofobjects the execution time

is smaller than 1 second. Moreover, we have shown that the number of extracted rules in

LATRE grows in a much smaller rate when compared to the baseline. The baseline can only

deal efficiently with rules of size 1, while LATRE can exploitrules of larger size.

As future work, we will investigate other textual features of the Web 2.0, and how

these features may improve tag recommendation. Between possible features we can cite the

object description, its title and comments. In specific domains we can exploit even more

information, such as a Web page text and structure. For example, we can use the textual

content of items to infer the similarity between tags.

Another future direction is to explore the personalized data in order to improve rec-

ommendation to specific users. In social bookmaking systemssuch as Delicious we have

access to user information, that is, we know the sequence of objects a user has tagged in the

past. We can consequently explore user information to obtain personalized tag recommen-

dations, that is, recommendations using collective knowledge and the specific user history.

For instance, a user that speaks German will most likely find more relevant tags in German.

An interesting study would be to measure the robustness of the methods by introduc-

ing noise in the folksonomy. In this way we could measure the impact of noise (such as

ambiguous tags) in the effectiveness and performance of themethods. The results would be

interesting to the design of new methods that are robust to very noisy environments.
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