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Resumo

Rotulagem colaborativec¢llaborative tagging permite que usuarios assinalem palavras-
chave (ouag9 que descrevam o conteudo de objetos, o que facilita a ng&egamelhora
algoritmos de busca sem o uso de categorias pré-definidasisEBmas déaggingde larga
escala, sistemas de recomendacadimgspodem ajudar usuarios a assinalar rétulos a objetos
e ajudar a consolidar o vocabulario entre diferentes ussiaklma abordagem promissora
para recomendacao dagsé explorar a co-ocorréncia entre elas. Nesse caso, 0 enorme
tamanho do vocabulario dagsé um desafio, porque (1) a complexidade computacional
pode crescer exponencialmente com o nimeitagee (2) o peso atribuido a catkg pode

ficar distorcido ja que diferentéagsoperam em diferentes escalas e 0s seus respectivos pe-
sos podem néo ser diretamente comparaveis. Neste tralispwopomos um método novo

de recomendacéo dagsque € baseado em demanda e que faz recomendacgdes a partir de
um conjunto inicial deagspreviamente associado a um objeto. Ele reduz o espago de pos-
siveis solucgdes, e, portanto, sua complexidade aumenteopoalmente com o tamanho do
vocabulario deags Além disso, o peso de cadizg é calibrado usando uma abordagem de
minimizacgdo de entropia que corrige possiveis distor¢Gas\e recomendacdes mais pre-
cisas. N6s conduzimos uma avaliacdo sistematica de mépodpestos usando trés tipos

de midia: audio, paginas Web e video. Os resultados expaiamanostram que o método
proposto é rapido e melhora a qualidade da recomendac¢adeendés cenarios experimen-
tais. Por exemplo, no caso de um popular site de musicas@lé prelhoras em precisao
(p@5) de6,4% a46,7% (dependendo do numero thgsdadas como entrada), melhorando
meétodos de recomendacaotdgsbaseados em co-ocorréncia recentemente propostos.

Palavras-chave:Recomendacéo, Classificacdo Multilabel, Web 2.0.
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Abstract

Collaborative tagging allows users to assign arbitrarynays (or tags) describing the con-
tent of objects, which facilitates navigation and improsearching without dependence on
pre-configured categories. In large-scale tag-basedrmegstiag recommendation services
can assist a user in the assignment of tags to objects andcbeplidate the vocabulary
of tags across users. A promising approach for tag recomatiemdis to exploit the co-
occurrence of tags. However, these methods are challenggtthuge size of the tag vo-
cabulary, either because (1) the computational complexdy increase exponentially with
the number of tags or (2) the score associated with each tgdpat@me distorted since dif-
ferent tags may operate in different scales and the scogesoadirectly comparable. In this
work we propose a novel method that recommends tags on a dedniaen basis according
to an initial set of tags applied to an object. It reduces gaes of possible solutions, so that
its complexity increases polynomially with the size of tag vocabulary. Further, the score
of each tag is calibrated using an entropy minimization apgin which corrects possible dis-
tortions and provides more precise recommendations. Wéumbed a systematic evaluation
of the proposed method using three types of media: audio,pAlgbs and video. The exper-
imental results show that the proposed method is fast anstboecommendation quality on
different experimental scenarios. For instance, in the casa popular music radio Web site
it provides improvements in precision (p@5) ranging fr@a%o to 46.7% (depending on the
number of tags given as input), outperforming a recentlyppsed co-occurrence based tag
recommendation method.

Palavras-chave:Recommendation, Multi-label Classification, Web 2.0.
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Chapter 1

Introduction

Social interaction has become one of the central aspectm@nohich World Wide Web
applications are built in the Web 2.0 era. End-users camgilivith content created by them-
selves, using social applications to collaborate andactexith each other by means of blog
posts, comments, forum messages, videos, audio or otheamiétey work collectively to
generate, augment, correct or update the content of dapjatts that will be consumed by
their peers.

This new paradigm has brought challenges for Informatiotri®eal (IR) methods.
The lack of a centralized publisher allowed the productibastonishing amounts of user-
generated data. At the same time, low-quality content caapanost of this data, since
there are no quality standards in most Web 2.0 applicatidmthermore, a large fraction of
the generated content is in the form of multimedia, such d#&aimage or video. Current
industrial IR technology cannot efficiently deal with maigdia objects directly, and they
usually resort to textual meta-data that surrounds ea@tb{@.g., description or comments).
However, this textual data is often non-existent or simptymoisy to be used effectively in
IR.

In this context, social tagging has emerged as a means tw aléers to describe
their objects by using a set of descriptive keywords (tag$)ese keywords may be used
to help users in organizing their objects, serving as a patsed, non-hierarchical cate-
gorization system. IR methods can take advantage of tagapoove the retrieval of ob-
jects through browsing or searching. In fact, recent stitl@ve demonstrated that tags are
among the best textual features to be exploited by IR sesygech as automatic classifica-
tion [Figueiredo et a).2009.

In order to incentive the use of tags, social tagging apptioa have developed tag
recommendation services that aim to aid the user in the adafining keywords to objects.
There are some main purposes in the implementation of sucitss: (1) they make the as-
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signment of keywords an easier task, motivating users ttriboite with a larger set of tags;
(2) they provoke a convergence in the use of keywords amdifgretit users $en et al.
2004, reducing noise and improving the effectiveness of IR peses; (3) they remind users
of more rich or specific tags, which are descriptive despitebeing among the most fre-
guently used.

This dissertation presents a new algorithm that recommeagis by exploiting tag
co-occurrence patterns. Our algorithm extracts co-oeocgs patterns based on the tags
associated with previous objects in the collection, thatigs that were associated to objects
by system users in the past. Recommendations are perforynesirg these patterns. An
advantage of relying only on tag co-occurrence is that thgerahm does not depend on the
content of the objects, i.e., the method is indifferent ® dbject media type. This feature
makes our method suitable to social tagging systems suchsaEM', Flickr? andYoutubé,
which contains audio, images and videos, respectively.

Typically, an object has several different tags associati¢ld it, and tag recommen-
dation systems are expected to provide users with a smaif sags (3-5) to choose from.
There is an unlimited number of ways to describe an objechiopsing arbitrary keywords.
Our strategy to this problem is to treat each possible tagadir existent in the system as a
class for the object, modeling the problem of recommendigg tis anulti-label classifica-
tion problem.

This approach is challenging since the vocabulary of tagystems such aéouTube
Delicious' andLastFMis on the thousands. Current automatic classifiers canrabiv
with problems with many thousands of classes. Multi-lalesification systems also have
to consider possible combinations among these tags, whadtesrthis problem even harder
in the tag recommendation context.

1.1 Objectives

In this dissertation we study the problem of recommendigg talated to a specific object
given an initial set of tags already associated with thigobjFormally, an initial set of tags
Z,, which is used to describe the objectis provided to the recommendation method. The
method subsequently outputs a set of related €adg, N C, = (), which are regarded as
appropriate for describing this object.

Our purpose in this dissertation is to design better tagmesendation algorithms by

ITwww.lastfm.com
2www.flickr.com
Swww.youtube.com
“www.delicious.com
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exploiting more elaborate tag co-occurrence associatimsr We are able to generate such
rules by taking an on-demand approach, that is, we genearbge on the fly according to
each provided object. This is possible because we can ptbgsearch space according to
the input object, significantly reducing the computatioraed to extract rules.

A specific objective is to reduce the distortions createdhédalculation of the score
of candidate tags. This problem is common in applicatioas tieed to rank tags according
to some criterion. These distortions are present spedallyases in which the number
of tags in an object is small, as shown in our experiments. terospecific objective is
to generate datasets that can be used in experiments witle¢agmendation, which are
datasets crawled from social bookmarking networks suchedisibus.

1.2 Contribution of the Dissertation

We present a Lazy Associative Tag REcommender, referred taA&RE, which is an al-
gorithm based on the Lazy Associative Classifier (LAC) dfes[Veloso et al. 2004 that
has been developed to deal with large-scale problems wathismds of tags (or classes).
LATRE exploits co-occurrence of tags by extracting asdariarules on a demand-driven
basis. These rules are the basic components of the clagsificaodel produced by LATRE.
In this case, rules have the fori — y, whereX’ is a set of tags angd is the predicted tag.
Some of the results presented in this dissertation weraghda in Menezes et a3/12010.

Rule extraction is a major issue for recommendation methadsd on co-occurrence
[Heymann et a).2008 Sigurbjornsson and van Zwd®008§, since the number of extracted
rules may increase exponentially with the number of tagsTRB, on the other hand, ex-
tracts rules from the training data on the fly, at recommeaddime. The algorithm projects
the search space for rules according to qualitative inftiongresent in each test object, al-
lowing the extraction of more elaborate rules with efficignc

In other words, LATRE projects the training data accordioghe tags irZ, and ex-
tracts rules from this projected data. This ensures thgtroies that carry information about
objecto (i.e., a test object) are extracted from the training datastitally bounding the num-
ber of possible rules. In fact, the computational compleaftLATRE is shown to increase
polynomially with the number of tags in the vocabulary. Téiiciency enables LATRE to
explore portions of the rule space that could not be feagipfored by other methods.

After a set of rules is extracted for objegtLATRE uses them to rank candidate tags
that are more likely to be correctly associated with thiseobj Each extracted rul& LN Yy
is interpreted as a vote given for tagand the weight of the vote is given By which is the
conditional probability of object being associated with taggiven thato contains all tags
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in X. Weighted votes for each tag are added and tags that scaykdrtare placed on the
beginning of the ranking. Usually, there are many canditiage and, thus, properly ranking
them is also a difficult issue, since different candidates tagy operate in different scales
(i.e., a popular tag may receive a large number of “weak” sjo8ad this tag is likely to
be placed before a specific tag which received a small nunit¥strong” votes). In order
to enforce all tags to operate in the same scale, so that drepe directly compared, we
employed an entropy-minimization calibration approacbawect possible distortions in the
scores of candidate tags.

Experimental results obtained from collections crawlednir Delicious, LastFM
and YouTube show that LATRE recommends tags with a signifigangher precision
in all collections when compared to a recent co-occurrereseth algorithm proposed
by Sigurbjérnsson and van Zw$2009g, which we considered our baseline method. The
study of the effectiveness of LATRE on three different cdilens corresponding to different
media types (i.e., Web pages, audio and video) is also anrtargaontribution of our work,
as most of the methods in the literature are tested only withawllection and one media
type. Depending on the number of tags provided as input toRE]Tit obtained gains in pre-
cision (p@5) ranging from 10.7% to 23.9% for Delicious, frém% to 46.7% for LastFM,
and from 16.2% to 33.1% for YouTube.

1.3 Related Work

Social tagging systems allow users to associate keywagds)(to any object, such as a Web
page, a video or a photo. These system have become popuianivet 2.0 context, in which
a large amount of data is created and there is the necessitgexing it for later retrieval.
Tag recommendation services have emerged in social taggstgms with the objective of
helping users to better describe the content they creadarfFintroductory discussion of
social tagging and tag recommendation, please see S&cfion

Possible sources of information for tag recommendatiohdcoe: (1) tags previously
associated with objects in the collection and (2) the téxtoatent of other features (e.qg.,
title, description, user comments) associated with thealdpr which the recommendation
is expected. While in case of (2) there could be more inputtiersake of recommen-
dation, problems such as the lack of standardization inerdgrformat and the presence
of noisy content (e.g., non-existing wordSuchanek et gl200§) benefit the use of rec-
ommendation methods that exploit solely tag co-occurrémiemation [Garg and Weber
2008 Sigurbjérnsson and van Zwa&008§.

We presented the related works in order of similarity to tissertation. The first
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two presented works figurbjérnsson and van Zwak00§ and [Garg and Weber2008)
are the most related to our work in terms of the problem thegtéd and the methodology
they adopted. The next three related workdeymann et a).2008, [Krestel et al. 2009
and Wu et al, 2009) also explored tag co-occurrence to solve other tag expansob-
lems (such as tag recommendation using content and thestasiidproblem). The follow-
ing four related works Ku et al, 2004, [Weinberger et al.200§, [Liu et al., 2009 and
[Siersdorfer et al.2009) used tag co-occurrence in applications different frogn éapan-
sion, such as tag disambiguation. The last related wortedlim this section also applied
classification in the social tagging domain.

Sigurbjornsson and van Zwf2008 explored tag co-occurrence with the objective of
recommending tags directly to users based on an initialfsayie already associated with the
object. In this scenario, their method first associated aflielated tags with each input tag,
and then combines the lists for all input tags in a single fiaaking of related tags. The two
similarity measures used to compute co-occurrence of tage the conditional probability
and the Jaccard coefficient. They combined the lists ofedléags by summing up the
co-occurrence measures for each occurrence of a relatediaagly, they altered the final
relatedness scores by promoting tags that are more degembthe content of the objects,
obtaining significant improvements. The problem they €tdds very similar to ours, i.e.,
output a ranking of tags using only community knowledge (rersonal information). For
this reason, we chose this method as a baseline in our exgr@smThe main difference
between the method described Bigurbjornsson and van Zwd®008 and our’s is that we
employ a filtering process to reduce the size of the trainatg dccording to an input object.
This reduction causes an increased efficiency and allowsREATO extract rules that are
more elaborate. The use of calibration is also a differehatimproves the performance of
our method, specially for objects with a small number of tags

Another related work is presented ®arg and Webdi2008. They study the problem
of making personal recommendations using the history adbgk a user has applied in the
past. Given a set of tags as input, the authors use a NaivesB&gsifier to obtain a ranking
of related tags specifically for the user. This model corrsidee probability that a related
tag will generate the set of input tags according to the uast Ipehavior. Additionally, they
use collective knowledge to estimate the co-occurrencags in the whole system, using
a scoring method which is based on TF-IDF. The best resulis witained by combining
the personal model and the collective model. They concludatiadding personal history
can improve the effectiveness of co-occurrence tag-recamdation. Our method also mod-
els the problem as classification, but we do not explore patdaistory and therefore the
methods are not directly comparable.

Heymann et al[200§ use association rules to expand a set of tags of an objeely Th
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only use rules of size two, i.e., one tag in the antecedefi) @hd one in the consequent
("then™) of each rule. The reason is that these simple rulegasier to compute than more
complex ones, that is, rules that have more than one tag iaritecedent of consequent.
They assessed the effectiveness of their tag expansiorochbthmeasuring precision and
recall of a tag-based object search engine. They only usgtesiag queries, that is, they did
not need to combine the expansion list of different inpustalhe experiments have shown
that the expanded set of tags can increase recall by 50% Wdelging the same precision.
Our work differs from Heymann et a).200§ in that we are able to extract rules of larger
size to improve efficacy. Furthermore, we correct the finares of candidate tags using
calibration.

Krestel et al[2009 use Latent Dirichlet Allocation (LDA) to expand the set afjs
of objects annotated by only a few users (the cold start propl They use LDA to uncover
the latent topics associated with each object in a datasaihalal from Delicious. Since each
object may be annotated by several users from differentgrackds, and each user may re-
gard the object as concurrently belonging to many topiesdibcovered topics represent the
different semantic views of the object. After a comparisothyHeymann et a).2008 they
concluded that their method is more accurate and yields speeific recommendations, a
characteristic that may be useful in some applications.nEkeugh this method also uses
tag co-occurrence, it focus on a different problem than.ours

Wu et al.[2009 model tag recommendation in Flickr as a learn-to-rank f@mbusing
RankBoost. Their problem is to recommend tags given a saeviqusly assigned tags and
the content of the images. They use as tag similarity meaghesconditional probability,
the Jaccard coefficient and a tag similarity measure thdbegpimage feature similarity
in a Visual Language Model (VLM). These similarity measuses given as features to the
learn to rank algorithm. They conclude that content feateen help to ease the ambiguity,
polysemy and synonymy problems in tag recommendation. Téie ahfference between
[Wu et al, 2009 and our method is that they use content features from @sfuwwombining
them with tag co-occurrence information.

Tag co-occurrence has also been used in contexts diffemntthg expansion. For ex-
ample, the tag recommendation algorithm describeXindt al, 200§ uses co-occurrence
information to select a small set of informative tags frora tags collectively used to de-
scribe an object. They give higher values to tags that haga beed together by the same
user (complementary tags) and lower value to different tlhgshave been used by different
users to describe the same object (tags that describe tleecsaroept).

Another example is the identification of ambiguous tagsgismoccurrence distribu-
tions. The method inWeinberger et al.200g suggests tags that help to disambiguate the
set of tags previously assigned to an object. The key obisema that very different distri-
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butions of co-occurring tags arise after adding each angbigtiag. A third example is tag
ranking LLiu et al,, 2009, in which the authors used a random walk process based @wotag
occurrence information to generate a ranking that is shovumprove image search, tag rec-
ommendation and group recommendation. Finally, tag tatiosl using tag co-occurrence

is described in$iersdorfer et al2009. The authors created a tag co-occurrence graph and
used network similarity measures to find candidates forstedion.

Classification algorithms have been used in tag recommemdah the past.
Heymann et al[2008 use an SVM classifier to predict whether a taig associated with
an objecto based on the textual content @f Their approach does not scale to many thou-
sands of tags since they need to build a binary classifierdohn ¢ag. In their experiments,
they use only the top 100 tags of their Delicious collecti@nsecond approach is used by
Song et al[2008K. They group objects into clusters using a graph partitigralgorithm,
and they train a Naive Bayes classifier using the generatetiecs as classes. When a new
object arrives, their method classifies the object into drne clusters and use the tags of
the cluster to generate a ranking of candidate tags. A thay iwto consider each tag as
a class and model tag recommendation as a multi-label fitaggn problem. In this case,
tags are used as both features and labels, and the classifieaédorithm must be able to
deal with a very large number of classes. This approach @gsed in Garg and Weber
2008 and [Song et al.20084, and used in this work. Whil&arg and Webef2009 use a
Naive Bayes classifier arfébng et al[20083 propose a multi-label sparse Gaussian process
classification to model tag recommendation, our work is @seassociative classification
(see Sectior.3), which can be applied to problems with thousands of classes

In conclusion, tag co-occurrence is a very recent and atipe of research in Infor-
mation Retrieval. While many previous publications haweuf®ed in tag co-occurrence as a
means to solving different problems (such as tag recomntiemdand the cold start prob-
lem), none of them has given focus to an on-demand approduh.dissertation will cover
this aspect.

1.4 Organization of the Dissertation

The rest of the dissertation is organized as follows. In @rap we cover some basic con-
cepts. They will improve the readers’ understanding of tilfing chapters. In Chapter
3 we provide an in-depth description of our proposed methreas in Chapter 4 we de-
scribe our collections and discuss our experiments andtsesinally, in Chapter 5 we offer

conclusions and possible directions for future work.






Chapter 2

Basic Concepts

In this chapter we present some basic definitions and contleat will help the reader to

better understand the context of this thesis. First, weuds¢he characteristics of social
tagging systems and how they can be used to improve Infasm&etrieval tasks. Next,

we overview multi-label classification, which is used in ooethod. Finally, we introduce

associative classification and show its application in empmmendation.

2.1 Social Tagging

Social tagging systems allow users to annotate an objeai, &s1a Web page, a video or a
photo, with freely chosen keywords (or tags). These systamstitute a new phenomenon,
specially when considered in the context of the Web 2.0, whitowed the creation of a
large amount of user generated data over the past few yearse &searchers have recently
studied the main characteristics of social tagging systemasthe corresponding data their
users generate. In this section we discuss these chassickeand give examples of how
they can be used to improve Information Retrieval (IR) tasksh as clustering, search and
recommendation.

Social tagging systems are now popular due to the widesaidaation of Web 2.0 ap-
plications, specially social networks (FacebtdlySpacé, Orkut’), online media publish-
ing systems (YouTube, Flickr, LastFM) and social bookmagksystems (Delicious, Stum-
bleUpor¥, Digg®, Technoratfi®). In fact, a survey published in 2007 has shown that 28% of

Shttp:/lwww.facebook.com/
Shttp://www.myspace.com/
http://www.orkut.com/
8http://www.stumbleupon.com/
Shttp://www.digg.com/
Onttp://www.technorati.com/
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Web users had already used tags to categorize content sagbhaso, a news story or blog
posts Rainie 2007.

In most social tagging systems, the tagging process iscetatpersonal organization.
For example, tags are commonly used in social bookmarkistesys, which are systems
that allow users to bookmark objects on the Web, i.e., keemtstored for later access. In
this scenario, users associate a set of tags to each olggdbdlokmark with the purpose of
easily retrieving them in the future. Another example aogbland other sites in which users
generate their own content. Users in this case are pubdistmel associate tags to their own
content in order to make it easier to be retrieved by othersuseby themselves.

In such a scenario, users associate keywords that ared-étetieeir personal sense of
organization, i.e., they do not need to make sense to otlezs urs general. For example,
users may associate to a blog post the tags “philosophy” pagchology”, but they also
may use the tags “to read” or “i37-2010". In other words, as@ganize the set of objects
they have already tagged in personal classification systemeh are suited specifically for
their own context. They adapt their own classification okokg according to their language,
region, interest area, intention and personal conventions

This personalized use of tags is possible because of thefackontrolled vocabulary
to describe the users’ objects. This form of classificatmmtiasts to traditional classification
systems, such as the Dewey Decimal Classification (DDC)DID€ attempts to classify all
the human knowledge into a pre-defined hierarchy of clags&éxpnomy). This hierarchy
spans from a set of ten main classes, such as “Religion” aciérife” (see Tabl2.1), going
down three levels. Other well-known examples of traditida@aonomies are the Linnean
classification system, which is used to categorize all fvanganisms, and the Medical Sub-
ject Headings (MeSH), which is used to index journal ari@ad books in the medical area.
The classification systems based on tags has the advantageinfj a much lower barrier
to entry, which reduces the effort of classification and ptymbjects to be classified by
ordinary Web users.

Despite the fact that social tagging systems serve maintiigqurpose of personal
organization, the collective use of tags causes the emeggaina more general classifica-
tion system. The reason is that users naturally convergleeimiy they describe objects,
regardless of their personal aspects. For example, a popiatare that depicts a cat will
probably have the keyword “cat” as one of the most frequesstlsigned tags. This general
classification system is usually referred to dslasonomyWal, 2007.

The three main aspects that differentiates folksonomia® firaditional taxonomies
are (1) the lack of an hierarchical organization, (2) itsamstrained nature, i.e., a user
can assign any keyword to any object, and (3) its bottom-upeggion process. These
characteristics make folksonomies a constantly evolviagsification system, since new
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Table 2.1. The Dewey Decimal Classification (DDC) main classes.

000 - Computer science, information and general works
100 - Philosophy and psychology

200 - Religion

300 - Social sciences

400 - Language

500 - Science

600 - Technology and applied science

700 - Arts and recreation

800 - Literature

900 - History, geography, and biography

concepts are naturally assimilated. Furthermore, fol@suas are cheaper to construct and
maintain than a traditional taxonomy, since no special®dessional is needed. For these
reasons, there have been an increasing interest in ussigptbrmation to aid IR tasks.

However, the use of folksonomies in Information Retrievas lalso caused the emer-
gence of new interesting challenges to IR methods. Firstyroéthe tags assigned to objects
are noisy, since they may only make sense to the user whcedréa#m and do not serve
to the community as a whole. IR methods should take advamtbgely informative tags,
while avoiding the destructive effect of noisy tags. olgeeith a small number of tags are
specially prone to the negative effects of noise, since dloayot contain enough information
to differentiate useful tags from damaging ones. This effes observed in our experiments
(Chaptend).

Second, these systems have a huge vocabulary of diffeiggtsace there is a large
qguantity of possible sets of keywords that may describe gacabThis is a challenge to
current machine learning techniques. Many classificatigorahms, for example, cannot
deal efficiently with problems of thousands of classes. Mweeg issues such as synonymy
and polysemy (i.e., different keywords with the same megm@ind same keywords with
a different meaning) makes the problem even more difficolinfthe point of view of IR
algorithms. In this work we propose a multi-label classtima algorithm that can extract
more elaborate patterns with efficiency, effectively redgt¢he aforementioned problems.

Third, tags can be applied to objects with very differentgoses. For example, users
may describe a picture of a cat objectively as “cat”, or mangjexctively as “cute”. They
can also describe the picture with more specific or genesalals, such as “Siamese cat”
or “animal”’. Furthermore, they can describe the processadiycing the photograph, us-
ing a keyword such as “close-up”. These are only some examplan infinity of other
possibilities. Recent research has characterized thgdeapn scenarios and proposed
methods that better organize folksonomies. For instaRtangprasopchok and Lerman
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[2009 propose a method that generates taxonomies based on tgg data. Another
example of ontology generation from community-based séicgams [Mika, 2007. In
[Heymann and Garcia-Molin2004 the authors present a simple algorithm for taxonomy
generation from tag data. Semantic relatedness betweengagudied in Cattuto et al.
2008, which also characterizes the nature of the relationskeigvben tags.Zhang et al.
[2004 also study how to statistically infer global semantic imf@tion from folksonomies.

An IR task that may benefit from tag data is document clusgerifror example,
[Lu et al, 2009 proposes a clustering method that is based on a triparggghgnodel. This
kind of graph modelling is common for methods that use tagrimftion, and essentially
models the data as a graph with three different types of nasess, objects and tags. Their
method simultaneously cluster objects, users and tagsibg asnodified K-Means method,
which calculates the centroid in each step using informédtiom the neighborhood of each
node. In Ramage et al.2009 another document clustering method based on K-Means is
proposed. The authors use an extended vector representdéteach document, contain-
ing not only the terms in its content but also the tags astegtim it. Li et al. [200§ use
folksonomies to find communities of users interested inlginopics.

Search is another application that uses tags irBiBchoff et al.[2008 study the use-
fulness of tags in search by comparing tags and the termsmsedrch queries for the same
documents. They concluded that most tags can be used fahssarce the tag application
usage pattern follows the searching behavidarman et al[2009 extend this analysis by
observing that the distribution of tags and queries are semylar, but not identical. Further-
more, queries are usually more similar to the content of Wagep than tags, but queries and
tags are more similar to one another than to content. Thiglisaa indication that tags may
be used to improve the effectiveness of search engBawenkel et a[.2008 propose a new
document ranking method that exploits information fromttifgartite graph to significantly
improve the search engine effectiveness. The method egpghadjuery with a set of similar
tags before performing the search in the document index.

Another possible application for tags in IR is in object reenendationKonstas et al.
[2009 use the tripartite graph of users, objects and tags to desigw collaborative filtering
algorithm that recommends objects to users. Their methed afRandom Walk approach
to infer relationships between objects. Be et al.2009 another approach for object rec-
ommendation using tag data is presented. The authors usariharity between users and
tags to predict the similarity between users and objectsllyi Shepitsen et a[2009 pro-
pose another object recommendation algorithm that usesectuof tags as intermediaries
between users and objects.
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2.2 Multi-label Classification

As observed in Sectio@.1, the collective use of tags causes the emergence of a global
classification system, in which each tag associated withbgcois considered as a class of
that object. From this point of view, the problem of predigtwhich tags will be applied to

an object (tag recommendation) is similar to the problenredgting which classes will be
assigned to that object (multi-label classification). Iis thection we introduce multi-label
classification and discuss the peculiarities of its usegrrég@ommendation.

Multi-label classification contrasts with the simpler pierh of single-label classifi-
cation, in which each object can be associated with only abellfrom a set of disjoint
labelsZ, |L| > 1. In multi-label classification, examples are associatet wiset of labels
Y C L. In this framework, the algorithm associates a set of laDgl® each test object

AX; . Multi-label classification methods are required in apgdiiens such as medical diagno-
sis, protein function classification, music categorizatisemantic scene classification, and
document classificationTsoumakas et gl200§. For example, a band can be classified in
many categories simultaneously, such as “alternativetKt, “pop” and “indie”. Similarly,

a photograph can be classified in “sunset” and “sea” at the sene.

A common approach to multi-label classification is to traiseparate binary classi-
fier for each class. Each classifier is used to independessiycéate a score to each class,
and the top k classes are assigned to the test object. Fopexaomité et al[2003 use
decision trees as individual classifiers. Another apprdzated on SVM is presented in
[Elisseeff and Westqr2005. These methods are callgaioblem transformation methods
since they transform a multi-label problem into severabbyrclassification problems. More
formally, in these approaches the original datd3es transformed intoL| datasetd), that
contain all the examples in the original dataset, each dvedl&d ad or —/. A single-label
classifier is then trained in eadh [Tsoumakas et al200§.

One of the drawbacks of the binary approach is that they deexplbit correlation
among labels, that is, they consider that each label is gm#gnt of each other. This is an
oversimplifying strategy in some applications. If theraisbiguity in the use of a label, the
correlation among classes can help to narrow the meanimgddbel. For instance, the label
“rock” may refer to a music genre or to a geological formatilfrt co-occurs with the label
“music”, than we can discard the geology meaning from oudaiate labels. A multi-label
classifier that do not use correlation would classify theeobpoth as a geological formation
and music genre, disregarding any attempt of disambiguatio

Another benefit of considering correlation among labelh& the method can infer
new labels that were not explicitly given in the test ins&@n the previous example, the
label “rock” may be strongly correlated with the label “roakd roll”. Therefore, training
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objects that contain the label “rock and roll” can also bedusepredict new labels to objects
labeled only with “rock”.

In this dissertation, for example, we show that exploring tlorrelation among tags
can significantly improve the quality of the prediction, sjpdly if objects have a relatively
large number of tags (see Chap#@r The reason is that tags are noisy labels, since they can
be freely assigned by users. Consequently, correlaticagimnedcommendation is paramount.

Another major drawback of the binary classifier approaclna it cannot deal with
problems of many thousands of labels, since methods mugilatd a score for each label
during run-time. It means that we need to evaluate eachyuiassifier for each tag in the
vocabulary in order to predict a set of recommended tagselfvbcabulary of tags is big,
the binary classifier approach is not feasible. In our expenits, the dataset from Delicious
contains about 800,000 different tags. Therefore, we nemdlt-label classifier that can
deal with a large vocabulary of tags.

A third drawback of the binary classifier approach is thaai aot deal naturally with
a dynamic set of labels. If a new label appears, a separatadytilassifier must be trained
for that specific label. There must be enough data to perfbisiriaining, otherwise the new
binary classifier would introduce noise in the method outpberefore, there must be a way
to decide what labels are worth a classifier, and when to traim applications in which
new labels are constantly being created, we need a soldtaircan incorporate these new
labels transparently. This is another reason why the bidassifier approach is not suited
to tag recommendation.

2.3 Associative Classification

In our dissertation scenario we need a multi-label clasdiba algorithm that can scale,
that is able to exploit label correlations, and that can @@t a dynamic set of labels.
The solution we exploited was to use an associative clasfifie et al., 1998. Associative
classification methods first extract association rules fthentraining data, and then build
a classifier using these rules. These algorithms extraes il the formX — y, in which
the antecedent is a set of features and the consequent issa dlae associative classifier
uses association rule mining algorithms, such as Apridgrawal and Srikant1994 and
FPGrowth Han et al, 2000, to find the appropriate rules in the training data. A minimu
supportis used to limit the set of extracted rules, thahis aigorithms only extract rules that
occurred with a frequency higher thanp,,;,. Furthermore, a minimum confidence value
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Omin 1S also used to filter the rule set. For a rdfe— y, 6 is given by

_ sup(X Uy)
sup(X)

The confidence of a rul& — y can be though as the conditional probability that the class
will occur given thatX has occurred.

During the test phase, the algorithm checks if each rule Imestthe test object. In
a single-label variation of the algorithm, one class mustib@sen using the set of match-
ing rules M. There are different approaches to make this choice. Fanpba a greedy
approach would be to choose only the top ranked rule acaptdisome criterion, such as
information gain. Another strategy is to perform a poll, ihieh each rule is viewed as a
weighted vote. For instance, the score for clgds a set of rulesM is given by:

s(yi) = Z Wi
X—ryeM
The class with the highest score is the output. In this casealgorithm is able to deal with
conflicting rules Yeloso et al.2007.

A variation of the algorithm is to consider not only the topholass in the ranking of
classes, but the top-k classes. In this case, we have alatddiclassification method. This
is the approach adopted in this dissertation. However, weadperform some modifications
in the algorithm to adapt it to our needs. For example, in apmmendation the domains
of X andc are the same. Therefore, there is a set of trivial rules thest tme ignored in the
extraction phase. We further discuss our algorithm in Gévegt

Associative classification has many advantages when ugad nrecommendation. As
stated earlier in SectioP.2, we need a method that exploits correlation among tagsijghat
that can identify the correct meaning of ambiguous tags hatdan identify different tags
with the same meaning. In tag recommendation these twogmabére common. Associa-
tive classification naturally deal with correlation by exdting rules that have more than one
label as an antecedent, i.gt,| > 1.

Furthermore, associative classification take advantagenadll-studied research field,
which is association rule mining. Robust and efficient athars, such as Apriori and FP-
Growth [Han et al, 2000, can be directly exploited in associative classificatidihese al-
gorithms are able to deal with problems with many thousardsbels. They are specially
suited to tag recommendation problems, that have a largebutary of tags.

A third advantage of associative classification in tag reoemdation is that it can deal
with a dynamic set of tags more easily than binary classifira new tag appears in the
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system, it is naturally incorporated into the method in thwerf of association rules. If the
new tag is not frequent enough, an association rule thatowit will have a low weight,
and its influence on the classifier would be small. These chexiatics make associative
classifier a good option to be used in tag recommendation.

2.4 Summary

In this chapter we presented some basic definitions and ptsitet allow to reader to better
understand the following chapters. First, we introduceadagging and tag recommenda-
tion. Next, we discuss multi-label classification and aggo@ classification, describing

their relation to tag recommendation. In Chaptémsnd4 we present our approach to tag
recommendation and some experiments we performed.



Chapter 3

Proposed Method

In this chapter we present a new demand driven tag recomrtienaaethod, which we refer
to as Lazy Associative Tag REcommender (LATRE). We first fallynmodel the problem
using associative classification. New, we present the |lapg@ of the solution, i.e. the
filtering of the training data according to an input objecthathe objective of increasing
the efficiency of the rule extraction process. Later, we dieechow we attribute score to
candidate tags, and then we present our calibration appreddch reduces distortions in
candidate tags’ scores.

3.1 Multi-label Classification Model

We have essentially modeled the tag recommendation tasknadtalabel classification
problem. In this case, we have as input trening data(referred to a®>), which consists

of objects of the forml =<Z,, V;>, where bothZ; and)); are sets of tags, and initiall¥,
contains all tags that are associated with objgathile ), is empty. Thetest sef(referred

to as7) consists of objects of the forin=<Z;, Y,>, where bothZ;, and)); are sets of tags
associated with objeet However, while tags irZ; are known in advance, tags W are
unknown, and functions learned frof are used to predict (or recommend) tags that are
likely to be in)), based on tags iff,. We developed the LATRE method within this model.
Recommendation functions produced by LATRE exploit theocodrrence of tags i@,
which are represented by association rulsgrawal et al, 1993, as defined below.

Definition 3.1 An association rule is an implicatio/’ LN y, where the antecedetl is

a set of tags, and the consequenits the predicted tag. The domain féf is denoted as
I={ UL, U...UZ,}* (ie., X C I), wherem=|D| + |T| and the operatord* denotes
the power set off. The domain foy is Y={), UM, U... UV, } (i.e.,y € )). The size of

17
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rule X — y is given by the number of tags in the antecedent, thigt'|s The strength of the
association betweed’ andy is given byd, which is simply the conditional probability gf
being in)), given thatY C Z,.

We denote a® a rule-set composed of rulés AN y. Next we present the major steps
of LATRE: rule extraction, tag ranking, and calibration.

3.2 Demand-Driven Rule Extraction

The search space for rules is huge. Existing co-occurreasedorecommendation methods,
such as the one proposed Bigurbjérnsson and van Zwa2009g, impose computational
cost restrictions during rule extraction. A typical stgatéo restrict the search space for rules
is to prune rules that are not sufficiently frequent (i.e.nimum support). This strategy,
however, leads to serious problems because the vast magpdrihe tags are usually not
frequent enough. An alternate strategy is to extract onstti — y such thatX'| < a4z,
whereq,,.. is a pre-specified threshold which limits the maximum sizghefextracted rules.
However, in actual application scenarios, methods sucBigsrbjérnsson and van Zwsl
are only able to efficiently explore the search space forsriile,,..=1. When the value of
amaz 1S INCreased, the number of rules extracted fl@nmcreases at a much faster pace (i.e.,
there is a combinatorial explosion).

A possible drawback of this approach (i.e,,..=1) is that more complex rules (i.e.,
rules with|X'|>1) will be not included inR. An assumption is that these rules may pro-
vide important information for the sake of recommendatibiowever, in order to test this
assumption we need an efficient method that can work usingamsbvalues ofv,,.,.. One
possible solution is to extract rules on a demand-drivensbasit before discussing this
solution we need to present the definition of useful associatles.

Definition 3.2 Arule{X — y} € R is said to be useful for obje¢t=<Z;, ;> if X C Z,.
Thatis, rule{X — y} € R can only be used to predict tags for object 7 if all tags in X
are included inz,.

The idea behind demand-driven rule extraction is to exwaty those rules that are
useful for objects irV". In this case, rule extraction is delayed until an objeekZ;, V;> is
informed. Then, tags ifi; are used as a filter which configurBsn a way that only rules that
are useful for object can be extracted. This filtering process produces a prajeceing
data,D;, which is composed of objects of the forth=< 7!, V' >, whereZ!={Z,nZ,} and

=1L — T4}
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We now illustrate the filtering process. In Tallel there are 5 object§<Z,,, Vi, >;
<Zayy Va,>; <Ly, Vas >3 <ZLa,, Ya,>; <Zas, Yas >} In D, and one objectZ, , ), > inT.

Table 3.2 showsD after being projected according 1G,. In this case,’[éiz{It1 N
7, }={unicef}, andY} ={Z,, — Z;} }={children, un, united, natiofs The same procedure
is repeated for the remaining objectsZin so thatD" is finally obtained. For an arbitrary
objectt € T, we denote a®; the rule-set extracted from;.

Lemma3.1states that all rules extracted from the filtered trainirtgase useful for the
input object (according to DefinitioB.2). In other words, after the filtering we only keep the
objects that help us in extracting useful patterns.

Table 3.1.Training data and test set.

z y
di unicef children un united nations 0
do un climatechange summit environment ()
D dj climatechange islands environment ()
dy children games education math 0
ds education children unicef job 0
T 4t unicef education haiti ?
Table 3.2.Projected training data for objett.
It %
i unicef children un united nations
D, d} education children games math

dg! unicef education children job

Lemma 3.1 All rules inR; are useful for object =<Z;, Y, >.

Proof Let ¥ — y be an arbitrary rule irk,. In this caseX C Z,. Thus, according to
Definition 3.2, this rule must be useful for object |

For instance, any rule extracted framy, (i.e., Table3.2) is useful for object;. Exam-
ples of rules extracted fror®;, include:

. 6=1.00 .
e unicef ——= children

¢ {unicefAeducation 2=L9, children
e education”=22% math

Since{unicefreducation C 7, , all these rules are useful for objeggt An example

of rule that is useless for objett is “cIimatechangew environment”, and it is easy to
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see that this rule cannot be extracted fré, since tag “climatechange” is not present in

Dy,
The next theorem states that LATRE efficiently extractssfiemD. The key intuition

is that LATRE works only on tags that are known to be assoditdesach other, drastically

narrowing down the search space for rules.

Theorem 3.1 The complexity of LATRE increases polynomially with the bemof tags in
the vocabulary.

Proof Let n be the number of tags in the vocabulary. Obviously, the nurobgossible
association rules that can be extracted frbns 2°. Also, lett =<Z;, ;> be an arbitrary
object in7. SinceZ; contains at most tags (withk<n), any rule useful for objeat can
have at most tags in its antecedent. Therefore, the number of possilds that are useful
for objectt is (n-k) x (k+ (§) + ...+ (})) = O(n*) (sincek<n), and thus, the number of
useful rules increases polynomiallysin Since, according to Lemma 1, LATRE extracts only

useful rules for objects ifi, then the complexity of LATRE also increases polynomiatly i

An important practical aspect of LATRE is that the projentad the dataset (as shown
in the examples in Table3.1 and 3.2) greatly reduces the size of bothand %, since we
only consider candidate tags that co-occur at least ondeamy tag in the test object (is
reduced), while the size of the test object is small in pcacfi is reduced). For instance, in
Tables3.1and3.2we havek; = 1, k, = 0, k3 = 0, k4, = 1 andks; = 2 for the projected
dataset. Therefore, the averageer objectis(1 +0+ 0+ 1+ 2)/5 = 4/5 = 0.8. This
number is much smaller than the upper bound in the numbegsfitean object, which i§
in the example.

3.3 Tag Ranking

In order to select candidate tags that are more likely to beaated with object € T, it is
necessary to sort tags by combining rule®in In this case, LATRE interpret®; as a poll,
in which each rulet % y € R, is a vote given by tags i’ for candidate tag. Votes have
different weights, depending on the strength of the astonighey represent (i.ef). The
weighted votes for each tagare summed, giving the score for tagvith regard to object,
as shown in EquatioB.1 (wherey; is the i4+h candidate tag, an@( X — y;) is the valug)
assumes for rul&” — y;):

s(t,y;) = Z (X — y;), whereX C 7, (3.1)
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Thus, for an object, the score associated with tggis obtained by summing the
0 values of the rules predicting, in R,. The likelihood oft being associated with tag
y; is obtained by normalizing the scores, as expressed by tiaidm p(y;|t), shown in
Equation3.2
N S t, i
pyilt) = n<7y>

Z S(tv yj)

J=0

(3.2)

Candidate tags for objec¢tare sorted according to Equati@2, and tags appearing
first in the ranking are finally recommended.

3.4 Calibration

According to Equatiol.1, the score associated with a tag is impacted by two chaistotsr

(1) the number of votes it receives and (2) the strength cfehtes. While both charac-
teristics are intuitively important to estimate the likedod of association between tags and
objects, it may be difficult to decide which one is more impatt In some cases, the scores
associated with different tags cannot be directly compdredause they operate in different
scales (i.e., the score associated with popular tags &g tikkbe higher than the scores asso-
ciated with specific tags, simply because they receive & lamgnber of votes). This means
that the same value of score can be considered either highwpdépending on the tag.

An approach for this problem would be to inspect the expédtetihood p(y|t), in or-
der to make scores associated with different tags direotlyparable. The obvious problem
with this approach is that the correct value fdy|¢) is not known in advance, sin¢es T,
and thus we cannot verify if € ),. An alternative is to use a validation set (denotedgs
which is composed of objects of the fonm=<Z,, )),>, where bothzZ, and)), are sets of
tags associated with objegtand{Z, N}, }=0. That is, the validation set essentially mimics
the test set, in the sense thatis not used for the sake of producing rules, but only to find
possible distortions in the value pfy|v).

The key intuition of our approach is to contrast valueg(@fv) for whichy ¢ ), and
values ofp(y|v) for whichy € Y,. In an ideal case, for a given tggthere is a valug, such
that:

e if p(ylv) < f,, theny ¢ Y,

o if p(ylv) > f, theny € V,
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Oncef, is calculated, it can be used to determine whether a certdire\ofp(y|v)
is low or high, so that the score associated with differegstean be directly compared.
However, more difficult cases exist, for which it is not pa#sito obtain a perfect separation
in the space of values fgi(y|v). Thus, we propose a more general approach to calculate
[y~ The basic idea is that any value ffyy induces two partitions over the space of values
for p(y|v) (i.e., one partition with values that are lower thAn and another partition with
values that are higher thgf). Our approach is to s¢t, with the value which minimizes the
average entropy of these two partitions. In the followingpresent the basic definitions in
order to detail this approach.

Definition 3.3 Lety be an arbitrary tag, and let =<Z,,, ),> be an arbitrary object in.
In this case, leb(y, v) be a binary function such that:
)1 ifyed,

oly:v) = 0 otherwise
Definition 3.4 ConsiderO(y) a list of pairs<o(y, v), p(y|v)>, sorted in increasing order
of p(ylv). Thatis, O(y)={..., <o(y,v;), p(ylvi)>, <o(y,v;),p(y|v;)>, ...}, such that
p(ylvi) < p(y|v,;). Also, consider a candidate value for,. In this caseO.(y, <) is a
sub-list of O(y), that is, O.(y, <)={..., <o(y,v), p(y|v)>, ...}, such that for all pairs in
O.(y, <), p(ylv) < c. Similarly, O.(y, >)={. .., <o(y,v), p(y|v)>, ...}, such that for all
pairs in O.(y, >), p(y|v) > c. In other wordsO..(y, <) and O.(y, >) are two partitions of
O(y) induced by.

Definition 3.5 Consider N(O(y)) the number of elements i@(y) for which o(y, v)=0.
Similarly, consider N(O(y)) the number of elements &(y) for whicho(y, v)=1.

In our entropy-minimization calibration approach we caltgkate the entropy of tag
y in O(y) using Equatior8.3

_(NoOW) No(Ow))  (Ni(Oy) - Ni(O(y))
o) = ( oW ¢ T0w) ) ( oW < o)) ) (3:3)

The first step is to calculate the sum of the entropies ofjtegeach partition induced
by ¢, according to EquatioB.4.

10y, <)

BOW). 9 = 505 [0:(y,>)|

X B(O:ly, <) + = o0

x E(O.(y,>)) (3.4)
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The second step is to sgf to the value ot which minimizesE(O(y), ¢). Now, the
final step is to calibrate eagh{y|t) (note thatt € T) using the corresponding, (which
was obtained using the validation set). The intuition is ffyeseparates values pfy|t) that
should be considered high (i.@(y|t) > f,) from those that should be considered low (i.e.,
p(ylt) < f,). Thus, a natural way to calibrafg¢y|t) is to calculate how many timggy|t) is
greater thary,. This can be easily done as shown in EquaBdn The values of(y|t) are
directly comparable, since the corresponding valugg@f) were normalized by/,. Thus,
¢(yt) is used to sort candidate tags that are more likely to be ededavith object:

D(ylt
p(ylt) (3.5)
fy
In some cases, calibration may drastically improves recentation performance, as
we will show in the next chapter.

c(ylt) =

3.5 Summary

In this chapter we have presented our Lazy Tag REcommemd@di®dr RE) method. We
showed how we modelled tag recommendation as an assoca@dissification problem.
Next, we discussed its lazy aspect, describing how theifijesf the training data increases
the algorithm efficiency. Later, we showed how we attribuderes to candidate tags, and
how we correct distortions in the scores by using calibratin the next chapter we will
present our experimental evaluation.






Chapter 4

Experiments

In this chapter we empirically analyze the recommendatenfopmance of LATRE. We em-
ploy as the basic evaluation metrics precision at x (p@x)¢ckwimeasures the proportion of
relevant tags in the x first positions in the tag ranking, arRR[Garg and Weber2008
Sigurbjornsson and van Zwd008, which shows the capacity of a method to return rele-
vant tags early in the tag ranking. We first present the basealnd collections employed in
the evaluation, and then we discuss the recommendatioarpehce of LATRE on these
collections.

4.1 Baseline

The baseline method used for comparison is describe®igufbjérnsson and van Zwol
2008. It is a co-occurrence method which also employs assaociatiles. It gives less
weight to candidate tags that are either too popular or toe. r&curthermore, its algo-
rithm gives more weight to candidate tags that are higherashecandidate tag list with
the goal of smoothening the co-occurrence values decay. nidie difference between
Sigurbjornsson and van Zwsland LATRE is that our method employs a filtering process
to reduce the size of the training data according to an inpjgab. This reduction causes
an increased efficiency and allows LATRE to extract rules$ #ne more elaborate than the
baseline.

The reason the work irSigurbjornsson and van Zwd00§ was used as baseline is
that it is the state-of-the-art in tag recommendation usimg tag co-occurrence and collec-
tive knowledge. Other related methods in SectlaBwere not considered as baselines be-
cause they use additional information, such as the usarhigbarg and Webe200§, im-
age features\WWu et al, 2009 and the page contentleymann et a).2008 Siersdorfer et al.
2009.
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4.2 Collections

Differently from related work that present results reséit to a single collec-
tion [Garg and Weber2008 Heymann et aJ.2008 Sigurbjornsson and van Zwo200§,

in this dissertation we experiment with several collecionamely, Delicious Web pages,
LastFM artists and YouTube videos. These datasets wereghmerause they come from
popular Web 2.0 systems and because they represent diffeeeina types (Web pages, audio
and video). This diversity will help to validate our apprban several real scenarios. The
datasets can be obtained by e-mail request to the Laborfmofyeatment of Information
(LATIN) at UFMG.

4.2.1 Delicious

Delicious is a popular social bookmarking application {hetmits users to store, share and
discover bookmarks. Users can categorize their bookmanikg) wlags, which serve as per-
sonal indexes so that a user can retrieve its stored pagesasBignment of tags in Delicious
is collaborative, i.e., the set of tags associated with a&pagenerated by many users in
collaboration.

For the Delicious crawl we used its “Recent Bookmarks” pagech is a public time-
line that shows a subset of the most recently bookmarkedctshjeVe collected unique
bookmarked page entries and extracted the set of most fidguesed bookmarks for a
page (i.e., its “top bookmarks”). Delicious makes avaisadd many as 30 “top bookmarks”.
Therefore, this is the maximum number of tags per object rcoawled dataset.

The crawl was performed in October 2009. Tadlg presents some statistics for the
Delicious dataset.

Table 4.1.1n this table we show some statistics related to the Delgitataset. The last
three entries refer to the first, second and third quartifebe distribution of tags per

object.
Description Value
# unique objects 560,033
# unique tags 872,502
mean # tags/object 18.27
minimum # tags/object 1
maximum # tags/object 30
# tags/object: first quartile 8

# tags/object: second quartile 17
# tags/object: third quartile 27
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4.2.2 LastFM

LastFM is a Web 2.0 music website and Internet radio. It alasers to collaboratively
contribute with tags to categorize and describe the cheniatits of artists, such as the music
genre. LastFM was crawled using a snowball approach, wrotthats a set of seed artists
and follows links to related artists. The artists used adsaee the ones associated with the
system most popular tags.

The crawl was performed in October 2008. Tabl2 presents some statistics for the
LastFM dataset.

Table 4.2. Some statistics related to the LastFM dataset.

Description Value
# unique objects 99,161
# unique tags 109,443
mean # tags/object 26.88
minimum # tags/object 1
maximum # tags/object 210
# tags/object: first quartile 7

# tags/object: second quatrtile 14
# tags/object: third quartile 31

4.2.3 YouTube

YouTube is the largest video sharing application on the Wesers that upload videos to
YouTube can provide a set of tags that describe them for indgagurposes. YouTube is
different from Delicious and LastFM in that it is non-coltafative, that is, only the video
uploader can provide tags.

YouTube was crawled using a snowball approach, followimggdibetween related
videos. The all-time most popular videos were used as se®ds.sample was obtained
in July 2008. In Tablel.3we show some statistics for the YouTube dataset.

4.3 Pre-Processing Steps and Setup

In order to assess the recommendation performance of theaded methods, we equally di-
vided the tags associated with test objeet<Z;, J;,>: half of the tags is included i#;, and

the other half is included ipy; and used to assess the performance. This division is made by
shuffling the tags and including the first halfZpand the last half i};. A similar approach

has been adopted iGparg and Webe200§ and [Sigurbjornsson and van Zw@&00§. We
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Table 4.3.Some statistics related to the YouTube dataset.

Description Value
# unique objects 180,778
# unique tags 132,694
mean # tags/object 9.98
minimum # tags/object 1
maximum # tags/object 91
# tags/object: first quartile 6
# tags/object: second quatrtile 9

# tags/object: third quartile 14

applied Porter's stemming algorithrR¢rter 1987 to avoid trivial recommendations such
as plurals and small variations of the same input word.

We split each collection into three subsets: the first subsgimposed of objects with
a large number of tags, the second subset is composed ofohjiglc a moderate number of
tags, and the third subset is composed of objects with a smalber of tags. The range of
tags per object was selected in a way that the correspondbggts have approximately the
same number of objects. These subsets are characterizetle? 4.

Then, we randomly selected 20,000 objects from each of theets. We divided each
group of selected objects into 5 partitions of 4,000 objeetsh, and we used 5-fold cross
validation to assess recommendation performance. We asalidation set to find the best
parameters for each evaluated method.

Table 4.4. We divided each collection into three subsets accordindi¢onumber of
tags per object. We show the number of objects in each of gwdssets and the average
number of tags per object (and its standard deviation) im eabset. Note that we
excluded all objects associated with a single tag, sinceaed at least one tag iy and
one tag in;.

Collection Range # Objects  Avg. # Tags
2 to 6 tags/object 188,173  3.941.38
Delicious 7to 12 tags/object 167,613  9.501.73
13 to 30 tags/object 170,708 15.922.53
2 to 6 tags/object 29,622 3.961.39
LastFM 7 to 16 tags/object 30,215 10.852.77
17 to 152 tags/object 31,492  44.9925.30
2 to 5 tags/object 56,721 3.631.09
YouTube 6 to 9 tags/object 53,284 7.391.11
10 to 74 tags/object 59,285  13.605.02
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4.4 Results

All experiments were performed on a Linux PC with an Intel €@rDuo 2.20GHz and
4GBytes RAM. In the following sections we discuss the effegtess and the computational
efficiency of LATRE.

4.4.1 Precision

Tables4.5, 4.6 and4.7 show the results for p@x for each subset of the three catlesti
The precision at x was determined by counting how many tatigeitop x recommendations
were correct according to th2’ set. We denote the number of correct tags as c. Next, we
computed the proportion of correct tags in the set of x talg&ining a value betweehand

1. More formally, we have the following equation (Equatibn).

c
p@x= ™ (4.1)

If the number of recommended tags was smaller than x, wecstilsidered a fixed x.
For instance, for p@?5, if only 3 tags were recommended ang thel second was correct,
than our precision would be/% = 0.2, i.e., 5 is fixed.

We varied x from 1 to 5, following the analysis performed ineyous
work [Garg and Weber2008 Sigurbjérnsson and van Zwa@008. The reason is that we
are interested in the performance of the methods on the tépeafanking (i.e., the first 5
recommendations), since in tag recommendation the uset i&kealy to scan a large number
of tags before choosing which ones are relevant. Furthexnitas better to recommend good
tags earlier in the ranking (e.g., p@1), so that the userdasan fewer tags. We executed
three algorithms over the subsets: the baseline, LATREawitlealibration (referred to as
LATNC) and LATRE.

Statistical tests have shown that LATRE performs signifigavetter (p < 0.05) than
the baseline in all scenarios we experimented with. LATRE $teown gains in p@5 from
6.4% in LastFM to 23.9% in Delicious if we consider only thevlr ranges; considering
only the middle ranges, LATRE has shown gains in p@5 from%/{ryDelicious to 28.9%
in YouTube; and considering only the upper ranges, LATREdmsvn gains in p@5 from
17.2% in Delicious to 46.7% in LastFM. It is important to ndbat the absolute precision
values shown in this paper are underestimated, since thayebm additional tags that are
relevant to the user and that were not used by he/she to desha object (and thus are not
in )}), as discussed irdarg and WebeR00§.

One interesting conclusion we could draw from the experisisrnthat calibration has
its best performance in the lower ranges, indicating thadistortions described in Section
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Table 4.5. Delicious: results for p@1, p@3, p@5 and MRR. Statisticalfynificant
differences § < 0.05) are shown in (1) bold face and (2) marked with an asterisk (*)
representing respectively (1) cases in which LATNC andAFRE performs better than
the baseline and (2) cases in which LATNC performs worse tharbaseline. LATRE
relative gains are shown in the last column.

Baseline LATNC LATRE [% gair

p@1 106 105 .129 217

_ _ p@3 063 059 077 222

2-6tagsiobject a5 o4 045 057  23.9
MRR  .158  .154 188  19.0

p@1 307 328 330 75

_ _ p@3 196 214 218 112

/-12tagsfobject o5 150 160 166 107
MRR 417 426 435 423

p@1 506 544 543 73

_ _ p@3 362 414 413 141

13-30tagslobject o5 585 335 334 172

MRR 627 .659 .659 5.1

Table 4.6.LastFM: results for p@1, p@3, p@5 and MRR.
Baseline LATNC LATRE [% gain

p@1 313 320 327 45

_ _ p@3 174 180  .187 75

2-6tagsiobject o5 195 128 133 6.4
MRR  .403  .409 418 3.7

p@1 539 574 575 6.7

] _ p@3 366 410 411 123
/-16tagsfobject oo 979 314 316 133
MRR  .646 670  .672 4.0

p@1 400 564 564 410

p@3 .328 476 475 44.8
p@5 .289 425 424 46.7
MRR .560 .695 .695 24.1

17-152 tags/object

3 have a more damaging effect in these ranges. It is speciddiguit to perform well in
the lower ranges since there is very little information takwith, e.g., when there are two
tags associated with an object, only one tag can be used assang only one tag can be
considered to be the correct answer. Several applicati@isuse tag co-occurrence could
benefit from calibration in these cases, such as in tag eigaf® the cold start problem
[Krestel et al.2009 Heymann et a).2008 (see Sectiord.3).
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Table 4.7.YouTube: results for p@1, p@3, p@5 and MRR.
Baseline LATNC LATRE [% gain

p@1 288 328 350 215

_ _ p@3 153 171 184 203
2-btagsiobject o5 105 113 122 162
MRR 356  .385 411 155

p@1 405 485 491 212

p@3 273 .356 .365 33.7
p@5 .204 254 .263 28.9
MRR 497 .556 .567 14.1

6-9 tags/object

p@1 534 626 627 174
_ __p@3 419 528 530 265
10-74tagsiobject | o5 347 as9 462 331

MRR .560 .704 .706 10.7

As the number of tags per object increases, the benefit ofyusiore elaborated
rules becomes clearer. The gains in precision in the middieugpper ranges are mainly
due to LATNC (i.e., LATRE without calibration), and the reasis that there are more
opportunities for producing complex rules in these ranges, there is more informa-
tion available. Applications that use tag co-occurrencehjects with a large number of
tags could benefit from these elaborated rules, such as fmsion for index enrichment
[Sigurbjérnsson and van Zwa008 Heymann et a).2008, tag ranking Liu et al., 2009
or tag translation$iersdorfer et al2009.

It is interesting to notice that in the range 17-152 of Lastf baseline has achieved
a recommendation performance which is lower than its peréoice in the range 7-16
(p@1=0.40 vs. p@1=0.54). The baseline does not performimedinge 17-152 of LastFM
because this subset has a high number of tags per objectdbt=t®), and the algorithm
tends to recommend tags that are too general, such as “nargic'listen”.

Furthermore, Table4.5, 4.6 and4.7 show that the absolute precision values for Deli-
cious are lower than the corresponding values in LastFM andlitYbe. The reason is that
Delicious has a much more diverse set of objects, since Wgbspean contain or refer to
any kind of data, information or media. As an example, Yoweahd LastFM pages can
also be stored as a bookmark in Delicious. In fact, the nurabdistinct tags in Delicious
in the five partitions used in our experiment (20,000 objasthigher than in YouTube and
LastFM. In the lower ranges, Delicious has 13,247 uniqus,tafile LastFM and YouTube
have 5,164 and 6,860, respectively. The same relative props were found in the middle
and higher ranges.
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4.4.2 Mean Reciprocal Rank (MRR)

Tables4.5, 4.6 and4.7 also show the values of MRR for all ranges. Statistical icance
tests were performegh (< 0.05) and results that are statistically different from the liase
are shown in bold face. MRR shows the capacity of a methodtonreelevant tags early in
the tag ranking. The reciprocal rank is the multiplicatimearse of the ranking of the first
correct answer of a ranking. The mean reciprocal rank is\keage of the reciprocal rank
for all test instances. More formally, we have Equa#o? in which V is the number of test
instances andank; is the rank of the first correct answer in the ranking for tastance:

[N

1 1
MRR = — 4.2
|N| Zz; rank; (4.2)

We can see that LATRE has results significantly better tharb#seline for all ranges
in all datasets. MRR measures if the method returns the &flsvant tag early in the tag
ranking. It is different from p@x since it only considers first tag of the ranking, which
means that relevant tags recommended later are not coedidelis also a complementary
metric in the sense that methods that recommend more reél@agamlower in the ranking can
have a lower score than methods that recommend fewer relagsearly in the ranking.
In other words, while p@x measures if a method recommendg madevant tags, MRR
measures if the method recommends relevant tags earliee irabking.

The MRR results show that LATRE also have a better performantop of the recom-
mendation rankings. In a tag recommendation system thenmédd have to scan a smaller
amount of tags before finding a relevant one. Moreover, Ehle 4.6 and4.7 show that
LATRE's gain in MRR is always smaller than its gain in preoisi The reason is that LA-
TRE is better not only considering the first relevant tag,ds® considering all the relevant
tags.

4.4.3 Computational Efficiency

We evaluated LATRE performance by measuring the averagrigga time per object. Ta-
ble4.8shows the results for each subset. For subsets with few eagbpect, the average and
maximum tagging time are in the order of few millisecondsefgected, the average tagging
time increases with the ratio of tags per object. Howeveamdur objects that are associated
with many tags, the average time spent per object is nevetegrénan 1.8 seconds. This
makes LATRE specially well-suited for real-time tag recoemdation Song et al.20084.

The last set of experiments aims at verifying the increagbemumber of extracted
rules as a function of,,... According to Theorem 1, the number of rules extracted by
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Table 4.8. Tagging time in seconds. We also show the standard devietithe average

tagging time.
Collection Subset Avg. Time Max. Time
2-6  0.0023+ 0.0019 0.016
Delicious 7-12 0.067+ 0.047 0.33
13-30 0.47+ 0.24 1.23
2-6  0.0062+ 0.0055 0.039
LastFM 7-16 0.20+ 0.15 1.18
17-152 1.7 0.34 2.44
2-5  0.0023t 0.0023 0.037
YouTube  6-9 0.027+ 0.026 0.32
10-74 0.31+ 0.27 1.56

Table 4.9. Number of extracted rules for each subset of Delicious.

N 2-6 tags/object 7-12 tags/object 13-30 tags/object
mae Baseline LATRE  Baseline LATRE Baseline LATRE
1 2.108 1.108 3.108 1.107 3.108 7.107
2 2.10'2  2.10° 5.10%2 2.107 6.10'2 7.107
3 3.10%  3.10° 8.10%6 2.107 1.10%7 8.107

Table 4.10.Number of extracted rules for each subset of LastFM.

o 2-6 tags/object 7-16 tags/object 17-152 tags/object
mae Baseline LATRE Baseline LATRE Baseline LATRE
1 2.107 3.106 5.107 2.107 5.107 5.107
2 1.10""  3.106 3.101 3.107 4.10% 6.107
3 5.10%  3.10° 2.101 4.107 3.101° 6.107

Table 4.11.Number of extracted rules for each subset of YouTube.

N 2-5 tags/object 6-9 tags/object 10-74 tags/object
mae Baseline LATRE Baseline LATRE Baseline LATRE
1 5.107 1.108 6.107 9.106 6.107 4.107
2 3.101 2109 410" 1.107 4.10% 6.107

3 2.10%  2.10° 3.10%  1.107 3.10° 7.107
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LATRE increases polynomially. Tabl&s9, 4.10and4.11contrasts the number of rules ex-
tracted by LATRE with the number of rules that would be exteddy the baseline. We show
results for Delicious, LastFM and YouTube. Clearly, the twemof rules extracted by the
baseline increases exponentially, while the number ofredgracted by LATRE increases at
a much slower pace, usually remaining in the same order ohituatg.

The number of extracted rules for the baseline increasssvatt the size of the vo-
cabulary for the range. Since the baseline must pre-congluéssociations between tags,
for a vocabulary of siz& the number of extracted rulesii&«=*!, In the case of LATRE,
the number of extracted rules also depends on the size oéshénstance, and is computed
by using a counter inside LATRE program.

Table 4.12. We calculated the average extracted rule size for DelicibastFM and
YouTube. The average rule size is the number of tag4 jmnvhich we denote ak.

Collection Range # Avgk
2 to 6 tags/object 1.017

Delicious 7 to 12 tags/object 1.127
13 to 30 tags/object 1.317

2 to 6 tags/object 1.112
LastFM 7 to 16 tags/object 1.355
17 to 152 tags/object  1.157

2 to 5 tags/object 1.049

YouTube  6to 9 tags/object 1.118
10 to 74 tags/object 1.352

In Theorem3.1we have proved that the complexity of LATRE increases patyiadly
with the number of tags in the vocabulary. If the vocabulaag kizen and the maximum
size of a rule antecedent is the complexity of LATRE isO(n*). In Table4.12we show
the average size df that we obtained in our experiments. It is interesting toaeothat the
averagek is never greater than5, meaning that our method’s complexity is almost linear in
the number of possible tags to recommend.

Another interesting observation obtained from the dataainld4.12is that in LastFM
the rule size is smaller for range 17 to 152 tags/object it to the previous range. After
analyzing the test and training data, we realized that thectdin this range had a great
amount of noise and many tags in the test objects were nodfouthe training dataset. For
this reason, LATRE could not extract complex patterns ferspecific object, and the rule
size became smaller. However, it is interesting to notie tthe precision did not suffer any
negative influence due to this fact.
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4.5 Limitations of LATRE

LATRE does not apply in situations in which the answer timedseto be very low and the
recommendations cannot be cached for a long time, such aglinime systems. Further-
more, LATRE does not apply if the object has no input tags, ae object has just been
created and the user have not associated any tag yet. Bagenl experiments, we can see
that LATRE is better suited for tag expansion applicatianghsas index enrichment, since it
works better in a large amount of tags is given as input.

4.6 Summary

In this Chapter we show experimental results that aim touatalLATRE in terms of preci-
sion and efficiency. We used three different datasets tmparéxperiments, namely, Deli-
cious, LastFM and Youtube. We compared our method with @-sththe-art baseline that
uses only collective knowledge. Our method obtained bpteision and MRR scores when
compared to the baseline. Furthermore, we have shown thatethod is efficient and that
it extracts a smaller number of rules due to its on demandoagpr Next, we expose our
conclusions and plans for future work.






Chapter 5

Conclusions and Future Work

In this dissertation we have introduced LATRE, a novel coumence based tag recommen-
dation method. Tag recommendation is a recent problem #@mthsen in the context of
social tagging systems, which allow users to associate @msimo objects in Web 2.0 sys-
tems. Tag recommendation incentive users to contributeavitigger and richer set of tags.
At the same time, it fosters convergence in the set of usex] &ftectively improving the
guality of IR tasks.

We presented some background information on social tagyisigms, on multi-label
classification methods and on associative classificatistesys in Chapte2. We modeled
the tag recommendation problem as a multi-label classicgroblem, in which each label
is a tag in the system. A set of tags is given as input, and afgetated tags is given as
output.

In Chapter3 we present our method with details. First, we formalize tloeleling of
the problem as a multi-label classification problem. Nex,mesent the lazy (on-demand)
aspect of our method with details. The on-demand approaitites the search space for new
rules, improving efficiency in rule extraction and allowitihge use of more elaborate rules in
feasible time. LATRE interprets each extracted rule as a fmta candidate tag. After all
votes are summed, tags are sorted according to their sdéirealy, LATRE calibrates the
scores in order to correct possible distortions in the fiaaked list of tags.

We present experimental results and discussions in Chapt#e used three different
datasets, namely, Delicious Web pages, LastFM artists andube videos. These datasets
were chosen since they are from popular systems and aresegpaéive of a diversity of
media types. We compared our method with a state-of-thbasetline that also uses rules,
but do not explore a lazy approach.

Our method obtained significant improvements in precistoneand MRR. The reason
is that it is able to extract more elaborate rules in feagibie (the number of extracted rules
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is much smaller). While our proposed calibration mecharfists its best performance in
subsets with a few number of tags, the use of more elaborks improves precision in
subsets with a larger number of tags. LATRE achieved imprarés in precision (p@5)
from 10.7% to 23.9% for Delicious, from 6.4% to 46.7% for LE&t and from 16.2% to

33.1% for YouTube.

Furthermore, we measured the execution time of LATRE, aathiolh that it has a
feasible execution time and can be used in industrial systérhe average time spent per
object is never great than 1.8 second. In the vast majoritybpécts the execution time
is smaller than 1 second. Moreover, we have shown that thébauof extracted rules in
LATRE grows in a much smaller rate when compared to the baselihe baseline can only
deal efficiently with rules of size 1, while LATRE can explaites of larger size.

As future work, we will investigate other textual featurdstiee Web 2.0, and how
these features may improve tag recommendation. Betweeibte$eatures we can cite the
object description, its title and comments. In specific dm®ave can exploit even more
information, such as a Web page text and structure. For eeawe can use the textual
content of items to infer the similarity between tags.

Another future direction is to explore the personalizecadatorder to improve rec-
ommendation to specific users. In social bookmaking systrk as Delicious we have
access to user information, that is, we know the sequenchjetts a user has tagged in the
past. We can consequently explore user information to olg@rsonalized tag recommen-
dations, that is, recommendations using collective kndgdeand the specific user history.
For instance, a user that speaks German will most likely findemelevant tags in German.

An interesting study would be to measure the robustnesseamigthods by introduc-
ing noise in the folksonomy. In this way we could measure thpact of noise (such as
ambiguous tags) in the effectiveness and performance oh#tkods. The results would be
interesting to the design of new methods that are robustrion@sy environments.
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