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Resumo

A base neurobiolégica estrutural do cérebro necessaria para a integracao do que
chamamos de dor estad presente no feto humano apos a 20% semana de gestacao e
presume-se que no terceiro trimestre o feto humano pode sentir dor aguda e provavel-
mente cronica. A dor estd associada nao apenas ao sofrimento, mas também a uma
maior incidéncia de declinio cognitivo, portanto, a avaliacao do comportamento rela-
cionado a dor fetal pode melhorar drasticamente a sensibilidade e a especificidade dos
marcadores de vitalidade e bem-estar fetais usados atualmente. No entanto, a avali-
acao dos comportamentos relacionados a dor é relativamente limitada dentro do ttero,
pois a ocorréncia de movimento fetal intrauterino nao é uma indicacao de que o feto
esta sentindo dor. A estratégia de usar a expressao facial como marcador substituto da
presenca de dor ja foi utilizada em outros cenarios, como em recém-nascidos, em idosos
nao comunicantes, em adultos com dificuldade de fala e em outros mamiferos nao pri-
matas. Ao registrar as expressoes faciais de fetos submetidos a cirurgia intrauterina,
utilizamos a reagao de dor aguda desencadeada pela injecao de anestésico administrada
antes do ato cirdrgico como um modelo confidvel e padronizado de dor aguda. Como
o rosto do feto se assemelha ao rosto do adulto em muitos aspectos, empregamos uma
rede neural profunda de reconhecimento de rosto treinada em milhoes de rostos de
adultos e ajustamos seus parametros para detectar sinais de dor nas expressoes faciais
do feto. Mostramos que a dor fetal pode ser detectada com indice de acertos e AUC

ROC de aproximadamente 838% e 99%, respectivamente.

Palavras-chave: Feto Humano, Dor, Dor Fetal, Ultrassom 4D, Aprendizado Pro-

fundo, Visao Computacional.
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Abstract

The neurobiological structural brain background necessary for the integration of what
we call pain is present in the human fetus after the 20th week of gestation and it is
assumed that in the third trimester of gestation the human fetus can experience acute
and likely chronic pain. Pain is associated not only with physical suffering but also with
a higher incidence of cognitive decline, thus fetal pain-related behavior evaluation may
drastically improve sensitivity and specificity of currently used fetal vitality and wellbe-
ing markers. However, assessment of pain-related behaviors is relatively limited inside
the uterus, as the occurrence of intrauterine fetal movement is not an indication that
the fetus is feeling pain. The strategy of using facial expression as a surrogate marker
of the presence of pain has already been used in other scenarios, such as in newborns,
in non-communicating elderlies, in speech-impaired adults, and in other non-primate
mammals. By recording facial expressions of fetuses undergoing intrauterine surgery,
we used the acute pain reaction triggered by the anesthetic injection administered prior
to surgical act as a reliable and standardized model of acute pain. Since the fetus face
resembles the adult face in many aspects, we employ a face recognition deep neural
network trained on millions of adult faces, and tuned its parameters in order to detect
pain signals in fetus facial expressions. We show that fetal pain can be detected with

an accuracy and ROC AUC of aproximadetedly 88% and 99%, respectively.

Palavras-chave: Human Fetus, Pain, Fetal Pain, 4D Ultrasound, Deep Learning,

Computer Vision.
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Chapter 1

Introduction

Fetal pain-related behavior evaluation may drastically improve sensitivity and speci-
ficity of currently used fetal vitality and wellbeing markers, allowing for better detection
of fetal distress with less false positive rates. We propose to (i) create a new protocol
for assessing signals of pain in fetal facial expressions using a sophisticated deep learn-
ing model, (ii) inaugurate the possibility to integrate this automated protocol in 4D
Ultrasound (4D-US) machines used in the everyday evaluation of fetal vitality and (iii)
advance the studies towards fetal health and vitality estimation still in the prenatal
phase.

Chronic pain affects 20% of the general population and is associated not only
with physical suffering but with a higher incidence of cognitive decline and worse
performance in adult life. The neurobiological structural brain background necessary
for the integration of what we call pain is present in the human fetus after the 20th
week of gestation and it is assumed that in the third trimester of gestation the human
fetus can experience acute and likely chronic pain.

The goal of the present work is to determine whether human fetuses demonstrate
discriminative acute behavioral responses to nociceptive input that can be automati-
cally detected using deep learning applied on 4D-US images of fetal faces. Additionally,
creating datasets to enable deep learning applications on the subject, furthermore, the
greater goal is to assess general fetal vitality, however, the preliminary steps include
assessing fetal pain.

Machine learning is a form of AT (Artificial Intelligence) which completely changed
the paradigm of traditional computer science algorithms: it is capable of consuming
data as input, mapping each sample to its corresponding answer. In this case, the input
data are 4D-US images of fetuses, where those images have been labeled by medical

professionals. Therefore, this project owns the adequate arrangement to explore the
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2 CHAPTER 1. INTRODUCTION

application of machine learning to assess fetuses. Further, Al has developed to the
point of treating novel problems in the computer vision domain that previously could
only be poorly assessed. Accordingly, the usage of the novel CNNs (Convolutional
Neural Networks) has the potential to lead to great performance across many different

vision applications.

1.1 Motivation

Diagnosing newborns is significantly more challenging than diagnosing adults since they
are unable to self-report pain. As a consequence, to better recognize pain, specialists
have coupled nonverbal feedback such as facial expressions with physiological data.
This approach has been evaluated and proven to comprise a set of reliable pain markers
leading to the creation of multiple pain scales like the NFCS (Neonatal Facial Coding
System by Grunau et al.) for neonates or it's adaptation for fetuses in the third trimester
of gestation, the fetal-5 scale. Prolonged exposure to painful states can have a variety
of negative repercussions, including psychological problems, being especially dangerous
in neonates and fetuses. Early detection of painful fetal scenarios are really important
to enable early interventions and increase the overall fetal wellbeing. Therefore, pain-
related behaviors and suffering would request not only specific analgesic treatment
during intrauterine procedures and surgeries but also a follow-up to assess the efficacy
of such analgesic treatments would be mandatory, something that is not currently done.

Additionally, abortion is another major issue for which, particularly in unintended
pregnancies, it has been very common throughout the world between 2015 and 2019
[Bearak et al., 2020]. In 2016, the state of Utah in the United States passed an abortion
law requiring anesthesia to women having abortions at 20 weeks of pregnancy or later,
however, the anesthesia is not intended for the mother but for the fetus(es) [Fantz,
2016].

Furthermore, through the usage of CNNs (Convolutional Neural Networks), the
field of machine learning has reached the point of automatically extracting patterns
from the input images, as our experiments show, thus the machine learns by itself,
associated with the human defined labels. That's extremely relevant, since not only
humans are capable of teaching the machines, but also humans can learn from the
machines, creating a virtuous discovery cycle for both ends, as long as the associated
explainability is successfully explored. Through the usage of CNNs, extracting pat-
terns of an arbitrary set of images became a powerful task, since artifacts which are

both humanly visible and invisible may be detected and identified. Additionally, such
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artifacts might also corroborate or refute human made hypotheses and statements.
The present project uses deep learning models consuming as input 4D-US images
to assess whether a fetus is feeling pain, however, the ultimate objective is to develop
a similar application to infer the vitality score a fetus would be given at delivery
time. The inference would be achieved based on a regression task, expressing the fetal
vitality as the apgar score [Apgar, 1966]. Furthermore, hundreds of fetal videos were
collected using 4D-US machines, and those fetuses have been assessed after delivery to
obtain their respective apgar scores, creating a large repository of data which ultimately
enables the production of large datasets for deep learning applications on the fetal

assessment theme.

1.2 Thesis Statement

Since the fetus face resembles the adult face in many aspects, we employ a face recog-
nition deep neural network pre-trained on millions of adult faces, and tuned its pa-
rameters in order to detect pain based on the fetal facial expressions present in 4D-US
images. We have used modern deep learning techniques such as data augmentation
and transfer learning to improve the obtained results, and we show that fetal pain can
be detected with an accuracy of roughly 88% and ROC AUC of roughly 99%.

1.3 Contributions

Since fetuses present responses to nociceptive stimuli that can be visually detected
using 4D-US images, as will become more clear later on, the present work provides

multiple contributions:

e A sophisticated machine learning model that can be used to assist detecting the

presence of pain in fetuses;

e Fetal pain datasets cross validation ready to train machine learning models in
addition to the methodology to generate them. Further, adaptations of the pre-
sented methodology might be employed to generate datasets for a variety of fetal

related applications using Al;

e The inauguration of the possibility to integrate automated fetal pain assessment
on 4D-US machines, including the automatic generation of associated XAl (eX-
plainable Artificial Intelligence) elements. Furthermore, the detection of pain-

related behavior in the human fetus during healthy and pathological pregnancies
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is associated to the point that pain-related behaviors and suffering would request
not only specific analgesic treatment during intrauterine procedures and surgeries
but also a follow-up to assess the efficacy of such analgesic treatments would be
mandatory, something that is not currently done. Ultimately, doctors and care-
givers would be empowered to detect and understand fetal discomfort related to

nociceptive stimulation;
e Opening the way to similarly assess general fetal wellbeing using Al

e Exploring the explanatory slope provided by machine learning to detect evidence
for the presence or absence of pain in fetuses, in addition to crossing the generated
explanations with the ones human made as an attempt to corroborate or refute

them;

1.4 Organization

Further ahead, this dissertation is organized in the following manner. Chapter 2
presents the most relevant research findings and how they are related to the present
work; Chapter 3 provides fundamental knowledge on pregnancy and fetal health which
is required to further understand the present work; Chapter 4 provides fundamental
knowledge on deep learning which is also required to further understand the present
work; Chapter 5 describes the initial phase of the project's methodology, including the
works of Bernardes et al. [2018] and Bernardes et al. [2021]| which were sources of fun-
damentals and inspiration for the present work, in addition to original contributions;
Chapter 6 describes the final phase of this project's methodology; Chapter 7 presents

the the conclusions; and Chapter 8 presents future work.



Chapter 2

Related Work

This chapter is focused on presenting the most relevant research findings and how they

are related to the present work.

2.1 General Pain Studies

Presently the IASP (International Association for the Study of Pain) describes pain as
an unpleasant sensory and emotional experience associated with, or resembling that
associated with, actual or potential tissue damage [Merskey and Bogduk, 1994]. Ad-
ditionally, this latest definition has a major difference to the previous one from 1979
stating that verbal description is only one of several behaviors to express pain; inability
to communicate does not negate the possibility that a human or a nonhuman animal
experiences pain. The new terminology superseded the previous one, which used to
classify pain based on a person’s capacity to explain the experience, ultimately con-
templating an important fundamental of the present work: the qualification of human

fetuses to experience pain.

Despite assessing pain on fetuses being a very difficult task many decades ago,
with the advent of 4D-US machines, fetuses may easily be recorded in video, even
though they are inside the mother's womb. Ultimately, the 4D-US technology enabled
far more than assessing just pain, including the appraisal of neurodevelopment, body

structure, facial expressions, among more.
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2.2 Pain Indicators and Scales for Infants

Due to the incapacity to verbally describe experiencing pain, experts have coupled
non-verbal responses from newborns, non-communicating elderlies, speech-impaired
adults, and other non-primate mammals. Particularly for neonates, scientists have
used feedback such as facial expressions, body movements, crying sounds, changing in
behavioral states, psychological indicators and biological markers [Bellieni, 2012| not

only as methods to detect pain but, in some cases, also to quantify it.

Facial expressions comprises several features such as eyes squeezing shut or mouth
stretching, being a set of important indicators of pain in newborns. The trait has been
used by several pain scales, including the NFCS (Neonatal Facial Coding System)
[Grunau et al., 1998|, however, facial expressions have been used even beyond the de-
tection of pain, particularly as an indicator of fetal brain function [AboEllail and Hata,
2017]. Notwithstanding, body movements such as the activity of arms and legs, or
clenching of fists or toes are also used as pain indicators in neonates [Zimmermann,
1991]. Crying is another response provided by newborns, which could indicate pain
[Barr et al., 2000] in addition to other non-painful stimuli such as hunger or anger. Also,
there are changes in behavioral state that have been proven useful in the assessment of
pain including sudden awakening, or crying. Further, the most often utilized physiolog-
ical markers of pain include changes in heart rate, blood pressure, oxygen saturation,
and breathing patterns |Finley and McGrath, 1998]. Finally, biological markers of pain
include stress hormones such as cortisol, adrenaline, and beta-endorphins [Herrington

et al., 2004].

These pain indicators may be combined to generate unique and understandable
pain assessment instruments, known as pain scales, that are used to rate the severity
of the discomfort. The sole occurrence of a potential pain related event in neonates are
generally not enough to offer guarantees that the cause is truly due to nociceptive stim-
uli, however, the context of the responses, in addition with the combination of multiple
feedback items, can help distinguishing the sources of these symptoms more reliably
[Bellieni, 2012]. Further, there exists multiple scales particularly aimed at infants such
as Neonatal Infant Pain Scale (NIPS) [Lawrence et al., 1993|; Premature Infant Pain
Profile (PIPP) [Stevens et al., 1996]; NFCS |Grunau et al., 1998]; Echelle Douleur In-
confort Nouveau-Né (EDIN) [Debillon et al., 2001|; Cry, Requires Oy, Increased vital

signs, Expression, Sleeplessness (CRIES) [Suraseranivongse et al., 2006]; among more.
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2.3 On the Feasibility to Assess Fetal Facial

Expressions as Pain Markers

In the work of Bernardes et al. [2018|, they have reported an experimental model of
acute pain in fetuses receiving intrauterine anaesthesia. As there is an evident nocicep-
tive stimulation in this scenario, facial expressions recorded before the intramuscular
injection were compared to those recorded immediately after the treatment. They have
successfully employed the NFCS [Grunau et al., 1998 pain scale in a randomized and
blinded assessment of fetuses, where results have shown discrimination between the
resting group and the group subject to the acute pin prick. Finally, they have sug-
gested that when completely and formally confirmed, the NFCS pain scale might allow
for the monitoring of analgesic medication during fetal operations, as well as a deeper
understanding of the presence of pain behaviors in fetuses with long-term conditions,
ultimately improving fetal wellbeing. The follow up work by Bernardes et al. [2021],
lead to the creation of the novel fetal-5 pain scale as an adaptation of the NFCS for
fetuses, figuring another related work which is also fundamental for the present one,

and it is further discussed in Section 3.5.

2.4 Previous Machine Learning Models Applied on

Pain Assessment

Machine learning has already been employed on pain assessment, it has been a popular
topic of research lately. Particularly for adults, Mauricio et al. [2019] have explored
spatiotemporal features extracted from video sequences considering pain stimuli as
references in the temporal analysis. Further, for neonates, Zamzmi et al. [2016] presents
a multimodal method for automated pain evaluation, in which a pain score is generated
by combining a few indicators such as facial expressions, body movements, and changes
in vital signs. Subsequently, focusing neonates as well, another research also included
crying noises |Zamzmi et al., 2017], moreover, Zamzmi et al. [2018, 2019] have employed
CNN based deep neural networks along with data augmentation and transfer learning
in order to improve performance, similarly to strategies adopted by the present work.

Finally, de Oliveira et al. [2019] master's dissertation was advised and co-advised
by the same researchers as the present work on the same theme, in addition to having
access the same raw fetal data. However, de Oliveira et al. has achieved preliminary
results suggesting potential. Differently from the first work, the present one has a

major methodological improvement. Since fetuses subject to the painful stimulation
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were simultaneously under the influence of an anesthetic drug, this work restricted
the collection and labeling of painful fetal images to a 10 seconds time window right
after the anesthesia, discarding all samples that could potentially be biased, as further
described in Chapter 5, comprising a major difference from de Oliveira et al. [2019].
Further, despite any similarities, each work built its own datasets along with its partic-
ular machine learning pipeline. Moreover, the same strategy was utilized as an attempt
to distinguish between actual acute pain and a non-painful disturbing stimulation, as

the non-painful group included samples from this later scenario.



Chapter 3

Background on Pregnancy and
Fetal Health

This chapter presents fundamental background knowledge in persuance of enabling
readers to further understand the relevance of this work and the nature of issues asso-
ciated with the health of pregancy and fetuses, in addition to the assessment of their

context.

3.1 Fetal Signs Suggesting They are Capable of
Experiencing Pain

In the present work, all assessed fetuses were in the third gestational trimester i.e.,
31.1+2.8 weeks into the pregnancy, when the basic circuitry responsible for nociceptive
experiences is believed to be completely functional. That’s because, as time passes,
fetuses develop their body, contemplating new functionalities according to Table 3.1.
When compared to preterm neonates of similar age, various local environmental
factors may impact the perception and experience of nociceptive stimuli in the growing
fetus. These environmental factors, as well as the start of postnatal neuronal and
behavioral development, establish settings in which pain arises from nociception [Slater

et al., 2010, awareness, and past experiences.
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Table 3.1. Development of neurological characteristics in fetuses which suggest
they are, indeed, capable of feeling pain. Information obtained from Bernardes

et al. [2021].
Approximate
tational :
gosta 1(?na Associated fetal development phenomenon or phenomena
maturity
(weeks)
5 the spinal cord has evolved enough to produce its first synapses
|Okado, 1981];
Between 12 and 15 | occurrence of thalamic projections from the thalamus to the develop-
ing cortex;

Between 23 and 24 | within the cortical plate, major corticocortical, thalamocortical, and
basal forebrain bundles form synapses |Glover and Fisk, 1999], in
addition to free nerve endings and their projections penetrate the
spinal cord and completely develop |Fitzgerald, 1987];

25 brain blood flow, noradrenaline release |Giannakoulopoulos et al.,
1999|, and behavioral changes caused by noxious stimuli are quickly
noticed [Craig et al., 1993; de Graaf-Peters and Hadders-Algra, 2006;
Giannakoulopoulos et al., 1994; Slater et al., 2006|;

3.2 Methods to Assess Fetal Context

Ultrasound machines are devices which emit ultrasound waves to create sonograms,
i.e., sound waves above human hearing capabilities (20kHz) are used to create images.
Such equipment have different versions with different capabilities each, being available
as 2-dimensional, 3-dimensional and 4-dimensional ultrasound (2D-US, 3D-US and 4D-
US, respectively) devices. The 2D-US instrument is capable of capturing 2-dimensional
images without detailed geometrical volume perspective, while the 3D-US version adds
detailed geometrical volume perspective and the 4D-US machine captures videos with
geometrical volume perspective on each frame.

Among the advantages of using 4D-US machines to assess fetal context it includes
assessing through high-quality images in real-time the fetal movements and facial ex-
pressions, and the discovery of prenatal neurodevelopment. Additionally, structural or
functional problems may also be evaluated.

Towards the objective of auscultation, or listening to internal sounds in an an-
imal or human body, there are different available devices. Particularly for fetuses,
examples include the Pinard horn, which is a type of stethoscope, the Doppler fetal
monitor and the cardiotocograph (CTG), which are ultrasound devices, all of them
are used to monitor the fetal heartbeat for prenatal care. Fetal health and wellbeing
may be damaged by the misuse of ultrasound-based devices through long duration of

examinations, poor angulation and position of the sound emitting ends of the system



3.3. THE BENEFITS OF EARLY PAIN DETECTION IN HUMAN LIFE 11

towards the mother's body or emitting sound frequencies outside of adequate range.
The misuse could potentially lead to thermal and non-thermal effects on the fetal tis-
sue, including the possibility for over-heating fetal tissue and introducing mechanical
stress on the fetus due to cavitation, radiation force, and acoustic streaming |[Church
and Miller, 2007].

3.3 The Benefits of Early Pain Detection in Human
Life

Detection of pain-related behavior in the human fetus during healthy and pathological

pregnancies, especially as early as possible, has three main implications:

e One is related to the obvious point that pain-related behaviors and suffering
would request not only specific analgesic treatment during intrauterine proce-
dures and surgeries but also a follow-up to assess the efficacy of such analgesic

treatments would be mandatory, something that is not currently done;

e Another issue is related to the fact that pain and suffering may occur in certain
intrauterine diseases and besides the demand for treatment of the experience of
pain itself and the subsequent cardiovascular, metabolic and hormonal changes
accompanying it may worsen the health of the fetus and constitute a supplemen-

tary burden on fetal wellbeing, in addition to the already existing pathology;

e A third and perhaps the most impacting point is that pain-related behavior is a
potential marker of fetal vitality and health. Fetal vitality parameters used in
everyday clinics include a group of heterogeneous and highly variable parameters
that have as a group low sensitivity and specificity that would welcome strategies

to increase its prognostic yield;

Furthemore, pain might be an indicator of health conditions or diseases requiring
fetal surgery. There are specific scenarios in which surgical interventions still in the
intrauterine phase offer the possibility of improving wellbeing and general life quality

for the child after birth.
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3.4 The Benefits of Medicine-Based and Surgical

Interventions in Fetuses

Many prenatally diagnosed conditions can be treated before birth, ranging from little
punctures to major fetal surgery. Such fetal health conditions could be amended,
potentially saving the fetus life, improving its intrauterine wellbeing and life after
delivery.

Myelomeningocele is an example of fetal abnormality in which the standard in-
tervention method consists of surgery, as presented by the MOMS (Management Of
Myelomeningocele Study) trial [Adzick et al., 2011|, where the outcomes of pre and
after child delivery repair were assessed, leading to the conclusion that the procedure
performed in the prenatal phase might result in better neurological function. Later on
at school-age (5.9 to 10.3 years old), the children originally present in the MOMS trial
were assessed, and despite the fact that there were no significant differences in adap-
tive behavior, the group that received prenatal repair had significantly better motor
function and quality of life [Houtrow et al., 2020].

A study of fetal responses to painful stimuli revealed that painful interventions
could have long-term impacts on them [Van de Velde and De Buck, 2012], leading to the
conclusion that adequate pain treatment is indicated for potentially painful procedures
since it not only improves fetal wellbeing but also supports fetal immobilization, which

prevents undesired fetal movements from compromising these procedures.

3.5 The NFCS and its Adjustment for Application

to Fetuses

Despite the existence of multiple non verbal pain markers, the NFCS is particularly
focused on facial expressions, and was originally proposed as a method for pain eval-
uation in newborn infants [Grunau et al., 1998]. It may be used to monitor pain in
premature and full-term infants, however, it wasn't originally intended to be applied
on fetuses. Recent advancements have shown the feasibility of assessing acute pain re-
lated facial expressions in the human fetus using 4D-US images [Bernardes et al., 2018]
followed by an adaption of the NFCS, the fetal-5 scale, with a cutoff index suggesting
the discrimination between painful and nonpainful fetal states [Bernardes et al., 2021].

The idea behind the fetal-5 scale is that facial expressions, in addition to the
extra non-facial feature neck deflection, monitored using 4D-US machines are used to

assess whether fetuses are experiencing pain. Furthermore, each facial expression is
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assumed to be a marker where the co-occurrence of multiple such markers increase the
likelihood that a fetus is experiencing pain. The authors have suggested a cutoff index,
where the co-occurrence of 5 or more pain markers lead to the conclusion that a fetus is,
indeed, experiencing pain, however, less than 5 leads to the opposite conclusion. The
assessed fetuses were in the third trimester of pregnancy, where it was assumed that
fetuses are capable of presenting facial expressions in addition to experiencing pain.
Notwithstanding, in order to develop the fetal-5 scale, raters blinded to whether
fetuses belonged to the acute pain or control groups, scored 65 pictures of fetal facial
expressions based on the presence of 12 items: brow lowering, eyes squeezed shut,
deepening of the nasolabial furrow, open lips, horizontal mouth stretch, vertical mouth
stretch, lip purse, taut tongue, tongue protrusion, chin quiver, neck deflection and
yearning. Similarly to what is done in the present work, those 65 images comprise a
set of images extracted and filtered from a set of 4D-US video recordings from fetuses
belonging to the acute pain group, and control at rest and acoustic startle groups. The
12 items were analyzed and filtered, according to the author's criteria for redundancy
and usefulness, excluding 5 items that were considered to be of low discrimination
capacity, ultimately leading the fetal-5 scale to be comprised of 7 final items: brow
lowering, eyes squeezed shut, deepening of the nasolabial furrow, open lips, horizontal
mouth stretch, vertical mouth stretch and neck deflection. Therefore, the authors
reduced the number of facial items present in the fetal-5 scale, something similar to
what has been proposed to the original NFCS for neonates |Peters et al., 2003|. The
fetal-5 scale was named in such way due to 5 being the cutoff value discriminating

painful from non-painful fetal states.






Chapter 4

Background on Deep Learning

Deep learning, also known as deep structured learning, is a subfield of the broader ma-
chine learning field, which in turn, is also a subfield of the broader artificial intelligence
area. Deep learning is focused on models and algorithms which are inspired by the
structure and function of the (human) brain called ANNs (Artificial Neural Networks)
or simply NNs (Neural Networks). Deep learning has become increasingly popular due
to extremely impactful advancements on the field that enabled it to address a broad
variety of interesting Al problems while achieving impressive results, even beating pre-
vious SOTA (State-Of-The-Art) results at times. Machine learning is a field concerned
with models and algorithms capable of learning patterns from data samples, notwith-
standing, deep learning also has the same goal, however, it is focused on the usage of
ANNS.

An ANN is a mathematical algorithm consisting of groups of connected unit(s),
generally called (artificial) neuron(s), in a layered fashion, where those artificial neurons
and their connections approximately model the biological neurons and their synapses,
respectively. ANNs take input data as numbers and such connections between artificial
neurons may mathematically transform the input data which, in turn, contributes
towards the activation or non-activation of such artificial neurons that can propagate
the obtained result forward. The precise nature of such mathematical transformations
along each layer over an ANN actually depends on the exact layer type and its purpose,
e. g., layers could be of type fully connected, convolutional or attention, however, their
specificities will be properly introduced later on.

ANNSs layers such as the fully connected contains kernels which consist of learnable
parameters, also called trainable parameters, which are discovered during training time,
they are used by the layer to transform any data it receives as an input, producing

outputs. Such outputs might also be subject to non-trainable transformations such
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as the ones performed by activation functions. Inside of ANNs, the raw information
is received by the first layer, called input layer, and it propagates forward through a
sequence of layers where each of them may transform the data in a unique way, until

it reaches the last layer, called output layer, which contains the answer produced by
the ANN.

4.1 Machine Learning Paradigms

Diving a bit further into the broader field of machine learning, there are many different
slopes of problems that require different approaches in order to be solved. Each learning
method is suitable for specific scenarios, based on conditions such as the type of data
available or the nature of the characteristics required to be learned, among plenty more.

There are 3 fundamental paradigms of automated learning:

e Supervised: consists of problems where the target answer is known for each data

sample;

— Classification: consists of problems where the target outputs are of categor-
ical nature, generally they are represented as probability values in the [0, 1]

range;

— Regression: consists of problems where the target outputs are numbers,

generally constrained in intervals;

e Unsupervised: consists of problems where the target answer is unknown for each
data sample, therefore, the algorithm's goal is to find answers which best fits

certain set of criteria;

— Clustering: consists of grouping elements that are somehow related;

— Manifold: consists of learning algorithms that change the original dimen-

sionality of data;

e Reinforcement: consists of learning agents capable of taking actions or making
decisions which attempt to maximize the cumulative reward during the agent's

existence in the environment;

Note that the above expressions and organization of the different learning tasks

might differ from researcher to researcher.
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4.2 Fully Connected Layer

The most basic building block of ANNs are fully connected layers, which are also known
as dense or feedforward layers. It contains two kernels (sets of trainable parameters),
that are used to transform the input, into the output using the following mathematical

formulation:

output = input - ki + ko (4.1)

In the above formula, k; is a multiplication kernel, ko is the bias kernel, both
of them are matrices representing a set of calculations all in one equation. The fully

connected layer may also be understood as a function which maps from R™ to R".

4.3 Convolutional Neural Networks

CNNs (Convolutional Neural Networks) refers to ANNs which are composed of one or
more convolutional layers, they were originally designed to work with images in a pixel
level, however, they are really good at leveraging spatial relationships from the input
data's structural distribution. CNNs have become a powerful tool [LeCun et al., 1999
to learn patterns from spatially dispersed data such as images, where CNNs excel at
detecting patterns such as edges, corners, color shifts, among others.

A convolution operation may be performed on data of different dimensions, it
consists of a linear combination of neighboring features from the input, in order to pro-
duce the output at each convolution layer. The linear combination of input features
are determined by the convolution kernel, which is a matrix of weights that convolves
all the neighbors of a feature together, notwithstanding, the convolution may be ap-
plied to all features, where many kernels may be used. Such convolution kernels, also
called filters, are composed of trainable parameters that learn how to extract relevant
patterns, when available, in each block throughout the input data.

Another important characteristic which makes CNNs powerful is the capability
of extracting feature maps, they consist of relevant patterns particular to the training
data. Previously to CNNs in the field of computer vision and pattern recognition, there
were segmenter algorithms hand-crafted for general pattern recognition in images, such
as the Harris detector [Harris and Stephens, 1988], among others. Since they were hand-
crafted algorithms built for general purpose applications, the segmentation and feature
extraction process often relied on simplifying assumptions about the input data and

could rarely exploit the best patterns that could lead to the best results.
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Furthermore, CNNs are frequently associated with pooling operations which is a
great method to reduce the data dimensionality. After extracting the feature maps,
generally into a lower dimensional space, fully connected layers are used to combine

the extracted patterns to arrive at the final predictions.

4.4 Residual Neural Networks

Residual Neural Networks, also called ResNets [Kolen and Kremer, 2001|, have their
architecture designed in such a way where certain layers might have their output for-
warded to other layers ahead, skipping one or more layers along the sequence. The
residual characteristic of such ANNs lies in the fact that residual output values from
previous layers are forwarded, taking shortcuts to reach deeper layers while skipping
layers in the natural sequence. Such architecture is often accompanied by batch nor-
malization, a layer that learns how to scale its inputs by adjusting it into a gaussian
distribution of mean 0 and variance 1, ultimately equalizing the scales of outputs pro-

vided by the concatenation of two or more different layers.

In addition, the deeper neural networks grow the more difficult they become to be
trained, therefore, ResNets were developed to overcome such difficulties, mitigating the
problems of vanishing gradients [Pascanu et al., 2013] and degradation (accuracy sat-
uration) |Rakitianskaia and Engelbrecht, 2015]. Furthermore, the first problem arises
with gradient-based ANN optimization methods, backpropagation, and deep neural
network architectures, where the trainable parameters involved receive an update pro-
portional to the PDEF (Partial Derivative of the Error Function) with respect to the
current weight in each iteration of training. The PDEF accumulated across several
stacked ANN layers, responsible for the learning process, might present small scales
and, therefore, it may vanish before the backpropagation process is capable of reaching
and updating all layers. This behavior during training time prevents relevant updates
that would otherwise contribute to the model learning and improving, ultimately lead-
ing to deep learning models that can't be trained any further or at all. Additionally,
the second problem arises with degradation and it refers to the state in which a neu-
ron predominantly outputs values near the asymptotic ends of the bounded activation

function.
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4.5 Multi-Head Attention System in Neural

Networks

Given a set of tensors named query, keys, values, and output, the mapping of a query
and a set of key-value pairs to an output can be characterized as an attention function
[Vaswani et al., 2017]. The result is a weighted sum of the values, with the weight
allocated to each value determined by the query’s compatibility function with the
corresponding key. This particular form of attention uses what the authors call scaled
dot-product attention and, given the tensors V, K, Q for value, key and query, and the
number of dimensions dj, of K, it is computed as follows:
T

Attention(Q, K, V) = softmax(?/‘g_)v (4.2)
k

The multi-head attention system is defined as multiple attention heads executing
in parallel. The random initialization of the attention heads might lead each of them

to learn particular characteristics different from one another.

4.6 Dropout Regularization as a Method to
Prevent Overfitting

Deep neural networks containing a huge number of trainable parameters are very pow-
erful and relevant to properly solve interesting problems, however, overfitting is a severe
issue limiting their usage, therefore, the employment of regularizers are indispensable
in such scenarios. Dropout [Srivastava et al., 2014| is a regularization strategy that
prevents complex co-adaptations of the trainable parameters on ANNs over the train-
ing data, decreasing the overfitting phenomenon. It’s a really effective approach to use
in neural networks during training time in order to accomplish more balance in the
relevance a model gives to each feature, i.e., given the combinatorially large variety of
internal contexts in which neurons must operate, they learn to detect a feature that is
generally helpful for producing the correct answer [Hinton et al., 2012].

Dropout is a strategy in which a subset of neurons is neglected during training,
being dropped out at random. As a result, on the forward pass, their contribution to
the activation of downstream neurons is momentarily removed, and on the backward
pass, any weight updates are not applied to them. Many approaches for preventing
overfitting have been devised, including terminating training as soon as performance

on a validation set begins to deteriorate, applying various weight penalties such as L1
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and L2 regularization, among plenty more.

4.7 The Binary Cross-Entropy Loss Function

Machine learning models learn how to map a set of inputs to a set of outputs based on
training data over a mathematical optimization process, however, to accomplish the
discovery of well suited mapping functions, it is necessary to be able to compute how
bad a model is performing, i.e., the error, also called loss. It might seem superfluous
and unnecessary to do so in complicated ways, however, there are many scenarios
where the method for computing such loss is extremely impactful on the models' final
performance.

In this work we focus on a particular loss function called binary cross-entropy,
which is focused on classification problems where predictions are to be made between
only two possible classes. The method is based on ideas from information theory, which
in summary, when an event is less likely to be observed, it includes more information.
On the opposite hand, when an event is more likely to arise, it carries less information.
Therefore, the entropy of a random variable is the average level of information, i.e.,
uncertainty, inherently present in the variable’s possible outcomes. The cross-entropy
function is based on the concept of entropy, from information theory, and it computes

how far average events are separated from the distributions of two random variables.

4.8 Training, Validation and Testing

Training is a process through which machine learning models learn over the training
data, i.e., the optimization process attempts to minimize the loss function values over
each training batch of data sample on each training iteration. Particularly in deep
learning, training consists of iteratively adjusting the values of all trainable parameters,
ultimately reducing the loss values until reaching the best generalization capabilities.

Additionally, there are limits to the extent to which any machine learning model
can learn, since such models represent mathematical functions which attempt to ap-
proximate an unknown oracle function. It’s perfectly common to have scenarios where
the chosen models offer poor flexibility to learn in depth from data of certain problems,
ultimately leading to models that slightly outperform random decisions. Further, it’s
also common to find scenarios where models strongly outperform random decisions,
however, they also present a tendency towards stagnation of quality metrics below

perfection.
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Furthermore, frequently machine learning training behaves as an extremely sen-
sitive procedure which comprises many different learning stages that determine how
models will perform on unseen data subsequently. Further, models which train for
too few iterations could suffer from underfitting, while antagonistically, training for
too many iterations leads to overfitting. Such training issues are generally undesired
and harmful to models' performance when attempting to obtain generalization capa-
bilities, except on specific applications or novel machine learning techniques that can
particularly benefit.

Moreover, validation is a process that involves separating data, generally taken
as a small set of samples from the training data, in order to evaluate how the mod-
els' quality metrics would perform on it executing inference. This procedure is advan-
tageous to guide hyperparameters tuning, which also includes architecture definitions
on deep learning models.

Nonetheless, testing has a different objective when compared to validation. Test-
ing aspires to produce quality metrics for the trained models as if it was executing
inference on novel data that it has never had any contact with previously. In other
words, testing is concerned with understanding how trained models would perform, in
inference mode, while deployed to production in the real world.

Leaking the same samples between the training, validation and testing sets of
data are generally statistically undesirable, since it could lead to untrustworthy quality
metrics. On this matter, quality metrics would often present better results than what
was actually intrinsically achieved by the trained models. This phenomenon occurs,
for instance, because if certain data samples are used for training it means the loss is
minimized on such samples, therefore, if the same samples appear in the testing set

the model is further than normal inclined to more accurately make predictions.

4.9 The VGG-Face-16 Pre-Trained Model

The VGG-Face-16 (VGGF16) model is a deep learning model with an architecture
based on a CNN [Parkhi et al., 2015|. It was trained by the VGG (Visual Geometry
Group), an academic group focused on computer vision at Oxford University, on a very
large scale dataset containing 2.6M images, and over 2.6K people. The dataset was
assembled by a combination of automation and human in the loop, the resulting model
achieved comparable state of the art results on the standard Labeled Faces in the Wild
[Huang et al., 2008] and the YouTube Faces [Wolf et al., 2011] datasets. The employed

keras version of the VGGF16 used in the present work receives as input a batch of
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images with the default shape of (224,224, 3) in channels last format, in addition, it
possess a standardization pre-processing function which adapts the input images to the
same particularities of the data it was originally trained on.

Frequently the fully connected layers existing at the end (also called top) of
the VGGFacel6 ANN are ignored when using the pre-trained model for different ap-
plications. That's because the latent space features provided as the output of the
convolutional and pooling blocks are feature vectors carrying higher levels of relevant
information about the raw input data, enabling them to be fed into other models,
including those non ANN based.

4.10 Transfer Learning and Fine Tuning

Properly training machine learning models enable them to become experienced on the
training data, intrinsically empowering them to detect patterns on such data. Notwith-
standing, there are groups of problems which have similar characteristics, for example,
predicting whether it's going to rain today or the volume of rain water to be expected
are, indeed, different but still very similar problems from a machine learning based per-
spective. Therefore, transfer learning is a technique which consists of training models
to solve a problem A, then using fully or partially those trained models as a starting
point to train them once again on another similar problem B. The goal is to exploit
patterns learned by machine learning models on problem A in order to facilitate the
learning process on the later problem B, ultimately leading to a better performance on
problem B when compared to a baseline where models aren't trained on problem A to
begin with.

There are scenarios where using pre-trained models for another similar problem
promotes great advantages, for example, if problem A possesses plenty of data samples
available, however, problem B possesses too few samples. Accordingly, it would be
feasible to directly solve problem A while the same isn't true for problem B due to
the amount of training data samples available for each problem, therefore, the transfer
learning technique could be employed in case problems A and B are similar enough.
Determining beforehand whether two problems are similar enough for the transfer
learning technique isn't trivial in many cases, thus, empirical experimentation may be
employed. Furthermore, the process of training models on problem B after they were
trained on problem A is called fine tuning. The fine tuning process on problem B is
commonly performed slower than the initial training procedure on problem A, since it

could reach the overfitting state with fewer than normal training iterations.
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4.11 Data Augmentation

Data augmentation (DA) is a term that refers to various strategies for increasing the
size and quality of training datasets so that stronger machine learning models may
be trained using them [Perez and Wang, 2017; Shorten and Khoshgoftaar, 2019|. The
data subject to augmentation techniques may be presented in numerous forms such as
tabular, signals, images, videos, among plenty more. Each particular data format and
machine learning application enables different augmentation techniques.

Moreover, this dissertation is focused on augmenting images by applying trans-
formations that change properties from them such as rotations, translations, shearing,
color intensity shifts, brightness shifts and horizontal flipping. Such images have their
nature altered in a constrained manner, while having their associated label remaining
the same. Figure 5.4 presents an example of DA which was actually employed on this

project.

4.12 Explainability

Explainable Artificial Intelligence (XAI) is a field concerned with enabling humans
to understand the output provided by artificial intelligence systems. The concept of
black box refers to artificial intelligence systems that doesn't ballast its solutions with
the possibility of providing explanations to its users and interested parties, withhold-
ing reasoning details regarding how the output solution was achieved. Despite the
differences in reasoning between machines and humans, explainable Al systems are
generally preferred over black box ones, because adequate explanations are critical to
improve how trustworthy AI systems should be assumed to be, since they are prone to
complications caused by a series of conditions such as outliers due to data impurity,
underfitting, overfitting, among other forms of biases which ultimately leads to poor
quality results. Through explainable Al it is possible to validate and challenge existing
human knowledge, in addition to create novel assumptions, something that fuels the

virtuous learning cycle between humans and machines.

4.13 Quality Metrics

Quality metrics, also called performance metrics, refers to defining quantitatively how
much machine learning models can achieve on unseen data samples, i.e., data samples
which weren't used for training. It's extremely important to understand when models

are improving in addition to being able to compare them.
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Moreover, multiple metrics exist and some of them are actually used as loss
functions, while others can only be employed for evaluation, as opposed to being part
of the optimization process. On that matter, any metric being used as a loss function
for deep learning is required to be differentiable, so the gradient descent process may
consistently take place, while it isn't mandatory for metrics intended for pure evaluation
to fulfill this requirement.

Furthermore, there are plenty of available metrics such as ROC AUC (Receiver
Operating Characteristic Area Under the Curve), binary accuracy, cosine similarity,
mean squared error, among more. Each of them might have restrictions on the nature
of problems they can be used to evaluate on, with their own scales and quality direction,

i.e., they might become better as they decrease in some cases or increase in other cases.



Chapter 5

Automatic Recognition of Painful

Facial Expressions in Fetuses

This chapter presents the first component of this project's methodology, comprehending
data collection, labeling, in addition to multiple automatic and human-in-the-loop pre-

processing steps.

5.1 The Acquisition of Medical Data

As shown by the Fetal Pain Study Group (FPSG) from Universidade de Sao Paulo
(USP), it is feasible to record fetal facial expressions using a 4D-US machine |[Bernardes
et al., 2018|, consecutively, they have recorded 13 fetuses each in one out of three

conditions [Bernardes et al., 2021] in a room set-up according to Figure 5.1:

1. Acute Pain (AP) group: fetuses with diaphragmatic hernia (fetoscopic endolu-
minal tracheal occlusion) with indication to surgery still in utero were evaluated

during the anesthetic injection into the thigh in the preoperative period;

2. Control at Rest (Co-Re) group: during shceduled 4D-US examinations, after a
5-minute rest time for the mother, resting fetuses were recorded in a calm and

dark room;

3. Control Acoustic Startle (Co-AS) group: Fetuses were recorded while exposed
to acoustic stimuli, where such distresses were utilized to enhance the accuracy
of fetal heart rate monitoring, which was used to determine fetal well-being.
The stimulator used was comparable to a bicycle horn, and it was placed to the

maternal abdomen for 4 seconds adjacent to the fetal cephalic pole, producing 3
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pulses of acoustic waves between 500 to 4000 hertz with intensity between 60 to
115 decibels.

A@@

@

Figure 5.1. Set-up for surgery and face recording in an operating room. (1)
The mother’s position; (2) the chief surgeon who performed the puncture; (3)
the assistant surgeon who obtained the 4-D images; (4) the surgical technologist;
(5) the ultrasound machine used in surgery to focus the fetal trachea/thigh; (6)
the ultrasound machine used for fetal face recording; and (7) an external camera
[Bernardes et al., 2018

Fetuses in the AP group were recorded previously and subsequently to the anes-
thetic injection, similarly, the Co-AS group was also recorded before and after the
acoustic stimuli. The AP, Co-Re and Co-AS groups were comprised of 5, 4 and 4
fetuses, respectively. All assessed fetuses were in the third gestational trimester i.e.,
31.1 £ 2.8 weeks into the pregnancy, and mothers were 28.7 4 5.5 years old. Further,
there were no concurrent neurological abnormalities or illnesses in the AP group, in
addition, neonatal checkup after delivery indicated that the fetuses without congenital

illness belonging to the Co-Re-AS groups were indeed healthy.

5.2 Extracting Images from Videos

The original data used in this work is the same collected by the FPSG and it was
presented in the format of 13 4D-US videos, each of them contextualizing a single
fetus. Further, in favor of developing the new machine learning application, it was
necessary to formulate a couple pre-processing steps. Therefore, we sampled from the
sequence of images constituting the videos, however, for each video it’s corresponding
particular sampling rate was employed. Despite all videos having 30 frames per second,
the sampling rate for each particular video was manually set to attempt promoting
balance between the total amount of samples, the amount of samples for each of the

pain and non-pain classes and quality of the images.
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5.3 Segmentation of a Binary Classification

Problem: Labeling Data

Differently from the groups created by Bernardes et al. [2021], the present work created
different groups focusing on building a novel machine learning dataset comprised of
4D-US images of fetal facial expressions. Fetuses were divided into 2 groups, Pain and
Non-Pain, being the first one comprised of painful and the second one of painless fetal
images.

Based on the original 4D-US videos collected by Bernardes et al. [2021], the AP
group was subject to an acute pin prick, while the Co-AS group was subject to acoustic
stimuli. These events are important markers that have been used in the present work
to form the novel Pain and Non-Pain groups according to the configuration presented

by Table 5.1 and Figure 5.2. There were no events of interest for the Co-Re group.

Table 5.1. Original groups of fetuses [Bernardes et al., 2021] sourcing images to
the novel Pain and Non-Pain groups. The values true and false determine whether
images from the group of fetuses identified in the column were inserted into the
new pain or non-pain groups identified in the rows.

New Groups AP AP post- Co-Re Co-AS Co-AS
pre-stimulus stimulus pre-stimuli post-stimuli
Pain false true false false false
Non-Pain true false true true true

Since the acute pin prick stimuli received by the AP group possesses anesthetic
effects, an upper limit of 10 seconds post-stimuli was set, ultimately preventing unreli-
able images of anesthetized fetuses to be added to the new Pain group. The anesthetic
effects on third trimester fetuses could bias any indicators of pain, therefore, narrowing
the time window used to collect painful facial expressions after the painful pin prick
event mitigates this problem. All images beyond the tolerance time window were dis-
carded, since the resting state induced by the anesthesia could bias any of the new

Pain and Non-Pain groups in case they were to receive such unreliable images.
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Original groups [Bernardes New groups
etal., 2021] :

Acute Pain

Post-Stimulus

Pre-Stimulus

Control

at Rest

Acoustic

Startle

Figure 5.2. Labeling of the original image samples. The original groups of fetuses
[Bernardes et al., 2021] identified on the left of the dotted line were inserted into
the new groups, presented on the right hand side.

Moreover, the events of interest for both the AP and Co-AS groups weren't
instantaneous, they took place along a short time window. The images classified as
pre-stimulus are originated exclusively before the instant where the stimulus start, by
another hand, the images considered post-stimulus took place inclusively afterwards.
Therefore, post-stimulus images might overlap in time with the actual duration of the

events of interest and go beyond it.

5.4 Frame Cropping and Assisted Manual Filtering

Ideally, the created datasets should be large enough to enable the computer vision
machine learning model to achieve its fullest potential, however, that's a challenge
due to the lack of large data samples. In addition, frames constituting the original

raw videos were sampled in the scale of many per second, specially for the painful
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scenario, ultimately leading to many similar samples, since they are temporally related.
Therefore, cropping the sample images to focus on the fetal faces and filtering out poor
quality images were extremely important steps, in addition to the techniques discussed
in Section 5.5.

The main purposes to crop images are to (i) reduce the amount of potential ar-
tifacts unrelated to facial expressions present in the images, ultimately constraining
the focus of the vision models, and (ii) promote greater similarities between the con-
ditions in which faces were presentend in the datasets created in the present work and
the one used to train the VGGF16 feature extraction component. These efforts have
the potential to increase the quality of the latent features extracted by the VGGF16
component.

Notwithstanding, the process of recording fetal facial expressions was subject to
issues arisen by movements of the fetus (1) during the ultrasound session, movements
of the probe of the 4D-US device (6) performed by the ultrasonographist, and move-
ments of the external recording device (7), according to the items listed by Figure 5.1.
Therefore, the original raw videos provided samples where the fetus' face wasn't prop-
erly visible, and thus, according to the criteria of a human judge, many samples were
discarded. The main criteria utilized to filter out samples was whether the human
judge could identify the fetal face along with its elements such as mouth, nose and
eyes, without using the temporal aspect of the videos to identify such details, since the
ML application won't have the temporal information either. The idea behind ensuring
that enough facial elements are present is to avoid using samples that doesn't contain
the target facial expressions information, since it is desired to promote an analysis of
the explanations generated by the ML models in addition to crossing them with the
facial items from the fetal-5 scale defined by Bernardes et al.. Furthermore, throughout
the videos the fetus' face switch between visible and poorly visible or even totally in-
visible, however, the temporal aspect of the videos empower the human judge to track
where the fetal face is likely to be during a transition between the visible and invisi-
ble condition, something that could jeopardize the performance of the ML application
since it wouldn't benefit from the temporal information. On this matter, it's important
to highlight that images in which the fetal faces are visible to the human judge are
certainly feasible to be detected by the computer vision models as well, however, on
the opposite hand, cases where the fetal faces were invisible to the human judge were
assumed to be pose a threat to the ML application since it's unknown whether they
are feasible to be detected by the ML models.
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Figure 5.3. Cropping and filtering assistant software tool, it was developed
particularly for this project. The writings in white on the top left are presented
by the tool, indicating the current and total amount of frames in the set being
evaluated, whether it was chosen, the original class it belongs to and the current
size in pixels of the green selection box surrounding the fetus'face. The green
selection box is set by a human user of the tool and it may be done multiple
times, further, the software automatically sets such green box to be a perfect
square, until one of them is considered adequate to actually crop the image. Once
cropped, the image is sent into another directory along with all the other selected
samples. Note that the blue text on the top right is considered noise for this
project, generated by the 4D-US system.

Moreover, the assisted nature of the manual filtering of images is due to the
fact that this work contemplates a software to assist the human judge to view fetal
images, frame the fetal face with a perfect square window, crop and save it, according
to Figure 5.3. The tool also includes an easy method to quickly decide whether an
image being analysed is to be discarded or saved. The images selected to move onto the
next phase are resized to match the VGGF16 component input size, i.e. (224,224, 3) in
channels last format and pre-processed to its image standard values. Finally, the image
samples used by the present work are not necessarily the same utilized by Bernardes

et al., since the entire pipeline was built in an independent manner and meant to
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contain plenty more resources than just the 65 pictures they have utilized.

5.5 Transfer Learning and Data Augmentation

On the point of training ML models for medical applications, typically, obtaining data
in large volumes is a challenging problem. Furthermore, detecting complex facial pat-
terns on fetuses is a difficult problem, which could be mitigated and potentially solved
by increasing the volume of training data, however, it isn't the scenario the fetal pain
project is up against. The lack of data could become a major problem, however, there
are alternatives to mitigate it: TL (Transfer Learning) and DA (Data Augmentation).

In ML, the technique of TL is based on training models for specific problems,
then using such models as a starting point to train it once again on another, however,
similar problem. Since the assessed fetuses in this project were aged enough (in the
third trimester of gestation), they had already developed plenty of facial similarities
when comparing with human adults. Therefore, we chose a pre-trained ML model,
the VGGFacel6, as a starting point for this project to mitigate the small amount of
training data available. The VGGF16 model has proven to work surprisingly well for
recognizing facial expressions in 4D-US images of fetuses, even though it was originally
trained to recognize adult's faces on traditional pictures, i.e. taken by traditional cam-
eras. It's important to note that images captured by 4D-US machines and traditional
cameras are very different regarding their nature and the environment where they are
employed. Accordingly, the training process consisted on the adaptation of our custom
discriminant model to the outputs the VGGF16 could provide by being trained in a
frozen fashion.

Further, the technique of data augmentation consists of artificially creating new
data samples based on the original input training data. Ideally, such novel samples
don’t change the intrinsic meaning of the original samples on which they were based,
while adding more diversity. This ultimately enables the trained models to become
more robust at identifying the desired patterns. In this project, the meaning of the
original images which we are interested in preserving is the presence of the face of
a fetus along with all the associated facial expressions. Therefore, augmentations on
those images such as changing their brightness, color intensities and rotations were
designed preserve the target information while creating data diversity which could

improve the quality of our deep learning models.
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Table 5.2. Data augmentation hyperparameters: (Level) given augmentation
names; (Rotation!) in degrees; (Translation®) scale relative to the frame's width
and height; (Shear!) in degrees; (Channel shift intensity') absolute RGB pixel
value ranged in the fully closed interval [0,255]; (Brightness!) relative to the
current brightness; (Flipping) true when a random flip was allowed with 50% of
chance, false otherwise, horizontal and vertical, respectively. ': Randomly ranged
hyperparameters in a fully closed interval.

Channel
Level Rotation! | Translation' Shear? shift Brightness' | Flipping
intensity’
Easy [-30.0, 30.0] | [0.95, 1.05] | [-5.0, 5.0] | [-12.8, 12.8] | [0.975, 1.025] t/f
Light [-30.0, 30.0] | [0.95, 1.05] | [-5.0, 5.0] | [-19.2, 19.2] | [0.950, 1.050] t/f
Medium | [-30.0, 30.0] | [0.95, 1.05] | [-5.0, 5.0] | [-25.6, 25.6] | [0.900, 1.100] t/f
Strong [-60.0, 60.0] | [0.90, 1.10] | [-5.0, 5.0] | [-32.0, 32.0] | [0.850, 1.150] t/f

The datasets were generated based on randomly chosen hyperparameters, where

the hyperparameters were constrained according to Table 5.2. The randomness factor

wasn't built in a reproducible way, instead, the generated datasets were saved for

posterior usage. Figure 5.4 presents samples collected from the training sets across

folds of the augmentation level medium datasets.
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Original Augmentation 1 Augmentation 2 Augmentation 3 Augmentation 4 Augmentation 5 Augmentation 6

22185

Figure 5.4. Samples of data augmentation applied on fetal images. Each row
contains a single fetus, where the leftmost column presents original images and
the following columns presents transformations applied on them. All the 5 fetuses
displayed belong to the Pain group and were collected from the training sets across
multiple folds of the medium augmentation dataset. The complete training sets of
each fold might contain up to an original image in addition to up to 10 augmented
versions of itself.

5.6 Cross Validation Ready Datasets

The produced datasets have been prepared ready to perform k-fold cross validation,
with training and testing sets, however, a validation set wasn't created due to the lack
of data samples. The k value for the k-fold is 5, since we only had 5 fetuses recorded
in both resting and painful scenarios, therefore, each of them was chosen to figure
in the test group once, while the all fetuses belonging to the Co-Re-AS groups were
always used only for training. That's due to the small volume of data available, we
had to increase as much as possible the number of data samples in the training set.
Consequently, since it was necessary to have painful samples for testing, all the samples

collected from the same fetus previous and posterior to the acute pin prick had to be
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placed in the testing group, being a necessary measure to avoid information leakage
[Kaufman et al., 2012].

Information leakage consists in the use of information in the model training pro-
cess that would not be anticipated to be accessible at prediction time, leading the
testing predictive scores to overestimate the model’s efficacy [Kaufman et al., 2012].
Accordingly, we assumed that similarly to a grown human adult, the fetuses in this
study already had developed enough facial characteristics to be uniquely distinct from
other human individuals be them either fetuses, children or grown adults. Therefore,
we employed the technique of leave-one-out, traditionally used for small datasets, where
the left-out element refers to each fetus, each on their respective fold, thus, all images
of the same fetus were separated for each testing set. The absence of validation groups
or multiple fetuses in the testing groups are a consequence of the low amount of total
data available, otherwise the training group would be left with too few samples, ulti-
mately leading to the tradeoff of potentially improving the tests' correspondence with
reality at the expense of potentially decreasing the model's actual performance.

Furthermore, the datasets, across all folds and training and testing groups, were
produced respecting a perfect class equilibrium of 50/50% between samples labeled as
painful and non-painful. Such aforementioned characteristic is beneficial for training
deep learning models, since it stimulates the model to update it's internal numerical
weights in a class balanced manner, favouring more balanced and robust inferences later
on at production time. The total amount of Pain and Non-Pain samples extracted from
each video varies, since the class equilibrium used for training was considered globally
among all videos, to form the final training and testing groups. On the opposite hand,
when each fetus from the AP group entered the testing group the class equilibrium
was achieved by eliminating samples from the class with the higher volume of samples
until balance was achieved, implicating that high accuracy scores indeed reflect that
the resulting models are performing well. For a uniformly random decision model
the expected accuracy would be 50%, therefore, we aim our ML models at achieving
accuracy scores well above this baseline.

The testing samples for all datasets and their folds weren't augmented, since
this process could bias any testing results computed using such samples. The data
augmentation was applied exclusively to the training groups as means to improve the
generalization capabilities learned by the trained models, however, if the testing set
contained the same augmentations, it could become easier for the models to output
the correct answer for each image sample. Further, the non-augmented images are
more similar to the ones that would potentially be used in a real world application of

the present work's ML models and methodology, except for the manual image cropping
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mentioned in Section 5.4.

Figure 5.5. Presentation of 40 samples randomly drafted from the training sets
of the medium augmentation level to illustrate the data augmentation results.
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5.7 Explainability Results and Discussion

In association with the deep neural network architecture presented in Section 6.1, we
propose the adoption of a few algorithms to conceive explanations. The employment
of multiple explanability methods should mitigate issues each of them carry, such as
being hypersensitive to changes in hyper-parameters. Since we are working with images,
heatmaps will be used as a visualization method to assess the relevance of areas across
each image to the model's output.

In the context of visual processing, saliency in images refers to distinctive prop-
erties such as pixels or image resolution, where these unique qualities describe the
visually appealing regions in an image, being the saliency maps topographical repre-
sentations of them. The method of saliency maps proposed by Simonyan et al. [2014]
measures the spatial support of a particular class in each image, providing a method
for investigating hidden layers in CNNs that can be understood. The map is created
by superimposing outcome gradients over the input image, indicating the parts of the
photos that were crucial to the classification.

Furthermore, SmoothGrad introduced by Smilkov et al. [2017] is a simple method
that can help visually sharpen gradient-based sensitivity maps. It computes the gradi-
ents with respect to the input image multiple times, for each of them, noise gets added
and the average of the gradients of a large number of inputs that are quite similar to
original is taken, easing the inconsistency of the gradient function, leaving only the
overall tendency of the gradients across the picture's area. This is assumed to be the
most important XAI algorithm for this work due to its intrinsic nature of eliminating
noise and capturing the overall gradient trend.

Additionally, there is the Gradient-weighted Class Activation Mapping (Grad-
CAM) [Selvaraju et al., 2020], it uses gradients flowing into the final convolutional
layer to create a coarse-grained localization map emphasizing key regions in the image

that contributes towards the model's prediction.



Chapter 6

Experimental Methodology and

Results

This chapter presents the final component of this project's methodology, based on the
initial phase presented by Chapter 5. The target application is described in details,

along with the presentation of the obtained results.

6.1 The Model Architecture

The model architecture and topology is presented as a diagram in Figure 6.1, it is based
on the very deep convolutional block from the VGGFacel6 model, without the head
(also called top) component. It takes as input batches of images in the channels last
format with dimensions (224,224, 3), in addition, the input images must be normalized
according to the VGGF'16 standard, otherwise, predictions could become biased. The
maximum pooling 4 and 5 layers are used as outputs from the convolutional block
according to Figure 6.1 and they are the 15th and 19th layers, respectively, according
to Figure 6.2. The amount of trainable parameters in the head component is roughly
5 million, while approximately 14.7 million were pre-trained and inherited from the
VGGF16, resulting in approximately 19.7 million in total. The model architecture is
the same for all folds of the cross validation and it was developed using the tensorflow

python framework.
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Input
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Figure 6.1. The model architecture is based on the VGGF16 CNN feature
extraction component, which takes as input 4D-US images, each containing a
single fetus, then produces as output features in the latent space. Such features
are used by our custom model to output the final probabilities regarding the
presence or absence of painful fetal states, the output scale is in the fully open
interval (0,1). The decision threshold for the output probability is 0.5, therefore,
the closer the output is to 0.0 or to 1.0 the more confidence in the result for classes
Non-Pain and Pain, respectively. On the opposite hand, the closer the output is
to 0.5 the less confidence there will be. Dense refers to fully connected layers,
while ELU represents the Exponential Linear Unity activation function [Clevert
et al., 2016]. The batch size was set to 16 and the learning rate to 107°.



THE MODEL ARCHITECTURE

Layer (type) Output Shape Param # Connected to
input_1 (InputLayer) [(None, 224, 224, 3)] [}
convl_1 (Conv2D) (None, 224, 224, 64) 1792 input_1(el[@
convl_2 {Conv2D) (None, 224, 224, 64) 36928 convl_1[@][®
pooll (MaxPooling2D) (None, 112, 112, 64) ] convl_2[@] [@
conv2_1 (Conv2D) (None, 112, 112, 128) 73856 poolll@l (el
conv2_2 (Conv2D) (None, 112, 112, 128) 147584 conv2_1[@] [
pool2 (MaxPooling2D) (None, 56, 56, 128) ] conv2_2[e] [@
conv3_1 (Conv2D) (None, 56, 56, 256) 295168 pool2[@] [@]
conv3_2 (Conv2D) (None, 56, 56, 256) 590080 conv3_1[0@] [0]
conv3_3 (Conv2D) (None, 56, 56, 256) 590080 conv3_2[@] [0]
pool3 (MaxPooling2D) (None, 28, 28, 256) 0 conv3_3[e][e
convd_1 (Conv2D) (None, 28, 28, 512) 1180160 pool3[0] [@]
conv4_2 {Conv2D) (None, 28, 28, 512) 2359808 conv4_1[@] [8]
conv4_3 (ConvzD) (None, 28, 28, 512) 2359808 conv4_2[@] [0]
pool4 (MaxPooling2D) (None, 14, 14, 512) '} conv4d_3[@] [0
conv5_1 (Conv2D) (None, 14, 14, 512) 2359808 poola[@] [0]
conv5_2 (ConvzD) (None, 14, 14, 512) 2359808 conv5_1[@] [8]
conv5_3 (Conv2D) (None, 14, 14, 512) 2359808 conv5_2[0] [@]
pool5 (MaxPooling2D) (None, 7, 7, 512) 0 conv5_3[0] [@
reshape (Reshape) (None, 49, 512) ] pool5[@] [@]
reshape_1 (Reshape) (None, 196, 512) 0 pool4[e] [@]
branch®_mha (MultiHeadAttent (None, 49, 512) 525568 reshape [@] [0]
reshape[@] [@]
branchl_mha (MultiHeadAttent (None, 196, 512) 525568 reshape_1[0] [@]
reshape_1[0] [@]
flatten (Flatten) (None, 25@88) [} branch@_mha[@] [@]
flatten_1 (Flatten) (None, 1@0352) [ branchl_mha([@] [@]
dropout (Dropout) (None, 25088) ] flatten[@] [@
dropout_1 (Dropout) (None, 108352) '} flatten_1(0][@]
branch®_dense (Dense) (None, 32) 802848 dropout [@] [@]
branchl_dense (Dense) (None, 32) 3211296 dropout_1[@] [@]
tf.concat (TFOpLambda) (None, 64) 0 branch@_dense [8] [@]
branchl_dense (@] [@]
elu (ELU) (None, 64) 0 tf.concat[e] (o]
dropout_2 (Dropout) (None, 64) 0 elule] [0]
model_output (Dense) (None, 1) 65 dropout_2[0] [@]

Total params: 19,780,033
Trainable params: 5,865,345
Non-trainable params: 14,714,688

Figure 6.2. Detailed description of the model architecture as a tensorflow keras
python object. A detailed description of the VGGF16 convolution block is also
presented.
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6.2 The Training Process and the Obtained

Performance

The deep learning models in this project were trained with the support of an extremely
intense regularizer technique, the dropout, across multiple layers. It played an impor-
tant role in constraining the rhythm at which the model's trainable parameters adapt
to the input dataset, easing the search for a better generalization state which might
not be achieved otherwise. The deep learning models could easily learn patterns from
the training dataset capable of overfitting at the very beginning of the training process.
Therefore, a great method for slowing down the pace at which the model learns that
doesn't involve abruptly changing the learning rate is using the dropout regularizer
across different layers, since the learning rate is tied to the batch size [Keskar et al.,
2017].

Optimizing deep learning models on small datasets representing complex prob-
lems such as detecting pain based on fetuses' facial expressions require great cautious-
ness, therefore, another extremely important technique employed was to carefully pick
properly matching values for the batch size and the learning rate, where small batch
sizes should be matched with small learning rates in order to take advantage of the
implicit regularization occurring during the optimization process, since large batches
commonly lead to sharp minima, which frequently doesn't generalize as well as flat
minima |[Keskar et al., 2017|[Smith et al., 2021].

Furthermore, each dataset created consists of an augmentation level and is com-
prised of 5 folds ready for cross validation. Therefore, the produced quality scores for
each dataset were obtained by averaging the results across all folds, also enabling the
computation of metrics such as standard deviation, variance and confidence intervals.
The training history is summarized by Figures 6.3, 6.4, 6.5 and 6.6. In all these charts,
the abscissa axis represent the training epochs and the ordinate an absolute score value.

Finally, the performance scores were summarized in Tables 6.1, 6.2, 6.3 and 6.4.
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Figure 6.3. Quality scores history for dataset with augmentation easy.

Cross validated training history: model 01 | augmentation light
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Figure 6.4. Quality scores history for dataset with augmentation light.
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Cross validated training history: model 01 | augmentation medium
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Figure 6.5. Quality scores history for dataset with augmentation medium.

Cross validated training history: model 01 | augmentation strong
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Figure 6.6. Quality scores history for dataset with augmentation strong.

The best epoch for the models consuming each dataset was determined based
on the highest binary accuracy score over the entire training epochs, therefore, the
remaining associated scores are the ones obtained exactly at that same epoch, rather
than the maximum obtained across all epochs. Further, the dataset augmented with
the easy level promoted the best performance overall, despite being outperformed in
absolute scores by the medium augmentation level, since the cross validation process
yielded far steadier results for the first one. E. g., despite the recall being 0.7602 and
0.8379 for augmentations easy and medium, respectively, the confidence interval with

99% probability for them were too discrepant being 0.1798 and 0.3041, respectively.
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Table 6.1. 5-fold cross validation results for easy data augmentation level.

Binary

Interval 99%

ROC AUC | Precision | Recall F1 Specificity
Accuracy
Mean 0.8801 0.9916 1.0000 | 0.7602 | 0.8551 |  1.0000
o s
£ g | Standard g 0009 | 00117 | 00000 | 01558 | 0.0085 | 0.0000
= Deviation
T 5 -
go‘: Variance 0.0061 0.0001 0.0000 | 0.0243 | 0.0097 |  0.0000
(&}
2 E Confidence
o
22 | oporval 05% | 0083 0.0102 0.0000 | 0.1366 | 0.0863 | 0.0000
Confidence g \0qq 0.0135 0.0000 | 0.1798 | 0.1136 |  0.0000

Table 6.2. 5-fold cross validation results for light data augmentation level.

Binary

Interval 99%

ROC AUC | Precision | Recall F1 Specificity
Accuracy

Mean 0.8470 0.9752 0.8000 | 0.6940 | 0.7363 | 1.0000
=N
g | Standard 1y ge00 | 00300 | 04000 | 0.3754 | 0.3792 | 0.0000
= Deviation
=2 i
ch Variance 0.0352 0.0009 0.1600 | 0.1409 | 0.1438 |  0.0000
2 = Confidence
o X 4 4
EZ | lntorval 5% | 01645 0.0263 0.3506 | 0.3290 | 0.3324 |  0.0000

Confidence 1 o, 0.0346 0.4615 | 0.4331 | 0.4375 |  0.0000

Table 6.3. 5-fold cross validation results for medium data augmentation level.

Binary

Interval 99%

ROC AUC | Precision | Recall F1 Specificity
Accuracy

Mean 0.9082 0.9913 0.9793 | 0.8379 | 0.8724 | 0.9786
=N
Sg | Standad b 000 | 00156 | 00310 | 0.2636 | 01983 | 0.0323
= X Deviation
T 0 -
Eo‘: Variance 0.0162 0.0002 0.0010 | 0.0695 | 0.0393 | 0.0010
O
2 = Confidence
o
EZ | Ltorval 059 | 01117 0.0137 0.0272 | 0.2311 | 0.1738 |  0.0283

Confidence 1= 2, 0.0181 0.0358 | 0.3041 | 0.2288 | 0.0373
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Table 6.4. 5-fold cross validation results for strong data augmentation level.

Binary ROC AUC | Precision | Recall F1 Specificity
Accuracy
Mean 0.7999 0.9731 1.0000 | 0.5998 | 0.7155 |  1.0000
=
g | Standad b0 | 00209 | 00000 | 0.2642 | 02093 | 0.0000
5 X Deviation
=2 i
el Variance 0.0175 0.0004 0.0000 | 0.0698 | 0.0438 |  0.0000
O
2 = Confidence
o =
EZ | foerval 05% | 01158 0.0183 0.0000 | 0.2316 | 0.1835 | 0.0000
Confidence g 1o ) 0.0241 0.0000 | 0.3049 | 0.2415 |  0.0000
Interval 99%

6.3 Pain Samples Incorrectly Predicted Along the
10 Seconds Window

In pursuance of understanding the evolution of fetal responses to nociceptive input
we have assessed using machine learning the difficulty of detecting pain along the
10 seconds time window immediately after the acute pin prick for the Pain group.
Figure 6.7 presents the normalized cumulative incorrect predictions of painful images,
averaged with cross validation, as a metric to express the difficulty of detecting pain as
a function of time after the beginning of the painful stimulus. For each of the 5 folds in
the cross validation, the painful frames have been organized in the 10 seconds time line,
the relative error rate for each fold has been computed resulting in a value in the [0, 1]
interval, then the average among all folds has been taken. For the special cases where
no image was available on a specific fold for a specific time interval, the cross validation
was averaged with a smaller denominator. Finally, the resulting cross validated real
numbers range in [0, 1], however, each time point aggregates all the previous with itself,
ultimately leading to bins with values potentially greater than 1. The chart is presented
as a cumulative sum in order to become easier to understand and explain it.

Further, the red curve illustrates the changes in the height of bins, and it is formed
by the aggregation of first degree functions between any consecutive bins. Between
consecutive bins and above the red curve the slope of the function is presented, it
represents the difficulty increase of correctly predicting images belonging to a further
time window. The slope between bins may be compared with one another to determine

which increases the most the degree of difficult to correctly detect pain.
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Figure 6.7. Evolution of the difficulty to detect pain along 10 seconds immedi-
ately after the beginning of the stimulus for the easy augmentation level dataset.

Table 6.5. Bad predictions of painful facial expressions along time for augmen-
tation level easy. On each cell, the rightmost number represents the total amount
of images on its own time interval as a fraction denominator, while the leftmost
number represents the amount of images incorrectly predicted by our models as
a fraction numerator. Both cross validation average metrics were computed only
among folds that have at least one image in a given time interval, therefore, cells
without any frames were filled with NaNs (Not a Number) and their values were
not considered in the final average for that particular time interval.

Time Window (Seconds)

O, 1 [ 20 [ (23] B4 [ 45 ] B,6[ ] 16,7 [ 17,8 [ 809 [I9 10]

Average

0 ] 1/4 | 0/1 | 1/5 | 3/4 | 2/2 | 4/4 | 2/2 | 0/3 | 0/5 | 0/5
Cross 1 1/1 1/2 0/1 0/3 0/3 0/2 1/2 0/2 0/4 0/4
Validation | 2 3/8 0/10 | 5/10 4/9 0/5 NaN | NaN | NaN | NaN | NaN
Folds 3 0/6 0/9 0/1 NaN NaN NaN | NaN NaN NaN NaN
4 | 1/T | 2/2 | 3/3 | 2/4 | 0/1 | 0/4 | 0/3 | 2/3 | 0/3 | NaN
Non Cumulative
Cross Validation | 0.5250 | 0.3000 | 0.3400 | 0.4236 | 0.2500 | 0.3333 | 0.5000 | 0.2222 | 0.0000 | 0.0000
Average
Cumulative
Cross Validation | 0.5250 | 0.8250 | 1.1650 | 1.5886 | 1.8386 | 2.1719 | 2.6719 | 2.8942 | 2.8942 | 2.8942




46 CHAPTER 6. EXPERIMENTAL METHODOLOGY AND RESULTS

6.4 Explainability Evaluation

This section approaches the XAI (eXplainable Artificial Intelligence) introduced in
Section 4.12, along with the algorithms from Section 5.7, to generate explanations for
the testing group of each fold of the dataset generated with the easy data augmentation
level. This dataset was elected the best according to the results presented by Sectio 6.2,
therefore, no XAI will be presented to the remaining ones despite the fact that they
were generated by the experiments. Similarly to the idea proposed in Section 5.6, the
testing groups were targeted since they weren't leaked into their respective training
groups, in addition to not having been augmented. Had these factors been different,
the XAI results could have become biased.

Furthermore, Figure 6.8 presents the jet colors scale used for the heatmaps on the
XAI samples, that is Figures 6.9, 6.10, 6.11, 6.12, 6.13, 6.14, 6.15, 6.16, 6.17 and 6.18.
Essentially, the color scale presents how intensely each region of pixel(s) in the target
image contributed towards the ML models' produced answer. Therefore, note that the
contribution level is not particularly related to the presence or absence of pain, it is
actually related to the particular output the model produced for the respective image
sample.

On this matter, the XAl samples were grouped according to the fold they belong
to, in addition to the label they have. The original samples were presented in colors to
serve as reference, however, its corresponding explained versions were converted to gray
scale and the XAI heatmaps were placed on top as a semitransparent overlay. Each
row represent a single image sample and each column represent a version of it, being
the first the original image, while the remaining ones its corresponding XAI version
generated by a particular algorithm, as described on top of each column. On the left
hand side of those figures, each row title identifies whether the corresponding image

label was correctly or incorrectly predicted.

Minimum Contribution Maximum Contribution

Figure 6.8. Explainability heatmap scale, it defines with colors how impactful
regions over the target image were for the models' decision. This set of colors are
used as an overlay representing a heatmap for each of the explainability images,
i.e., Figures 6.9, 6.10, 6.11, 6.12, 6.13, 6.14, 6.15, 6.16, 6.17 and 6.18.
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Figure 6.9. Original non pain image samples from fold 0 test set explained.

original vanilla saliency smoothgrad gradcam
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Figure 6.10. Original pain image samples from fold 0 test set explained.
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original vanilla saliency smoothgrad gradcam

correct correct
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Figure 6.11. Original non pain image samples from fold 1 test set explained.
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Figure 6.12. Original pain image samples from fold 1 test set explained.
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Figure 6.13. Original non pain image samples from fold 2 test set explained.
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Figure 6.14. Original pain image samples from fold 2 test set explained.
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original smoothgrad

vanilla saliency
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Figure 6.15. Original non pain image samples from fold 3 test set explained.

original vanilla saliency smoothgrad gradcam

correct correct

correct

Figure 6.16. Original pain image samples from fold 3 test set explained.
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smoothgrad gradcam
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Figure 6.17. Original non pain image samples from fold 4 test set explained.

original vanilla saliency smoothgrad gradcam

correct
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Figure 6.18. Original pain image samples from fold 4 test set explained.
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Chapter 7

Conclusion

The cross validation technique was employed as a method to mitigate the uncertainty
intrinsically present in the resulting metrics, however, their variance and standard
deviation were fairly high. An important reason for this lies in the fact that the latent
space provided as output by the VGGF16 feature extraction component has a huge
dimensional space, with approximately 100 thousand and 25 thousand elements for
the 4" and 5 maximum pooling layers. Such high dimensional space unbalances
the tradeoff between bias and variance in favor of the last one |[Hastie et al., 2009],
something that could be avoided in case the VGGF16 convolutional component wasn't
added to the models. The results were great despite the high standard deviation and
broad confidence intervals, since obtaining better performance for complex tasks is
extremely difficult on low diversity datasets such as the ones used in this project. In
addition, the XAI results reinforce the importance of already known items present in
the fetal-5 scale, leading to the conclusion that the models were indeed capable of
generalizing well.

From the perspective that the trained Al models are tools for testing whether a
fetus is in pain, it is really important to consider the obtained sensitivity and specificity.
The first one measures the capacity of a test to correctly identify positive cases, while
the second one to correctly identify negative cases. Mistakenly providing analgesic
treatment for fetuses that aren't under pain isn't ideal, however, leaving unattended
fetuses under pain is severe. The clear distinction between the two scenarios present
the sensitivity metric as the most critical, therefore, a good fetal pain test would have
high sensitivity.

The dropout was certainly a necessary regularizer, given that we had available few
training samples for such complex problem to solve. Therefore, detecting the correct

patterns which enable strong generalization power to the models ultimately leads to
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avoiding overfitting by slowing the pace at which the trainable parameters and the loss
function changes, in addition to facilitating the model to learn multiple paths which
lead to impactful results. Nonetheless, the attention technique was also extremely
important to learn the correct association between segmented facial features which
are, indeed, related to the presence or absence of pain. Painful facial expressions are
usually comprised of multiple artifacts such as brow lowering or eyes squeezing shut
[Bernardes et al., 2021|, for which their co-occurrence increases the likelihood for the
presence of pain, therefore, the attention layer in the neural network model is important
to enable its internal learning of how intensely correlated such elements are, improving
the quality of the final output probability. Further, attention commonly works well
with embeddings, something similar to the output provided by the VGGF16 feature
extractor component. Moreover, the ELU activation function was also critical, mostly
due to its capabilities of mitigating the vanishing gradient problem via the identity for
positive values.

Further, as shown by Figure 6.7, it is difficult to correctly detect pain in the first
seconds after the begin of the painful stimulation. We have considered that right on
the painful stimulus and 10 seconds onwards every image will present pain, however, as
shown by the evolution of the difficulty to detect pain along time, the very beginning
seems to be the most challenging, while the final seconds seems to be the easiest.
Perhaps the reaction time of the fetuses to express pain is impactful, however, we
considered everything right after the beginning of the stimulus as pain. In addition,
fetuses from the Acute Pain group pre-stimulus were inserted in the Non-Pain group,
however, they were suffering from an illness. Moreover, similar to the Acute Pain
scenario, samples from the Co-AS group immediately after the acoustic stimulation
were scarce. All these factors have the potential to create biases that could affect the
obtained results, nonetheless, they were mitigated whenever possible.

The tests executed in this project consisted of a single chance for the ML models to
predict the correct label of each image instance, however, in the real world, a single 4D-
US assessment of a fetus in video would generate plenty of images. The models would
have a much better estimate of pain on a particular fetus in case of post processing the
inference results for all those image samples. The same fetus could be assessed through
different angles and positions with multiple chances to predict the correct answer,
something that would increase the quality of the estimations, ultimately leading to
increased sensitivity and specificity.

On the matter of the XAl results presented in Section 6.4, the vanilla saliency and
smoothgrad explanation algorithms present fine-grained regions of the target image

as relevant, and there were cases where these regions also clumped up together to
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form broader ones. By another hand, gradcam presented coarser-grained regions as
impactful when compared to the first two algorithms, however, it was traced back
to the VGGF16 layer 14, instead of the 18th, and as a result the impacful regions
became finer-grained than usual. Nonetheless, there is a clear trend presented by all 3
XAI algorithms, indicating that facial elements are important to produce the correct
output. Further, such trend presents very frequently the regions comprehending the
fetuses chin, mouth, cheeks and nose as the most relevant, something directly related
to known items from the fetal-5 scale. Despite the resulting metrics, the explanations
make clear that the ML models did manage to generalize well, by capturing such facial
traits, ultimately increasing the confidence we may have on the results. According to
Bernardes et al. [2021], mouth related items such as horizontal and vertical stretching
or open lips are the facial items that best discriminates the presence of pain, something
highlighted by the XAI results. Due to the mathematical optimization that consists the
training process, ML models tend to learn characteristics with as much discriminative
capabilities as they can over the training data, therefore, XAl results have confirmed
how intensely discriminative the fetal mouth can be. Further, more items from the
fetal-5 scale were also pointed as relevant, such as the regions from the eyes or the
nasolabial furrow, however, artifacts absent in the fetal-5 scale were also highlighted,
such as arms, or wrinkles across the fetal face in addition to the uterus internal wall,
among more. Confirming whether items outside the fetal-5 scale does have relevant
contributions towards pain detection requires further investigation, however, the mouth
and surrounding regions on the fetal face remains as the most impactful ones.

In order to become a feasible product in the market, it is necessary to eliminate
any manual steps of preprocessing employed. Images used to train and test the ML
models were manually cropped to focus on the fetal face, something that could be
automated by hand-crafting another dataset where another ML model would determine
the bounding box surrounding the target area as a regression task. Similarly to what
is done by Carion et al. [2020], this project could benefit from the detection of multiple
fetal faces, in case of multiple fetuses in a single pregnancy, however, the transformer
based model architecture might have greater capacity than the amount of training data

available, implicating a shallower model might lead to better results.






Chapter 8

Future Work

In order to enable the present work to cause positive impact in this world, it would be
necessary to turn it into a product for the market, as already suggested in Chapter 7.
The main purpose of creating an automated pain testing tool is to empower physicians
and caregivers on the assessment of the fetal context, rather than substituting them.
Further, as 4D-US machines become more portable and accessible, non medical pro-
fessionals may evaluate the pregnancy at home and seek professional assistance in case
the proposed ML model outputs high likelihood for pain.

Moreover, as suggested by Chapter 7, investigating whether some artifacts de-
tected by our ML models and highlighted by the corresponding XAl algorithms remains
an open issue. Despite the conclusion that the fetal mouth is critical to discriminate
pain, it isn't yet possible to confirm whether the same is true for other detected arti-
facts.

Further, we currently plan to apply the Fetal-5 score to a large number of preg-
nancies (n=200) and assess to which extent it can add to the current fetal vitality
parameters routinely used in clinical practice, i.e., pain assessment is important to
address general fetal vitality. In addition, the methodology developed in this project
for assessing pain is similar to the one expected to be employed on the fetal vitality

assessment, making it a natural continuation of this project.
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Attachment A

Glossary

e Al: Artificial Intelligence;
e AP (group of fetuses): Acute Pain [Bernardes et al., 2018, 2021];

e Acute pain (health condition): is provoked by a specific disease or injury, serves a
useful biologic purpose, is associated with skeletal muscle spasm and sympathetic

nervous system activation, and is self-limited |Grichnik and Ferrante, 1991];
e ANNSs: Artificial Neural Networks;
e Co-Re (group of fetuses): Control at Rest [Bernardes et al., 2018, 2021];
e Co-AS (group of fetuses): Control Acoustic Startle [Bernardes et al., 2018, 2021];

e Co-Re-AS (group of fetuses): Control at Rest and Acoustic Startle [Bernardes
et al., 2018, 2021];

e Chronic pain (health condition): may be considered a disease state. It is pain
that outlasts the normal time of healing, if associated with a disease or injury.
Chronic pain may arise from psychological states, serves no biologic purpose, and

has no recognizable end-point [Grichnik and Ferrante, 1991];
e CNNs: Convolutional Neural Networks;
e DA: Data Augmentation;
e DL: Deep Learning;
e FPSG: Fetal Pain Study Group;
e TASP: International Association for the Study of Pain;
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ATTACHMENT A. GLOSSARY

ML: Machine Learning;
MOMS: Management Of Myelomeningocele Study;

NaN: Not a Number, represents an invalid value, generally created with opera-

tions such as division by zero;
NFCS: Neonatal Facial Coding System;

NNs: Neural Networks (another name for ANNs when the term artificial is im-
plied);

PDEF': Partial Derivative of the Error Function;
ResNets: Residual (Neural) Networks;
ROC AUC: Receiver Operating Characteristic Area Under the Curve;

SOTA: State-Of-The-Art, refers to the most advanced stage in the development

of something such as a new technology or product;
TL: Transfer Learning;

USP: Universidade de Sao Paulo, a university located in the city of Sao Paulo-SP

Brazil;

VGG (research group): Visual Geometry Group, is an academic group focused

on computer vision at Oxford University;
VGGF16: VGG-Face-16, a very deep convolutional neural network architecture;

XAT: eXplainable Artificial Intelligence;
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