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Resumo

Este estudo adentra no campo do sensoriamento baseado em dados dentro dos processos
industriais de fabricacao de aco, focando especificamente na Linha 4 de Recozimento e
Decapagem da Aperam South America. O objetivo principal é desenvolver um gémeo
digital para o Pirometro 4, um componente critico no processo de recozimento que mede
a temperatura da tira, utilizando algoritmos de aprendizado de maquina e um modelo
fisico para empregar uma estratégia de modelagem de caixa cinzenta.

A metodologia de pesquisa abrange uma exploragao abrangente, incluindo revisao
de literatura, entendimento de dados, transformagao, limpeza, treinamento e avaliacao de
modelos. Vérios algoritmos de aprendizado de maquina, como Regressao Linear, Support
Vector Machines, Random Forest, e XGBoost, sao avaliados por sua capacidade de criar
um regressor capaz de prever leituras de temperatura e replicar o comportamento do
pirometro. Além disso, o conhecimento especifico do dominio é integrado para construir
modelos hibridos com o objetivo de melhorar a precisao da predigao.

Por meio de uma avaliagao e comparacao minuciosas desses modelos, conhecimen-
tos valiosos sobre suas forcas, limitacoes e aplicagoes potenciais sao obtidos. O estudo
enfatiza a importancia de empregar uma abordagem de modelagem hibrida, que combina
modelos impulsionados pela fisica com técnicas de aprendizado de maquina, para desen-
volver gémeos digitais robustos e precisos. Por fim, a pesquisa visa contribuir para o
avanco de solugoes baseadas em dados em ambientes industriais, facilitando a tomada de

decisoes e a otimizagao de processos.

Palavras-chave: sensores virtuais; orientado a dados; aprendizado de maquina; gémeo
digital.



Abstract

This study delves into the realm of data-driven soft sensing within industrial steel man-
ufacturing processes, specifically focusing on Aperam South America’s Annealing and
Pickling Line 4. The primary objective is to develop a digital twin for Pyrometer 4, a
critical component in the annealing process that measures strip temperature, by utiliz-
ing machine learning algorithms and a physical model to employ a grey-box modeling
strategy.

The research methodology encompasses a comprehensive exploration, including
a literature review, data understanding, transformation, cleaning, model training, and
evaluation. Various machine learning algorithms, such as Linear Regression, Support
Vector Machines, Random Forest, and XGBoost, are assessed for their ability to create
a regressor capable of predicting temperature readings and replicating the pyrometer
behavior. Moreover, domain-specific knowledge is integrated to construct hybrid models
aimed at enhancing predictive accuracy.

Through thorough evaluation and comparison of these models, valuable insights
into their strengths, limitations, and potential applications are gained. The study empha-
sizes the importance of employing a hybrid modeling approach, which combines physics-
driven models with machine learning techniques, to develop robust and accurate digital
twins. Ultimately, the research aims to contribute to the advancement of data-driven

solutions in industrial settings, facilitating decision-making and process optimization.

Keywords: soft sensor; data driven; machine learning; digital twin.
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Chapter 1

Introduction

The concept of Industry 4.0 originated in Germany and has spread extensively throughout
the world, primarily due to its ability to enhance production efficiency through smart
services in smart factories [Sisinni et al., 2018]. It is regarded as the fourth industrial
revolution, characterized by the capacity of industrial plant components to communicate
with the entire facility through the Internet, thereby exchanging substantial amounts of
information. This is in stark contrast to Industry 3.0, where such components were mostly
isolated and lacked awareness of their surroundings [Wagner et al., 2017]. The evolution

of the industry and the major breakthroughs it has brought are illustrated in Figure 1.1.

Figure 1.1: Infographic of the Four industrial revolutions and its advances.
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Industry 4.0, the fourth industrial revolution, has three fundamental components:
the Internet of Things (IoT), Cyber-Physical Systems (CPS), and Smart Factories [Her-
mann et al., 2016]. The IoT is characterized by ubiquitous connectivity, facilitating in-
formation exchange among connected devices, including data on themselves and their

surroundings. This disruptive technology has the potential to address a range of current
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issues, including smart cities, manufacturing, pollution, and health [Sisinni et al., 2018].

To interconnect these devices, CPSs play a crucial role. CPSs are ”integrations of
computation and physical processes” and involve embedded computers and networks that
monitor and control physical processes through feedback loops, where physical processes
influence computations and vice versa [Hermann et al., 2016]. CPSs provide digital de-
scriptions of real-world physical objects, which are then stored and modeled as ”digital
twins” with their own identities in the virtual space [Sisinni et al., 2018].

Digital twins, along with [oT, data mining, and machine learning technologies,
have opened up new possibilities for revolutionizing today’s manufacturing, making it
more intelligent [Min et al., 2019]. A review of papers on the development of digital twins
across multiple domains has been conducted by Barricelli et al. [2019], and the findings

are presented in Figure 1.2.

Figure 1.2: Timeline of the papers analyzed for this study. The labels are the reference
numbers. Each point in the chart has a color that refers to the application domain in
which the study is framed.
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1.1 Motivation

The extensive interest and increasing adoption of Industry 4.0 concepts by compa-
nies have resulted in a plethora of opportunities to be explored. There exists a multitude
of interconnected devices, sensors, cameras, processes, and systems that generate vast

volumes of data. [Gartner, 2017] analyst Thomas Oestreich points out that the challenge
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that companies face in this 4.0 scenario is how to handle this massive volume of data, and
to unleash its full potential, new algorithms need to be developed. The aim of this study
is to leverage these new technologies to create a data-driven soft sensor for a physical
pyrometer of an existing Annealing and Pickling Line Furnace.

Operational and process control decisions in the company are based on the values
of strip temperature readings given by pyrometers. If these readings are outside the
specified limits, the product could become unusable or require modification for another
application. Several factors can affect the quality of the product, including the possibility
of a fault in the pyrometer or one of the furnace zones not providing the desired output,
requiring an operator to manually change it. The operator has to perform trial and error
tests to check if the strip temperature is meeting the required specifications.

Although mathematical models could be applied, they tend to be more general in
nature and do not account for all the specificities of the production line. Hence, having a
digital twin could aid in simulating the output based on inputs without a trial and error
approach, while it still could take advantage of existing physical models. It might also be
used as a reference to verify the data quality from the physical sensor, and automatically

adjust the parameters.

1.2 Objectives

The primary aim of this project is to develop a data-driven soft sensor capable
of measuring the temperature of a steel strip in an annealing line by exploring various
machine-learning models for regression, exploring a grey-box approach. The project en-

compasses specific objectives:

e Conduct analysis of regression techniques and models suitable for building a virtual

sensor in an industrial setting.
e Verify the capability of a grey-box modeling strategy.

e Compare the performance between models using the proposed evaluation metrics,
Root Mean Squared Error (RMSE).

e Build a data-driven soft sensor that is a digital twin of the pyrometer of the studied

annealing line furnace.
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Chapter 2

Literature Review

The literature review chapter of this research provides an overview of essential domains
central to the experiment. It begins with an examination of the RB4 Annealing and
Pickling Line, offering insights into its operation and highlighting the significance of the
Pyrometer within this context.

Machine Learning is the subsequent focus, where its principles, techniques, and
applications are explored. It serves as a foundational element to create an accurate digital
twin that mirrors the Pyrometer’s behavior.

The exploration extends to Digital Twins, their nature, and their potential to
revolutionize the comprehension and control of intricate industrial processes, and how
Machine Learning plays an important role in leveraging practical on-site data collection
to build Al-enabled twins.

Lastly, it delves into the Grey-Box Modeling Approach. This approach mixes
physics-driven models with Machine Learning methods to construct data-driven digital
twins. These soft sensors play a pivotal role in bridging the divide between theoretical

models and real-world observations.

2.1 Annealing and Pickling Line

Annealing is a heat treatment process in steel production, wherein the material
undergoes high-temperature exposure to achieve its desired properties. As explained by
Askeland and Pradeep [2009], cold rolling results in an increase in hardness due to the
growth of dislocation density, and annealing can be employed to enhance ductility and
counter these effects. Moreover, by controlling the thermo-mechanical processing, it is
possible to obtain materials with improved mechanical properties and in usable shape. At
Aperam, the RB4 production line is dedicated to the Annealing process, which comprises
three furnaces. A schematic of the complete production line is illustrated in Figure 2.1.

In RB4, the annealing process is carried out continuously, during which the strip
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Figure 2.1: Flow chart of the Annealing and Pickling Line 4 (RB4).
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is subjected to temperature treatment through three consecutive furnaces. Prior to the
first furnace, there is a Pre-heating zone, followed by the first furnace, which comprises
zones 1, 2, and 3. The first furnace aims to recover grain through preheating. The second
furnace consists of zones 4, 5, and 6, which are responsible for the recrystallization of the
grains. Finally, zones 7, 8, and 9 in the third furnace contribute to grain growth through

heating and soaking. An overview of the furnaces can be seen in Figure 2.2.

Figure 2.2: Side view of the annealing furnace of RB4.

OPERATOR VIEW

FURNACE 1 FURNACE 2 FURNACE 3

Ensuring that the strip temperature profile meets the required specifications is of
paramount importance to attain the desired mechanical properties and prevent the occur-
rence of defects. In his thesis on ”Optimal Control for Continuous Annealing Furnace,”
Teixeira da Silveira [2009] provides a detailed account of the employment of a pyrometer
in the exit of a sister line of RB4 in Aperam, called RB1. The "TT-3.2” pyrometer, as
illustrated in Figure 2.3, is used to monitor this important parameter of the process and

provide real-time feedback for the necessary process interventions.
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Figure 2.3: Detailed components of RB1’s Furnace 3.

Gas C,

e e i e g g
V) v ! vl — l--li-jlll-il-l e v e e
» » | » b | » ‘ 3 »
| Zone 7 |

............ ; h" - I'-.I - |‘|.l - 'l’l I‘L f‘l.l - Fl‘l - lfl - Ifl l I"I L} II'I - I"I - l-.l I‘
i 1 I ] L) Ll L I i U I I
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2.2 Machine Learning

According to Bengio [2009], allowing computers to model our world to a degree that
we perceive as intelligence has been the focus of research for half a century. Achieving this
entails digitally storing data in any format. However, manually formalizing all information
for machines to generalize to novel contexts would be arduous. As a result, researchers
have turned to learning algorithms. This field of study, known as Machine Learning, has
been defined by Murphy [2013] as a set of methods that can automatically detect patterns
in data and use them to predict future events or make other types of decisions. One
noteworthy example is the human ability to read various handwritten symbols through
generalization. According to Bishop [2006], the essential aspect of a machine learning
algorithm is its capacity for generalization. To demonstrate this, he presents an algorithm

capable of accurately categorizing a digit based on an image, as shown in Figure 2.4.

Figure 2.4: Examples of hand-written digits taken from US zip codes.

o /14 DY
<llb||7]12 A

Source: Bishop [2006]
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Miiller and Guido [2016] define Machine Learning algorithms that learn from in-
put/output as supervised learning algorithms. These algorithms are supervised by a
"teacher” who provides target output for each example they learn from. If a dataset can
be created with the target outcomes and the problem can be formulated as a supervised
learning one, it can be solved using this strategy. Bishop [2006] categorizes supervised
problems into two categories. The first category is classification, which aims to assign each
input vector to one of a finite number of discrete categories, as seen in the digit recog-
nition problem. The second category is regression, which involves predicting an output
made up of continuous variables. In a study conducted by Taufiqurrahman et al. [2020],
a regression algorithm known as AdaBoost was used for water temperature forecasting in

an Aquaponic Ecosystem. The resulting model is illustrated in Figure 2.5.

Figure 2.5: AdaBoost regression predictive data compared with actual data.

Temperature

—— Artual

m—  AdaBoostRegressor Forecast

Time

Source: Taufiqurrahman et al. [2020]

2.2.1 Linear Regression

Linear regression is a classic and widely used statistical technique for modeling
the relationship between a dependent variable and one or more independent variables.
The fundamental assumption is that this relationship can be approximated by a linear

equation. In a simple linear regression, the model is represented as:
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Y=0+5X+e

Montgomery et al. [2012] explains it in detail, stating that Y is the dependent
variable, X is the independent variable, (3, is the intercept, [3; is the slope, and € represents
the error term. The goal of linear regression is to estimate the coefficients 5y and [; that
minimize the sum of squared differences between the observed and predicted values. These

elements are illustrated in Figure 2.6.

Figure 2.6: Linear Regression elements.

0 5 10 15

Linear Regression can be expanded to predicting a dependent variable that is based
on multiple predictors. Montgomery et al. [2012] presents the general form of a multiple

linear regression model with n predictors, which is given by:

Y =080+ 65X+ BXo+...+8,X, +e€

The goal of multiple linear regression is to estimate the coefficients (fy, 51, . . ., fn)
that minimize the sum of squared differences between the observed and predicted values.
Linear regression is characterized by its simplicity and interpretability. It provides
insights into the strength and direction of relationships between variables. However, its

effectiveness may be limited when dealing with complex, non-linear relationships.

2.2.2 Support Vector Machine (SVM)

Support Vector Machine (SVM) is a powerful machine learning algorithm used for
both classification and regression tasks. It operates by finding the hyperplane that best

separates the data points of different classes.
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Support Vector Regression (SVR) is a regression technique that extends the prin-
ciples SVMs to predict continuous output. SVR involves finding a hyperplane in a high-
dimensional space that captures the relationship between input features (X) and the
continuous target variable (y). Scholkopf and Smola [2001] details the fundamental idea
of the algorithm, which is to maximize the margin around the predicted values while al-
lowing for a certain degree of error within an epsilon-insensitive zone, illustrated in Figure

2.7.

Figure 2.7: In SV regression, a tube with radius € is fitted to the data. The trade-off
between model complexity and points lying outside of the tube.

Source: Scholkopf and Smola [2001]

The SVR model is represented as:

f(x) = (w,x) +b

subject to the constraints:

i = F(xi)[ < e

SVMs for regression are effective in capturing complex relationships and are par-

ticularly useful when dealing with datasets with high dimensionality.

2.2.3 XGBoost

Boosting-based algorithms, often recognized as a potent learning paradigm over

the past two decades Hastie et al. [2009], belong to the ensemble model family. These
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algorithms strategically amalgamate multiple weak models to create a robust and accurate
predictive model, capitalizing on the principle that "unity is strength.”.

XGBoost, short for eXtreme Gradient Boosting, proposed and explained by Chen
and Guestrin [2016], expands on the boosting strategy by incorporating gradient boosting
principles. It involves iteratively adding weak learners to the ensemble, with each new
learner correcting errors made by the existing ensemble as depicted in Figure 2.8, and
employing gradient descent optimization to minimize the loss function. XGBoost takes
this concept further by introducing a regularized objective function and employing a
more sophisticated mechanism for tree construction. This algorithm has demonstrated
exceptional scalability and performance, making it a preferred choice in various machine-

learning applications.

Figure 2.8: XGBoost deployment strategy.
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2.2.4 Random Forest

Another ensemble model that will be evaluated in this study is the Random Forest.
It is an ensemble learning method that belongs to the family of bagging algorithms, a
term derived from ”Bootstrap Aggregating.” The primary idea behind bagging is to train
multiple models independently on different subsets of the training data and then combine
their predictions to produce a more robust and accurate model. It was introduced by
Breiman [2001], and extends the bagging strategy by using decision trees as the base

learners.
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In a Random Forest, the bagging strategy involves constructing multiple decision
trees, each trained on a randomly sampled subset of the training data. The random
sampling is performed with replacement, meaning that the same data point can appear
multiple times or not at all in a given subset. Additionally, at each node of the tree, a
random subset of features is considered for splitting, providing diversity among the trees.
This randomness helps mitigate overfitting and decorrelates the individual trees, as stated
by Hastie et al. [2009]. This all results in an ensemble model as represented in Figure 2.9

that is more resilient and generalizes well to unseen data.

Figure 2.9: Random Forest deployment strategy.
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2.3 Digital Twin

In 2003, the terminology of digital twin was first introduced in the presentation
about Product Lifecycle Management (PLM) by Grieves [2014] at the University of Michi-
gan. He documented some of his ideas in a white paper where he presented a concept
model of a digital twin comprising three components: the physical product, the virtual
product, and data flux that binds them together. The concept is graphically depicted in
Figure 2.10.

Numerous explanations have been offered for the term ”digital twin,” but the
most noteworthy and commonly used among scholars is similar to the one put forward
by Glaessgen and Stargel [2012] in a NASA publication. In this paper, a digital twin
is characterized as ”an integrated multiphysics, multiscale, probabilistic simulation of an

as-built vehicle or system that uses the best available physical models, sensor updates,
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Figure 2.10: Information Mirroring Model.
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Source: Grieves [2014]

fleet history, etc., to mirror the life of its corresponding flying twin”. This definition
was strongly linked to a virtual representation of a space asset. A more recent inter-
pretation by Liu et al. [2018] proposed a similar definition, describing a digital twin as
"a living model of the physical asset or system that continually adapts to operational
changes based on collected online data and information and can forecast the future of the
corresponding physical counterpart”. What is consensus, and acknowledged by Wright
and Davidson [2020], is that a key aspect that sets a digital twin apart from a mere model

is its association with an existing physical object.

2.4 Al-enabled Digital Twins

Machine Learning (ML) has emerged as a fundamental technology for Digital Twins
(DTs), offering a variety of algorithms that form the basis for constructing models. Ac-
cording to Huang et al. [2021], ML models can be trained as surrogate models to enhance

the efficiency of complex numerical simulations at both the process and material scales,
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as well as to expedite production ramp-up and create soft sensors for inline-quality moni-
toring. In the same paper, it was presented a list of applications where Machine Learning

has been applied to process and material applications of Digital Twins. Table 2.1 presents

various supervised learning methods and algorithms employed by multiple authors.

Key Methods

Application Case

Ref

PIO, SVM

Prediction of surface roughness

Zhao et al. [2022]

Ensemble

methods, ANN

Modeling of the rheological behavior of
drilling fluids

Samnejad et al.
[2020]

Prediction of stress and fatigue damage (FE

ANN surrogate) of flexible risers Repalle et al. [2020]
DNA-based

Prediction of surface roughness Ghosh et al. [2020]
computing,

Markov chain

Prediction of the occurrence of defects in

Gaikwad et al.

SVM metal AM (LPBF, LMD) [2020D)]

CNN, LSTM, . . Gaikwad et al.
RNN Quality assurance in metal AM (LPBF) 12020a)

CART Prediction of additive manufacturability Ko et al. [2019]
MM Model adaptivity and quality assessment of Stavropoulos et al.

laser material removal processes

2020]

CNN, transfer

Detection of dry points in the production of
carbon fiber reinforced plastics

Stieber et al. [2020]

learning
AdaBoost, Prediction of temperature distribution of Hiirkamp et al
thermoplastic composites [2020]
XGBoost, RF
FE surrogate for a composite textile draping Pfrommer et al.
DNN
process [2018]
PML Prediction of material properties of a com- Ghanem et al

posite material system

2020]

Table 2.1: Summary of Al-enabled DTs in smart manufacturing:

level. Source: Huang et al. [2021]

process and material
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2.5 Grey-Box Modelling Approach

Hiirkamp et al. [2020] worked on the development of a physics-based digital twin,
they noted that while complex FEM simulations can provide virtual insights into struc-
tural characteristics and interface conditions, including factors such as temperature distri-
bution, they often incurred substantial computational costs, rendering them impractical
for deployment as a digital twin.

To address this challenge, their research turned to the development of surrogate
models, which could rapidly and accurately navigate an extensive parameter space. These
surrogate models exhibited the remarkable ability to generate suitable representations
within milliseconds, thus overcoming the computational limitations of the traditional
method. The construction of these surrogate models was achieved through a synergistic
blend of FEM simulations and machine-learning.

To assess the efficacy of their proposed approach, a comparative analysis involving
six distinct data-driven methods was undertaken, presented in Figure 2.11. This rig-
orous evaluation affirmed the overall feasibility of their approach, with notable promise

demonstrated by the Random Forest and Decision Tree methods.

Figure 2.11: Comparison of model evaluation metrics without outliers for all investigated
data-driven approaches for the demonstrator structure: (a) Error (R2, mean squared
error (MSE), mean MAX error, mean absolute error (MAE)); (b) times for training and
prediction.
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Source: Hiirkamp et al. [2020)]

Looking into this potential for the proposed soft sensor of this work, Aperam
Research Department was contacted, and it has been developing a physical model for
strip temperature. Access was provided to the second version of this model.

Aperam model aims to simulate the heat transfer process occurring within the

Annealing Furnace of RB4. This modeling approach draws inspiration from the strategies
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outlined by [Bitschnau and Kozek, 2009] in his research paper ”Modeling and Control of an
Industrial Continuous Furnace”, in which it emphasized that solving the three-dimensional
heat transfer problem numerically requires significant computational resources. To mit-
igate this computational intensity, he proposed simplifying the problem using a one-
dimensional heat equation and making specific assumptions, thus reducing the compu-
tational burden. His approach also involved discretizing the strip into N spatial and
temporal elements.

Recognizing the computational challenges associated with employing numerical
solutions, the Aperam team adopted a similar modeling strategy based on Bitschnau’s
work. This strategy streamlines the modeling process while addressing the computational

complexities inherent in simulating heat transfer within the annealing furnace.
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Chapter 3

Methodology

This chapter provides a detailed description of the methodologies employed in this study,
focusing on the data aspects, modeling strategy, and experimental setup. The first section
delves into the data, covering its acquisition, understanding, transformation, and cleaning
processes. Additionally, it explores the pyrometer data and independent variables to es-
tablish a solid foundation for subsequent analyses. The next section outlines the modeling
approach, detailing the overall strategy and the processes involved in model training and
validation. Finally, section three describes the setup of the experiments, ensuring that

the procedures are thoroughly documented and reproducible.

3.1 Data

Data is the fundamental component of a Digital Twin, and its preparation was a
significant workload in this research. The present section is dedicated to explaining its
meaning and exploring each step involved in its processing, transformation, and cleaning.
Comprehending these characteristics is essential for conducting meaningful analyses and

providing valuable insights in the subsequent chapters of the thesis.

3.1.1 Data Acquisition

The dataset used in this research comprises time series and descriptive variables,
which were collected from the Furnace of a Continuous Annealing line (RB4) of Aperam
South America plant, spanning from January 1st, 2022, to December 31st, 2022.

The equipment features multiple sensors that are distributed throughout its struc-

ture, and all of them are connected to a Programmable Logic Controller (PLC). The PLC
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processes the data and sends it to the Historian Software, which compresses the data
before storing it in a database. The frequency at which the data is stored is defined by
the user. Subsequently, the data is sent to the cloud via a Representational State Trans-
fer (REST) Application Programming Interface (API) and stored in big data storage as
illustrated in Figure 3.1.

Figure 3.1: Data acquisition flow.
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3.1.2 Data Understanding

The raw dataset includes 38 process variables, which are essential for analyzing
and understanding the industrial processes under investigation. These variables predom-
inantly include temperature, air, and gas flow parameters of various zones within the
production line. Additionally, the dataset incorporates measurements of furnace pressure
and line speed, which play crucial roles in the overall process dynamics. Also, there are
variables related to the product, namely thickness and width, were also included in the
dataset as they are significant quality attributes. Finally, the main focus of the thesis
study is the Pyrometer, which serves as the primary focus of the digital twin replication.
It measures temperature at the exit of the furnace and provides valuable insights into the
thermal behavior of the strip inside the furnace.

To ensure a high level of temporal resolution, the data was collected at a frequency
of 1 second. This granular sampling rate allows for detailed analysis and examination of
the industrial processes and their associated variables. All the data entries within the
dataset are exclusively related to a particular steel grade within the Stainless Steel family.
This intentional selection ensures that the analysis and findings of the thesis study are
specifically modeled to the characteristics and requirements of this particular product.

A compilation of the variables contained within the dataset is presented in Table

3.1, accompanied by their corresponding engineering unit, data type, and tag.
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Variable Unit Type Tag
Product ID - String UM
Steel Strip Thickness mm Float Esp
Steel Strip Width mm Float Larg
Temperature from Pyrometer 4 °C Float Pir 4
Line Speed m/min Float Vel
Temperature of Pre-Heating 1 °C Float Pre_1
Temperature of Pre-Heating 2 °C Float Pre_2
Temperature of Zone 1 to 3 of Furnace 1 °C Float 71,72, 73
Temperature of Zone 4 to 6 of Furnace 2 °C Float 74,75, 76
Temperature of Zone 7 to 9 of Furnace 3 °C Float 27,78, 79
VA 71, VA 72
: 3 9 9
Air flow of Zone 1 to 3 of Furnace 1 Nm?/h Float VA 73
VA_ 74, VA 75
: 3 9 )
Air flow of Zone 4 to 6 of Furnace 2 Nm?/h Float VA 76
VA 77, VA 78
. 3 ) )
Air flow of Zone 7 to 9 of Furnace 3 Nm?/h Float VA 79
VG_Z1
3 )
Glas Flow of Zone 1 to 3 of Furnace 1 Nm?/h Float VG272, VG.73
VG 74
3 )
Glas Flow of Zone 4 to 6 of Furnace 2 Nm?/h Float VG.75. VG_Z6
VG_Z7
3 )
Glas Flow of Zone 7 to 9 of Furnace 3 Nm?/h Float VG_Z8, VG_Z9
Pressure of Pre-Heating mmCA Float P_Pre
Pressure of Furnace 1 mmCA Float P1
Pressure of Furnace 2 mmCA Float P2
Pressure of Furnace 3 mmCA Float P3

Table 3.1: Description of Dataset Variables.
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3.1.3 Data Transformation

The production process of the line involves the movement of the strips through
various sections, starting from the pre-heating section and progressing towards Furnace
3, with a total line length of 73.13 meters. The pre-heating section spans 20.59 meters,
while Furnaces 1 and 2 have lengths of 17.56 meters each, and Furnace 3 spans 17.42
meters.

The objective of the data transformation step was to produce a dataset that rep-
resented each meter of processed material. This was achieved by calculating the average
values of the variables measured by the line sensors, from the beginning of the strip’s
journey inside the furnace (starting from the pre-heating section) to the end of the line.
Additionally, the average temperature measured by the pyrometer for each meter was
computed, as it represents the target variable that we aim to replicate through modeling.

To determine the position of each meter within the furnace, a combination of line
tracking and speed information was utilized. As each coil enters the furnace, a tracking
sensor assigns a unique Product ID to the material being processed. By dividing the line
speed (given in meters per minute) by 60, we obtained the rate of material progression
per second. This enabled us to determine the position of each meter inside the furnace at
any given time. Utilizing this positional information, measurements for each meter were
collected while it passed through zones where the sensors were located.

The data processing procedure generates a representation of the material’s char-
acteristics as it progresses through the production line. This representation facilitates
subsequent modeling and the replication of the target variable.

To illustrate this process, let’s consider the calculation of the average pressure in
Furnace 1. As the strip starts its journey from the pre-heating section and traverses the
furnace, meter by meter, the average furnace pressure is computed while each of them
are inside Furnace 1, as exemplified in Figure 3.2. These calculated averages are then
appended to the transformed database. It’s important to note that this same strategy is
employed for calculating every variable associated with each meter, with the only variation
being the range reference. Detailed information on all variables and their respective

calculation range can be found in Table 3.2.



3.1. Data 34

Aggregation Range

Variable (m)
Temperature of Pre-Heating 1 [0, 3.5]
Temperature of Pre-Heating 2 (3.5, 20.59]
Temperature, Air Flow and Gas Flow of Zone 1 [20.59 , 26.5]
Temperature, Air Flow and Gas Flow of Zone 2 [26.5 , 31.5]
Temperature, Air Flow and Gas Flow of Zone 3 [31.5 , 37.75]
Temperature, Air Flow and Gas Flow of Zone 4 [37.75 , 44]
Temperature, Air Flow and Gas Flow of Zone 5 [44 , 49]
Temperature, Air Flow and Gas Flow of Zone 6 [49 , 55.25]
Temperature, Air Flow and Gas Flow of Zone 7 [55.25 , 61.5]
Temperature, Air Flow and Gas Flow of Zone 8 [61.5 , 66.5]
Temperature, Air Flow and Gas Flow of Zone 9 [66.5 , 71.6]
Pressure of Pre-Heating [0, 20.59]
Pressure of Furnace 1 [20.59 , 37.75]
Pressure of Furnace 2 [37.75 , 55.25]
Pressure of Furnace 3 [55.25 , 71.6]
Temperature from Pyrometer 4 [70.6 , 72.6]

Table 3.2: Aggregation range of process variables.
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Figure 3.2: Strip movement across the Furnace.
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3.1.4 Data Cleaning

Data cleaning plays a pivotal role in ensuring the accuracy and reliability of the
subsequent modeling processes. It serves as a critical step in the data preprocessing
pipeline, aimed at enhancing the overall model quality.

In the context of the 430st production line, it is imperative to note that the op-
erational speed is typically expected to surpass a minimum threshold of 50 meters per
minute (m/min). This benchmark provides a crucial reference point for gauging the line’s
efficiency and productivity. However, the line speed may not always maintain a consis-
tent pace. It can exhibit sudden and pronounced drops, often serving as a telltale sign
of underlying issues within the production line or potential defects in the product being
processed. These deviations in speed carry the potential to significantly impact the per-
formance of any predictive model, introducing a level of noise and variability that can
challenge the model’s robustness.

To mitigate the potential impact of speed variations on the analysis and modeling,
a deliberate decision has been made to consider only those products that consistently
maintained a line speed exceeding 50 m/min. This selective approach filters out products
that fall below this speed threshold, ensuring that the subsequent analysis is conducted
on a more homogenous and reliable dataset.

Another important aspect is that the dataset employed in this analysis originates
from physical sensors embedded within a production line. Such sensors are susceptible to
generating erroneous data. During the data transformation phase, erroneous data within

the time series were meticulously eliminated. The most common sources of this aberrant
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data were related to sensor failures or temporary shutdowns.

However, it should be noted that the issue of outliers within the dataset remained
unaddressed. These outliers may manifest when the manufacturing process deviates from
its predefined setpoints. Furthermore, they could be attributed to sensor misconfigura-
tions and other unforeseen anomalies. An illustrative example of this outlier presence can
be observed in Figure 3.3, which depicts Pyrometer readings. The data predominantly
clusters within the range of 810 to 870, as evident in the concentration of data points
within the interquartile range. Nonetheless, the presence of numerous data points beyond

the whiskers in the boxplot signifies the existence of outliers.
Figure 3.3: Presence of outliers in the Pyrometer readings.
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It should be acknowledged that these outliers possess the potential to adversely
impact the performance of any subsequent modeling endeavors due to their classification as
uncommon patterns. Therefore, a pivotal step within the data processing pipeline involves
their meticulous removal. To execute this critical process, the Z-Score was computed, and
data points found to deviate by three standard deviations from the sample mean were
systematically eliminated.

The results of the data cleansing process are portrayed in Figure 3.4, where a
distinct transformation in the dataset’s distribution is observed. This same rigorous
procedure was replicated for Zone Temperatures, signifying a comprehensive approach to

ensure the quality and reliability of the dataset employed for subsequent analyses.
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Figure 3.4: Pyrometer 4 bloxplot after removed outliers.
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3.1.5 Pyrometer Data Exploration

Firstly, an examination of pyrometer measurements led to the revelation of one
important characteristic of its data. As illustrated in 3.5, it became evident that the
distribution of these measurements deviated from a Gaussian.

Figure 3.5: Pyrometer 4 data distribution.
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This departure from normality can be attributed to the existence of various fur-

nace setups contingent upon the material’s thickness. Subsequently, 3.6, portraying box
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plots for distinct thickness categories, starkly underscores the influence of these disparate

furnace configurations on the distribution of pyrometer measurements.

Figure 3.6: Pyrometer 4 boxplot by Thickness.
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Recognizing the distinct distribution patterns within each thickness group, our
forthcoming sections on model performance evaluation will include a detailed analysis of
results according to individual thickness categories. It is essential to acknowledge that
models are expected to yield consistent predictions across all thickness ranges. However,
there is a possibility that they might exhibit superior performance within specific thickness
intervals. This granularity in the assessment will provide a deeper insight into the models’
effectiveness in handling variations across different thickness groups.

After all the transformation and cleaning processes, the final size of the training
dataset is an extensive 3,214,145 records, with each entry representing a distinct meter of
material processed in the Furnace of RB4. The abundance of data in the training dataset
is advantageous for machine learning models as it allows for a more efficient learning of
patterns and relationships within the data, enhancing the model’s predictive capabilities.
Similarly, the test dataset, following the same meticulous cleaning procedures, comprises
a substantial 1,415,696 records. This ample amount of data in the test set is invaluable
for evaluating model performance, ensuring robustness, and demonstrating resilience to
overfitting, ultimately validating the model’s ability to generalize well to new, unseen
data.
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3.1.6 Independent Variables Data Exploration

After data cleaning and exploration of the target variable, this section delves into
an in-depth examination of the independent variables. To safeguard Aperam Intellectual
Property, data related to furnace process variables will be presented in a normalized form.

As elucidated earlier, this study encompasses a total of eight distinct thickness
groups, each with its intrinsic significance. Additionally, another critical dimensional
variable is the width of the material, which spans from 1000mm to 1040mm and from
1200mm to 1320mm, as visually depicted in Figure 3.7. The interplay of width and
thickness provides valuable insights into the mass of the processed material, rendering
it a pivotal consideration in the annealing process, both of them are also present in the

physical model.

Figure 3.7: Histogram of Width in the training dataset.
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The line speed, another pivotal variable in the process, significantly impacts the
pyrometer readings. The proposed setpoint for speed in the studied product is approx-
imately 60 m/min, ensuring that, with the correct temperature input in each zone, the
steel strip’s heating curve aligns with expectations. Instances of quality or mechanical
issues may necessitate a speed drop or even a complete line stop, rendering the product
unsuitable for its intended application. Given the focus on replicating a stable line in this
study, only speeds above 50 m/min were considered, effectively eliminating these outliers.
The distribution of line speed data is visually represented in Figure 3.8, demonstrating
that the majority of readings cluster around 60 m/min.

Zone temperatures assume a pivotal role in the experiments, serving as crucial in-
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Figure 3.8: Histogram of line speed in the training dataset.
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puts for both the physical models and the proposed grey-box models. Their distributions,
at majority, do not adhere to a normal distribution, owing to distinct configurations for
different thickness groups, mirroring the pattern observed in pyrometer temperatures (as
shown in Figure 3.9). Box-plots of Zone 1 temperature for each thickness group illustrate
this variation, showcasing an increasing trend. This variance is necessary to accommodate
the heating requirements of different mass loads.

Figure 3.9: Boxplots of Zone 1 temperature by Thickness.
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There exists one temperature measurement for each zone, with two additional

representations for a pre-heating section. As explained their distribution, depicted in
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Figure 3.10 exhibits diverse formats. Given that the material traverses these temperatures
from the furnace’s inception to its end, the accurate configuration of zones also holds
paramount significance. A failure or malfunction in the setup of any zone can disrupt the

strip temperature curve, leading to deviations from the desired outcome.

Figure 3.10: Distribution of Zones temperatures.
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This study extends its exploration to variables outside the physical model, delving
into process-related factors. Among these, Air and Gas Flow measurements assume sig-
nificance and are employed to achieve and regulate zone temperatures. The distributions
of these measurements, depicted in Figure 3.11, reveal two discernible patterns. Firstly,
final zones exhibit a more restricted operational range, characterized by a narrower dis-
tribution around their means. This indicates a lesser degree of operational interference
during the annealing process. Secondly, certain zones, like Zone 1 and Zone 5, exhibit
numerous zero values in Gas Flow, which are also actual zero values in the original distri-
bution. This is not a data error but reflects instances of zero gas input during the process,

highlighting operational characteristics.
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Figure 3.11: Distribution of Air and Gas Flow variables.
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While attempting to physically model all gas movements presents a formidable
challenge, these variables might influence the furnace atmosphere. Thus, their inclusion in
hybrid modeling, alongside zone temperatures, can empower machine learning algorithms
to capture the complexities of the annealing process more comprehensively than relying
solely on temperatures.

The final set of variables under consideration includes Furnace Pressure, although
not explicitly incorporated into the physical model, they play a pivotal role in the RB4
process. As demonstrated in Figure 3.12, the distribution of Furnace Pressure reveals
distinctive patterns, particularly in the pre-heating zone. An exhauster in this zone
facilitates the expulsion of combustion by-products like CO2, creating a counter flux flow
in the line, moving from the end to the beginning of the line.

These pressure variables bear significance in ensuring the proper movement of
gases within the furnace. Anomalies in their behavior could lead to deviations in heating

curves and potentially result in quality-related issues in the processed material. Thus,
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Figure 3.12: Distribution of Furnace Pressure variables.
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understanding and monitoring Furnace Pressure is crucial for maintaining the integrity
of the annealing process and the desired product quality.

In concluding the exploration of independent variables, a spectrum of crucial fac-
tors influencing the annealing process in RB4 has been traversed. From material di-
mensions such as thickness and width to operational parameters like line speed, zone
temperatures, and environmental conditions such as air and gas flow, each variable bears
significance in achieving the desired temperature curves for the steel strip. The distri-
bution analyses have unearthed distinctive patterns, providing insights into the opera-
tional nuances and potential challenges within the furnace. Beyond the physical model’s
constraints, the inclusion of variables like air and gas flow, as well as furnace pressure,
showcases the richness of the process dynamics that can enhance the capabilities of ma-
chine learning algorithms in this context. This thorough exploration sets the stage for the

subsequent integration of these variables in the modeling endeavors.
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3.2 Modeling

3.2.1 Modeling Strategy

Four distinct machine learning algorithms were explored in this study, specifically
XGBoost, Random Forest, Linear Regression, and Support Vector Machine (SVM). The
training of these models was carried out using the widely-used open-source Python library,
scikit-learn by Pedregosa et al. [2011]. These models were selected mainly due to their
explainability, since having an overview of the underlying features used by the models,
alongside their importance to each model, would be useful to understand their different
results and approaches to the grey-box strategy.

In order to enhance the model’s performance, an exploration of parameters opti-
mization was undertaken. The exploration range for each of the investigated algorithms

is presented in Table 3.3.

Model Hyperparameters Explored range
gamma 0, 0.5, 2, 4]
subsample (0.6, 0.8, 1]

XGBoost n_estimators [50, 100, 200, 400]
max_depth 8, 10, 12]
learning_rate (0.1, 0.3]
max_features Pauto’, ’sqrt’]

Random Forest max_depth 6, 8, 10]
n_estimators [50, 100, 200, 400]

Linear Regression - -

SVM C 0.1, 0.5, 1]

Table 3.3: Overview of modeling strategy.



3.2. Modeling 45

3.2.2 Model Training and Validation

In order to obtain reliable estimates of model performance and prevent overfitting,
two strategies will be implemented to evaluate the model. The first strategy involves
splitting the available data into training and testing datasets. Approximately 70% of the
available data will be used to develop the model, which comprises dates between January
Ist, 2022, and September 30th, 2022. The remaining 30%, which is data collected from
October 1st, 2022 to December 31st, 2022 will be used to assess the performance of the
model’s predictions on unseen data. This process can provide insights into the model’s
variance and its ability to generalize to new data.

The second strategy involves using cross-validation during model training, as de-
scribed by Hastie et al. [2009]. This method involves dividing the training data into k
equally sized sub-samples, using one sub-sample for validation and the remaining sub-
samples to build the model. This process is repeated k times, with each sub-sample used
once for validation. The results of cross-validation can be used to detect overfitting and
make adjustments to the model. This approach allows for the use of as much data as pos-
sible during training, which is particularly important when data is scarce. Since multiple
ranges of hyperparameters will be explored, the number of folds in this experiment will

be fixed at 3. An example of k-folding is exemplified in Figure 3.13.

Figure 3.13: Cross Validation with 5 k-folds.
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Through the experiments, the metric that will be used to evaluate how well the
models fit the data is the root mean squared error (RMSE). It is a widely used measure
that gives important feedback about the regressor’s performance.

The RMSE gives an insight into the distance between the predicted values from
the real ones in a dataset, being the lower the root mean squared error, the better the

model. The formula to calculate it is given as follows:

N

1
RMSE = \l N Z(?jz — yi)?

=1
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3.3 Experiments Setup

The experimental process will be executed through a series of well-defined steps
presented.

First and foremost, data will be collected from the PIMS systems, subsequently
cleaned, and then removed from any faulty or missing data.

After data collection and initial cleaning, focusing mainly on outlier removal, a fea-
ture engineering process will be applied to the gathered data. This process will culminate
in the creation of a curated dataset, ready for data modeling.

Following the feature engineering stage, the physical model will be trained and
validated. Then, the probabilistic model will undergo a similar process, exploring a grey
modeling approach, followed by the validation of the final soft sensor model.

Upon the completion of these preceding steps, each individual model will be subject
to evaluation on test data, thereby facilitating an assessment of their performance and

reliability. A complete overview of the entire process is represented in Figure 3.14

Figure 3.14: Experiment steps flow.
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Chapter 4

Results and Discussion

This chapter is dedicated to the presentation of the experimental results. It encompasses
the outcomes derived from the deployment of the physical model, provided by Aperam
R&D for RB4. Additionally, the results of the Grey model approach, employing machine
learning models in conjunction with the physical model to predict pyrometer temperature,
will be expounded upon. Lastly, the section encompasses the presentation of findings ob-
tained through the application of a pure probabilistic approach and a comparison between
the models.

4.1 Physical model deployment

The initial phase involved the integration of the physical model, provided by
Aperam R&D, into the dataset. This model operates with specific input parameters,
which include material thickness, material width, line speed, and zone temperatures.
Other parameters linked to the overall phenomenon, rather than the material itself, are
either pre-calculated or held constant within the model.

The process of deploying the physical model employs the Finite Method Difference,
to solve the differential heat conduction exchange equation explicitly, yielding the strip
temperature profiles represented in Figure 4.1. In this experiment, a total of 100 FDM
elements were taken into account to discretize the temperature distribution across the
length of the furnace.

To align the model’s results with the Pyrometer readings, which are situated at
the end of the production line, the data corresponding to the final element was collected.

The post-processing of the dataset involved assigning input parameters to every
meter of material processed within the specified time frame. Consequently, individual

temperature curves were meticulously computed for each of these meters.
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Figure 4.1: Strip temperature curve calculated by physical model.
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4.1.1 Evaluation of the physical model

When comparing the distribution of strip temperatures derived from the provided
physical model with actual pyrometer measurements, discrepancies between these distri-

butions are apparent, as depicted in Figure 4.2.

Figure 4.2: Pyrometer 4 vs Physical Model.
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Several factors may contribute to these disparities. Firstly, it’s plausible that
the physical model may not encapsulate all relevant phenomenological aspects of the
annealing process, since as stated it is a simplified approach. Moreover, variations in

pyrometer configurations may also contribute to these deviations.
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When examining the physical model’s temperature estimations. Contrary to the
behavior of Pyrometer 4, Figure 4.3 illustrates that as material thickness increases, the

physical model predicts a decrease in temperature.

Figure 4.3: Physical model temperature estimations boxplot by product thickness.
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Figure 4.4 further illustrates this by revealing that errors increase in a linear fashion
along with thickness. This observed pattern underscores the non-random nature of these
errors and paves the way for further exploration, particularly in the realm of Grey Box

modeling, which may leverage linear models to predict pyrometer temperature.

Figure 4.4: Error by Thickness.
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The overall performance of the model in train and test datasets is presented in

Table 4.1
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Model Train data RMSE Test data RMSE

Physical Model 29.66 33.36

Table 4.1: Physical Model Performance.

4.2 Grey box modeling

This section aims to provide a presentation of the strategy and results derived
from each of the models employed in the study. This will be done by showcasing their
individual performance using the chosen metric through different optics, to elucidate their
strengths, and weaknesses across multiple thickness ranges, and their underlying strategy
regarding feature selection.

The objective of the proposed grey box modeling approach is to use process vari-
ables and the physical model to forecast Pyrometer 4 temperature. Consequently, the
target variable chosen for this purpose is the variation between the Pyrometer reading

and the physical model’s prediction, which can be observed in Figure 4.5.

Figure 4.5: Variation between Pyrometer 4 and Physical Model.
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This selection is motivated by the behavior of certain machine learning models, such
as XGBoost, which may not utilize all available features when constructing a decision tree.
This strategy, employed by the algorithm, is primarily aimed at mitigating overfitting.
However, for the present experiment, it is essential to ensure that the Physical Model

contributes to the final prediction consistently, thereby enabling a meaningful comparison
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with the pure probabilistic approach. Ultimately, the Pyrometer Temperature can be

reconstructed by adding the physical model’s value with the forecasted error component.

4.2.1 Models Perfomance

Table 4.2 presents the evaluation of the models proposed using the grey-box mod-
eling strategy.

Interestingly, the evaluation revealed some unexpected outcomes. It was observed
that relatively simple linear models outperformed ensemble algorithms. Each model will
be individually explored, aiming to gain a deeper understanding of their behavior and the

specific results observed during evaluation.

Model Best hyperparameters Train RMSE  Test RMSE

gamma: 0.5
subsample: 1
XGBoost n_estimators: 200 4.75 4.57
max_depth: 6
learning rate: 0.1

Linear Regression - 4.86 4.01

SVM C: 0.1 4.97 3.94

max_features: ’sqrt’
Random Forest max_depth: 12 5.63 4.92
n_estimators: 100

Table 4.2: Overview of model results.

4.2.2 Evaluating Linear Regression

In Figure 4.6 the errors associated with the linear model exhibit a distribution that
appears to be reasonably centered around zero, with mean and standard deviation being
T = —0.07 and s = 4.01. Nevertheless, the presence of a few outliers on the left side of

the distribution is notable, suggesting certain deviations from the norm.



4.2. Grey box modeling 52

Figure 4.6: Error distribution for Linear Regression grey-box model.
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The residual plot in Figure 4.7 unveils an intriguing trend. It becomes apparent
that errors for lower temperatures primarily manifest as negative values, and as tempera-
ture increases, the errors transition towards increasingly positive values. This observation

highlights an unexpected correlation between temperature and error magnitude.

Figure 4.7: Residual plot for Linear Regression grey-box model.
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Figure 4.8 allows us to explore the influence of thickness on the errors. Here, we
observe a maximum error range of approximately -10 to +10 across different thicknesses.
However, an interesting pattern emerges: most of the outliers are skewed towards the
negative side. Additionally, when the material thickness surpasses 0.8mm, the median

line of errors shifts to a position above zero. These combined findings provide valuable
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insights into the factors affecting the residuals as seen in the residual plots, since it was

already stated that higher temperature readings are in higher thickness.

Figure 4.8: Boxplot of errors by thickness for Linear Regression grey-box model.
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Looking at the feature importance of Linear Regression in Figure 4.9, the actual

physical model temperature emerges as a prominent feature, as anticipated, given its
direct correlation with the target variable. The model employs this temperature as the

primary driver for its predictions, indicating its pivotal role in shaping the output.

Figure 4.9: Feature importance for Linear Regression grey-box model.
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However, the model doesn’t solely rely on the physical model temperature. It
leverages additional features to enhance the precision of its predictions. Among these,
zone temperatures and material thickness significantly contribute to the model’s output.
Additionally, some measurements related to Air and Gas Flow also exert a substantial

impact, as indicated by their presence in the top 5 features in the model.

4.2.3 Evaluating Linear SVM

SVM exhibits a slightly better performance compared to Linear Regression. When
examining the error distribution of the SVM model, it remains concentrated within the
-10 to 4+10 range, with calculated statistics of T = —0.18 and s = 3.94, as depicted in
Figure 4.10. What’s noteworthy is that the distribution’s tip is smoother when compared

to that of Linear Regression.

Figure 4.10: Error distribution for SVM grey-box model.
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When observing the feature importance in the SVM model, some distinctions from
the Linear Regression model come to light, as evident from Figure 4.11. While the physical
model temperature retains its position as the most influential feature, the SVM model
introduces variations in the importance of other features. In this case, Air and Gas flows,
along with Zone temperatures exhibit substantially higher importance than thickness.

It’s worth emphasizing that Air and Gas flows are also featured in the linear
model. Nevertheless, their pronounced role in the SVM model is rationalized by the

recognition that these parameters play a vital role in influencing the overall energy input
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and the atmospheric conditions within the furnace. Consequently, this could explain their

contributions to the predictive capacity of the model.
Figure 4.11: Feature importance for SVM grey-box model.
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Figure 4.12 provides insights into the residual plot of the SVM regressor, revealing
a pattern that closely resembles the one observed in the Linear Regression model. The

similarity in the residual plot patterns suggests some commonality in error behavior.

Figure 4.12: Residual plot for SVM grey-box model.
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SVM’s superior performance compared to Linear Regression can be attributed to
a notable characteristic within the error distribution—specifically, the position of the

median. A careful examination of Figure 4.13 reveals a significant shift in the median’s
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location for thicknesses exceeding 0.8mm. This movement towards closer proximity to zero
signifies a noteworthy enhancement that plays a pivotal role in driving SVM’s improved

overall performance.

Figure 4.13: Boxplot of errors by thickness for SVM grey-box model.

svm_error
e

-40
04 045 05 0.6 0.7 08 0.9 1.0
Esp

LinearSVR emerges as a strong contender for deployment as a soft sensor, demon-
strating notable performance characteristics during our evaluation. While some ineffi-
ciencies were detected through the residual plot, it exhibits considerable strengths in its
predictive capabilities.

The error distribution of the model is a key indicator of its reliability. Across
various material thicknesses, SVR’s errors are predominantly centered around zero. This
consistent pattern assures us of the model’s ability to provide accurate temperature pre-
dictions. Additionally, the standard deviations of the errors provide an estimate that
the deviations from the actual values are likely to stay within a reasonable range, typi-
cally within +10 and -10 degrees of temperature. This level of precision is particularly
promising, given the inherent complexities of pyrometry as a temperature measurement

technique.

4.2.4 Evaluating XGBoost

XGBoost exhibits a marginally inferior performance compared to linear models, as
indicated by the distribution depicted in Figure 4.14. This is affirmed by the statistics of

this distribution, with a mean of -0.22 and a standard deviation of 4.56.
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Figure 4.14: Error distribution for XGBoost grey-box model.
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The feature selection process employed by XGBoost varies considerably from the
previous models. Figure 4.15 illustrates the prominence of the physical model as the most
crucial feature, followed by dimensional attributes such as thickness and width. Other

features receive relatively less importance in this model’s predictions.
Figure 4.15: Feature importance for XGBoost grey-box model.
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Figure 4.16, displaying the error by thickness, demonstrates that XGBoost exhibits
more significant deviations from zero, particularly in thicker products. This divergence

in error distribution is a plausible explanation for the model’s comparatively lower per-

formance, particularly in the context of thicker materials.
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Figure 4.16: Boxplot of errors by thickness for XGBoost grey-box model.
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In Figure 4.17, the residual plot maintains a similar pattern observed earlier. Errors
continue to exhibit an increasing trend with temperature. And it should be remarked that

XGBoost is a non-linear model, it operates differently from the previous linear models.

Figure 4.17: Residual plot for XGBoost grey-box model.
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4.2.5 Evaluating Random Forest

Random Forest demonstrated the lowest performance on testing, with an error
distribution as depicted in Figure 4.18, exhibiting mean and standard deviation of T = 0.43
and s = 4.9.

Figure 4.18: Error distribution for Random Forest grey-box model.

0.10
0.08

0.06

Density

0.04

0.00 —
40 -20 0 2 %

if_error

Random Forest, like XGBoost, is another non-linear model. While it underper-
formed when pitched with the other algorithms for the given task, it is interesting to ex-
plore its results to understand how it converges or differs from XGBoost. Both models are
ensemble methods, but they employ different principles. Random Forest operates based
on bagging, whereas XGBoost relies on boosting, resulting in distinct internal workings.

The residual error pattern, as seen in Figure 4.19, aligns with that of the other
models, displaying the same increasing trend. The consistency of this pattern across four
different models suggests that this trend is more likely associated with the underlying data
characteristics rather than the choice of the modeling algorithm. There is the possibility
of missing predictor variables within the model, which were not included in the collected
data. This might contribute to the discrepancies observed in the model’s performance.

An interesting difference between Random Forest and XGBoost is their feature se-
lection. XGBoost primarily focuses on the physical model and the dimensional attributes
of the steel strip as its main features, while Random Forest incorporates other variables
alongside these. Although Random Forest had the flexibility during hyperparameter op-
timization to explore using either root square or all features for each split, it achieved

better results using the former approach. This led to an exploration of more features,
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Figure 4.19: Residual plot for Random Forest grey-box model.
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introducing additional variables into the process, as indicated in Figure 4.20.

Figure 4.20: Feature importance for Random Forest grey-box model.
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Despite these differences in feature selection, the results for different thicknesses

were strikingly similar to those of XGBoost, with performance degrading as thickness

increased, as visualized in Figure 4.21.
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Figure 4.21: Boxplot of errors by thickness for Random Forest grey-box model.
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4.3 Final Observations

So far, the evaluation has primarily focused on the RMSE metric to gauge the
performance of our models. However, it is essential to extend the analysis beyond numer-
ical accuracy and look into the temporal characteristics of the reconstructed time series
generated by the models. This allows to not only assess their quantitative performance
but also examine the resemblance of the reconstructed curves to the actual temperature
profiles.

In this investigation, the initial fifteen thousand records within the test dataset.
As previously highlighted, the physical model follows the inverse general trend of the
target temperature. Figure 4.22 also shows that Physical Model’s output follows a similar
trajectory, exhibiting corresponding fluctuations and variations.

SVM efficiently utilizes the physical model alongside other pertinent features to
try to align itself with the Pyrometer temperature readings. The graph presented in
Figure 4.23 underscores this behavior, showcasing that SVM succeeds in narrowing the gap
between its predictions and the Pyrometer temperature. This visual inspection enhances
our understanding of the models’ capabilities and their ability to reproduce the underlying
temporal patterns.

To provide a more in-depth perspective on the effectiveness of the grey-box mod-
eling approach relative to a purely probabilistic one, an experiment was conducted. In
this experiment, a linear model was constructed using only the Thickness variable as

the predictor. The purpose of this exercise is to elucidate the impact of incorporating
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Figure 4.22: Pyrometer 4 and Physical model temperature curves for the first fifteen
thousand records of the test dataset.
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Figure 4.23: Pyrometer 4 and SVM temperature curves for the first fifteen thousand
records of the test dataset.
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physical model information on the model’s performance and ability to capture the target
temperature profile using restricted data dimensionality.

Upon inspecting Figure 4.24, it’s possible to observe that the linear model, when
developed without the integration of physical model insights, exhibits a capacity to esti-
mate the y-axis position of the temperature, as expected due to previous observations of
the linear influence of thickness in the pyrometer temperature, but it lacks the accuracy
and fidelity required for a loyal representation.

In contrast, the grey-box model, which uses the predicted error between the phys-
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ical and real temperatures to construct the time series, and relies solely on the Thickness
variable, displays a distinct behavior. It progressively converges towards the correct y-
axis position of the temperature profile while simultaneously preserving the fundamental
shape of the Pyrometer time series. This behavior underlines the capability of the grey-

box model to enhance its representation of the time-series.

Figure 4.24: Linear Regression and Grey-Box Linear Regression model fitted with just
thickness feature.
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When comparing the tested models—Support Vector Machine (SVM), Linear Model,
Random Forest, and XGBoost—distinctive patterns and performance characteristics emerge,
providing an understanding of their efficacy in predicting Pyrometer 4 temperatures.

Support Vector Machine (SVM) reveals commendable performance despite inef-

ficiencies noted in its residual plot. The distribution of errors across various material
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thicknesses is noteworthy, with errors predominantly centered around zero. Standard
deviations indicate deviations within a manageable range of 410 and -10 degrees, high-
lighting SVM'’s robustness in providing accurate temperature predictions.

Linear Regression exhibits great generalizability, particularly across diverse prod-
uct thicknesses, showcasing lower errors that contribute to a significant level of consistency.
This emphasizes the model’s reliability in predicting Pyrometer 4 temperatures.

XGBoost, while exhibiting slightly inferior performance compared to linear models,
introduces a unique dimension by primarily focusing on the physical model and dimen-
sional features. But has a more pronounced deviation from zero, especially for thicker
products.

Random Forest emerges as the least performing model during testing, evident in
the distribution’s mean of 0.43 and a standard deviation of 4.9. The residual error closely
mirrors patterns observed in other models, emphasizing that the observed trend is more
inherent to the dataset than the specific algorithm employed. A distinctive feature of
Random Forest is its emphasis on additional variables alongside the physical model and
dimensional attributes.

The grey-box models exhibit deployment-ready results with consistently low er-
rors compared to the pure physical model, as evident in Figure 4.25. Linear models,
especially, showcase strong generalization across diverse product thicknesses. A hypothe-
sis emerges that the inherent errors in the physical pyrometer readings might impact the
performance of complex tree-based models, potentially explaining their superior training
results. Further exploration is required to dissect the influence of these errors on overall

model performance.

Figure 4.25: Mean Squared Error (MSE) comparison across models
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Chapter 5

Conclusion

In this work, the ambition to create a Digital Twin for the Pyrometer 4 at the heart of the
Annealing Furnace in RB4, led to the exploration of an array of models and strategies.
The pursuit went through the deployment of the Physical Model, the exploration of the
Grey-Box Modeling approach, and an in-depth evaluation of various machine learning
models.

The objective of the deployment of the Physical Model provided by Aperam R&D
was to have a model that incorporated phenomenological aspects of the process, aiming
to capture the essence of the Annealing Furnace. Yet, it was clear that while a remarkable
starting point, it could not single-handedly yield the desired accuracy.

The introduction of Grey-Box Modeling marked a turning point. It brought to-
gether the best of both worlds, combining the real-world physics encapsulated in the
Physical Model with the adaptability and learning capabilities of machine learning mod-
els. This approach allowed to address the discrepancies between the model and the real-
world Pyrometer readings more effectively. It acted as a bridge, minimizing the delta
between the Physical Model and our target, the Pyrometer temperature.

Across various models, each demonstrated results that were satisfactory for it to be
chosen as the final model. Linear Regression exhibited an unexpected resilience, outper-
forming more complex models in certain scenarios. SVM showcased promise, exhibiting
consistent errors distributed within a relatively narrow range.

XGBoost and Random Forest are two non-linear models that were evaluated for
the digital twin creation of the Pyrometer in Furnace 3. While they both exhibited less
satisfactory performance compared to the linear models, they provided valuable insights
into the complexity of the problem. The underperformance of these two models might be
attributed to the inherent challenge of replicating the Pyrometer data due to the natural
errors in its readings. These errors can introduce noise and incorrect patterns, which more
complex tree-based models might try to wrongly replicate. Moreover, the behavior of the
models regarding product thickness highlights a degradation in performance for thicker
products, which could be explored in future works.

An examination of the key features highlighted the significance of the Physical

Model in the prediction of Pyrometer temperature. It acted as a guiding light, illuminat-
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ing the path for the machine learning models, and combining it with additional process
variables for enhanced accuracy.

All the compiled results showed the transformative potential of Hybrid Modeling.
By integrating the knowledge encoded within the Physical Model with the data-driven
capabilities of machine learning, a powerful synergy was unlocked. This integration offers
a bridge between the deterministic domain of physics and the probabilistic nature of data.
It allows the model to harness the strengths of both realms while mitigating their inherent

weaknesses.

5.1 Future Works

Expanding the dataset by collecting more parameters or introducing additional
sensors could enhance the richness of the data. Moreover, exploring models with in-
creased complexity, perhaps delving into deep learning architectures, may uncover even
finer details of the Pyrometer’s temperature prediction.

During the elaboration of this work, feedback was provided to Aperam R&D team
regarding the results of the physical model, which could lead to new improved versions to
be used in the construction of the grey-box model, in order to produce better performance.

Also, incorporating real-time data and online learning capabilities will enable the
Digital Twin to adapt to changing conditions within the Annealing Furnace. Such adap-
tive models hold immense potential for robust predictive power.

The ultimate vision of a Digital Twin involves seamless integration with industrial
control systems. Maturing the proposed architecture and coupling it with the furnace’s
control infrastructure, would make the Digital Model a decision-making companion for

the industrial process.
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