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Resumo

Este estudo adentra no campo do sensoriamento baseado em dados dentro dos processos

industriais de fabricação de aço, focando especificamente na Linha 4 de Recozimento e

Decapagem da Aperam South America. O objetivo principal é desenvolver um gêmeo

digital para o Pirômetro 4, um componente cŕıtico no processo de recozimento que mede

a temperatura da tira, utilizando algoritmos de aprendizado de máquina e um modelo

f́ısico para empregar uma estratégia de modelagem de caixa cinzenta.

A metodologia de pesquisa abrange uma exploração abrangente, incluindo revisão

de literatura, entendimento de dados, transformação, limpeza, treinamento e avaliação de

modelos. Vários algoritmos de aprendizado de máquina, como Regressão Linear, Support

Vector Machines, Random Forest, e XGBoost, são avaliados por sua capacidade de criar

um regressor capaz de prever leituras de temperatura e replicar o comportamento do

pirômetro. Além disso, o conhecimento espećıfico do domı́nio é integrado para construir

modelos h́ıbridos com o objetivo de melhorar a precisão da predição.

Por meio de uma avaliação e comparação minuciosas desses modelos, conhecimen-

tos valiosos sobre suas forças, limitações e aplicações potenciais são obtidos. O estudo

enfatiza a importância de empregar uma abordagem de modelagem h́ıbrida, que combina

modelos impulsionados pela f́ısica com técnicas de aprendizado de máquina, para desen-

volver gêmeos digitais robustos e precisos. Por fim, a pesquisa visa contribuir para o

avanço de soluções baseadas em dados em ambientes industriais, facilitando a tomada de

decisões e a otimização de processos.

Palavras-chave: sensores virtuais; orientado a dados; aprendizado de máquina; gêmeo

digital.



Abstract

This study delves into the realm of data-driven soft sensing within industrial steel man-

ufacturing processes, specifically focusing on Aperam South America’s Annealing and

Pickling Line 4. The primary objective is to develop a digital twin for Pyrometer 4, a

critical component in the annealing process that measures strip temperature, by utiliz-

ing machine learning algorithms and a physical model to employ a grey-box modeling

strategy.

The research methodology encompasses a comprehensive exploration, including

a literature review, data understanding, transformation, cleaning, model training, and

evaluation. Various machine learning algorithms, such as Linear Regression, Support

Vector Machines, Random Forest, and XGBoost, are assessed for their ability to create

a regressor capable of predicting temperature readings and replicating the pyrometer

behavior. Moreover, domain-specific knowledge is integrated to construct hybrid models

aimed at enhancing predictive accuracy.

Through thorough evaluation and comparison of these models, valuable insights

into their strengths, limitations, and potential applications are gained. The study empha-

sizes the importance of employing a hybrid modeling approach, which combines physics-

driven models with machine learning techniques, to develop robust and accurate digital

twins. Ultimately, the research aims to contribute to the advancement of data-driven

solutions in industrial settings, facilitating decision-making and process optimization.

Keywords: soft sensor; data driven; machine learning; digital twin.
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Chapter 1

Introduction

The concept of Industry 4.0 originated in Germany and has spread extensively throughout

the world, primarily due to its ability to enhance production efficiency through smart

services in smart factories [Sisinni et al., 2018]. It is regarded as the fourth industrial

revolution, characterized by the capacity of industrial plant components to communicate

with the entire facility through the Internet, thereby exchanging substantial amounts of

information. This is in stark contrast to Industry 3.0, where such components were mostly

isolated and lacked awareness of their surroundings [Wagner et al., 2017]. The evolution

of the industry and the major breakthroughs it has brought are illustrated in Figure 1.1.

Figure 1.1: Infographic of the Four industrial revolutions and its advances.

Industry 4.0, the fourth industrial revolution, has three fundamental components:

the Internet of Things (IoT), Cyber-Physical Systems (CPS), and Smart Factories [Her-

mann et al., 2016]. The IoT is characterized by ubiquitous connectivity, facilitating in-

formation exchange among connected devices, including data on themselves and their

surroundings. This disruptive technology has the potential to address a range of current
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issues, including smart cities, manufacturing, pollution, and health [Sisinni et al., 2018].

To interconnect these devices, CPSs play a crucial role. CPSs are ”integrations of

computation and physical processes” and involve embedded computers and networks that

monitor and control physical processes through feedback loops, where physical processes

influence computations and vice versa [Hermann et al., 2016]. CPSs provide digital de-

scriptions of real-world physical objects, which are then stored and modeled as ”digital

twins” with their own identities in the virtual space [Sisinni et al., 2018].

Digital twins, along with IoT, data mining, and machine learning technologies,

have opened up new possibilities for revolutionizing today’s manufacturing, making it

more intelligent [Min et al., 2019]. A review of papers on the development of digital twins

across multiple domains has been conducted by Barricelli et al. [2019], and the findings

are presented in Figure 1.2.

Figure 1.2: Timeline of the papers analyzed for this study. The labels are the reference
numbers. Each point in the chart has a color that refers to the application domain in
which the study is framed.

Author: Barricelli et al. [2019]

1.1 Motivation

The extensive interest and increasing adoption of Industry 4.0 concepts by compa-

nies have resulted in a plethora of opportunities to be explored. There exists a multitude

of interconnected devices, sensors, cameras, processes, and systems that generate vast

volumes of data. [Gartner, 2017] analyst Thomas Oestreich points out that the challenge
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that companies face in this 4.0 scenario is how to handle this massive volume of data, and

to unleash its full potential, new algorithms need to be developed. The aim of this study

is to leverage these new technologies to create a data-driven soft sensor for a physical

pyrometer of an existing Annealing and Pickling Line Furnace.

Operational and process control decisions in the company are based on the values

of strip temperature readings given by pyrometers. If these readings are outside the

specified limits, the product could become unusable or require modification for another

application. Several factors can affect the quality of the product, including the possibility

of a fault in the pyrometer or one of the furnace zones not providing the desired output,

requiring an operator to manually change it. The operator has to perform trial and error

tests to check if the strip temperature is meeting the required specifications.

Although mathematical models could be applied, they tend to be more general in

nature and do not account for all the specificities of the production line. Hence, having a

digital twin could aid in simulating the output based on inputs without a trial and error

approach, while it still could take advantage of existing physical models. It might also be

used as a reference to verify the data quality from the physical sensor, and automatically

adjust the parameters.

1.2 Objectives

The primary aim of this project is to develop a data-driven soft sensor capable

of measuring the temperature of a steel strip in an annealing line by exploring various

machine-learning models for regression, exploring a grey-box approach. The project en-

compasses specific objectives:

• Conduct analysis of regression techniques and models suitable for building a virtual

sensor in an industrial setting.

• Verify the capability of a grey-box modeling strategy.

• Compare the performance between models using the proposed evaluation metrics,

Root Mean Squared Error (RMSE).

• Build a data-driven soft sensor that is a digital twin of the pyrometer of the studied

annealing line furnace.
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Chapter 2

Literature Review

The literature review chapter of this research provides an overview of essential domains

central to the experiment. It begins with an examination of the RB4 Annealing and

Pickling Line, offering insights into its operation and highlighting the significance of the

Pyrometer within this context.

Machine Learning is the subsequent focus, where its principles, techniques, and

applications are explored. It serves as a foundational element to create an accurate digital

twin that mirrors the Pyrometer’s behavior.

The exploration extends to Digital Twins, their nature, and their potential to

revolutionize the comprehension and control of intricate industrial processes, and how

Machine Learning plays an important role in leveraging practical on-site data collection

to build AI-enabled twins.

Lastly, it delves into the Grey-Box Modeling Approach. This approach mixes

physics-driven models with Machine Learning methods to construct data-driven digital

twins. These soft sensors play a pivotal role in bridging the divide between theoretical

models and real-world observations.

2.1 Annealing and Pickling Line

Annealing is a heat treatment process in steel production, wherein the material

undergoes high-temperature exposure to achieve its desired properties. As explained by

Askeland and Pradeep [2009], cold rolling results in an increase in hardness due to the

growth of dislocation density, and annealing can be employed to enhance ductility and

counter these effects. Moreover, by controlling the thermo-mechanical processing, it is

possible to obtain materials with improved mechanical properties and in usable shape. At

Aperam, the RB4 production line is dedicated to the Annealing process, which comprises

three furnaces. A schematic of the complete production line is illustrated in Figure 2.1.

In RB4, the annealing process is carried out continuously, during which the strip
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Müller and Guido [2016] define Machine Learning algorithms that learn from in-

put/output as supervised learning algorithms. These algorithms are supervised by a

”teacher” who provides target output for each example they learn from. If a dataset can

be created with the target outcomes and the problem can be formulated as a supervised

learning one, it can be solved using this strategy. Bishop [2006] categorizes supervised

problems into two categories. The first category is classification, which aims to assign each

input vector to one of a finite number of discrete categories, as seen in the digit recog-

nition problem. The second category is regression, which involves predicting an output

made up of continuous variables. In a study conducted by Taufiqurrahman et al. [2020],

a regression algorithm known as AdaBoost was used for water temperature forecasting in

an Aquaponic Ecosystem. The resulting model is illustrated in Figure 2.5.

Figure 2.5: AdaBoost regression predictive data compared with actual data.

Source: Taufiqurrahman et al. [2020]

2.2.1 Linear Regression

Linear regression is a classic and widely used statistical technique for modeling

the relationship between a dependent variable and one or more independent variables.

The fundamental assumption is that this relationship can be approximated by a linear

equation. In a simple linear regression, the model is represented as:
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Figure 2.10: Information Mirroring Model.

Source: Grieves [2014]

fleet history, etc., to mirror the life of its corresponding flying twin”. This definition

was strongly linked to a virtual representation of a space asset. A more recent inter-

pretation by Liu et al. [2018] proposed a similar definition, describing a digital twin as

”a living model of the physical asset or system that continually adapts to operational

changes based on collected online data and information and can forecast the future of the

corresponding physical counterpart”. What is consensus, and acknowledged by Wright

and Davidson [2020], is that a key aspect that sets a digital twin apart from a mere model

is its association with an existing physical object.

2.4 AI-enabled Digital Twins

Machine Learning (ML) has emerged as a fundamental technology for Digital Twins

(DTs), offering a variety of algorithms that form the basis for constructing models. Ac-

cording to Huang et al. [2021], ML models can be trained as surrogate models to enhance

the efficiency of complex numerical simulations at both the process and material scales,
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as well as to expedite production ramp-up and create soft sensors for inline-quality moni-

toring. In the same paper, it was presented a list of applications where Machine Learning

has been applied to process and material applications of Digital Twins. Table 2.1 presents

various supervised learning methods and algorithms employed by multiple authors.

Key Methods Application Case Ref

PIO, SVM Prediction of surface roughness Zhao et al. [2022]

Ensemble

methods, ANN

Modeling of the rheological behavior of
drilling fluids

Samnejad et al.
[2020]

ANN
Prediction of stress and fatigue damage (FE
surrogate) of flexible risers

Repalle et al. [2020]

DNA-based

computing,

Markov chain

Prediction of surface roughness Ghosh et al. [2020]

SVM
Prediction of the occurrence of defects in
metal AM (LPBF, LMD)

Gaikwad et al.
[2020b]

CNN, LSTM,
RNN

Quality assurance in metal AM (LPBF)
Gaikwad et al.
[2020a]

CART Prediction of additive manufacturability Ko et al. [2019]

HMM
Model adaptivity and quality assessment of
laser material removal processes

Stavropoulos et al.
[2020]

CNN, transfer

learning

Detection of dry points in the production of
carbon fiber reinforced plastics

Stieber et al. [2020]

AdaBoost,

XGBoost, RF

Prediction of temperature distribution of
thermoplastic composites

Hürkamp et al.
[2020]

DNN
FE surrogate for a composite textile draping
process

Pfrommer et al.
[2018]

PML
Prediction of material properties of a com-
posite material system

Ghanem et al.
[2020]

Table 2.1: Summary of AI-enabled DTs in smart manufacturing: process and material
level. Source: Huang et al. [2021]
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outlined by [Bitschnau and Kozek, 2009] in his research paper ”Modeling and Control of an

Industrial Continuous Furnace”, in which it emphasized that solving the three-dimensional

heat transfer problem numerically requires significant computational resources. To mit-

igate this computational intensity, he proposed simplifying the problem using a one-

dimensional heat equation and making specific assumptions, thus reducing the compu-

tational burden. His approach also involved discretizing the strip into N spatial and

temporal elements.

Recognizing the computational challenges associated with employing numerical

solutions, the Aperam team adopted a similar modeling strategy based on Bitschnau’s

work. This strategy streamlines the modeling process while addressing the computational

complexities inherent in simulating heat transfer within the annealing furnace.
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Chapter 3

Methodology

This chapter provides a detailed description of the methodologies employed in this study,

focusing on the data aspects, modeling strategy, and experimental setup. The first section

delves into the data, covering its acquisition, understanding, transformation, and cleaning

processes. Additionally, it explores the pyrometer data and independent variables to es-

tablish a solid foundation for subsequent analyses. The next section outlines the modeling

approach, detailing the overall strategy and the processes involved in model training and

validation. Finally, section three describes the setup of the experiments, ensuring that

the procedures are thoroughly documented and reproducible.

3.1 Data

Data is the fundamental component of a Digital Twin, and its preparation was a

significant workload in this research. The present section is dedicated to explaining its

meaning and exploring each step involved in its processing, transformation, and cleaning.

Comprehending these characteristics is essential for conducting meaningful analyses and

providing valuable insights in the subsequent chapters of the thesis.

3.1.1 Data Acquisition

The dataset used in this research comprises time series and descriptive variables,

which were collected from the Furnace of a Continuous Annealing line (RB4) of Aperam

South America plant, spanning from January 1st, 2022, to December 31st, 2022.

The equipment features multiple sensors that are distributed throughout its struc-

ture, and all of them are connected to a Programmable Logic Controller (PLC). The PLC
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Variable Unit Type Tag

Product ID - String UM

Steel Strip Thickness mm Float Esp

Steel Strip Width mm Float Larg

Temperature from Pyrometer 4 °C Float Pir 4

Line Speed m/min Float Vel

Temperature of Pre-Heating 1 °C Float Pre 1

Temperature of Pre-Heating 2 °C Float Pre 2

Temperature of Zone 1 to 3 of Furnace 1 °C Float Z1, Z2, Z3

Temperature of Zone 4 to 6 of Furnace 2 °C Float Z4, Z5, Z6

Temperature of Zone 7 to 9 of Furnace 3 °C Float Z7, Z8, Z9

Air flow of Zone 1 to 3 of Furnace 1 Nm³/h Float
VA Z1, VA Z2,
VA Z3

Air flow of Zone 4 to 6 of Furnace 2 Nm³/h Float
VA Z4, VA Z5,
VA Z6

Air flow of Zone 7 to 9 of Furnace 3 Nm³/h Float
VA Z7, VA Z8,
VA Z9

Glas Flow of Zone 1 to 3 of Furnace 1 Nm³/h Float
VG Z1,
VG Z2, VG Z3

Glas Flow of Zone 4 to 6 of Furnace 2 Nm³/h Float
VG Z4,
VG Z5, VG Z6

Glas Flow of Zone 7 to 9 of Furnace 3 Nm³/h Float
VG Z7,
VG Z8, VG Z9

Pressure of Pre-Heating mmCA Float P Pre

Pressure of Furnace 1 mmCA Float P1

Pressure of Furnace 2 mmCA Float P2

Pressure of Furnace 3 mmCA Float P3

Table 3.1: Description of Dataset Variables.
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3.1.3 Data Transformation

The production process of the line involves the movement of the strips through

various sections, starting from the pre-heating section and progressing towards Furnace

3, with a total line length of 73.13 meters. The pre-heating section spans 20.59 meters,

while Furnaces 1 and 2 have lengths of 17.56 meters each, and Furnace 3 spans 17.42

meters.

The objective of the data transformation step was to produce a dataset that rep-

resented each meter of processed material. This was achieved by calculating the average

values of the variables measured by the line sensors, from the beginning of the strip’s

journey inside the furnace (starting from the pre-heating section) to the end of the line.

Additionally, the average temperature measured by the pyrometer for each meter was

computed, as it represents the target variable that we aim to replicate through modeling.

To determine the position of each meter within the furnace, a combination of line

tracking and speed information was utilized. As each coil enters the furnace, a tracking

sensor assigns a unique Product ID to the material being processed. By dividing the line

speed (given in meters per minute) by 60, we obtained the rate of material progression

per second. This enabled us to determine the position of each meter inside the furnace at

any given time. Utilizing this positional information, measurements for each meter were

collected while it passed through zones where the sensors were located.

The data processing procedure generates a representation of the material’s char-

acteristics as it progresses through the production line. This representation facilitates

subsequent modeling and the replication of the target variable.

To illustrate this process, let’s consider the calculation of the average pressure in

Furnace 1. As the strip starts its journey from the pre-heating section and traverses the

furnace, meter by meter, the average furnace pressure is computed while each of them

are inside Furnace 1, as exemplified in Figure 3.2. These calculated averages are then

appended to the transformed database. It’s important to note that this same strategy is

employed for calculating every variable associated with each meter, with the only variation

being the range reference. Detailed information on all variables and their respective

calculation range can be found in Table 3.2.
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Variable
Aggregation Range
(m)

Temperature of Pre-Heating 1 [0 , 3.5]

Temperature of Pre-Heating 2 [3.5 , 20.59]

Temperature, Air Flow and Gas Flow of Zone 1 [20.59 , 26.5]

Temperature, Air Flow and Gas Flow of Zone 2 [26.5 , 31.5]

Temperature, Air Flow and Gas Flow of Zone 3 [31.5 , 37.75]

Temperature, Air Flow and Gas Flow of Zone 4 [37.75 , 44]

Temperature, Air Flow and Gas Flow of Zone 5 [44 , 49]

Temperature, Air Flow and Gas Flow of Zone 6 [49 , 55.25]

Temperature, Air Flow and Gas Flow of Zone 7 [55.25 , 61.5]

Temperature, Air Flow and Gas Flow of Zone 8 [61.5 , 66.5]

Temperature, Air Flow and Gas Flow of Zone 9 [66.5 , 71.6]

Pressure of Pre-Heating [0 , 20.59]

Pressure of Furnace 1 [20.59 , 37.75]

Pressure of Furnace 2 [37.75 , 55.25]

Pressure of Furnace 3 [55.25 , 71.6]

Temperature from Pyrometer 4 [70.6 , 72.6]

Table 3.2: Aggregation range of process variables.
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Figure 3.2: Strip movement across the Furnace.

3.1.4 Data Cleaning

Data cleaning plays a pivotal role in ensuring the accuracy and reliability of the

subsequent modeling processes. It serves as a critical step in the data preprocessing

pipeline, aimed at enhancing the overall model quality.

In the context of the 430st production line, it is imperative to note that the op-

erational speed is typically expected to surpass a minimum threshold of 50 meters per

minute (m/min). This benchmark provides a crucial reference point for gauging the line’s

efficiency and productivity. However, the line speed may not always maintain a consis-

tent pace. It can exhibit sudden and pronounced drops, often serving as a telltale sign

of underlying issues within the production line or potential defects in the product being

processed. These deviations in speed carry the potential to significantly impact the per-

formance of any predictive model, introducing a level of noise and variability that can

challenge the model’s robustness.

To mitigate the potential impact of speed variations on the analysis and modeling,

a deliberate decision has been made to consider only those products that consistently

maintained a line speed exceeding 50 m/min. This selective approach filters out products

that fall below this speed threshold, ensuring that the subsequent analysis is conducted

on a more homogenous and reliable dataset.

Another important aspect is that the dataset employed in this analysis originates

from physical sensors embedded within a production line. Such sensors are susceptible to

generating erroneous data. During the data transformation phase, erroneous data within

the time series were meticulously eliminated. The most common sources of this aberrant
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3.2 Modeling

3.2.1 Modeling Strategy

Four distinct machine learning algorithms were explored in this study, specifically

XGBoost, Random Forest, Linear Regression, and Support Vector Machine (SVM). The

training of these models was carried out using the widely-used open-source Python library,

scikit-learn by Pedregosa et al. [2011]. These models were selected mainly due to their

explainability, since having an overview of the underlying features used by the models,

alongside their importance to each model, would be useful to understand their different

results and approaches to the grey-box strategy.

In order to enhance the model’s performance, an exploration of parameters opti-

mization was undertaken. The exploration range for each of the investigated algorithms

is presented in Table 3.3.

Model Hyperparameters Explored range

XGBoost

gamma
subsample
n estimators
max depth
learning rate

[0, 0.5, 2, 4]
[0.6, 0.8, 1]
[50, 100, 200, 400]
[8, 10, 12]
[0.1, 0.3]

Random Forest
max features
max depth
n estimators

[’auto’, ’sqrt’]
[6, 8, 10]
[50, 100, 200, 400]

Linear Regression - -

SVM C [0.1, 0.5, 1]

Table 3.3: Overview of modeling strategy.



3.2. Modeling 45

3.2.2 Model Training and Validation

In order to obtain reliable estimates of model performance and prevent overfitting,

two strategies will be implemented to evaluate the model. The first strategy involves

splitting the available data into training and testing datasets. Approximately 70% of the

available data will be used to develop the model, which comprises dates between January

1st, 2022, and September 30th, 2022. The remaining 30%, which is data collected from

October 1st, 2022 to December 31st, 2022 will be used to assess the performance of the

model’s predictions on unseen data. This process can provide insights into the model’s

variance and its ability to generalize to new data.

The second strategy involves using cross-validation during model training, as de-

scribed by Hastie et al. [2009]. This method involves dividing the training data into k

equally sized sub-samples, using one sub-sample for validation and the remaining sub-

samples to build the model. This process is repeated k times, with each sub-sample used

once for validation. The results of cross-validation can be used to detect overfitting and

make adjustments to the model. This approach allows for the use of as much data as pos-

sible during training, which is particularly important when data is scarce. Since multiple

ranges of hyperparameters will be explored, the number of folds in this experiment will

be fixed at 3. An example of k-folding is exemplified in Figure 3.13.

Figure 3.13: Cross Validation with 5 k-folds.

Through the experiments, the metric that will be used to evaluate how well the

models fit the data is the root mean squared error (RMSE). It is a widely used measure

that gives important feedback about the regressor’s performance.

The RMSE gives an insight into the distance between the predicted values from

the real ones in a dataset, being the lower the root mean squared error, the better the

model. The formula to calculate it is given as follows:

RMSE =

√

√

√

√

1

N

N
∑

i=1

(ŷi − yi)2
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Chapter 4

Results and Discussion

This chapter is dedicated to the presentation of the experimental results. It encompasses

the outcomes derived from the deployment of the physical model, provided by Aperam

R&D for RB4. Additionally, the results of the Grey model approach, employing machine

learning models in conjunction with the physical model to predict pyrometer temperature,

will be expounded upon. Lastly, the section encompasses the presentation of findings ob-

tained through the application of a pure probabilistic approach and a comparison between

the models.

4.1 Physical model deployment

The initial phase involved the integration of the physical model, provided by

Aperam R&D, into the dataset. This model operates with specific input parameters,

which include material thickness, material width, line speed, and zone temperatures.

Other parameters linked to the overall phenomenon, rather than the material itself, are

either pre-calculated or held constant within the model.

The process of deploying the physical model employs the Finite Method Difference,

to solve the differential heat conduction exchange equation explicitly, yielding the strip

temperature profiles represented in Figure 4.1. In this experiment, a total of 100 FDM

elements were taken into account to discretize the temperature distribution across the

length of the furnace.

To align the model’s results with the Pyrometer readings, which are situated at

the end of the production line, the data corresponding to the final element was collected.

The post-processing of the dataset involved assigning input parameters to every

meter of material processed within the specified time frame. Consequently, individual

temperature curves were meticulously computed for each of these meters.
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with the pure probabilistic approach. Ultimately, the Pyrometer Temperature can be

reconstructed by adding the physical model’s value with the forecasted error component.

4.2.1 Models Perfomance

Table 4.2 presents the evaluation of the models proposed using the grey-box mod-

eling strategy.

Interestingly, the evaluation revealed some unexpected outcomes. It was observed

that relatively simple linear models outperformed ensemble algorithms. Each model will

be individually explored, aiming to gain a deeper understanding of their behavior and the

specific results observed during evaluation.

Model Best hyperparameters Train RMSE Test RMSE

XGBoost

gamma: 0.5
subsample: 1
n estimators: 200
max depth: 6
learning rate: 0.1

4.75 4.57

Linear Regression - 4.86 4.01

SVM C: 0.1 4.97 3.94

Random Forest
max features: ’sqrt’
max depth: 12
n estimators: 100

5.63 4.92

Table 4.2: Overview of model results.

4.2.2 Evaluating Linear Regression

In Figure 4.6 the errors associated with the linear model exhibit a distribution that

appears to be reasonably centered around zero, with mean and standard deviation being

x = −0.07 and s = 4.01. Nevertheless, the presence of a few outliers on the left side of

the distribution is notable, suggesting certain deviations from the norm.
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Chapter 5

Conclusion

In this work, the ambition to create a Digital Twin for the Pyrometer 4 at the heart of the

Annealing Furnace in RB4, led to the exploration of an array of models and strategies.

The pursuit went through the deployment of the Physical Model, the exploration of the

Grey-Box Modeling approach, and an in-depth evaluation of various machine learning

models.

The objective of the deployment of the Physical Model provided by Aperam R&D

was to have a model that incorporated phenomenological aspects of the process, aiming

to capture the essence of the Annealing Furnace. Yet, it was clear that while a remarkable

starting point, it could not single-handedly yield the desired accuracy.

The introduction of Grey-Box Modeling marked a turning point. It brought to-

gether the best of both worlds, combining the real-world physics encapsulated in the

Physical Model with the adaptability and learning capabilities of machine learning mod-

els. This approach allowed to address the discrepancies between the model and the real-

world Pyrometer readings more effectively. It acted as a bridge, minimizing the delta

between the Physical Model and our target, the Pyrometer temperature.

Across various models, each demonstrated results that were satisfactory for it to be

chosen as the final model. Linear Regression exhibited an unexpected resilience, outper-

forming more complex models in certain scenarios. SVM showcased promise, exhibiting

consistent errors distributed within a relatively narrow range.

XGBoost and Random Forest are two non-linear models that were evaluated for

the digital twin creation of the Pyrometer in Furnace 3. While they both exhibited less

satisfactory performance compared to the linear models, they provided valuable insights

into the complexity of the problem. The underperformance of these two models might be

attributed to the inherent challenge of replicating the Pyrometer data due to the natural

errors in its readings. These errors can introduce noise and incorrect patterns, which more

complex tree-based models might try to wrongly replicate. Moreover, the behavior of the

models regarding product thickness highlights a degradation in performance for thicker

products, which could be explored in future works.

An examination of the key features highlighted the significance of the Physical

Model in the prediction of Pyrometer temperature. It acted as a guiding light, illuminat-
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ing the path for the machine learning models, and combining it with additional process

variables for enhanced accuracy.

All the compiled results showed the transformative potential of Hybrid Modeling.

By integrating the knowledge encoded within the Physical Model with the data-driven

capabilities of machine learning, a powerful synergy was unlocked. This integration offers

a bridge between the deterministic domain of physics and the probabilistic nature of data.

It allows the model to harness the strengths of both realms while mitigating their inherent

weaknesses.

5.1 Future Works

Expanding the dataset by collecting more parameters or introducing additional

sensors could enhance the richness of the data. Moreover, exploring models with in-

creased complexity, perhaps delving into deep learning architectures, may uncover even

finer details of the Pyrometer’s temperature prediction.

During the elaboration of this work, feedback was provided to Aperam R&D team

regarding the results of the physical model, which could lead to new improved versions to

be used in the construction of the grey-box model, in order to produce better performance.

Also, incorporating real-time data and online learning capabilities will enable the

Digital Twin to adapt to changing conditions within the Annealing Furnace. Such adap-

tive models hold immense potential for robust predictive power.

The ultimate vision of a Digital Twin involves seamless integration with industrial

control systems. Maturing the proposed architecture and coupling it with the furnace’s

control infrastructure, would make the Digital Model a decision-making companion for

the industrial process.
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