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Resumo

Para desenvolver uma aplicação de aprendizado de máquina focada na identificação de

falhas em processos produtivos complexos, utilizamos dados de séries temporais forneci-

dos por uma empresa parceira, definimos nosso objetivo com base em hipóteses sobre a

relação causal dos dados coletados. Selecionamos o modelo LightGBM pela sua eficácia

em lidar com grandes volumes de dados e realizar predições precisas. Dividimos os dados

em 90% para treinamento e 10% para validação, garantindo a cronologia dos dados e

utilizando validação cruzada com TimeSeriesSplit para assegurar uma avaliação robusta

da generalização do modelo.

Nossa contribuição principal está na criação de uma metodologia de expansão e

filtragem de features, aplicada diretamente no desenvolvimento do modelo. Utilizamos

técnicas de engenharia de caracteŕısticas e o algoritmo SHAP para criar novos atributos

e iterativamente remover variáveis irrelevantes, resultando em um modelo mais eficiente e

preciso. Este processo permitiu aprimorar a capacidade do modelo de realizar predições,

mantendo apenas as variáveis de maior importância. Avaliamos o desempenho do mo-

delo usando a métrica MAE (Mean Absolute Error), e os resultados demonstraram que o

LightGBM obteve o menor erro médio absoluto, destacando a eficácia da nossa aborda-

gem.

A relevância cient́ıfica desta metodologia reside na sua capacidade de melhorar a

interpretabilidade e a eficiência dos modelos de aprendizado de máquina em contextos

industriais. Os resultados indicam que nosso modelo pode prever com precisão o tempo

até a falha da máquina, contribuindo para o campo da manutenção preditiva. A pesquisa

contribui para o campo de manutenção preditiva, oferecendo uma abordagem eficiente

para a predição de falhas em processos industriais complexos.

Palavras-chave: Aprendizado de Máquina, Interpretabilidade, Séries Temporais, Com-

putação.



Abstract

To develop a machine learning application focused on identifying faults in complex pro-

duction processes, we used time series data provided by a partner company, defining our

objective based on hypotheses about the causal relationship of the collected data. We

selected the LightGBM model for its effectiveness in handling large volumes of data and

making accurate predictions. We split the data into 90% for training and 10% for va-

lidation, ensuring data chronology and using TimeSeriesSplit cross-validation to ensure

robust model generalization.

Our main contribution involves creating a feature expansion and filtering metho-

dology, applied directly in model development. We used feature engineering techniques

and the SHAP algorithm to create new attributes and iteratively remove irrelevant varia-

bles, resulting in a more efficient and accurate model. This process enhanced the model’s

predictive capability by retaining only the most important variables. We evaluated the

model’s performance using the Mean Absolute Error (MAE) metric, and the results de-

monstrated that LightGBM achieved the lowest mean absolute error, highlighting the

effectiveness of our approach.

The scientific relevance of this methodology lies in its ability to improve the inter-

pretability and efficiency of machine learning models in industrial contexts. The results

indicate that our model can accurately predict the time until machine failure, contribu-

ting significantly to the field of predictive maintenance by offering an efficient approach

to fault prediction in complex industrial processes.

Keywords: Machine Learning, Interpretability, Time Series, Computing.
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Caṕıtulo 1

Introdução

A utilização de soluções que empregam aprendizado de máquina tem sido cada vez

mais impactantes no nosso cotidiano [39]. Já são claras as várias situações onde esses

algoritmos podem ser empregados, por exemplo: prevenção de fraudes, análise de textos,

previsão de falhas de equipamentos, entre muitas outras utilidades. Após a etapa de

criação e treinamento dos modelos, um ponto importante é interpretar e entender o que

os modelos predisseram. Não que modelos com alta performance não sejam confiáveis e

que podemos apenas ignorar as suas predições. A questão é que uma única métrica, como

precisão, é uma descrição incompleta da maioria das tarefas do mundo real [14].

Ao longo desta dissertação, serão abordados temas relacionados a datacentric, in-

terpretabilidade de modelos e aprendizado de máquina aplicado à identificação de falhas

em processos produtivos. Serão analisados trabalhos relacionados, identificando lacunas

no conhecimento e oportunidades para contribuições originais. Além disso, será apre-

sentada uma metodologia robusta para desenvolver e avaliar modelos de aprendizado de

máquina com foco na identificação de falhas em ambientes industriais complexos.

1.1 Motivação

Em um setor industrial é interessante que todas as etapas e fluxos estejam alinhados

e precisos para garantir qualidade e eficiência na produção. As falhas no processo podem

ocorrer por diversas razões: Inadequações dos Processos, Falta de habilidade, Desatenção,

entre outros [16].

A identificação de falhas pode levar a uma redução de problemas e consequente-

mente, à redução de custos e despesas para as empresas durante o processo produtivo,

uma vez que diminuir falhas implica na redução de recursos gastos de forma desnecessária

e aumento dos lucros.

O emprego de algoritmos de aprendizado de máquina, que são essencialmente ma-
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peamentos locais X → y relacionando uma combinação de caracteŕısticas na instância X

para um rótulo y, pode proporcionar ao setor industrial uma visão diferente do ponto de

vista de manutenção de equipamentos, sugerindo uma posśıvel abordagem de manutenção

preditiva. Tal tipo de tratamento é capaz de projetar o monitoramento do equipamento

em tempo real, sendo assim gerar alertas sobre o sistema com antecedência e determinar

se será necessária manutenção corretiva.[67]

1.2 Definição do Problema

Dado um conjunto de dados do tipo timeseries devidamente rotulados que demons-

tram o estado do equipamento descrevendo as informações dos sensores internos, tal qual

receita do produto, pressão interna, temperatura, vazão entre diversas outras, assume-se

que cada registro cronológico da situação da máquina pode ser importante e útil para o

reconhecimento de padrões de falha interna.

A máquina de desodorização exemplificada na figura 1.1 utilizada no processo

produtivo está equipada com diversos sensores que monitoram parâmetros cŕıticos da

mesma. Esses sensores são vitais para garantir o controle preciso das condições opera-

cionais, permitindo a coleta de dados detalhados e em tempo real. Os dados fornecidos

por esses sensores são fundamentais para o desenvolvimento de modelos de aprendizado

de máquina destinados à identificação de falhas, pois oferecem uma visão abrangente do

comportamento e desempenho da máquina ao longo do tempo.

Sendo assim, busca-se nesse trabalho desenvolver um modelo capaz de antever com

certo grau de confiabilidade em qual momento e em quais condições o equipamento sofrerá

uma falha interna de pressão.

1.3 Objetivos

O objetivo principal deste trabalho é implementar uma metodologia de expansão

e filtragem de caracteŕısticas do dado capaz de gerar resultados em métricas de avaliação

oportunas. O desenvolvimento do trabalho permitiu que fossem gerados ganhos consi-

deráveis de desempenho e este trabalho visa relatar que isso também pode se aplicar em

outros sistemas. Durante o desenvolvimento do trabalho, verificou-se que o desempenho
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Figura 1.1: Equipamento de desodorização

do modelo base desenvolvido era superior aos baselines encontrados no estado-da-arte.

Desta forma, determinou-se um objetivo secundário de exercitar o modelo inicial afim de

avaliar eventuais melhorias de desempenho. Para tal, foram treinados modelos adicionais

modulando valores de filtragem em razão da métrica de avaliação inicial.

Destacam-se os objetivos espećıficos:

• Realizar pesquisa sobre utilização de modelos preditivos aplicados a sistemas de

produção industriais complexos a fim de averiguar os diferentes métodos existentes

na literatura.

• Implementar um modelo preditivo que tenha desempenho comparável aos demais

métodos de estado-da-arte.

• Utilizar adaptação no modelo proposto e avaliar o ganho de desempenho.
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• Explorar diferentes abordagens para a criação do modelo de aprendizado de máquina

final. Ainda, comparar o desempenho de cada uma e suas respectivas vantagens e

desvantagens.

1.4 Contribuições

A principal contribuição deste trabalho é elucidar que colocar os dados como o

elemento central na construção de modelos de aprendizado de máquina pode levar a uma

extração avançada de performance dos algoritmos preditivos existentes. De maneira geral,

também destaca-se as seguintes contribuições:

• Foram empregadas diversas técnicas existentes na literatura em conjunto para al-

cançar o objetivo do trabalho.

• Dadas as representações vetoriais dos sensores de um máquina industrial, foi cons-

trúıdo um modelo paramétrico capaz de identificar em que momento futuro uma

falha interna ocorrerá no equipamento.

• Foi avaliada a eficácia do modelo na previsão de falhas utilizando técnicas bem

consolidadas como validação cruzada e MAE. O modelo atinge valores consideravel-

mente melhores que modelos de baseline.

• Mostrar que o modelo proposto internaliza melhor as mudanças no dado e propor-

ciona melhorias substanciais no conjunto de dados.

• Foram propostas variações de filtragem afim de buscar uma explicação mais coerente

da solução proposta.

1.5 Organização da Dissertação

O restante desta dissertação está organizado da seguinte forma: no Caṕıtulo 2,

serão revisados os principais trabalhos relacionados sobre temas relacionados a datacen-

tric, interpretabilidade de modelos e aprendizado de máquina aplicado à identificação de

falhas em processos produtivos; No Caṕıtulo 3, serão apresentados os dados coletados

e compilados, como foi feito o pré-processamento das informações, definição da variável
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alvo que serão utilizados neste trabalho, e o algoritmo de predição de falhas; No caṕıtulo

4 será descrita a configuração experimental, bem como avaliação do modelo e a discussão

dos resultados; Por fim, no caṕıtulo 5, são feitas as considerações finais sobre a dissertação

e trabalhos futuros.
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Caṕıtulo 2

Referencial Teórico e Trabalhos

Relacionados

O presente caṕıtulo tratará conceitos relacionados a Machine Learning, como: Criação

de Modelos de Aprendizagem de Máquina, Avaliação de Modelos de Aprendizado de

Máquina, Análise de Dados, Mineração de dados, Séries Temporais, Pré-processamento

de Dados e Abordagem Centrada a Dados.

2.1 Aprendizado de Máquina

A partir da grande massa de dados gerados, é preciso executar o processo para

obtê-los e, principalmente, para coletar as informações mais valiosas e úteis. Os aportes

teórico de [7] serão necessários à esta pesquisa, já que caracterizam que a mineração

de dados é parte integrante de um processo mais amplo, conhecido como descoberta de

conhecimento em bases de dados (knowledge discovery in databases, ou KDD) [23]. Essa

etapa de extração de conhecimento de dados conduz a geração de valor [4] e permite com

que as soluções sejam mais assertivas e eficientes.

Com os dados apreendidos, é interessante executar a fase de pré-processamento

para identificar posśıveis irregularidades, rúıdos e inconsistências. Essa etapa apesar de

consumir tempo [28] permite criar novas informações agregadas, como a obtenção da idade

de uma pessoa, por exemplo, sabendo apenas a data de seu nascimento. Assim, a fase

de pré-processamento de dados auxiliará na criação dos modelos, que estabelecerá diretos

diálogos com [17] que afirmam que essas técnicas podem eliminar ou reduzir problemas

presentes nos dados. As teorias de [44], também auxiliarão a pesquisa, pois apresentam

outros argumentos que visam corroborar com as necessidades dos pré-processamentos,

os de que alguns algoritmos, como redes neurais, modelos frequentemente utilizados para

identificação de objetos em imagens [57] e SVMs, modelo que busca encontrar um máximo

hiperplano do tipo margem no espaço de entrada que separa o conjunto de dados de
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treinamento [64], são senśıveis ao dimensionamento dos dados.

Como esta pesquisa pretende abordar os conceitos de interpretabilidade de modelos

de aprendizagem de máquina, será necessário entender sobre os variados tipos de modelos

que podem ou não serem utilizados, a partir do problema proposto e dos dados obtidos.

Os modelos são classificados em três grandes classes, Modelos Supervisionados, Modelos

Não Supervisionados e Modelos de Aprendizado por Reforço conforme figura 2.1. Tais

conceitos serão melhor descritos nos subtópicos a seguir.

Figura 2.1: Tipos de modelos de aprendizado de máquina

Como [25] argumenta, existem universos de modelos que podem ser utilizados no

problema que se deseja resolver, e na maioria dos casos, escolhe-se uma famı́lia de modelos

para usar os dados e aprender parâmetros ao qual se deseja otimizar.

A avaliação dos modelos é um conceito tão importante quanto os demais, o co-

nhecimento das métricas e medidas de avaliação de modelos são fundamentais para que

o trabalho realizado possa ser validado e, caso haja necessidade, o modelo possa sofrer

alterações e posśıveis correções. [17], também, asseguram que não existe uma técnica uni-

versal de aprendizagem de máquina, ou seja, que não existe um modelo de aprendizagem

de máquina que se sairá melhor em qualquer tipo de problema. Portanto, conhecer as

métricas de erro, pontuação, desempenho [22], testes e hipóteses, se mostram relevantes

para a criação de um modelo preciso e, de fato, assertivo.

Todas esses conceitos servirão de base para a construção e avaliação nosso modelo.

A intuição é que ao avaliar todos esses conhecimentos e combiná-los como outras técnicas

poderá ser posśıvel gerar um trabalho robusto na tarefa de identificação de falhas em

processos produtivos complexos.
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2.1.1 Modelos Supervisionados

Este tipo de modelo utiliza um conjunto de dados de treinamento com um par de

caracteŕısticas e respostas rotuladas ou valores de destino [33]. Os exemplos de tarefas

que os modelos de aprendizado supervisionados executam são tarefas de classificação e

regressão. Existe a tendência a se referir a problemas com resposta quantitativa como

problemas de regressão, enquanto aqueles que envolvem uma resposta qualitativa são

frequentemente chamados de problemas de classificação [32].

A tarefa de classificação está associada a geração de padrão de dados em categorias

distintas, como identificar se um e-mail é spam ou não, ou segmentar clientes em diferentes

grupos de acordo com seus hábitos de compra. Algoritmos como árvores de decisão 2.2,

regressão loǵıstica e Support Vector Machines (SVM) brilham nesse contexto, dividindo

os dados em classes com base em suas caracteŕısticas e padrões [18]. A capacidade de

categorizar dados com precisão abre um leque de possibilidades para diversas aplicações.

Figura 2.2: Exemplo de Algoritmo de Árvore de Decisão

Na regressão supervisionada, o objetivo central reside na predição de valores numéricos

cont́ınuos, como o preço de um imóvel ou a temperatura no dia seguinte. O modelo, guiado

por um conjunto de dados rotulados com exemplos de valores de entrada e seus respectivos

valores de sáıda, aprende a mapear as caracteŕısticas de entrada para um valor numérico

de sáıda. Técnicas como regressão linear, K-Nearest Neighbors (KNN) se consolidam

como ferramentas valiosas para essa tarefa, permitindo a construção de modelos robustos

e adaptáveis a diferentes cenários.
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O aprendizado de máquina supervisionado encontra utilidade em diversos campos,

tais como: Previsão do Preço de Imóveis, Detecção de Spam, Diagnóstico de Doenças,

Previsão da Demanda, Reconhecimento de Imagens e diversos outras aplicações. Sua

capacidade de aprender com exemplos rotulados o torna uma ferramenta poderosa para

resolver problemas complexos e tomar decisões inteligentes. A ampla gama de algoritmos

e técnicas dispońıveis permite a construção de modelos personalizados para cada desafio,

impulsionando a inovação e o avanço do conhecimento em diferentes áreas.

2.1.2 Modelos Não Supervisionados

Este tipo de modelo detecta padrões sem quaisquer rótulos pré-existentes ou es-

pecificações [11]. Essa liberdade de não depender de rótulos torna os métodos não su-

pervisionados especialmente úteis em situações onde os dados não são rotulados ou onde

a tarefa de rotulagem é custosa ou inviável. Além disso, esses modelos frequentemente

empregam técnicas eficientes de redução de dimensionalidade, como a extração de carac-

teŕısticas significativas de um espaço dimensional alto para um espaço dimensional menor

[3], proporcionando uma representação mais compacta e interpretável dos dados.

Essa flexibilidade e eficiência na aprendizagem de representações [69] são carac-

teŕısticas-chave do aprendizado não supervisionado, tornando-o uma ferramenta valiosa

em uma variedade de aplicações, desde análise exploratória de dados até reconhecimento

de padrões e segmentação de mercado.

O aprendizado não supervisionado, em particular a técnica de clusterização, de-

sempenha um papel crucial na análise exploratória de dados e na descoberta de estruturas

subjacentes em conjuntos de dados não rotulados. A clusterização visa agrupar os dados

em clusters ou grupos que compartilham caracteŕısticas semelhantes, permitindo a iden-

tificação de padrões intŕınsecos nos dados. Esses clusters podem representar diferentes

categorias, classes ou grupos de comportamento, dependendo do domı́nio da aplicação.

Algoritmos de clusterização, como o k-means, hierarchical clustering e DBSCAN, são

frequentemente utilizados para segmentar os dados e identificar agrupamentos naturais,

oferecendo insights valiosos para a compreensão da estrutura subjacente dos dados [74].

A redução de dimensionalidade é uma técnica essencial no campo do aprendi-

zado não supervisionado, buscando simplificar conjuntos de dados complexos e de alta

dimensionalidade, preservando ao máximo suas caracteŕısticas informativas. Por meio

de algoritmos como Análise de Componentes Principais (PCA), T-Distributed Stochas-

tic Neighbor Embedding (t-SNE) e Autoencoders, a redução de dimensão visa projetar os

dados em espaços de menor dimensão, mantendo o máximo posśıvel de variação original.
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Essa técnica permite uma representação mais compacta e interpretável dos dados,

facilitando a visualização, análise e interpretação dos padrões subjacentes. Além disso,

a redução de dimensionalidade pode ser útil para mitigar o problema da maldição da

dimensionalidade [38], melhorando a eficiência computacional e evitando overfitting em

modelos de aprendizado de máquina. Assim, a redução de dimensão desempenha um papel

crucial na simplificação e interpretação de conjuntos de dados complexos, contribuindo

para uma compreensão mais profunda e eficaz dos fenômenos estudados.

2.1.3 Modelos de Aprendizado por Reforço

Nesse tipo de modelo agentes inteligentes interagem com o ambiente para cumprir

uma meta de longo prazo [47]. Em vez de fornecer pares de entrada e sáıda, é descrito o

estado atual do sistema, especificada uma meta, fornecida uma lista de ações permitidas

e restrições e o modelo busca atingir a meta usando o prinćıpio de tentativa e erro para

maximizar uma recompensa [33].

Ao contrário do aprendizado supervisionado, nesses modelos descreve-se o estado

atual do sistema, especifica-se uma meta ou objetivo a ser alcançado e fornece-se uma lista

de ações posśıveis e suas respectivas restrições [56]. O agente, então, busca maximizar

uma recompensa ao longo do tempo, realizando tentativas e erros para aprender uma

poĺıtica de ação ótima que o leve a atingir o objetivo desejado [35]. Esse processo de

interação agente-ambiente, baseado em feedback de recompensa, é fundamental para o

desenvolvimento de estratégias eficazes de tomada de decisão em ambientes complexos e

dinâmicos.

O aprendizado por reforço tem sido aplicado com sucesso em uma variedade de

domı́nios, desde jogos de tabuleiro até controle de robótica, destacando-se como uma abor-

dagem poderosa para resolver problemas de tomada de decisão sequencial em ambientes

complexos e incertos.

2.2 Interpretabilidade de Modelos

O aprendizado de máquina interpretável é um termo um tanto quanto genérico mas

útil que pode ser entendido como a extração de conhecimento relevante de um modelo

de aprendizado de máquina sobre relacionamentos contidos em dados ou aprendidos pelo
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modelo [45]. Quanto maior a interpretabilidade de um modelo de aprendizado de máquina,

mais fácil é para entender como as decisões e predições o modelo toma.

Além de confiar em previsões individuais, também é necessário avaliar o modelo

como um todo antes de começar a usá-lo com dados diferentes dos dados utilizados no

modelo. Para ter essa resposta, os responsáveis pelo modelo precisam ter certeza da

eficiência do modelo com dados reais utilizando métricas relevantes [10]. Atualmente, os

modelos são avaliados usando métricas de precisão em um conjunto de dados de validação

dispońıvel [29]. No entanto, os dados do mundo real costumam ser significativamente

diferentes e, além disso, a métrica de avaliação pode não ser indicativa do objetivo do

produto [49].

Para interpretar como os modelos correspondem as entradas dadas, temos duas

abordagens principais. A interpretação local [55] que visa entender como cada carac-

teŕıstica individual contribui para a previsão. A interpretação global busca entender

como o modelo funciona como um todo e quais tendências o modelo usa para fazer as

predições o que pode ser dif́ıcil caso o modelo seja muito complexo [48].

Atualmente existem diversos métodos para interpretação dos diversos modelos de

aprendizado de máquina. Nesse sentido de interpretação de modelos, os mesmos podem

ser separados em Modelos Intrinsecamente Interpretáveis e Modelos de Caixa Preta como

é mostrado na imagem 2.3.

Figura 2.3: Modelos Intrinsecamente Interpretáveis versus Modelos de Caixa Preta. Ilus-
tração retirada do artigo [46]

Os modelos chamados de Intrinsecamente Interpretáveis são aqueles cujo a inter-

pretação do resultado é de fácil entendimento ao ser humano. Ou seja, de acordo com

a sua própria construção a interpretabilidade é facilitada [15], um exemplo muito conhe-

cido é o modelo de árvore de decisão, onde as condições referentes as caracteŕısticas do

conjunto de dados são avaliadas e os ńıveis da árvore são constrúıdos [12].
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Os modelos de caixa preta são muito complicados para serem entendidos direta-

mente por humanos. Para entender um modelo Random Forest, seria necessário entender

simultaneamente todas as árvores de decisão. Da mesma forma, uma rede neural terá

muitos parâmetros para compreender de uma só vez. Precisamos de métodos adicionais

para examinar a caixa preta [46].

Para poder interpretar melhor os modelos de caixa preta, geralmente utiliza-se

métodos de modelos agnósticos para auxiliar na interpretabilidade desses modelos. Os

métodos mais comuns são os PDPs e ICE Plots, métodos utilizados para interpretação

global. Enquanto SHAP (Shapley Additive exPlanation) e LIME (Local interpretable

model-agnostic explanations) são utilizados para interpretação das previsões de modelos

individuais com base na aproximação local do modelo em torno de uma determinada

previsão [41].

O SHAP atribui a cada feature um valor de importância para uma previsão es-

pećıfica. Seus componentes incluem: a identificação de uma classe de medidas de im-

portância de caracteŕısticas e resultados mostrando que existe uma solução única em tal

classe com um conjunto de propriedades desejáveis [41].

O LIME é um algoritmo que pode explicar as previsões de qualquer classificador

ou regressor de forma fiel, por aproximação localmente com um modelo interpretável [49].

Uma outra maneira de interpretar o resultado dos modelos é utilizando técnicas

contrafactuais. As explicações contrafactuais são um dos métodos mais populares para

fazer previsões de modelos de aprendizado de máquina de caixa preta interpretáveis, for-

necendo explicações na forma de ”cenários hipotéticos”[9]. Essas técnicas buscam explicar

por que um determinado resultado não foi alcançado, ajudam a compreender potenciais

oposições de um dado resultado e fornecem orientação sobre como a previsão desejada

pode ser alcançada no futuro [43].

Esse tipo de técnica contrafactual tem como particularidade encobrir o desafio de

explicar o funcionamento interno de um modelo de aprendizado de máquina [6]. Por

outro lado, tais técnicas fornecem informações ao titular dos dados que são facilmente

digeŕıveis e úteis na prática para entender os motivos de uma decisão, contestá-los e

alterar o comportamento futuro para um melhor resultado [63].

2.2.1 SHAP

A interpretação dos modelos de aprendizado de máquina oferece uma nova maneira

de aplicar essas técnicas de predição. Com modelos interpretáveis, os profissionais têm

acesso a informações adicionais que ajudam a tomar decisões mais informadas sobre os
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Figura 2.4: Exemplo simples de como SHAP ajuda na interpretação da predição de
modelos.

problemas que enfrentam, e principalmente ajudando a entender o próprio dataset.

O SHAP (Shapley Additive Explanations) é uma das ferramentas mais usadas

para explicar modelos complexos, que são comumente considerados caixas pretas pela

falta de transparência. Com o SHAP, é posśıvel entender e interpretar 2.4 modelos es-

tat́ısticos como XGBoost, LightGBM e redes neurais convolucionais (CNN ), facilitando a

compreensão das predições dos modelos para seres humanos [41].

Como abordam os autores [27], a natureza agnóstica a modelo do SHAP oferece

liberdade na escolha do algoritmo de aprendizado de máquina, permitindo priorizar a

precisão enquanto ainda fornece insights detalhados sobre esses modelos espećıficos de

local, fornecendo tanto explicações locais de pontos de operação individuais quanto inter-

pretações globais dos modelos.

O SHAP tem sido amplamente aplicado em uma variedade de domı́nios para ex-

plicar os resultados de modelos, tanto localmente quanto globalmente.

No entanto, há alguns pontos importantes que os usuários finais devem estar cientes

ao aplicar o SHAP. Primeiro, o SHAP é um método dependente de modelo. Isso quer dizer

que o resultado do SHAP depende do modelo de aprendizado de máquina usado para a

tarefa de classificação/regressão, o que pode levar a diferentes escores de explicabilidade.

Assim, quando diferentes modelos são aplicados à mesma tarefa usando os mesmos dados,

as principais caracteŕısticas identificadas pelo SHAP podem variar entre os modelos de

aprendizado de máquina [53].

O SHAP mede o impacto que cada uma das features tem no valor decisivo do

modelo. A ferramenta utiliza os valores de Shapley que são uma média ponderada da

contribuição marginal de cada uma das caracteŕısticas [51].

A figura 2.5 representa um gráfico SHAP para previsão dos preços de moradias na

Califórnia a partir de um dataset público conhecido. Cada um dos pontos é uma amostra

com o valor de suas caracteŕısticas. Os valores SHAP auxiliam a mostrar a distribuição

dos impactos de cada caracteŕıstica na sáıda do modelo. A cor representa o valor da
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caracteŕıstica (vermelho para alto, azul para baixo). Isso revela, para esse exemplo, que

rendas medianas mais altas melhoram o preço de casa previsto.

Figura 2.5: Gráfico resumido das importâncias das features na predição do modelo de
predição de valores de moradia

2.3 Abordagem Orientada a Dados

A abordagem orientada a dados é cada vez mais reconhecida como fundamental

para o desenvolvimento de sistemas eficazes e inovadores, a demanda por conjuntos de

dados relevantes e abrangentes torna-se imperativa [8]. A abordagem centrada em dados

entende que os dados são o recurso mais valioso para impulsionar o desenvolvimento de

modelos e soluções inteligentes.

Os dados tem papel importante no ciclo de aprendizado de máquina. Tal ciclo é

composto por diversas etapas as quais são comumente associadas caracteŕıstica de serem

centrada em dados, centrada em problema e centradas em modelo. Até agora, a pesquisa

em aprendizado de máquina tem sido predominantemente centrada no modelo e focada no

design e na avaliação do modelo. Esta predominância enfatiza principalmente a otimização

da precisão e eficiência dos próprios modelos e enxerga o conjunto de dados mais como

um benchmark estático do que uma representação dinâmica da aplicação.[50]
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A qualidade dos dados pode ser compreendida de diferentes pontos de vista. No

entanto, a qualidade dos dados depende da qualidade das informações contidas [21]. Tra-

dicionalmente, a pesquisa sobre qualidade de dados tem sido mais direcionada em dados

operacionais. No entanto, no aprendizado de máquina, frequentemente os dados não estão

em uma forma adequada para aprendizagem. Variáveis/caracteŕısticas são identificadas

e extráıdas dos dados brutos. Embora as caracteŕısticas tendam a ser espećıficas do

domı́nio, há uma necessidade de estabelecer padrões genéricos que ajudem a identificar

as caracteŕısticas [26].

Atualmente existem diversas técnicas e métodos utilizados para extrair insights

significativos de conjuntos de dados. Seja para utilizar em aprendizado de máquina,

aprendizado profundo ou mineração de dados, os conceitos são aplicados para analisar e

interpretar informações de maneira eficaz. Uma dessas técnicas é a Data Augmentation

(Aumento de dados), técnica para aumentar o tamanho e a diversidade dos dados, criando

artificialmente variações dos dados existentes, o que frequentemente pode melhorar o

desempenho do modelo. [71]

Um conceito interessante associado a abordagem centrada a dados é o de aceleração

de dados, cujo objetivo é construir uma infraestrutura eficiente de dados para facilitar a

rápida aquisição de dados.[70]

Por outro lado, é necessário dar importância a gestão eficaz dos dados para ga-

rantir a qualidade e a confiabilidade dos resultados da IA. Além disso, existem desafios

e oportunidades associados à abordagem centrada em dados, incluindo aspectos de co-

nhecimento de domı́nio do problema , sociais e técnicos [31] que surgem no processo de

manipulação e análise de dados.

2.4 Séries Temporais

Dados do tipo de séries temporais são definidos como um conjunto de observações

sobre uma variável, ordenado no tempo e registrado em peŕıodos regulares. Essa caracte-

rização pela ordem sequencial e dependências temporais, encapsulam informações valiosas

sobre a dinâmica de diversos sistemas e processos [13].

Diversos tipos de dados de séries temporais, como preço de ações 2.6, fluxo de

tráfego e eletricidade, trazem desafios e oportunidades únicos para a análise computa-

cional, exigindo abordagens espećıficas para entender suas caracteŕısticas. A análise e

compreensão de séries temporais é uma parte importante da mineração de dados, facili-

tando percepções e decisões cruciais em muitos domı́nios [65], incluindo finanças, saúde,

computação em nuvem e energia.
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Figura 2.6: Exemplificação de séries temporais sobre preço de ações aplicadas ao longo
de um peŕıodo de tempo

Outro ponto importante relacionado a séries temporais é a detecção de anomalias,

tal abordagem tem sido reconhecida como de importância cŕıtica para a operação confiável

e eficiente de sistemas do mundo real [72]. Muitos métodos de detecção de anomalias foram

desenvolvidos com base em diferentes suposições sobre as caracteŕısticas das anomalias.

No entanto, como apresentam [52], devido à natureza complexa dos dados do

mundo real, diferentes anomalias dentro de uma série temporal geralmente apresentam

perfis variados que se alinham a diferentes suposições de anomalias. Isso torna dif́ıcil

encontrar um único detector de anomalias que possa consistentemente superar outros

modelos.

O objetivo principal da análise de séries temporais é entender as relações entre

os pontos de dados e incluir esses padrões nas previsões geradas. [19] e [60] destacam a

importância da identificação e modelagem de componentes como tendência, sazonalidade

e padrões ćıclicos para uma análise precisa.

A modelagem de séries temporais envolve a seleção e aplicação de modelos es-

tat́ısticos adequados para capturar a estrutura subjacente dos dados. Os autores [5] men-

cionam métodos autoregressivos, de médias móveis e suas combinações, como ARIMA,

destacando a importância da avaliação de modelos por meio de ferramentas como funções

de autocorrelação e critérios de informação. Essa abordagem estat́ıstica permite não

apenas entender os padrões presentes nos dados históricos, mas também fazer previsões

precisas sobre o comportamento futuro da série.

No entanto, as séries temporais frequentemente apresentam diversos desafios, como

a presença de outliers, rúıdo e não estacionariedade. Para tratar tais empasses, técnicas
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avançadas, como modelos de suavização exponencial e decomposição sazonal, podem aju-

dar a lidar com tais complexidades [30]. Além disso, métodos baseados em aprendizado

de máquina, como redes neurais e árvores de decisão, têm sido cada vez mais explorados

para modelagem e previsão de séries temporais em contextos espećıficos.

À medida que a análise de séries temporais continua a evoluir, é relevante a in-

tegração de abordagens teóricas e práticas para lidar com problemas do mundo real [59]

. Essa abordagem interdisciplinar não apenas promove uma compreensão mais profunda

dos processos subjacentes aos dados, mas também capacita os profissionais a tomar de-

cisões informadas e estratégicas em diversas áreas de aplicação. Em resumo, o estudo de

séries temporais não apenas proporciona insights valiosos sobre o comportamento tempo-

ral dos fenômenos, mas também fornece ferramentas poderosas para previsão e tomada

de decisões em cenários de constante mudança.

2.5 Trabalhos Relacionados

A aplicação de séries temporais na predição de defeitos e manutenção de equipa-

mentos tem recebido crescente atenção devido à sua capacidade de identificar padrões

de falha e antecipar necessidades de manutenção, contribuindo assim para a redução de

custos e aumento da eficiência operacional.

A predição de falhas em processos produtivos complexos se configura como um

desafio crucial para a indústria moderna, exigindo ferramentas robustas e precisas para

garantir a otimização da produção, a segurança dos trabalhadores e a redução de custos.

As séries temporais, caracterizadas por dados coletados ao longo do tempo, emergem como

um aliado poderoso nessa jornada, possibilitando a identificação de padrões e anomalias

que podem indicar falhas iminentes.

A Indústria 4.0 utiliza IoT e outras tecnologias de manutenção preditiva para

melhorar os processos de negócios e obter vantagem competitiva. Nesse cenário, a De-

tecção e Diagnóstico de Falhas em Tempo Real (RT-FDD) é fundamental para aumentar

a confiabilidade dos sistemas de produção, evitando quebras.[40]

Ainda sobre o tema de IoT, tais integrações de dados de séries temporais com

informações de Internet das Coisas (IoT ) e monitoramento remoto, fornecem às orga-

nizações a capacidade de desenvolver uma vantagem competitiva sustentada, uma vez

que a crescente quantidade de dados e dados com cada vez mais qualidade tem a a ca-

pacidade de gerar insights significativos [19]. A utilização de dados de sensores de séries

temporais para monitorar a condição do chão de fábrica, destacam a importância da co-

leta e análise cont́ınua de dados para garantir a segurança e confiabilidade de sistemas
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cŕıticos.

Além disso, a utilização de técnicas de séries temporais na manutenção preditiva

de equipamentos é amplamente relevante. Uma vez que artigos como [75] e [68] destacam

a importância da análise cont́ınua de dados de sensores para monitorar o desempenho

de equipamentos, identificar tendências de degradação e prever falhas com antecedência,

permitindo intervenções proativas de manutenção.

Como apresentam os autores [58], a grande quantidade de dados gerados por plan-

tas industriais possibilita o uso de Machine Learning (ML) para entender melhor o com-

portamento das operações e auxiliar os operadores na gestão eficiente. A detecção de

anomalias é um exemplo de como ML pode identificar se uma planta está funcionando

normalmente ou se precisa de ações corretivas. Contudo, a falta de interpretabilidade

dos modelos de ML é uma queixa comum. Para resolver isso, o campo de Inteligência

Artificial Explicável (XAI) tem ganhado destaque. O estudo investiga várias técnicas de

XAI para detectar anomalias em dados de séries temporais multivariadas, predominantes

em sistemas industriais, usando autoencoders. Entre as sete técnicas desenvolvidas, um

explicador baseado em SHAP, chamado DTFS, se destacou por identificar corretamente

a causa das anomalias com 86% de precisão e em 1,53 segundos.

A necessidade de abordagens personalizadas e adaptativas para diferentes tipos de

equipamentos e setores industriais, ressalta o potencial das séries temporais na otimização

de estratégias de manutenção e na maximização da vida útil dos ativos. Em harmonia com

o que pensam os autores [62], a previsão de falhas em dados multivariados industriais é

crucial para a implementação de estratégias eficazes de manutenção preditiva para reduzir

o tempo de inatividade e aumentar a produtividade e o tempo operacional. Contudo,

atingir esse objetivo utilizando aprendizado de máquina pode ser um desafio e requer

uma compreensão profunda dos dados de entrada.

Ainda tratando de dados multivariados, [2] discutem em seu artigo como as várias

novas abordagens de detecção de anomalias em séries temporais multivariadas baseadas

em deep learning foram desenvolvidas, reduzindo drasticamente a quantidade de com-

putação necessária. Os pesquisadores ponderam como os dados industriais são amostra-

dos com alta frequência, diferentes tamanhos de janela e são considerados para avaliar

seu efeito no desempenho dos modelos de deep learning.

Os autores [24] utilizaram a ferramenta para abordar o problema da interpretabili-

dade de um modelo de aprendizado de máquina desenvolvido para prever séries temporais

de qualidade do ar. O artigo demonstra como as explicações aditivas de Shapley podem

ser usadas para interpretar as sáıdas de uma rede neural profunda projetada para prever

as concentrações de dióxido de nitrogênio em Madrid.

O artigo elaborado por [37] buscar entender como o aumento do calor causado pe-

las mudanças climáticas piorou o ambiente térmico urbano e prejudicou a saúde humana,

resultando em mortalidade relacionada ao calor. Os resultados da estimativa do modelo
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foram interpretados a partir das perspectivas global e local, utilizando o método SHAP.

Como resultado da interpretação, os setores demográfico, socioeconômico e climático fo-

ram identificados como os que mais contribúıram para o processo de estimativa. Esse é um

texto interessante sobre como a interpretação de um modelo de aprendizado de máquina

pode ajudar na análise de mortalidade relacionada ao calor.

Uma outra área interessante que a ferramenta SHAP está sendo utilizada é na

área de véıculos elétricos. Os autores [61] utilizaram a abordagem de explicação aditiva

de Shapley (SHAP) para lidar com os problemas de não interpretabilidade do algoritmo

de aprendizado de máquina, interpretando as sáıdas do modelo XGBoost. Os gráficos de

valores SHAP obtidos demonstraram a relação não linear entre as variáveis explicativas

e o tempo de carregamento de véıculos elétricos.

Outro ponto que pode dificultar o desenvolvimento de modelos de aprendizado de

máquina é que séries temporais industriais frequentemente incluem intervalos de tempo

irregulares e valores ausentes, devido a sensores ou infraestrutura de coleta de dados

mal configurados ou com falha, ou devido a falta de manutenção e atualização. Portanto,

conforme [34] citam, não é sempre claro se as informações necessárias para previsão precisa

de falhas está presente nos dados e o que a precisão da previsão é alcançável com os dados.

O artigo desenvolvido por [66] traz uma contribuição dupla interessante. Tais pes-

quisadores discutem os prinćıpios do aprendizado de máquina supervisionado e dados em

formato de séries temporais para a detecção de descargas parciais (PD) em linhas de

energia, que podem levar a interrupções de energia ou até causar incêndios. Os auto-

res realizam um estudo comparativo detalhado entre vários sistemas de detecção de PD

baseados em dois paradigmas de aprendizado: modelos de sequência e aprendizado em

conjunto. A conclusão final do artigo leva a percepção que focar na melhoria da quali-

dade dos dados desempenha um papel crucial na criação de modelos detectores de falhas

indesejadas.

Um assunto pertinente ao tema tratado na dissertação é a Análise Exploratória de

Dados (EDA), mencionada no artigo de [42] como uma etapa crucial para identificar fa-

lhas, oferecendo uma visão inicial dos posśıveis problemas sem necessariamente identificar

suas causas espećıficas. Essa abordagem orienta os diagnósticos subsequentes ao destacar

áreas de preocupação. Em um contexto onde a rápida detecção de falhas pode evitar cus-

tosos peŕıodos de inatividade ou danos significativos, a importância da EDA é evidente.

O estudo também conclui que a integração do aprendizado de máquina com sistemas

complexos pode aprimorar a segurança e a confiabilidade das operações envolvidas.

Esses artigos fornecem percepções valiosas sobre o uso de séries temporais na

predição de defeitos e manutenção de equipamentos, demonstrando o papel crucial dessa

abordagem na melhoria da confiabilidade e eficiência dos sistemas industriais e de infra-

estrutura.
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Caṕıtulo 3

Modelo para Predição de Quebra de

Vácuo

Nesse caṕıtulo são descritos os detalhes de implementação da metodologia de-

senvolvida. Também serão descritos como foram abordados os procedimentos de im-

plementação do modelo de predição de quebra de vácuo. Primeiramente, detalhamos a

estrutura do modelo de aprendizado de máquina adotado, o LightGBM, e as técnicas de

pré-processamento aplicadas aos dados, incluindo a seleção e agregação de caracteŕısticas

relevantes. Em seguida, destacamos uma contribuição crucial deste estudo: a definição

da variável alvo, que representa o tempo até a falha, permitindo uma abordagem proativa

na identificação de padrões precedentes.

Por fim, explicamos a aplicação do modelo de aprendizado de máquina ao conjunto

de dados processado, incluindo a otimização de hiperparâmetros usando a biblioteca Op-

tuna. Esses passos, descritos na figura 3.1 são essenciais para a construção de um modelo

eficaz na previsão de quebra de vácuo no processo de desodorização de produtos.

Figura 3.1: Fluxograma mostrando os passos de pré-processamento

3.1 Coleta de Dados

A base de dados utilizada no trabalho foi gentilmente fornecida pela empresa M.

Dias Branco consiste em informações de sensores de uma das máquinas responsáveis pelo
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processo de desodorização dos produtos fabricados pela empresa.

Os dados foram coletados internamente pela empresa compreendem o peŕıodo de

2023-03-06 00:00:00 a 2023-05-22 23:59:57. A frequência de coleta dos dados, realizada a

cada 3 segundos, é crucial para acompanhar a evolução do desempenho da máquina ao

longo do tempo.

O conjunto de dados utilizado é comumente denominado como séries temporais e

consiste em 103 campos dispostos em diversos tipos, categóricos e numéricos e 1.949.816

registros. Como descrito anteriormente, tais campos são relativos aos sensores do equi-

pamento e significam valores de medidores, temperaturas de sensores, pH interno, quais

tipos de produto estavam dentro da máquina.

Para garantir a confiabilidade dos dados coletados, serão implementadas técnicas

de validação e pré-processamento, incluindo verificação de completude, detecção de ano-

malias, normalização de dados e validação cruzada. A fim de ampliar ainda mais a riqueza

da base de dados e aprimorar a precisão dos modelos preditivos, serão avaliadas algumas

possibilidades: monitoramento cont́ınuo, integração de dados adicionais, agregação de

dados e transformação de dados existentes.

A base de dados da M. Dias Branco, abrangente e rica em detalhes, oferece uma

grande oportunidade para a construção de modelos preditivos precisos de quebras de

vácuo na máquina de desodorização. Através da implementação de técnicas rigorosas de

coleta, pré-processamento e análise de dados, aliadas à exploração de fontes de dados

adicionais e à implementação de novas tecnologias de monitoramento, espera-se alcançar

um profundo conhecimento do processo de desodorização e desenvolver um modelo robusto

que contribuirá para a otimização da produção, a minimização de falhas e o aumento da

eficiência da empresa parceira.

3.2 Pré-Processamento

Visando melhorar a qualidade do modelo final, foram utilizadas algumas técnicas de

feature engineering. Tal processo usa conhecimento de domı́nio para extrair, transformar

ou selecionar caracteŕısticas relevantes (caracteŕısticas, propriedades, atributos) de dados

brutos e para compreender a essência dos dados em uma forma que seja benéfica para o

processamento posterior [20].

Durante a etapa de pré-processamento do dataset foram realizadas diversas operações

visando preparar os dados para a modelagem. Em consulta com especialistas da empresa

parceira, foram identificadas colunas que tinham pouca relevância e que não contribúıam

significativamente para o objetivo do estudo, portanto, tais colunas foram removidas do
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dataset.

Nesta mesma etapa de preparação foram feitas remoções de algumas colunas que

em contato com especialistas da empresa parceira verificamos que tais variáveis fariam

pouco sentido para serem utilizadas no modelo.

A fim de investigar empiricamente o conjunto de dados, foi feita a exploração de

variáveis pensando em momento de mudança. O processo se deu em calcular para algumas

variáveis significativas qual era o valor anterior ao valor da mudança de parâmetro. Para

explicitar de forma clara podemos pensar que uma variável significa um tipo de produto

utilizado na máquina que em determinado tempo era X e trinta minutos após o produto

utilizado era Y. Portanto, de forma experimental criamos novos atributos baseados em

mudança de valores dos atributos já existentes.

Um dos pontos cruciais do trabalho foi fazer a agregação dos dados em faixas de

tempo. Fizemos a agregação dos registros em agrupamentos de 15 segundos, 30 segundos

e 60 segundos gerando novas colunas para cada coluna já existente, exemplificando, a

coluna ’xxx’ gerou três novas colunas etiquetadas com o nome de qual agrupamento de

tempo a nova variável pertence.

Ao final da etapa de pré-processamento, foram geradas no total 940 colunas.

Algorithm 1 Pseudocódigo do Processo de Pré-Processamento das features

1: Renomear Variáveis
2: Remoção de Variáveis com Pouco Significado
3: Criar Variáveis de Última Mudança
4: Calcular Nova Variável Alvo Time To Fail
5: Criar Novas Variáveis a Partir de Agregação por Tempo
6: Separar dataset em Treino e Validação

3.3 Definição da variável alvo

Inicialmente, foi considerado utilizar a variável alvo PT 846F 2.EU do conjunto

de dados que significa a pressão de vácuo do desodorizador. No entanto, dada a natureza

do problema e o objetivo de desenvolver um modelo supervisionado para prever o tempo

até a falha, optou-se por criar uma nova variável alvo que indica o tempo restante até que

ocorra uma falha. Esta abordagem permite direcionar o modelo para identificar padrões

que antecedem as falhas, possibilitando uma intervenção proativa.

Após alguns estudos e conversas com os responsáveis pelo equipamento que tem

domı́nio e conhecimento sobre o processo, definiu-se que valores acima de 10 para tal

variável caracterizam uma quebra de vácuo. Portanto, o tempo para falha (TTF) foi
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calculado considerando o momento em que a pressão interna se manteve abaixo de 10 até

ser igual ou superior a 10.

No modelo de previsão de quebra de vácuo da M. Dias Branco, o feature engine-

ering na variável alvo ”tempo para falha”(TTF) é fundamental para extrair informações

valiosas, identificar padrões ocultos e reduzir o rúıdo nos dados. Essa abordagem es-

tratégica amplia a base de conhecimento do modelo, aprimora a precisão das previsões e

possibilita a descoberta de insights relevantes [73], propiciando a otimização do processo

de desodorização e a prevenção de falhas.

Figura 3.2: Gráfico com exemplo da variável de tempo para falha

3.4 Algoritmo

O algoritmo de filtragem desenvolvido realiza uma seleção iterativa de variáveis ba-

seadas no valor de SHAP. Inicialmente, é criada uma lista vazia para armazenar variáveis

a serem exclúıdas. Em um loop que se repete até 15 vezes, valor escolhido de forma ar-

bitrária, o algoritmo treina um modelo e calcula os valores de SHAP para cada variável.

Em cada iteração, as variáveis com valores de SHAP abaixo de um determinado

limite são identificadas e armazenadas, e essas variáveis são então exclúıdas em iterações

subsequentes. O processo continua até que o número máximo de iterações seja atingido
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ou não existam mais caracteŕısticas com valor de SHAP igual a 0.

Algorithm 2 Pseudocódigo do método de filtragem desenvolvido

1: V ariáveisAExcluir ← ListaV azia
2: N ← 0
3: enquanto N ≤ 15 faça
4: se N > 0 então
5: V ariáveisAExcluir ← V ariáveisExcluidasAnteriormente
6: fim se
7: Treinar o modelo
8: Calcular variáveis com valor abaixo do limite SHAP
9: Salvar variáveis
10: fim enquanto

A imagem 3.3 ajuda a entender de forma visual apresentando em forma de funil

invertido a redução na quantidade de variáveis ao longo de várias iterações. No eixo

vertical esquerdo, está o ”Número de Iterações”, indicando que o processo ocorre ao longo

de várias etapas. No eixo vertical direito, a ”Quantidade de Variáveis”mostra como essa

quantidade diminui conforme o processo avança.

Tal figura auxilia no entendimento da seleção de variáveis, onde inicialmente se

começa com um grande conjunto de variáveis, e à medida que o modelo é treinado, são

identificadas e removidas aquelas que têm pouca ou nenhuma importância, resultando

em um modelo mais enxuto e eficiente. A parte superior do funil representa o ińıcio do

processo, com um grande número de variáveis, que vai diminuindo ao longo das iterações,

conforme variáveis menos relevantes são eliminadas.

Figura 3.3: Representação em forma de funil do resultado dataset
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3.5 Aplicação do Modelo de Aprendizado de

Máquina

Após o processo de configuração do dataset e de processamento dos dados em forma

de pipeline, o próximo passo é utilizar modelo de aprendizado de máquina previamente

definido para encontrar os padrões de quebra de vácuo do desodorizador. A seleção do al-

goritmo utilizado para suportar a pesquisa foi feita após estudo em etapas conforme figura

3.4. Após eliminar abordagens incompat́ıveis para a resolução do problema, selecionar a

técnica que pode prover desempenho para o algoritmo e escolher de fato o algoritmo que

será utilizado para suportar a pesquisa, foi decidido, para o presente trabalho, o algo-

ritmo LightGBM. Entende-se portanto, que o desempenho de um algoritmo representa o

desempenho aproximado de toda a técnica [20].

Figura 3.4: Processo de escolha de algoritmo

O LightGBM é um modelo de aprendizado de máquina do tipo supervisionado.

Para caso espećıfico tratado no trabalho foi o algoritmo foi utilizado no modo de regressão

pois o resultado da predição criada não está de fato contida em classes ou categorias pré-

determinadas.

A escolha do algoritmo LightGBM para desvendar os padrões da quebra de vácuo

na máquina de desodorização da empresa parceira se baseou em seus atributos notáveis e

na capacidade de superar desafios espećıficos do problema. Sua alta precisão e eficiência

[36] garantem previsões confiáveis.

Para melhorar o desempenho do modelo e lidar com a distribuição assimétrica

da variável alvo, foi aplicada a transformação logaŕıtmica natural (np.log) durante o

treinamento. Isso ajudou a estabilizar a variância e a reduzir a influência de outliers,

facilitando o aprendizado do modelo. Após o treinamento, foi utilizada a transformação

inversa (np.exp) nas predições para retornar os valores à sua escala original. Esse processo

garantiu predições mais precisas e comparáveis diretamente com os valores reais.

A escalabilidade e velocidade excepcionais do LightGBM permitem lidar com o

conjunto de dados massivo de forma eficiente, otimizando o tempo de processamento e

garantindo a viabilidade da aplicação em cenários reais. Em suma, o algoritmo em questão

se destaca como a escolha ideal pois provê alta confiabilidade, otimizando o processo
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produtivo e prevenindo falhas dispendiosas.

A escolha da biblioteca Optuna para otimizar os hiperparâmetros do modelo de

previsão de quebra de vácuo se baseia em sua capacidade de automatizar o processo de

busca pela melhor configuração, otimizando o desempenho do modelo e maximizando

sua precisão [1], garantindo a melhor configuração do modelo, evitando a necessidade de

ajustes manuais demorados e trabalhosos, além de maximizar o desempenho do modelo.

A Optuna se destaca por sua flexibilidade e robustez, permitindo lidar com diversos

tipos de modelos de aprendizado de máquina, incluindo o LightGBM utilizado neste

trabalho. Através de um algoritmo de busca eficiente, a Optuna explora o espaço de

hiperparâmetros de forma direcionada, evitando quedas em mı́nimos locais e garantindo

a convergência para a melhor configuração posśıvel.

Além disso, a Optuna oferece recursos avançados como poda de galhos e reinicia-

lização de buscas, permitindo que o processo de otimização seja mais eficiente e evite o

desperd́ıcio de tempo em áreas menos promissoras do espaço de busca [54].
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Caṕıtulo 4

Experimentos e Resultados

4.1 Configuração dos experimentos

Na configuração dos experimentos, é fundamental considerar a divisão adequada

dos dados em conjuntos de treinamento e teste, especialmente em problemas de séries

temporais. Neste estudo, o dataset modificado foi dividido em 90% para treinamento e

10% para validação, seguindo a ordem cronológica dos dados. Essa abordagem é crucial,

pois reflete melhor a distribuição temporal dos dados e evita vazamento de informação do

futuro para o modelo durante o treinamento. Tal técnica é essencial porque garante que o

modelo seja avaliado em condições que simulem a realidade, prevendo o futuro com base

no passado. Isso ajuda a garantir que o modelo seja robusto e confiável quando aplicado

a dados futuros reais, o que é fundamental em muitas aplicações práticas.

A validação cruzada é uma etapa importante para avaliar a generalização do mo-

delo. No caso do LightGBM, optamos pelo algoritmo TimeSeriesSplit da biblioteca sklearn

com 5 dobras. Esse algoritmo fornece ı́ndices de treinamento/teste adequados para séries

temporais como exemplificado na figura 4.1, garantindo que as amostras de dados sejam

divididas corretamente em conjuntos de treinamento/teste, levando em consideração a

ordem temporal das observações. Em cada iteração, usa-se uma parte do histórico como

conjunto de treinamento e uma subsequente como conjunto de teste. Esse método imita

o fluxo natural de tempo, onde o passado é conhecido e o futuro não.

Um conceito importante explorado neste estudo foi o de iterações que assemelham-

se a ”épocas”. Além de derivar novas caracteŕısticas dos dados iniciais, uma parte crucial

do processo foi criar uma filtragem de variáveis para garantir a eficiência do modelo.

Desenvolvemos o conceito de ”épocas”utilizando o algoritmo SHAP, onde variáveis com

baixa importância foram eliminadas do dataset. Isso resultou em um modelo mais leve e

rápido, mantendo a relevância das variáveis mais importantes.
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Figura 4.1: Exemplificação da biblioteca TimeSeriesSplit.

4.2 Discussão dos Resultados

Como pode ser visto na tabela 4.1 foram exploradas algumas medidas limites de

valores do SHAP para tentar entender se haveria um limiar onde a métrica utilizada para

avaliar o modelo destoaria muito do valor já encontrado sem a criação dos filtros.

Valor Limite SHAP MAE ÉPOCAS
0 774.98 5
25 585.35 2
50 628.54 2
100 646.47 2
200 800.82 2

Tabela 4.1: Tabela comparativa de experimentos

Inicialmente foi considerado o valor 0 do SHAP como marco para remover as

features do conjunto de dados. O valor de SHAP (SHapley Additive exPlanations) igual a

0 indica que a variável correspondente não contribui para o desvio da previsão do modelo

em relação ao valor médio esperado. Em outras palavras, o valor de SHAP zero sugere que

a caracteŕıstica espećıfica não tem impacto no resultado do modelo para aquela previsão

espećıfica. Isso significa que, para esse ponto de dados, a presença ou ausência da variável

não altera a previsão do modelo, tornando-a irrelevante nesse contexto particular.

À medida que o valor limite aumenta, o erro médio absoluto também tende a

crescer, indicando que restringir variáveis consideradas pouco úteis pode reduzir a asser-

tividade do modelo. Na metodologia desenvolvida, os melhores resultados foram obtidos
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quando o valor de SHAP foi igual a 0, o que sugere que essas caracteŕısticas não influenci-

aram o resultado do modelo em previsões espećıficas, permitindo que o modelo mantivesse

sua precisão ao se concentrar nas variáveis realmente relevantes.

Portanto, embora a eliminação de variáveis menos úteis possa simplificar o mo-

delo, ela também pode comprometer sua assertividade, mostrando que o equiĺıbrio entre

simplicidade e precisão é fundamental para o desempenho ideal do modelo.

Para avaliar o modelo foi utilizada a métrica MAE (Mean Absolute Error) e con-

forme é posśıvel visualizar na figura 4.2 para o modelo criado com a estratégia proposta

o valor do MAE foi o menor existente.

Figura 4.2: Comparação final de algoritmos

Como era esperado, o modelo desenvolvido usando o LightGBM e a abordagem de

tratamento do dataset original obteve o menor valor de erro médio absoluto. Isso sugere

que a estratégia adotada foi eficaz na predição do tempo até a falha da máquina.

Para poder visualizar melhor a eficiência do modelo, um gráfico 4.3 plotando os

reais valores versus os valores preditos pelo modelo foi gerado. O Eixo X mostra a linha do

tempo dos dados, um recorte do peŕıodo de 06/03/2023 a 15/03/2023. O eixo Y mostra

os valores do TTF, que variam em magnitude ao longo do tempo. As linhas azuis indicam

os valores reais de TTF ao longo do tempo. As linhas vermelhas pontilhadas indicam os

valores previstos pelo modelo. Estas previsões são mais suaves e em algumas momentos

tem uma diferença dos valores reais.
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O gráfico permite visualizar como o modelo de previsão se comporta em relação

aos valores reais, mostrando a proximidade entre as previsões e os valores observados.

Figura 4.3: Comparação predição versus real

Como relatado anteriormente, a metodologia criada na dissertação utiliza como

base os valores do SHAP para fazer a filtragem e remoção das colunas fora do limite

considerado. O gráfico 4.4, conhecido como ”summary plot”, ajuda a entender como cada

caracteŕıstica afeta a sáıda do modelo e qual a importância das caracteŕısticas do modelo

de predição. O eixo Y lista as caracteŕısticas do modelo, cada linha representa uma

caracteŕıstica diferente. O eixo X demonstra os valores SHAP que mostram o impacto

de cada caracteŕıstica na predição do modelo. Tais valores, se positivos indicam que a

caracteŕıstica aumenta a predição, enquanto valores negativos indicam que a diminui. A

cor de cada ponto representa o valor da caracteŕıstica: vermelho indica um valor alto e

azul indica um valor baixo. Cada ponto no gráfico representa um valor SHAP para uma

observação espećıfica no conjunto de dados. A dispersão dos pontos ao longo do eixo X

mostra a variabilidade do impacto da caracteŕıstica em diferentes observações.

O gráfico 4.4 ilustra que as caracteŕısticas de Sensor 2 Pressão de Vácuo nos tempos

15, 60 e 30 se destacam por ter um impacto significativo nas predições do modelo. Isto

sugere que os valores de pressão do Sensor 2 são cŕıticos para a precisão do modelo. A

presença dessas caracteŕısticas em múltiplos intervalos de tempo (15, 60, 30) indica que

a pressão do vácuo é um fator altamente relevante e deve ser monitorada continuamente.

De certo modo era esperado que tal caracteŕıstica tivesse forte influência no modelo pois

foi a nova variável alvo era proveniente dessa caracteŕıstica.

–como falar q isso era de fato esperado?
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Uma outra feature que também se mostrou relevante foi Vácuo Após Scrubber nos

tempos 60, 15 e 30. Tais caracteŕısticas inclusive demonstram uma influência importante,

embora com uma menor variabilidade em comparação aos sensores de pressão de vácuo.

Não menos importante para o modelo é a feature Pressão Ejetor X nos tempos 30

e 60. Estas caracteŕısticas mostram um impacto considerável no modelo, indicando que

as variações na pressão do ejetor também são relevantes.

As demais caracteŕısticas, como Pressão da Bomba da Caixa Barométrica e Pressão

Ejetor Y em diversos tempos, tem menor impacto mas ainda sim suas devidas influências

são relevantes. Elas não são tão cŕıticas para a precisão do modelo quanto as carac-

teŕısticas de maior impacto.

Em termos gerais, os padrões observados nos valores SHAP indicam que as ca-

racteŕısticas relacionadas à pressão de vácuo, especialmente dos sensores 1 e 2, são as

mais influentes para o modelo de predição. As caracteŕısticas relacionadas ao vácuo após

o scrubber e à pressão do ejetor também são importantes, mas com um impacto mais

consistente e previśıvel.

Figura 4.4: Valores SHAP das principais caracteŕısticas

O histograma dos reśıduos apresentado na figura 4.5 mostra a distribuição das
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diferenças entre os valores reais e os valores preditos pelo modelo. Pode se observar

que a maior parte dos reśıduos está concentrada em torno de zero, o que indica que o

modelo faz previsões próximas aos valores reais na maioria dos casos. A simetria em torno

do zero sugere que o modelo não possui um viés significativo, ou seja, ele não tende a

superestimar ou subestimar consistentemente as previsões. O pico central reforça que os

erros de previsão são, em sua maioria, pequenos. A presença de reśıduos mais distantes

do centro pode indicar a existência de alguns erros maiores, sugerindo que, em certas

situações, o modelo ainda pode fazer previsões menos precisas.

Figura 4.5: Histograma dos Reśıduos

A figura 4.6 é um gráfico Q-Q (quantile-quantile) que auxilia na avaliação se os

reśıduos do modelo seguem uma distribuição normal. Neste gráfico, os quantis dos reśıduos

são comparados com os quantis teóricos de uma distribuição normal. A linha diagonal

vermelha representa a linha onde os reśıduos se alinhariam se seguissem perfeitamente

a distribuição normal. Os pontos do gráfico, representando os quantis dos reśıduos, se

desviam da linha vermelha em ambas as extremidades (caudas) e na região central. A

forma curvada dos pontos indica que os reśıduos possuem uma distribuição com caudas

mais pesadas ou que há assimetria . Este padrão indica que os reśıduos têm variações

sistemáticas que o modelo não capturou adequadamente.
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Figura 4.6: Q-Q plot
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Caṕıtulo 5

Conclusão

5.1 Conclusão

Ao avaliar o modelo, utilizamos a métrica MAE e verificamos que o modelo criado

com a estratégia proposta apresentou o menor erro médio absoluto em comparação com

outros modelos. Isso indica uma boa capacidade de previsão do tempo até a falha da

máquina, demonstrando a eficácia da abordagem adotada.

O exerćıcio de comparação de diferentes valores limites de SHAP para mensurar

o desempenho do modelo de forma precisa foi crucial para o trabalho. O objetivo foi

identificar o ponto em que a filtragem de variáveis começava a impactar negativamente

a precisão do modelo. Testando uma gama de valores, foi posśıvel observar como cada

ajuste influenciava o erro médio absoluto (MAE ).

À medida que o valor limite para a seleção de variáveis aumenta, observa-se uma

elevação correspondente no erro médio absoluto. Isso sugere que, ao restringir mais ri-

gorosamente as variáveis consideradas de pouca relevância, o modelo perde parte de sua

precisão preditiva.

Portanto, com o apoio da análise dos resultados, constatou-se que o modelo de-

senvolvido com o algoritmo LightGBM e a abordagem espećıfica para o tratamento do

dataset original apresentou o menor valor de erro médio absoluto (MAE ) entre os modelos

avaliados.

Este desempenho superior reforça a eficácia da estratégia adotada, indicando que

as técnicas utilizadas foram bem-sucedidas em capturar padrões cŕıticos nos dados, per-

mitindo uma previsão mais precisa do tempo até a falha da máquina. Este resultado

valida a metodologia aplicada, destacando sua importância para a área de manutenção

preditiva.
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5.2 Limitações do Trabalho

Embora os resultados alcançados sejam promissores, o modelo apresenta algumas

limitações importantes. Uma delas é sua forte dependência de dados históricos, o que

pode comprometer a precisão das previsões em contextos onde as condições do processo

mudam significativamente.

Outro ponto de reflexão é sobre o intervalo de tempo capturado no dataset inicial,

pois ele pode não ter abrangido a totalidade das variações posśıveis no processo e deixado

cenários de falha do equipamento relevantes para traçar padrões nos dados. Tal fato pode

limitar a capacidade preditiva do modelo em diferentes cenários e criar desafios adicionais

na generalização das previsões.

Além disso, há margem para melhorias tanto na seleção de variáveis quanto na

otimização dos hiperparâmetros, o que poderia aumentar ainda mais a eficiência e a

precisão do modelo. Essas áreas representam oportunidades para refinamento, buscando

maior robustez e adaptabilidade em diferentes cenários industriais.

5.3 Trabalhos Futuros

Futuros trabalhos podem se concentrar na otimização da seleção de variáveis e dos

hiperparâmetros para melhorar ainda mais o desempenho do modelo. Além disso, uma

investigação mais aprofundada sobre os valores limite do SHAP pode revelar insights

adicionais. A avaliação de diferentes limiares de SHAP, até encontrar uma divergência

significativa no MAE ou uma interpretação percentual mais robusta, também pode ser

explorada para refinar ainda mais o modelo.
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