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Resumo

A exploragao das reservas de petroleo da camada do pré-sal requer o desenvolvimento
de novos materiais de aco que sejam resistentes as condigoes extremamente adversas
presentes em aguas profundas. Nosso objetivo é projetar aco inoxidével duplex encon-
trando novos padroes de composicao quimica que atinjam de forma otimizada padroes
metalirgicos desejaveis, permitindo assim a produgao de tubos submarinos com alta
resisténcia fisica e a corrosao. Um desafio particular no desenvolvimento do ago duplex
para aplicacoes em aguas profundas é a minimizacao de defeitos superficiais, como as
lascas de aquecimento. Esses defeitos podem aumentar significativamente os custos de
produgao, porque permanecem indetectados em estagios intermediarios da fabricacao,
sendo observados apenas durante a inspecao final do produto acabado. As lascas po-
dem ser originadas em diferentes estagios do processo de fabricagao de ago, mas um
importante fator causal das lascas é conhecido por estar relacionado & uma composi¢ao
quimica defeituosa. A fim de identificar o mecanismo de formacao de lascas em aco
inoxidavel duplex e encontrar fatores quimicos associados a sua formacao, propomos
uma abordagem de decomposicao de atributos que resultou em centenas de milhares de
modelos preditivos aprendidos a partir das composicoes quimicas de placas de ago tanto
defeituosas quanto nao defeituosas, oferecendo diversos modelos e explicagdes concor-
rentes para a incidéncia de lascas no ago duplex. Combinamos modelos com explicacoes
concorrentes para encontrar um conjunto diversificado de padrdes de composigao qui-
mica que deveriam levar a chances reduzidas de formacao de lascas. Empregamos esses
padroes como possiveis agoes de melhoria, gerando placas que combinam com esses

padroes de composicao quimica.

Palavras-chave: Aco inoxidavel, Projeto de materiais, Aprendizado de maquina, Ex-

plicabilidade, Industria 4.0, Analise de causa raiz.
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Abstract

Exploring sub-salt oil reservoirs requires the development of novel steel materials that
withstand the extremely adverse conditions present in deep water. Our goal is to design
duplex stainless steel by finding novel chemical composition patterns that optimally
achieve various measurable metallurgical desiderata, thus enabling the production of
sub-sea tubes with high strength and corrosion resistance. A particular challenge while
designing duplex steel for deep water applications is the minimization of surface defects
such as slivers, since these defects may significantly increase production costs as they
remain undetected in intermediate processing stages, being observed only during the
final inspection. Slivers may be originated in different stages of the steelmaking process,
but one important causative factor of slivers is known to be related to defective chemical
composition. In order to identify the formation mechanism of slivers in duplex stainless
steel, and to find chemical factors associated with sliver formation, we propose a feature
decomposition approach that resulted in hundreds of thousands of predictive models
learned from the chemical compositions of defective and non-defective duplex plates,
thus offering diverse models and competing explanations for the incidence of slivers
in duplex steel. We combined models with competing explanations in order to find a
diversified set of chemical composition patterns that should lead to reduced chances of
sliver formation. We employ these patterns as possible ameliorative actions, generating

plates matching these chemical composition patterns.

Keywords: Stainless Steel, Defect Model, Material Design, Machine Learning, Ex-
plainability, Root Cause Analysis.
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Capitulo 1

Introducao

O aco inoxidavel ou ago inox é uma liga de ferro e cromo que apresenta propriedades
fisico-quimicas superiores aos agos comuns, tendo a alta resisténcia a oxidagao atmos-
férica como sua principal caracteristica. Os acos inoxidaveis podem ser classificado em
diferentes tipos/familias de acordo com a sua microestrutura cristalina [Deo & Boom,

1993]. As principais familias de ago inox sao:

e Austeniticos: os agos inoxidaveis austeniticos tendem a ter um alto teor de cromo
em compara¢ao com outras ligas de aco, conferindo-lhes maior resisténcia a cor-
rosao. Outra caracteristica comum das ligas de aco inoxidavel austenitico é que

elas tendem a ser nao magnéticas.

e Ferriticos: o ago inoxidavel ferritico é magnético, como sugere o nome. Essas
ligas podem ser endurecidas através de encruamento. Eles também tendem a ser

mais baratos em relacao aos demais devido ao seu baixo teor de niquel.

e Martensiticos: sua resisténcia a corrosao tende a ser menor do que as ligas ferri-
ticas ou austeniticas, mas eles tém uma alta dureza. As ligas de ag¢o inoxidavel
martensitico sao geralmente ideais para aplicagoes que requerem uma resisténcia
a tragao e ao impacto extraordinariamente alta. Quando as referidas aplicagoes
também requerem resisténcia a corrosao, essas ligas podem ser usadas com um

revestimento de polimero protetor.

e Duplex: possui uma microestrutura austenita e ferrita ao mesmo tempo, geral-
mente numa proporgao igual. Sao caracterizados por conterem mais cromo e mo-
libdénio e menores teores de niquel do que os acos inoxidéveis austeniticos. Tém
aproximadamente o dobro da for¢a de rendimento (resisténcia a dobra) do ago

inoxidavel austenitico. Sua microestrutura mista oferece resisténcia melhorada
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a corrosao sob tensao por cloro em comparagao com os tipos de ago inoxidéavel

austeniticos.

Em particular, o aco inox da familia duplex tem encontrado uso crescente na
indistria maritima, principalmente por oferecer um 6timo custo beneficio entre resis-
téncia fisica e resisténcia a corrosdao. As primeiras aplicagoes das ligas de aco inoxidavel
duplex foram quase exclusivamente os tubos dissipadores de calor, principalmente em
servigos de resfriamento que utilizam materiais corrosivos. Atualmente, essas ligas tém
uma grande variedade de aplicacoes potenciais como, por exemplo, a construcao de du-
tos para a exploragao de petréleo na camada do pré-sal. O ago inoxidavel duplex mais
comumente usado hoje em exploracao de aguas profundas contém aproximadamente
22% de cromo (Cr), contendo também molibdénio (Mo) e nitrogénio (N). Outros ele-
mentos presente neste material sdo: niquel (Ni), cobre (Cu), manganés (Mn) e silicio
(Si). Estes elementos devem ocorrer em certas proporgoes especificadas para que o

materal acabado seja caracterizado como um ago inox do tipo duplex [Gunn, 1997].

1.1 Motivacao

A qualidade dessa familia de acos é frequentemente ameacada pela presenca de defeitos
em sua superficie. Dentre esses defeitos podemos destacar as lascas. A lasca é um
defeito superficial que supostamente é originado durante os estagios de solidificacao
do processo de fundigdo [Stradomska et al., 2009]. Elas sdo alongadas na mesma
direcao da laminacao, com comprimento usual de 70mm, e geralmente se concentram
mais proximos as bordas das placas de ago |[Thomas, 2006|, conforme mostrado na
Figura 1.1. As lascas causam um aumento nos custos de producao, pois permanecem
indetectadas nas etapas intermediarias da fabricacao, sendo observadas apenas durante
a inspecao final do produto acabado. Uma vez que as lascas sao observadas, a placa
defeituosa geralmente é descartada. Portanto, a modelagem de novas ligas de ago que
sao menos suscetiveis & formagao de lascas é de suma importancia para a eficiéncia da
industria de ago.

A APERAM South America é a maior fabricante de acos inoxidaveis do Brasil,
com uma fatia de mercado de aco estimada em 90% no pais. Por ser a tnica fabricante
de ago inoxidavel duplex no Brasil, a APERAM South America esta expandindo sua
presenca no segmento de exploragao de petroleo do pré-sal com o desenvolvimento de
ligas de aco inoxidéavel ultra-resistentes. Esses novos materiais sao impostos a altos
padroes qualidade para resistir as condi¢oes ambientais extremamente adversas encon-

tradas em aguas profundas, e um grande desafio para atingir tais padroes de qualidade
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exigidos é prevencao do surgimento de lascas. Por isso, a APERAM South America
solicitou uma investigagao sobre as possiveis causas do aparecimento de lascas de aque-
cimento no ago inoxidavel duplex. Através da espectrometria de massas foram aferidas
as composi¢oes quimicas de 122 placas de ago inoxidavel duplex produzidas durante o
ano de 2018 na planta de Timoéteo-MG. Das 122 corridas estudadas, 71 resultaram em
placas defeituosas enquanto as outras 51 nao apresentaram lascas durante a inspegao
final. Essas medigoes correspondendem a um conjunto de dados de escala inédita para

o estudo desse defeito.

1 mm

Figura 1.1. Cima — Placa de ago inoxidavel duplex com uma lasca perto de sua
borda. Baixo — Imagem amplificada de uma lasca de aquecimento.
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1.2 Definicio do problema

Segundo Barbosa et al. [2007], a determinagao dos fatores causais associados a formagao
das lascas nao é trivial, pois elas podem estar associadas a uma combinacao de variaveis
metalirgicas e de processo. Varidveis, essas, que sao aferidas em diferentes etapas do
processo metaltrgico. Portanto, uma determinada composi¢ao quimica pode estar
associada ou nao a formacao de lasca, a depender de variaveis de processo relacionadas
a operacoes posteriores, como reaquecimento e laminacao. Nosso principal objetivo
neste trabalho é determinar a inter-relacao entre a formagao da lasca e a composicao
quimica do ago inoxidavel duplex. Uma vez que os padroes nas composi¢oes quimicas
sao encontrados, eles podem ser usados como ac¢oes de melhoria a fim de prevenir a

formagao de lascas.

A intuicao que exploraremos neste estudo é: pode existir uma receita quimica
muito especifica que é menos suscetivel a formacao de lascas, desde que as variaveis
dos processos posteriores assumam seus valores tipicos. No entanto, como estamos nos
concentrando apenas nas composicoes quimicas, os dados correspondentes podem apre-
sentar muitas estruturas locais, no sentido de que os fatores quimicos que contribuem
para a formagcao da lasca podem variar muito dependendo de varidveis de processo

desconhecidas relacionadas as etapas posteriores.

Intuitivamente, se diferentes instancias - ou seja, placas de ago - estao associados
a diferentes estruturas locais nos dados, esperariamos que cada estrutura fosse melhor
descrita por um modelo diferente. Entao, podemos obter padroes globais de composi-
¢ao quimica combinando modelos para todos os tipos de estruturas locais encontrados.
Nesse caso, em vez de modelar os dados usando a abordagem tnica que se ajusta a
todos os fatores (ou caracteristicas) disponiveis em um tnico modelo, amostramos o
espago de modelos decompondo as caracteristicas disponiveis. Isso resulta em cente-
nas de milhares de modelos aprendidos a partir das composi¢oes quimicas. Embora a
grande maioria dos modelos seja ineficaz, fomos capazes de produzir varios modelos que
geram previsoes altamente precisas. Para esses modelos que performam bem, encon-
tramos uma forte ligacao entre as caracteristicas e as previsoes do modelo. Mostrando,
assim, que algumas caracteristicas sao claramente tuteis para detectar diferentes meca-
nismos de formacao de lascas e evidenciando, portanto, que diferentes combinagoes de

caracteristicas cobrem uma regiao especifica do espago relativo aos defeitos.
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1.3 Contribuicoes

Existem na literatura diversas diretrizes e guias que relacionam componentes quimicos
com a ocorréncia de lascas no ago inoxidéavel duplex, como em [Stradomska et al., 2009].
Porém, até onde vai nosso conhecimento, ainda nao foi realizada uma anélise profunda
do problema usando um conjunto de dados exclusivo e de grande escala que considera
todo o espectro de elementos quimicos presentes no aco. Além disso, a inovacao deste
trabalho esté no processo proposto para se identificar diversas causas raiz que podem
ser aplicadas a qualquer tarefa onde pode haver mais de um fator subjacente. As

contribuigoes especificas deste trabalho podem ser resumidas da seguinte forma:

e Dentre nossos principais resultados, destacamos que nossos modelos preditivos
sao empiricamente precisos para estimar se uma placa de ago qualquer sera defei-
tuosa, com um valor de AUC que varia de 0,78 a 0,85. Isso pode ser considerado
um resultado impressionante, ja que nossos modelos preditivos nao levam em con-
sideragao as variaveis de processo obtidas nas demais etapas da siderurgia. Ser
capaz de antecipar defeitos logo nas primeiras etapas do processo metalirgico é

de grande importancia para a reducao dos custos operacionais.

e Uma ferramenta implantada e confiavel que auxilia a modelagem quimica de agos
inoxidaveis duplex para evitar a formacao de lascas. Nossa ferramenta utiliza um
grande numero de modelos preditivos para encontrar um conjunto diversificado
de padroes quimicos associados a placas nao defeituosas. A sidertrgica produz
placas com composicao quimica condizente com os padroes nao defeituosos. A

formagao de lascas também é prevenida ao se evitar padroes defeituosos.

1.4 Organizacao da dissertacao

Esta dissertagao esta organizada em 5 capitulos além do atual. No Capitulo 2 des-
crevemos como ocorre a produgao de aco inoxidavel duplex na planta de Timéteo-MG
da APERAM South America. No capitulo 3 é apresentada a sumarizacao de diversos
trabalhos relacionados ao nosso problema. O capitulo 4 descreve, em termos matemati-
cos, a metodologia adotada em nosso trabalho para se alcancar resultados que apontem
caminhos para a melhoria no processo de producao do ago. O capitulo 5 aprensenta a
configuragao e os resultados obtidos em nossos experimentos. O sexto e iltimo capitulo

apresenta conclusoes e sugestoes para futuros trabalhos nesse tema.






Capitulo 2

Processo de fabricacao do aco

Neste capitulo sao apresentados os conceitos, métodos e procedimentos que permeiam
este trabalho. O objetivo é introduzir o conhecimento necessario para compreender o
processo em que estamos inseridos e as ferramentas utilizadas. Detalha-se, principal-
mente, como ¢é realizado todo o processo de fabricacao do ac¢o inox do tipo duplex na
APERAM South America.

A siderurgia é o processo de produzir aco a partir de minério de ferro e sucata.
Esse processo involve a remocgao de impurezas do ferro bruto e a adi¢ao de elementos
ligamentais como manganés, niquel, cromo e vanadio para produzir diferentes tipos de
aco [Deo & Boom, 1993|. Descreveremos brevemente como esse processo é realizado
na APERAM South America, na planta de Timoteo-MG. O processo pode ser divi-
dido em cinco etapas fundamentais: fundigao inicial, ajuste de composi¢ao quimica,

lingotamento continuo, laminacao a quente e inspecao visual.

2.1 Fundicao inicial

Nesta primeira etapa, temos materiais ferriticos primordiais vindos de duas fontes

principais:

e Ferro-gusa — produto obtido diretamente do minério de ferro transformado em
altos-fornos. Possui cerca de 5% de carbono em sua composi¢ao e baixa concen-

tracao de silicio, manganés, fosforo e enxofre.

e Sucata de ago reciclada — materiais obtidos por aquisi¢oes externas ou sucata de

outros materiais provenientes da linha de producao.

7
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Ao final dessa etapa, o material resultante constitui uma mistura entre o ferro-

gusa liquido e a sucata em qualquer proporcao.

2.2 Ajuste de composicao quimica

A etapa de ajuste de composicao quimica envolve operagoes de fusao, purificagao e
formacao de ligas realizadas a cerca de 1600 °C com o ferro derretido. Varias reagoes
quimicas sao iniciadas para se alcangar as composi¢oes quimicas de referéncia do ago
inoxidavel duplex. Basicamente, o processo de ajuste da composicao quimica é feito
através da adigdo ou remogao certos elementos e/ou manipulagap da temperatura, pres-
sao e do ambiente de producao. Este processo é composto de duas etapas detalhadas
a seguir:

Etapa AOD (Argon-Oxygen-Decarburization) — O inicio do processo de fusao
consiste em levar a mistura ao equipamento AOD, onde ocorre uma reducao significativa
da pressao parcial do sistema. Através de um forte fluxo de oxigénio, realiza-se uma
redugao drastica do teor de carbono da mistura. Toneladas de substancias que possuem
afinidade quimica com o carbono sao complementadas, também com o objetivo de
reduzir o teor de carbono.

Além do carbono, componentes como manganés, silicio e fésforo também sao
oxidados, misturados ao 6xido de ferro. Esse processo leva a formacao de escoria, que
é um material que flutua sobre o ago fundido devido & sua menor densidade. A escoéria
é entao removida da superficie do aco e pode ser utilizada na fabricacao de cimento.

Duas amostragens relevantes estao associadas & composicao quimica no AOD. A
primeira, e mais imediata, é composta pelos gases emitidos durante o processo. Ela per-
mite que o operador da maquina verifique se todos os elementos quimicos medidos estao
dentro de uma faixa de referéncia desejada. Esse calculo é feito através de féormulas
matemaéticas predefinidas. A segunda amostragem é feita por meio de espectrometros
de massa e permite a geragao de dados mais detalhados sobre sua composicao quimica.

Ha um limite para a redugao do teor de carbono do ago durante a fase AOD.
Por exemplo, um aumento na quantidade de oxigénio utilizada resultaria na oxidagao
do cromo, em vez do carbono. Isso implicaria na perda de propriedades importantes
do ago. Assim, a fim de se fazer uma reducao mais controlada, a mistura de aco é
posteriormente processada durante a etapa de VOD, descrita a seguir.

Etapa VOD (Vacuum-Oxygen-Decarburization) — Durante a etapa de VOD, a
reducao da pressao parcial do sistema é muito mais intensa, atingindo-se o que é con-

siderado um vécuo absoluto. Essas condi¢oes permitem uma redugao mais controlada
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do teor de carbono da mistura. Por exemplo, o vacuo aumenta a reacao de descarbone-
tagao e preserva o cromo da oxidacao excessiva. Essa redugao também é feita através
de um fluxo de oxigénio e adicionando-se substancias com afinidade com o carbono.
Enquanto no estagio AOD as adi¢oes sao feitas na ordem de toneladas, no estagio VOD
as adicoes sao feitas na ordem de quilos. Para serem realizadas com precisao, as ope-
racoes VOD dependem da capacidade de se mensurar a composicao quimica do fluxo
de gas que sai do forno ao longo do processo. Os sistemas de amostragem baseados
no espectrometro de massa fornecem analises precisas, representativas e em tempo real
da composicao quimica do ago que esté sendo produzido. A amostragem continua é
necessaria porque o estagio VOD é o processo pelo qual a especificagao quimica do ago

inoxidavel duplex é garantida.

2.3 Lingotamento continuo

Concluida a etapa de VOD, o aco refinado é reaquecido em um forno panela antes de ser
levado ao lingotamento continuo (LC2). Mais especificamente, o ago refinado é levado
para moldes de resfriamento e transformado em placas semiacabadas e solidificadas.
A partir deste momento, os lingotes de aco podem ser laminados de acordo com as
especificagoes desejadas por cada cliente. Durante o processo de solidificagao, uma
tesoura corta os lingotes e ja é possivel observar o ago em comprimentos adequados

para os demais processos.

2.4 Laminacao a quente no moinho Steckel

A quarta etapa do processo de fabricacao de aco é a laminacao. O aco, durante o
processo de solidificacao, é conformado mecanicamente e transformado em produtos
de ago inoxidavel duplex utilizados pela industria de transformacao, como chapas e
bobinas. Especificamente, o ago inoxidavel duplex é conformado em placas e bobinas
por laminacao a quente usando um laminador Steckel, que é um laminador reversivel
com uma bobina aquecida em cada extremidade. As duas bobinas sdo usadas para
alimentar o laminador com o material. O material é passado para frente e para tras no
moinho até que uma espessura precisa seja alcancada em toda a sua superficie, bem
como um nivelamento consistente seja alcancado. Nesse processo, a espessura do ago

é drasticamente reduzida enquanto o seu comprimento é expandido.
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2.5 Inspecao visual

Apo6s a laminacao, as placas de ago inoxidavel duplex sao movidas para o galpao de
inspecao. A identificacao e registro de eventuais defeitos que as placas possam apresen-
tar, bem como sua localizagdo e extensao, sao feitos por especialistas treinados [Zhao
et al., 2017; Neogi et al., 2014|. Em particular, esta etapa ¢ onde a ocorréncia do de-
feito de lasca é reportado. A lasca é caracterizada pela ocorréncia de pequenas fissuras
na superficie da placa de aco. Geralmente, essas rachaduras se estendem por toda a
superficie da placa, de ponta a ponta. Em geral, as fendas sao paralelas as laterais
da placa e, portanto, no momento em que o inspetor as identifica, é feito um registro
da distancia entre a lasca e as bordas da placa. Em alguns casos, apenas as bandas
laterais de aco, de comprimento suficiente para cobrir a falha, sao sucateadas. Outra
caracteristica importante do defeito é que ele tende a se manifestar em ambos os lados
da placa.

A literatura sugere que algumas das possiveis causas do defeito estao relacionadas
a baixa fracao de ferrita-delta, ao excesso de elementos de fragilidade como enxofre,
chumbo, fésforo, estanho e bismuto ou a um alto nivel de oxidacao. Porém, mesmo
com esse conhecimento, a lasca de aquecimento ocorre entre 30% e 50% das placas
fabricadas pela APERAM e resulta no sucateamento de cerca de 10% da producao.
De fato, segundo Barbosa e Fagundes Barbosa et al. [2007], determinar a origem desse
tipo de defeito nao é trivial. Diferentes técnicas de caracterizagao precisam ser usadas
para permitir uma conclusao confiavel.

A Figura 2.1 ilustra todo o processo de fabricagao do aco.
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Figura 2.1. Visao geral do processo de fabricagao do ago
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Capitulo 3

Referencial tedrico

Nesta secao discutiremos os principais trabalhos relacionados com nossa proposta de
modelagem quimica de agos duplex resistentes a formacao de lascas de aquecimento.
A secao 3.1 discorre sobre os métodos tradicionais de anélise de causa raiz. A segao 3.2
explica os mecanismos de funcionamento dos modelos de classificagao utilizados para
gerar as predigoes da presenga ou nao de lasca de aquecimento. A secao 3.3 discute a
ferramenta utilizada para gerar interpretacoes das previsoes realizados pelos modelos.
A sec¢ao 3.4 discorre sobre trabalhos a auséncia de trabalhos que tenham empregado

aprendizado de maquina nesta tarefa.

3.1 Analise de causa raiz

A anélise de causa raiz (RCA) ¢ um método de solugdo de problemas usado para
identificar as causas raiz de falhas ou problemas. O RCA geralmente serve como entrada
para um processo de remediacao por meio do qual agoes corretivas sao tomadas para
evitar que o problema ocorra novamente. O método esta relacionado com inferéncia
e causalidade no sentido de que desejamos compreender um determinado problema e
explicar as razoes subjacentes que o levaram a ocorrer.

Alguns dominios de aplicagao comuns incluem a prevencao e analise de acidentes,
bem como aplicagdes industriais [Rosenfeld, 2014]. Embora haja uma infinidade de
diferentes metodologias para alcangar RCA [Solé-Sim6 et al., 2017|, a maioria segue os

mesmos cinco principios basicos:

e Identificacao e descricao: defini¢oes eficazes dos problemas e descrigoes dos even-
tos (como falhas, por exemplo) sdo tteis e geralmente necessarias para garantir

a execucao de analises de causa raiz apropriadas.
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e Coleta de dados e cronologia: coletar informacoes sobre o fenémeno avaliado e
estabelecer uma sequéncia de eventos ou cronograma para compreender as re-
lagoes entre os fatores contributivos (causais), a causa raiz e o problema sob

investigacao.

e Diferenciacao: ao correlacionar esta sequéncia de eventos com a natureza, a mag-
nitude, a localizagao e o momento do problema e, possivelmente, também com
uma biblioteca de problemas analisados anteriormente, a RCA deve permitir a
separacao entre a causa raiz, os fatores causais e fatores nao causais. Para isso
podemos utilizar técnicas de mineragao de dados ou comparar a situagao sob

investigagao com situacoes passadas.

e Grafo causal: extrair das sequéncias de eventos uma subsequéncia de eventos-

chave que explicam o problema e converté-la em um grafo causal.
e Medidas preventivas: definicao de regras e diretrizes para referéncia futura.

No entanto, a inferéncia direta por meio de métodos RCA tradicionais se mostra
uma tarefa complicada quando direcionada a encontrar as causas de defeitos no ago

inoxidéavel duplex [Barbosa et al., 2007].

3.2 Modelos de classificacao

O aprendizado de maquina e as abordagens baseadas em dados estao se tornando
muito importantes em diversas areas. Dentro das aplicagoes baseadas em aprendizado
de maquina, a tarefa de classificacao é uma das mais classicas. Classificagao nada mais
é que o processo de prever a classe de determinada instancia do problema, baseando-se
em observagoes de instancias vistas anteriormente. Um sistema antispam, por exemplo,
deve prever se um novo email recebido ¢ um spam ou nao com base nos email ja
recebidos que foram reconhecidos ou nao como spam. H& dois fatores importantes que
impulsionam aplicagoes desse tipo: o uso de modelos estatisticos efetivos que capturam
as complexas dependéncias entre os dados e os sistemas de aprendizado escalonaveis a
ponto de aprenderem bons modelos a partir de grandes conjuntos de dados.

Dentre as diversas possibilidades de modelos de classificacao, as técnicas de bo-
osting de arvores tem se destacado por mostrar resultados de estado da arte em varios
benchmarks de classificacao padrao em comparagao com outros métodos. A principal
ideia por tras do boosting é usar um conjunto de preditores fracos que podem ser, de
alguma forma, combinados para gerar um mais forte. Esta ideia foi proposta pela pri-

meira vez por Michael Kearns como o Hypothesis Boosting Problem Kearns [1988]. Ele
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afirma que pode haver um algoritmo eficiente que pode converter hipéteses ruins, como
preditores fracos que sao ligeiramente melhores do que um adivinhador aleatério, em
uma unica hip6tese muito boa. Uma abordagem ¢ filtrar as observagoes, modificando
assim a distribuicao dos exemplos de forma a forcar o algoritmo de aprendizado fraco

a se concentrar nas partes mais dificeis de aprender da distribui¢do Schapire [1990].

Portanto, o boosting consiste na utilizacao de um método de aprendizagem fraco
vérias vezes para obter uma sucessao de hipdteses. Cada um esta focado em aprender
a lidar com as observagoes dificeis restantes com as quais o preditor anterior teve
dificuldade. Os preditores nao sao feitos de forma independente, mas sequencialmente,
e cada um aprende com os erros dos preditores anteriores. Isso, por sua vez, faz
com que as observacoes tenham uma probabilidade desigual de aparecer em modelos
subsequentes e aquelas com o maior erro aparecem mais. As Gradient boosting machines
(GBM) sao um exemplo de algoritmo de boosting que se originou da observagao de
Breiman Breiman [1997|: o boosting pode ser interpretado como um algoritmo de
otimizagao sobre uma fung¢ao de perda adequada.

Sejam y os valores reais da variavel de saida, ¢ uma iteragao do algoritmo gradient
boosting e F;(z) a saida do modelo proposto no tempo i. O algoritmo de gradient bo-
osting melhora F;(z) construindo um novo modelo que adiciona um estimador h para
fornecer um modelo melhor, o que leva a F;(z) = F;(z) + h(x). Um h perfeito impli-
caria em h(z) = y— F;(x). Portanto, a abordagem de gradient boosting tentara ajustar
h a perda residual. No entanto, para problemas de classificacdo e ranqueamento, os
residuos y — F'(x) para um determinado modelo sao os gradientes negativos em relac¢ao
a F(x). Com isso, o gradient boosting é um algoritmo de descida de gradiente para
combinar e treinar preditores fracos. Um preditor comumente usado sao as florestas
aleatorias.

Neste trabalho, empregamos o XGBoost, que melhora a performance do GBM
Chen & Guestrin [2016] original. Por exemplo, ele permite que arvores sejam criadas
de maneira gulosa a partir de subamostras do conjunto de dados de treinamento. Isso
leva a reducao da correlagao entre as arvores e evita o excesso de overfitting. Esta

variacao do boosting é chamada de gradient boosting estocastico.

3.3 Interpretabilidade dos modelos

Existem na literatura alguns métodos para a atribuicao de importancia a atributos
como o LIME [Ribeiro et al., 2016] e o SHAP |Lundberg & Lee, 2017|. Este ultimo

tem apresentado os melhores resultados, justamente por ser uma unificacao do anterior
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com outras ferramentas de mesmo proposito. Sendo assim, utilizaremos o SHAP para
realizar a interpretagao dos modelos.

O SHAP (SHApley Additive exPlanations) é uma abordagem unificada desenvol-
vida para explicar a saida de qualquer modelo de aprendizado de maquina. O SHAP
combina teoria dos jogos e explicacoes locais, unindo varios métodos anteriores e repre-
sentando um robusto método de atribuicao de importancia a atributos de um modelo
com base em expectativas. Basicamente, o SHAP possui uma abordagem baseada em
permutacoes para atribuir a importancia de atributos e define um modelo como uma
cooperacao de caracteristicas, atribuindo um valor para cada atributo nessa coopera-
¢ao baseada na sua contribuicao para as decisoes do modelo. O SHAP possui trés

propriedades que sao essenciais no desenvolvimento deste trabalho:
e Precisao local: as explicacoes explicam o modelo com corretude.

e Atributos faltantes: os atributos faltantes nao tém impacto atribuido as deci-

soes do modelo.

e Consisténcia: se um modelo mudar para que a contribuicao de algum atributo
aumente ou permaneca a mesma, independentemente dos outros atributos, o

impacto desse atributo nao deve diminuir.

O valor de Shapley é um conceito de solu¢ao na teoria dos jogos cooperativos
Shapley [1953]. Em cada jogo, é fornecida uma distribui¢ao tnica das recompensas
geradas pela cooperacao de todos os jogadores, dadas todas as coalizoes possiveis de
jogadores. Aplicado ao XGBoost, o valor de Shapley dé a contribuigao de cada atributo
para a explicacao das predigoes modelo. A coalizao é formada seguindo os nés nas
arvores geradas pelo modelo XGBoost.

Basicamente, o valor de Shapley ¢é a contribui¢ao média esperada de um jogador
apos todas as combinacoes possiveis terem sido consideradas. Podemos construir uma
coalizao com apenas um jogador e entao adicionar interativamente os outros, um de
cada vez, até que todo o grupo esteja na coalizao. Adicionar um jogador a uma coa-
lizao existente aumenta seu retorno esperado e, portanto, isso pode ser contabilizado
como sua parcela do retorno. No entanto, ha muitas maneiras possiveis de formar uma
coalizao. A ordem em que cada jogador é adicionado pode influenciar em sua partici-
pacao no retorno agregado. O valor de Shapley para cada jogador consiste na média
dessa contribuicao sobre as diferentes permutagoes possiveis em que a coalizao pode
ser formada.

Seja N um conjunto de n jogadores, S uma coalizao de jogadores e v seja uma

fungao caracteristica sobre S. Ou seja, v(S) denota o valor de uma coalizao S e descreve
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a soma total esperada de compensagoes que os membros de S obtém por cooperacao.
Adicionar o jogador n; a uma coalizao S existente aumenta o retorno esperado para
a coalizao em v(S U {n;}) — v(S). Uma vez que existem n! maneiras possiveis de se
organizar os jogadores n e o jogador n; deve ser precedido por todos os membros de
S e seguido pelos jogadores restantes em N, existem |S|!(n — 1 —|S])! formagdes em
que o jogador n; junta-se a coalizao existente S. Se somarmos sua contribuigao sobre
todas as formacgoes em que n; se junta a S e, em seguida, sobre todas as possiveis
coalizoes S das quais ele possa se juntar, obteremos sua contribuicao total sobre todas
as formacgoes possiveis de V.

Por fim, o valor de Shapley ¢, (v) do jogador n; no jogo cooperativo (v, N) é a

média de sua contribuic¢ao total em todos os cenérios possiveis:

pn(v) = Y = ;, [S['n =1 =[S (v(SU{ni}) —v(S)) (3.1)
SCN\{ni} '

A ideia do SHapley Additive Explanations (SHAP) ¢ usar este conceito da teoria
dos jogos para interpretar um modelo de aprendizado de méquina [Lundberg & Lee,
2017]. Todos os atributos sao jogadores tentando prever uma determinada tarefa que
pode ser vista como um jogo cooperativo. A contribuicao agregada de cada atributo,
sua recompensa, é seu valor real menos a previsao do modelo. O impacto de cada
atributo pode, portanto, ser encontrado calculando seu valor de Shapley. No entanto,
o calculo exato dos valor de Shapley é desafiador. O SHAP propoe vérios métodos
de aproximacao. A independéncia de atributos e a linearidade do modelo sao duas

suposicoes opcionais que simplificam o calculo dos valores esperados.

3.4 Aprendizado de maquina na siderurgia

A natureza dos sistemas de manufatura enfrenta comportamentos cada vez mais com-
plexos, dindmicos e as vezes até cadticos. Para poder atender com eficiéncia a demanda
por produtos de alta qualidade, é imprescindivel utilizar todos os meios disponiveis.
Uma area, que teve um desenvolvimento acelerado em termos de resultados promisso-
res, mas também de usabilidade, é o aprendizado de méaquina [Wuest et al., 2016]. O
aprendizado de maquina e a inteligéncia artificial conquistaram um papel fundamental
no que hoje conhecemos como a quarta revolucao industrial. Muito do hype em torno
da inteligéncia artificial na manufatura esta focado na automacao industrial, mas este é
apenas um dos aspectos da revolugao das fabricas inteligentes. A inteligéncia artificial

também traz para a mesa da industria e da siderurgia, em especial, a possibilidade de
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ganhos de eficiéncia através de aplicagoes como a predicao de qualidade, a manutencao
preditiva e a modelagem generativa dos materiais.

Dentro da seara de aplicagoes de aprendizado de maquina na siderurgia, Li et al.
[2018| apresenta um sistema baseado em Aprendizado de Méaquina para se estimar a
qualidade do aco no final do processo de fabricagao. Eles utilizam um conjunto de
dados composto de 51 atributos que variam desde as composi¢oes quimicasdo ago até
varidveis de processo, como a temperatura do forno. O problema é apresentado como
uma tarefa de regressao em que o objetivo é prever o valor de certas propriedades do
produto acabado.

Ainda segundo Li et al. [2018], o problema é melhor tratado agrupando-se véarios
algoritmos de aprendizagem em forma de ensemble aliados a enorme quantidade de
dados historicos de producao disponiveis. Os resultados indicam que o sistema de
previsao de controle de qualidade do aco com base em um modelo de aprendizagem
de maquina pode oferecer resultados promissores, ao mesmo tempo que oferece alta
usabilidade para que fabricantes locais resolvam o problemas na producao com auxilio
do desenvolvimento de técnicas de aprendizado de maquina. Além disso, a implantacao
do mundo real deste sistema é demonstrada e discutida.

Seguindo a mesma linha do trabalho anterior, Ruiz et al. [2020] utiliza procedi-
mentos de Aprendizado de Maquina para prever a resisténcia & tragao de barras de
aco. O conjunto de dados disponivel inclui 5540 observagoes e 97 atributos monito-
rados durante as diferentes etapas do processo - forno elétrico a arco, forno panela,
lingotamento continuo e laminacao a quente. Diversos algoritmos de regressao foram
testados, com o algoritmo Random Forest, que utiliza dos mesmos principios teéricos
do XGBoost, obteve a melhor performance com um R2 de 0,775 no conjunto de dados
de teste.

Além disso, técnicas de explicabilidade foram aplicadas para definir quais variaveis
possuem maior influéncia na resisténcia a tragao das barras de ago. Mais precisamente,
os algoritmos Feature Importance e Permutation Importance mostraram que as varia-
veis quimicas tém maior influéncia na resisténcia do material. A influéncia quantitativa
dessas variaveis foi representada por meio de graficos de dependéncia parcial. Por fim,
estas informacoes foram utilizadas para uma tomada de decisao com o objetivo de se
otimizar a resisténcia das barras de ago.

Apesar de existirem algumas diretrizes a respeito dos componentes relacionados a
formagao de lascas de aquecimento no ago inoxidavel duplex, como em Chai & Kangas
[2014], nao encontramos, até o momento, nenhuma analise de causa raiz profunda e que
utilize um conjunto de dados em larga escala considerando toda a gama de elementos

quimicos presentes no aco inoxidavel duplex e nem em outros tipos de ligas de ago.
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Metodologia

4.1 Caracterizacao do conjunto de dados

O conjunto de dados fornecido pela APERAM South America é composto pela com-
posicao quimica de placas de aco inoxidével duplex medidas durante o processo de
fabricagao do aco. Espectrometros foram utilizados para avaliar as quantidades re-
lativas (%) para cada elemento quimico em uma determinada placa. Cada elemento
possui um padrao espectral particular e, assim, os picos nos espectros sao associados a
elementos especificos, com base na comparagao com os resultados das amostras de refe-
réncia. No total, temos 20 elementos quimicos que sao medidos em diferentes estagios

do processo de fabricacao de ago.

Enquanto vérias medicoes sao realizadas durante o processo de fabricacao de
aco, consideramos apenas as composicoes quimicas finais registradas para aprender
nossos modelos. Os dados foram coletados durante todo o ano de 2018 e, durante esse
periodo, especialistas metalirgicos da APERAM South America realizaram uma série
de estudos, testando composi¢oes quimicas ligeiramente diferentes, com o objetivo de
se evitar a formagao de lascas. O conjunto de dados final é composto por 122 placas
para as quais as composi¢oes quimicas correspondentes foram aferidas no inicio da
etapa de lingotamento continuo. Existem 71 placas defeituosas (que possuem lascas) e

as 51 restantes nao possuem defeitos (sem lascas).

Como também consideramos as proporcoes entre esses elementos como atributos

para aprender nossos modelos, estendemos o espaco de atributos para 380 atributos.
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4.2 Encontrando padroes defeituosos na
composicao quimica do aco

Nesta secao, propomos uma nova abordagem para modelar a formacao de lascas no aco
inoxidavel duplex. Essa modelagem ¢ desafiadora porque pode ser definida por varias
estruturas locais no espaco dos dados.! Como resultado, o problema de aprendizagem
correspondente tem uma superficie de erro nao-convexa sem um minimo global 6bvio,
implicando que podemos gerar miiltiplos modelos que sao performaticos, cada um deles
fornecendo uma explicagao diferente para a formacao de lascas. Portanto, podem
emergir interpretagoes opostas ou concorrentes para o mesmo fenémeno.

Nossa abordagem, pretende-se encontrar uma explicagao para a formacao de las-
cas de aquecimento que seja coerente com muitas explicagoes concorrentes. Portanto,
propomos a decomposi¢ao do conjunto original de atributos em vérios subconjuntos
para que um modelo especifico seja construido para cada subconjunto de atributos
(elementos quimicos, no nosso caso). Por fim, os modelos gerados sao agrupados de
acordo com suas explicagoes, promovendo a diversidade em termos de possiveis expli-
cacoes para a formagao de lascas. Espera-se que padroes quimicos fortes surjam do
conjunto de modelos, e esses padroes quando analisados em conjunto podem fornecer
uma visao mais global do mecanismo de formacao de lascas de aquecimento.

Podemos resumir nossa abordagem da seguinte maneira:

1. Aprendemos um grande nimero de modelos com o mesmo conjunto de dados de
composicao quimica. Cada modelo utiliza um conjunto diferente de caracteristi-

cas - ou seja, elementos quimicos e suas concentragoes relativas.

2. Organizamos os modelos em funcao das suas previsoes e também das explicagoes

fornecidas.

3. Selecionamos padroes defeituosos e nao defeituosos presentes em um conjunto de

modelos representativos.

4.2.1 Estruturas locais nos dados

Um espago de dados é definido como um conjunto de n pontos da forma (x,y)", de
modo que x € R? é dado como um vetor de caracteristica {x;,Xs,...,X4} e y ¢ a safda

verdadeira para x. Frequentemente, em espacos de dados de alta dimensao, existem

'Embora a composicao quimica nio seja o tnico fator relacionado & formacao de lascas, assumi-
remos que as caracteristicas relacionadas as etapas posteriores sao constantes até certo ponto.
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regioes que mostram correlagoes complexas entre um conjunto especifico de caracteris-
ticas e o rotulo alvo, e as mesmas correlagoes nao sao necessariamente observadas com
tanta forga em outras regioes do espago de dados. Assim, a teoria do relacionamento —
os dados variam em diferentes regioes do espaco de dados, formando estruturas locais
definidas como subespagos abrangidos por um conjunto de pontos de dados e um con-
junto de caracteristicas |Tanay et al., 2005]. As estruturas locais podem se sobrepor
e geralmente sao o resultado da mistura de diferentes subpopulagoes ou distribuig¢oes
no mesmo espaco de dados e, portanto, nao é possivel separa-las facilmente em varios
subespacos. Um tipo especifico de estrutura local se assemelha a um esqueleto, no sen-
tido de que h& um conjunto de caracteristicas (também conhecido como caracteristicas
esqueleto) que mostram forte correlagdo com um outro conjunto especifico de carac-
teristicas. Portanto, forcar uma caracteristica esqueleto a aparecer no mesmo modelo

com caracteristicas nao relacionadas pode resultar em situagoes confusas.

4.2.2 Amostragem do Espaco do Modelos

Aprender um modelo a partir espaco de dados requer a minimizacao de uma funcao
objetivo f(x). Em vez de simplesmente misturar varias estruturas diferentes em um
tnico modelo x e minimizar f(x), amostramos o espa¢o de modelos minimizando dife-
rentes fungdes f(x'), de modo que x’ C x e |x/| < |x|. As caracteristicas que compoem
cada modelo x’ s@o selecionadas aleatoriamente, e usamos gradient boosted trees [Chen
& Guestrin, 2016] como o algoritmo de aprendizagem? (mas outros algoritmos também
podem ser aplicados). Depois de amostrar o espa¢o de modelos, cada modelo x’ é ava-
liado em através de uma meétrica de erro (2’) em um conjunto de validagao, de modo
que apenas modelos com desempenho minimo para os quais ¢(x’) < € estao incluidos
no espaco de modelos final H'. Neste ponto, esperamos que H’ contenha modelos per-
forméticos que correspondam a possiveis explicagoes para o mecanismo de formacgao

de lascas.

4.2.3 Representando as preferéncias do modelo

Representamos a preferéncia do modelo como um vetor n-dimensional P(x’) = {p1, ps,
., Pn}, onde p; corresponde a probabilidade que o modelo x’ atribuiu ao vetor de da-
dos 7. Esperamos que os modelos (performaticos) em H’ sejam representativos das

diversas estruturas locais que existem no espaco de dados. Ao filtrar os modelos pe-

2Uma vez que as caracteristicas de composicdo quimica consideradas podem ter uma variedade
de interagoes nao lineares complexas, empregamos um algoritmo de classificacdo com flexibilidade
significativa.
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forméaticos para os quais ¢(x’) < € esperamos que a estrutura local correspondente seja

devidamente explicada pelo modelo correspondente x'.

4.2.4 Representando as explicacoes do modelo

Representamos como o modelo x" explica o fen6meno como um vetor d-dimensional
E(x') = {ej,es,...,e4} mostrando quais caracteristicas estdo conduzindo a previsao
do modelo. Especificamente, e; assume um valor que corresponde a influéncia que a
respectiva caracteristica x; teve na decisao do modelo. Visto que nao assumimos a
independéncia dos atributos enquanto minimizamos f(x’), as caracteristicas correlaci-
onadas dentro do modelo x' deveriam compartilhar seu crédito ou importancia. Por
esse motivo, usamos os valores médios de SHAP para avaliar a importancia de cada

caracteristica.

4.2.5 Prevenindo a formacido de lascas evitando padroes
defeituosos e impondo padroes nao defeituosos na
composicao quimica

Como H' pode conter modelos com explicacdes concorrentes sobre suas decisdes, que-

remos construir um modelo sintético de H’ explorando dois conceitos:

e O conceito de diversidade entre modelos individuais. Reconhecemos a diversi-
dade como um elemento central para obter uma compreensao mais geral sobre
a formacao da lasca. Assumimos que o mecanismo de formacgao das lascas nao
esta relacionado a um tnico fator causal e que os fatores causais podem variar
dependendo das transformacoes realizadas em etapas posteriores do processo de
fabricagao de ago (ou seja, laminagao a quente e lingotamento). A fim de promo-
ver a diversidade ao encontrar padroes defeituosos, agrupamos modelos em H’
com base na distancia entre seus vetores de explicagdo (ou seja, valores SHAP).
Idealmente, isso cria uma série de grupos de modelos que sao internamente densos
e também separados do resto dos modelos em termos de seus fatores explicativos,
ou seja, dentro de cada cluster os fatores explicativos sao semelhantes, enquanto

os fatores dentro de clusters disjuntos sao diferentes.

e O conceito de estabilidade entre a explicagao do modelo e as previsoes empiri-
cas [Shmueli, 2010]. Definimos uma configuragdo de clusters como estéavel se
os modelos dentro do mesmo cluster estao associados aos mesmos fatores expli-

cativos e realizam previsoes semelhantes. Alcancar a estabilidade dos clusters
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é desafiador, pois os modelos que realizam previsoes semelhantes podem ser as-
sociados a fatores explicativos muito diferentes. A fim de avaliar a estabilidade
da previsao-explicagao ao encontrar padroes defeituosos, agrupamos o espaco do
modelo com base na distancia entre o vetor de explicac¢do (ou seja, valores SHAP)
associado a cada modelo e, em seguida, projetamos os agrupamentos no espago
de preferéncias dos modelos. Isso impoe uma configuracao estavel de clusters con-
tendo modelos que sao semelhantes em termos de suas previsoes e seus fatores

explicativos.

Uma vez que os clusters sao encontrados, selecionamos um modelo protoétipo
dentro de cada cluster, de modo que tenhamos o mesmo ntimero de modelos protétipos
e clusters. Em particular, selecionamos o modelo centroéide dentro de cada cluster.
A intuicao é que o mecanismo de formacao das lascas pode ter vérias explicacoes, e
cada modelo de protétipo é uma possivel explicagao para o fenémeno. Para selecionar
padroes defeituosos e nao defeituosos na composicao quimica, separamos caminhos em
cada arvore que compoe o ensemble que levam a nés puros. Em seguida, verificamos
os padroes incluidos, mantendo os mais especificos. Finalmente, padroes com e sem

defeitos sao empregados para prevenir a formacao de lascas.






Capitulo 5

Experimentos

5.1 Configuraciao dos experimentos

Durante a amostragem do espaco de modelos, definimos aleatoriamente o nimero de
caracteristicas que compoem cada modelo, mas garantimos que nenhum modelo utiliza
mais que 15 delas. Os atributos que compoem cada modelo também sao selecionados
aleatoriamente a partir do conjunto de todos os 400 atributos disponiveis. Os modelos
sao construidos usando implementagoes do SciKit-Learn e os algoritmos XGBoost [Pe-
dregosa et al., 2011|. Construimos um total de 113.966 modelos de XGBoost!. Para
avaliar o desempenho, usamos a medida AUC (area sob a curva ROC) padrao [Hanley
& McNeil, 1982; Fawcett, 2006]. Realizamos uma valida¢ao cruzada em cinco conjun-
tos, ou seja, os dados sao organizados em cinco conjuntos e, a cada execuc¢ao, quatro
deles sao usados como conjunto de treinamento e o conjunto restante é usado como
conjunto de teste. Também utilizamos um conjunto de validagao separado usado para
selecionar os melhores modelos. Relatamos o valor médio de AUC ao longo das cinco
execugoes.

Como nao ha uma comparacao de base disponivel na literatura, usamos a abor-
dagem com todas os atributos em um tnico modelo para fornecer uma comparacao de
base. Essa aborgadem utiliza a mesma implementagao XGBoost, mas produz apenas
um tunico modelo composto de todos os recursos disponiveis. Os valores médios de
AUC obtidos pelo modelo tinico sem expansao de atributos foi de 0, 63. Portanto, con-
sideramos um modelo com performance minimamente aceitavel se seu valor médio de
AUC for pelo menos 0, 63. Este limite de desempenho resultou em um espago amostral
de modelos H’ contendo 40.121 modelos dos 113.966 originais (35,20% dos modelos

!Executamos o XGBoost 113.966 vezes, e a cada vez um subconjunto diferente de caracteristicas
é considerada.

25



26 CAPITULO 5. EXPERIMENTOS

t-SNE (13 clusters)

Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6
Cluster 7
Cluster 8
Cluster 9
Cluster 10
Cluster 11
Cluster 12
Cluster 13

Figura 5.1. T-SNE [van der Maaten, 2009] do espago amostral de modelos H’'.
Cada ponto representa um modelo x’. Os modelos sao posicionados de acordo
com as probabilidades de defeito atribuidas a cada placa de ago, de forma que
os modelos que atribuem probabilidades semelhantes as mesmas placas sejam
colocados mais préoximos no espaco. A cor indica o cluster para o qual o modelo
foi atribuido.

tém desempenho melhor do que o modelo tinico). Para uma visualiza¢do mais facil,
mostramos apenas os modelos 2% principais em nossos graficos, o que leva a um limiar

de performance de 0, 7015.

5.2 Resultados

A Figura 5.1 mostra o espaco amostral dos modelos. Na figura, cada ponto corres-
ponde a um modelo, e as cores indicam o cluster atribuido ao modelo. Usamos o
K-Means [Forgy, 1965] para agrupar os modelos em clusters e encontramos um niimero
adequado de clusters maximizando o valor da silhueta. A silhueta é uma medida de
quao semelhante um modelo é ao seu proprio cluster (coesdo) em comparagao com ou-

tros clusters (separagao). A silhueta varia de —1 a 41, onde um valor alto indica que
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Average silhouette score: 0.1880

i

Cluster

-0.1 0.0 0.1 0.2 0.3 0.4 0.5
Silhouette coefficient value

Figura 5.2. Analise de silhueta para cada cluster. O valor médio da silhueta
sugere cOesao e separagao.

o modelo combina bem com seu proprio cluster e nao combina com clusters vizinhos.
Se a maioria dos modelos possuir um valor alto, a configuracao de clusters é consi-
derada apropriada. As melhores pontuagoes de silhueta sdo mostradas na Figura 5.2.
Apo6s uma inspecao mais detalhada, pudemos determinar que os clusters sao divididos
principalmente por quais atributos compoem seus modelos. Considere, por exemplo, o
segundo cluster. Todos os modelos deste cluster consideram os valores de um mesmo
elemento dado na mistura e, portanto, possuem valores de SHAP proximos para este
elemento. Isso, por sua vez, os leva a ficarem proximos no espaco de preferéncias dos

modelos, uma vez que os valores de coesao sao relativamente altos.

A Figura 5.3 ilustra o valor de AUC de cada modelo. Podemos observar que os
modelos performéticos estao bem espalhados pelo espaco de modelos, indicando que
existem modelos com preferéncias diferentes e com fatores explicativos diferentes, mas
com desempenhos semelhantes nao importando o cluster atribuido a eles. Ou seja,

os modelos associados a diferentes fatores explicativos tém niumeros de desempenho
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Figura 5.3. Distribui¢ao dos valores de AUC em cada cluster. Os modelos
performéaticos estao distribuidos pelos clusters.

semelhantes. Nao existe um padrao na distribuicao de clusters por AUC. De fato,
ambas as correlacoes de Pearson e Spearman entre os clusters e a AUC sao inferiores

a 0,1, como também mostrado na Figura 5.3.

A Figura 5.4 mostra o numero de modelos em que cada caracteristica apareceu.
Observa-se que os elementos molibdénio, niquel e nidébio aparecem em muitos modelos,

mas geralmente em conjunto com outras caracteristicas.

O proximo experimento é dedicado a investigar a relagao entre as caracteristicas
disponiveis. Especificamente, estamos interessados em investigar quais caracteristicas
aparecem em modelos semelhantes. Isso pode ser ttil porque algumas reagoes quimicas
podem ser mais dificeis de realizar do que outras e, portanto, caracteristicas seme-
lhantes podem fornecer alternativas aos elementos originais. Para isso, simplesmente
tratamos os modelos como contextos e rodamos o algoritmo SkipGram [Mikolov et al.,
2013] para aprender representagoes distribuidas para as caracteristicas, de modo que
possamos comparar as caracteristicas em termos de modelos nos quais elas apareceram.

Definimos o tamanho do contexto como o ntimero de caracteristicas dentro do modelo.
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Figura 5.5. Representagao distribuida de cada feature.

A Figura 5.5 mostra algumas das caracteristicas, e a intuigao basica aqui é que as ca-

racteristicas proximas umas das outras apareceram em modelos semelhantes, enquanto

as caracteristicas distantes umas das outras apareceram em modelos diferentes.

5.3

Interpretabilidade dos modelos

A interpretabilidade dos modelos é um dos principais requisitos para que seja possivel

a modelagem de novos materiais de aco. Um modelo interpretavel precisa ser trans-

parente quanto a logica por tras da sua previsdao. A Figura 5.6 (& esquerda) mostra

curvas ROC para os modelos centrbide dentro de alguns dos clusters. Tomamos esses

centréides como modelos representativos para uma investigagao mais profunda. A Fi-

gura 5.6 (& direita) mostra os graficos de resumo do SHAP. Esses graficos mostram os

valores de SHAP de cada caracteristica para cada placa de ago no conjunto de dados

de composicao quimica. Em cada grafico, as caracteristicas sao classificadas pela soma



30

0n

1D

0n

True Posilive Rete

CAPITULO 5. EXPERIMENTOS

g —— Mean ROC (AUC = D84+ 0.03)
- +1 std. dev.
T T T T T T
on 02 04 06 0B 1D

Falge Pasitive Rate

e —— Mean ROC (AUC = 0.78 = 0.02)
- +1 std. dev.
T T T T T T
on 02 04 06 0.8 1D

False Pasitive Rate

g —— Mean ROC (AUC = 0.79 = 0.04)
- +1 std. dev.
on 02 04 06 0B 1D

False Pasitive Rate

High
R .
]
E
e[| — L
A :
T T T T T T T Low
N6 0.4 -2 (1] oz a4 [+1:]
SHAP value (impact on model output)
High
3
. [}
———— 8
g
- 5
+ [
T T T T T T T T T Low
DB -DE -D4 D2 0GD 02 04 ©OE OF
SHAP value [impact on model output)
High
_ ]
]
e [ — :
g
} [y
T T T T T T T Low
-3 D0 D25 0.00 025 [+1])] 875
SHAP value (impact on model output)
High
- o ——— o
2
S =il . 5
- - :
! §
T Low

s —— Mean ROC (AUC = 0.B0 = 0.08)
- +1 std. dev.
T T T T T T
on 02 04 06 0B 1D

False Pasitive Rate

04 02 oD 0z o4 08
SHAP value (impact on model output)

Figura 5.6. Modelos representativos para alguns clusters. Esquerda — Curva
ROC mostrando o desempenho do modelo. Direita — O summary plot SHAP cor-
respondente mostrando uma visao geral de quais atributos sao mais importantes
para o modelo.

das magnitudes dos valores SHAP sobre todos as instancias de dados. A cor representa

o valor da caracteristica.

Curiosamente, existem elementos que parecem ser muito relevantes, visto que



5.3. INTERPRETABILIDADE DOS MODELOS 31

ocorrem muito frequentemente em modelos dentro de diferentes clusters. Em geral, no
entanto, os graficos de resumo mostram que as caracteristicas nos modelos dentro de
diferentes clusters sao bastante distintas. No todo, o comportamento predominante é
que grupos especificos de caracteristicas estao associadas a espagos de solucao distintos
e nenhuma relacao clara entre conjuntos de caracteristicas e desempenho pode ser vista.

Depois de selecionar um modelo representativo para cada cluster, pedimos a opi-
niao dos especialistas em metalurgia da APERAM South America. A principal ligao é
que ha casos em que algumas das conclusoes encontradas nao se enquadram em cené-
rios realistas. Por exemplo, um dos modelos pode alegar que uma grande quantidade
de carbono é necessaria para evitar a formacao de lascas. Porém, para produzir aco
inoxidavel duplex sao necessérios baixos percentuais de carbono e tal caracteristica nao
pode ser aceita pelos especialistas. Felizmente, existem muitos padroes que podem ser
acionados, especialmente aqueles relativos aos principais elementos quimicos usados
durante o processo de producao do ago inoxidavel.

Alguns dos padroes descobertos estao sendo usados atualmente para produzir
placas nao defeituosas. Para aqueles padroes que nao se encaixam em cenarios realistas,
os especialistas estao atualmente avaliando padroes obtidos a partir de caracteristicas

alternativas, conforme mostrado na Figura 5.5.
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Conclusoes e trabalhos futuros

Neste trabalho, estudamos um problema subexplorado de aprendizado de maquina para
projetar novos materiais de aco que sao menos propensos a um defeito conhecido como
lasca de aquecimento. Nosso estudo é realizado em parceria com a APERAM South
America, maior fabricante brasileira de acos inoxidaveis. A tarefa foi formulada como
um problema de classificagao binaria para prever quais combinac¢oes de componentes
quimicos podem estar associadas a formacao de lascas. Implementamos uma ferra-
menta que encontra padroes de defeituosos e nao defeituosos na composicao quimica
do aco inoxidavel duplex. A ferramenta implantada forneceu varias regras para orien-
tar a producao de placas de aco sem defeito. Para isso, todos os modelos produzidos
pela ferramenta implantada sao interpretaveis por humanos e as arvores geradas foram
encaminhadas para a linha de producao da APERAM. Placas de ago inoxidavel que
seguem as diretrizes propostas estao atualmente em construcao e os especialistas estao

entusiasmados com a anélise preliminar.
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