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Resumo

A exploração das reservas de petróleo da camada do pré-sal requer o desenvolvimento
de novos materiais de aço que sejam resistentes às condições extremamente adversas
presentes em águas profundas. Nosso objetivo é projetar aço inoxidável duplex encon-
trando novos padrões de composição química que atinjam de forma otimizada padrões
metalúrgicos desejáveis, permitindo assim a produção de tubos submarinos com alta
resistência física e à corrosão. Um desafio particular no desenvolvimento do aço duplex
para aplicações em águas profundas é a minimização de defeitos superficiais, como as
lascas de aquecimento. Esses defeitos podem aumentar significativamente os custos de
produção, porque permanecem indetectados em estágios intermediários da fabricação,
sendo observados apenas durante a inspeção final do produto acabado. As lascas po-
dem ser originadas em diferentes estágios do processo de fabricação de aço, mas um
importante fator causal das lascas é conhecido por estar relacionado à uma composição
química defeituosa. A fim de identificar o mecanismo de formação de lascas em aço
inoxidável duplex e encontrar fatores químicos associados à sua formação, propomos
uma abordagem de decomposição de atributos que resultou em centenas de milhares de
modelos preditivos aprendidos a partir das composições químicas de placas de aço tanto
defeituosas quanto não defeituosas, oferecendo diversos modelos e explicações concor-
rentes para a incidência de lascas no aço duplex. Combinamos modelos com explicações
concorrentes para encontrar um conjunto diversificado de padrões de composição quí-
mica que deveriam levar a chances reduzidas de formação de lascas. Empregamos esses
padrões como possíveis ações de melhoria, gerando placas que combinam com esses
padrões de composição química.

Palavras-chave: Aço inoxidável, Projeto de materiais, Aprendizado de máquina, Ex-
plicabilidade, Indústria 4.0, Análise de causa raiz.
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Abstract

Exploring sub-salt oil reservoirs requires the development of novel steel materials that
withstand the extremely adverse conditions present in deep water. Our goal is to design
duplex stainless steel by finding novel chemical composition patterns that optimally
achieve various measurable metallurgical desiderata, thus enabling the production of
sub-sea tubes with high strength and corrosion resistance. A particular challenge while
designing duplex steel for deep water applications is the minimization of surface defects
such as slivers, since these defects may significantly increase production costs as they
remain undetected in intermediate processing stages, being observed only during the
final inspection. Slivers may be originated in different stages of the steelmaking process,
but one important causative factor of slivers is known to be related to defective chemical
composition. In order to identify the formation mechanism of slivers in duplex stainless
steel, and to find chemical factors associated with sliver formation, we propose a feature
decomposition approach that resulted in hundreds of thousands of predictive models
learned from the chemical compositions of defective and non-defective duplex plates,
thus offering diverse models and competing explanations for the incidence of slivers
in duplex steel. We combined models with competing explanations in order to find a
diversified set of chemical composition patterns that should lead to reduced chances of
sliver formation. We employ these patterns as possible ameliorative actions, generating
plates matching these chemical composition patterns.

Keywords: Stainless Steel, Defect Model, Material Design, Machine Learning, Ex-
plainability, Root Cause Analysis.
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Capítulo 1

Introdução

O aço inoxidável ou aço inox é uma liga de ferro e cromo que apresenta propriedades
físico-químicas superiores aos aços comuns, tendo a alta resistência à oxidação atmos-
férica como sua principal característica. Os aços inoxidáveis podem ser classificado em
diferentes tipos/famílias de acordo com a sua microestrutura cristalina [Deo & Boom,
1993]. As principais famílias de aço inox são:

• Austeníticos: os aços inoxidáveis austeníticos tendem a ter um alto teor de cromo
em comparação com outras ligas de aço, conferindo-lhes maior resistência à cor-
rosão. Outra característica comum das ligas de aço inoxidável austenítico é que
elas tendem a ser não magnéticas.

• Ferríticos: o aço inoxidável ferrítico é magnético, como sugere o nome. Essas
ligas podem ser endurecidas através de encruamento. Eles também tendem a ser
mais baratos em relação aos demais devido ao seu baixo teor de níquel.

• Martensíticos: sua resistência à corrosão tende a ser menor do que as ligas ferrí-
ticas ou austeníticas, mas eles têm uma alta dureza. As ligas de aço inoxidável
martensítico são geralmente ideais para aplicações que requerem uma resistência
à tração e ao impacto extraordinariamente alta. Quando as referidas aplicações
também requerem resistência à corrosão, essas ligas podem ser usadas com um
revestimento de polímero protetor.

• Duplex: possui uma microestrutura austenita e ferrita ao mesmo tempo, geral-
mente numa proporção igual. São caracterizados por conterem mais cromo e mo-
libdênio e menores teores de níquel do que os aços inoxidáveis austeníticos. Têm
aproximadamente o dobro da força de rendimento (resistência à dobra) do aço
inoxidável austenítico. Sua microestrutura mista oferece resistência melhorada
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2 Capítulo 1. Introdução

à corrosão sob tensão por cloro em comparação com os tipos de aço inoxidável
austeníticos.

Em particular, o aço inox da família duplex tem encontrado uso crescente na
indústria marítima, principalmente por oferecer um ótimo custo benefício entre resis-
tência física e resistência à corrosão. As primeiras aplicações das ligas de aço inoxidável
duplex foram quase exclusivamente os tubos dissipadores de calor, principalmente em
serviços de resfriamento que utilizam materiais corrosivos. Atualmente, essas ligas têm
uma grande variedade de aplicações potenciais como, por exemplo, a construção de du-
tos para a exploração de petróleo na camada do pré-sal. O aço inoxidável duplex mais
comumente usado hoje em exploração de águas profundas contém aproximadamente
22% de cromo (Cr), contendo também molibdênio (Mo) e nitrogênio (N). Outros ele-
mentos presente neste material são: níquel (Ni), cobre (Cu), manganês (Mn) e silício
(Si). Estes elementos devem ocorrer em certas proporções especificadas para que o
materal acabado seja caracterizado como um aço inox do tipo duplex [Gunn, 1997].

1.1 Motivação

A qualidade dessa família de aços é frequentemente ameaçada pela presença de defeitos
em sua superfície. Dentre esses defeitos podemos destacar as lascas. A lasca é um
defeito superficial que supostamente é originado durante os estágios de solidificação
do processo de fundição [Stradomska et al., 2009]. Elas são alongadas na mesma
direção da laminação, com comprimento usual de 70mm, e geralmente se concentram
mais próximos às bordas das placas de aço [Thomas, 2006], conforme mostrado na
Figura 1.1. As lascas causam um aumento nos custos de produção, pois permanecem
indetectadas nas etapas intermediárias da fabricação, sendo observadas apenas durante
a inspeção final do produto acabado. Uma vez que as lascas são observadas, a placa
defeituosa geralmente é descartada. Portanto, a modelagem de novas ligas de aço que
são menos suscetíveis à formação de lascas é de suma importância para a eficiência da
indústria de aço.

A APERAM South America é a maior fabricante de aços inoxidáveis do Brasil,
com uma fatia de mercado de aço estimada em 90% no país. Por ser a única fabricante
de aço inoxidável duplex no Brasil, a APERAM South America está expandindo sua
presença no segmento de exploração de petróleo do pré-sal com o desenvolvimento de
ligas de aço inoxidável ultra-resistentes. Esses novos materiais são impostos a altos
padrões qualidade para resistir às condições ambientais extremamente adversas encon-
tradas em águas profundas, e um grande desafio para atingir tais padrões de qualidade
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exigidos é prevenção do surgimento de lascas. Por isso, a APERAM South America
solicitou uma investigação sobre as possíveis causas do aparecimento de lascas de aque-
cimento no aço inoxidável duplex. Através da espectrometria de massas foram aferidas
as composições químicas de 122 placas de aço inoxidável duplex produzidas durante o
ano de 2018 na planta de Timóteo-MG. Das 122 corridas estudadas, 71 resultaram em
placas defeituosas enquanto as outras 51 não apresentaram lascas durante a inspeção
final. Essas medições correspondendem a um conjunto de dados de escala inédita para
o estudo desse defeito.

Figura 1.1. Cima − Placa de aço inoxidável duplex com uma lasca perto de sua
borda. Baixo − Imagem amplificada de uma lasca de aquecimento.
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1.2 Definição do problema

Segundo Barbosa et al. [2007], a determinação dos fatores causais associados à formação
das lascas não é trivial, pois elas podem estar associadas a uma combinação de variáveis
metalúrgicas e de processo. Variáveis, essas, que são aferidas em diferentes etapas do
processo metalúrgico. Portanto, uma determinada composição química pode estar
associada ou não à formação de lasca, a depender de variáveis de processo relacionadas
a operações posteriores, como reaquecimento e laminação. Nosso principal objetivo
neste trabalho é determinar a inter-relação entre a formação da lasca e a composição
química do aço inoxidável duplex. Uma vez que os padrões nas composições químicas
são encontrados, eles podem ser usados como ações de melhoria a fim de prevenir a
formação de lascas.

A intuição que exploraremos neste estudo é: pode existir uma receita química
muito específica que é menos suscetível à formação de lascas, desde que as variáveis
dos processos posteriores assumam seus valores típicos. No entanto, como estamos nos
concentrando apenas nas composições químicas, os dados correspondentes podem apre-
sentar muitas estruturas locais, no sentido de que os fatores químicos que contribuem
para a formação da lasca podem variar muito dependendo de variáveis de processo
desconhecidas relacionadas às etapas posteriores.

Intuitivamente, se diferentes instâncias - ou seja, placas de aço - estão associados
a diferentes estruturas locais nos dados, esperaríamos que cada estrutura fosse melhor
descrita por um modelo diferente. Então, podemos obter padrões globais de composi-
ção química combinando modelos para todos os tipos de estruturas locais encontrados.
Nesse caso, em vez de modelar os dados usando a abordagem única que se ajusta a
todos os fatores (ou características) disponíveis em um único modelo, amostramos o
espaço de modelos decompondo as características disponíveis. Isso resulta em cente-
nas de milhares de modelos aprendidos a partir das composições químicas. Embora a
grande maioria dos modelos seja ineficaz, fomos capazes de produzir vários modelos que
geram previsões altamente precisas. Para esses modelos que performam bem, encon-
tramos uma forte ligação entre as características e as previsões do modelo. Mostrando,
assim, que algumas características são claramente úteis para detectar diferentes meca-
nismos de formação de lascas e evidenciando, portanto, que diferentes combinações de
características cobrem uma região específica do espaço relativo aos defeitos.
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1.3 Contribuições

Existem na literatura diversas diretrizes e guias que relacionam componentes químicos
com a ocorrência de lascas no aço inoxidável duplex, como em [Stradomska et al., 2009].
Porém, até onde vai nosso conhecimento, ainda não foi realizada uma análise profunda
do problema usando um conjunto de dados exclusivo e de grande escala que considera
todo o espectro de elementos químicos presentes no aço. Além disso, a inovação deste
trabalho está no processo proposto para se identificar diversas causas raíz que podem
ser aplicadas a qualquer tarefa onde pode haver mais de um fator subjacente. As
contribuições específicas deste trabalho podem ser resumidas da seguinte forma:

• Dentre nossos principais resultados, destacamos que nossos modelos preditivos
são empiricamente precisos para estimar se uma placa de aço qualquer será defei-
tuosa, com um valor de AUC que varia de 0,78 a 0,85. Isso pode ser considerado
um resultado impressionante, já que nossos modelos preditivos não levam em con-
sideração as variáveis de processo obtidas nas demais etapas da siderurgia. Ser
capaz de antecipar defeitos logo nas primeiras etapas do processo metalúrgico é
de grande importância para a redução dos custos operacionais.

• Uma ferramenta implantada e confiável que auxilia a modelagem química de aços
inoxidáveis duplex para evitar a formação de lascas. Nossa ferramenta utiliza um
grande número de modelos preditivos para encontrar um conjunto diversificado
de padrões químicos associados a placas não defeituosas. A siderúrgica produz
placas com composição química condizente com os padrões não defeituosos. A
formação de lascas também é prevenida ao se evitar padrões defeituosos.

1.4 Organização da dissertação

Esta dissertação está organizada em 5 capítulos além do atual. No Capítulo 2 des-
crevemos como ocorre a produção de aço inoxidável duplex na planta de Timóteo-MG
da APERAM South America. No capitulo 3 é apresentada a sumarização de diversos
trabalhos relacionados ao nosso problema. O capítulo 4 descreve, em termos matemáti-
cos, a metodologia adotada em nosso trabalho para se alcançar resultados que apontem
caminhos para a melhoria no processo de produção do aço. O capítulo 5 aprensenta a
configuração e os resultados obtidos em nossos experimentos. O sexto e último capítulo
apresenta conclusões e sugestões para futuros trabalhos nesse tema.





Capítulo 2

Processo de fabricação do aço

Neste capítulo são apresentados os conceitos, métodos e procedimentos que permeiam
este trabalho. O objetivo é introduzir o conhecimento necessário para compreender o
processo em que estamos inseridos e as ferramentas utilizadas. Detalha-se, principal-
mente, como é realizado todo o processo de fabricação do aço inox do tipo duplex na
APERAM South America.

A siderurgia é o processo de produzir aço a partir de minério de ferro e sucata.
Esse processo involve a remoção de impurezas do ferro bruto e a adição de elementos
ligamentais como manganês, níquel, cromo e vanádio para produzir diferentes tipos de
aço [Deo & Boom, 1993]. Descreveremos brevemente como esse processo é realizado
na APERAM South America, na planta de Timóteo-MG. O processo pode ser divi-
dido em cinco etapas fundamentais: fundição inicial, ajuste de composição química,
lingotamento contínuo, laminação a quente e inspeção visual.

2.1 Fundição inicial

Nesta primeira etapa, temos materiais ferríticos primordiais vindos de duas fontes
principais:

• Ferro-gusa − produto obtido diretamente do minério de ferro transformado em
altos-fornos. Possui cerca de 5% de carbono em sua composição e baixa concen-
tração de silício, manganês, fósforo e enxofre.

• Sucata de aço reciclada − materiais obtidos por aquisições externas ou sucata de
outros materiais provenientes da linha de produção.

7



8 Capítulo 2. Processo de fabricação do aço

Ao final dessa etapa, o material resultante constitui uma mistura entre o ferro-
gusa líquido e a sucata em qualquer proporção.

2.2 Ajuste de composição química

A etapa de ajuste de composição química envolve operações de fusão, purificação e
formação de ligas realizadas a cerca de 1600 ◦C com o ferro derretido. Várias reações
químicas são iniciadas para se alcançar as composições químicas de referência do aço
inoxidável duplex. Basicamente, o processo de ajuste da composição química é feito
através da adição ou remoção certos elementos e/ou manipulaçãp da temperatura, pres-
são e do ambiente de produção. Este processo é composto de duas etapas detalhadas
a seguir:

Etapa AOD (Argon-Oxygen-Decarburization) − O início do processo de fusão
consiste em levar a mistura ao equipamento AOD, onde ocorre uma redução significativa
da pressão parcial do sistema. Através de um forte fluxo de oxigênio, realiza-se uma
redução drástica do teor de carbono da mistura. Toneladas de substâncias que possuem
afinidade química com o carbono são complementadas, também com o objetivo de
reduzir o teor de carbono.

Além do carbono, componentes como manganês, silício e fósforo também são
oxidados, misturados ao óxido de ferro. Esse processo leva à formação de escória, que
é um material que flutua sobre o aço fundido devido à sua menor densidade. A escória
é então removida da superfície do aço e pode ser utilizada na fabricação de cimento.

Duas amostragens relevantes estão associadas à composição química no AOD. A
primeira, e mais imediata, é composta pelos gases emitidos durante o processo. Ela per-
mite que o operador da máquina verifique se todos os elementos químicos medidos estão
dentro de uma faixa de referência desejada. Esse cálculo é feito através de fórmulas
matemáticas predefinidas. A segunda amostragem é feita por meio de espectrômetros
de massa e permite a geração de dados mais detalhados sobre sua composição química.

Há um limite para a redução do teor de carbono do aço durante a fase AOD.
Por exemplo, um aumento na quantidade de oxigênio utilizada resultaria na oxidação
do cromo, em vez do carbono. Isso implicaria na perda de propriedades importantes
do aço. Assim, a fim de se fazer uma redução mais controlada, a mistura de aço é
posteriormente processada durante a etapa de VOD, descrita a seguir.

Etapa VOD (Vacuum-Oxygen-Decarburization) − Durante a etapa de VOD, a
redução da pressão parcial do sistema é muito mais intensa, atingindo-se o que é con-
siderado um vácuo absoluto. Essas condições permitem uma redução mais controlada
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do teor de carbono da mistura. Por exemplo, o vácuo aumenta a reação de descarbone-
tação e preserva o cromo da oxidação excessiva. Essa redução também é feita através
de um fluxo de oxigênio e adicionando-se substâncias com afinidade com o carbono.
Enquanto no estágio AOD as adições são feitas na ordem de toneladas, no estágio VOD
as adições são feitas na ordem de quilos. Para serem realizadas com precisão, as ope-
rações VOD dependem da capacidade de se mensurar a composição química do fluxo
de gás que sai do forno ao longo do processo. Os sistemas de amostragem baseados
no espectrômetro de massa fornecem análises precisas, representativas e em tempo real
da composição química do aço que está sendo produzido. A amostragem contínua é
necessária porque o estágio VOD é o processo pelo qual a especificação química do aço
inoxidável duplex é garantida.

2.3 Lingotamento contínuo

Concluída a etapa de VOD, o aço refinado é reaquecido em um forno panela antes de ser
levado ao lingotamento contínuo (LC2). Mais especificamente, o aço refinado é levado
para moldes de resfriamento e transformado em placas semiacabadas e solidificadas.
A partir deste momento, os lingotes de aço podem ser laminados de acordo com as
especificações desejadas por cada cliente. Durante o processo de solidificação, uma
tesoura corta os lingotes e já é possível observar o aço em comprimentos adequados
para os demais processos.

2.4 Laminação a quente no moínho Steckel

A quarta etapa do processo de fabricação de aço é a laminação. O aço, durante o
processo de solidificação, é conformado mecanicamente e transformado em produtos
de aço inoxidável duplex utilizados pela indústria de transformação, como chapas e
bobinas. Especificamente, o aço inoxidável duplex é conformado em placas e bobinas
por laminação a quente usando um laminador Steckel, que é um laminador reversível
com uma bobina aquecida em cada extremidade. As duas bobinas são usadas para
alimentar o laminador com o material. O material é passado para frente e para trás no
moinho até que uma espessura precisa seja alcançada em toda a sua superfície, bem
como um nivelamento consistente seja alcançado. Nesse processo, a espessura do aço
é drasticamente reduzida enquanto o seu comprimento é expandido.
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2.5 Inspeção visual

Após a laminação, as placas de aço inoxidável duplex são movidas para o galpão de
inspeção. A identificação e registro de eventuais defeitos que as placas possam apresen-
tar, bem como sua localização e extensão, são feitos por especialistas treinados [Zhao
et al., 2017; Neogi et al., 2014]. Em particular, esta etapa é onde a ocorrência do de-
feito de lasca é reportado. A lasca é caracterizada pela ocorrência de pequenas fissuras
na superfície da placa de aço. Geralmente, essas rachaduras se estendem por toda a
superfície da placa, de ponta a ponta. Em geral, as fendas são paralelas às laterais
da placa e, portanto, no momento em que o inspetor as identifica, é feito um registro
da distância entre a lasca e as bordas da placa. Em alguns casos, apenas as bandas
laterais de aço, de comprimento suficiente para cobrir a falha, são sucateadas. Outra
característica importante do defeito é que ele tende a se manifestar em ambos os lados
da placa.

A literatura sugere que algumas das possíveis causas do defeito estão relacionadas
à baixa fração de ferrita-delta, ao excesso de elementos de fragilidade como enxofre,
chumbo, fósforo, estanho e bismuto ou a um alto nível de oxidação. Porém, mesmo
com esse conhecimento, a lasca de aquecimento ocorre entre 30% e 50% das placas
fabricadas pela APERAM e resulta no sucateamento de cerca de 10% da produção.
De fato, segundo Barbosa e Fagundes Barbosa et al. [2007], determinar a origem desse
tipo de defeito não é trivial. Diferentes técnicas de caracterização precisam ser usadas
para permitir uma conclusão confiável.

A Figura 2.1 ilustra todo o processo de fabricação do aço.
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Figura 2.1. Visão geral do processo de fabricação do aço





Capítulo 3

Referencial teórico

Nesta seção discutiremos os principais trabalhos relacionados com nossa proposta de
modelagem química de aços duplex resistentes à formação de lascas de aquecimento.
A seção 3.1 discorre sobre os métodos tradicionais de análise de causa raíz. A seção 3.2
explica os mecanismos de funcionamento dos modelos de classificação utilizados para
gerar as predições da presença ou não de lasca de aquecimento. A seção 3.3 discute a
ferramenta utilizada para gerar interpretações das previsões realizados pelos modelos.
A seção 3.4 discorre sobre trabalhos a ausência de trabalhos que tenham empregado
aprendizado de máquina nesta tarefa.

3.1 Análise de causa raíz

A análise de causa raiz (RCA) é um método de solução de problemas usado para
identificar as causas raiz de falhas ou problemas. O RCA geralmente serve como entrada
para um processo de remediação por meio do qual ações corretivas são tomadas para
evitar que o problema ocorra novamente. O método está relacionado com inferência
e causalidade no sentido de que desejamos compreender um determinado problema e
explicar as razões subjacentes que o levaram a ocorrer.

Alguns domínios de aplicação comuns incluem a prevenção e análise de acidentes,
bem como aplicações industriais [Rosenfeld, 2014]. Embora haja uma infinidade de
diferentes metodologias para alcançar RCA [Solé-Simó et al., 2017], a maioria segue os
mesmos cinco princípios básicos:

• Identificação e descrição: definições eficazes dos problemas e descrições dos even-
tos (como falhas, por exemplo) são úteis e geralmente necessárias para garantir
a execução de análises de causa raiz apropriadas.

13



14 Capítulo 3. Referencial teórico

• Coleta de dados e cronologia: coletar informações sobre o fenômeno avaliado e
estabelecer uma sequência de eventos ou cronograma para compreender as re-
lações entre os fatores contributivos (causais), a causa raiz e o problema sob
investigação.

• Diferenciação: ao correlacionar esta sequência de eventos com a natureza, a mag-
nitude, a localização e o momento do problema e, possivelmente, também com
uma biblioteca de problemas analisados anteriormente, a RCA deve permitir a
separação entre a causa raiz, os fatores causais e fatores não causais. Para isso
podemos utilizar técnicas de mineração de dados ou comparar a situação sob
investigação com situações passadas.

• Grafo causal: extrair das sequências de eventos uma subsequência de eventos-
chave que explicam o problema e convertê-la em um grafo causal.

• Medidas preventivas: definição de regras e diretrizes para referência futura.

No entanto, a inferência direta por meio de métodos RCA tradicionais se mostra
uma tarefa complicada quando direcionada a encontrar as causas de defeitos no aço
inoxidável duplex [Barbosa et al., 2007].

3.2 Modelos de classificação

O aprendizado de máquina e as abordagens baseadas em dados estão se tornando
muito importantes em diversas áreas. Dentro das aplicações baseadas em aprendizado
de máquina, a tarefa de classificação é uma das mais clássicas. Classificação nada mais
é que o processo de prever a classe de determinada instância do problema, baseando-se
em observações de instâncias vistas anteriormente. Um sistema antispam, por exemplo,
deve prever se um novo email recebido é um spam ou não com base nos email já
recebidos que foram reconhecidos ou não como spam. Há dois fatores importantes que
impulsionam aplicações desse tipo: o uso de modelos estatísticos efetivos que capturam
as complexas dependências entre os dados e os sistemas de aprendizado escalonáveis a
ponto de aprenderem bons modelos a partir de grandes conjuntos de dados.

Dentre as diversas possibilidades de modelos de classificação, as técnicas de bo-
osting de árvores tem se destacado por mostrar resultados de estado da arte em vários
benchmarks de classificação padrão em comparação com outros métodos. A principal
ideia por trás do boosting é usar um conjunto de preditores fracos que podem ser, de
alguma forma, combinados para gerar um mais forte. Esta ideia foi proposta pela pri-
meira vez por Michael Kearns como o Hypothesis Boosting Problem Kearns [1988]. Ele
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afirma que pode haver um algoritmo eficiente que pode converter hipóteses ruins, como
preditores fracos que são ligeiramente melhores do que um adivinhador aleatório, em
uma única hipótese muito boa. Uma abordagem é filtrar as observações, modificando
assim a distribuição dos exemplos de forma a forçar o algoritmo de aprendizado fraco
a se concentrar nas partes mais difíceis de aprender da distribuição Schapire [1990].

Portanto, o boosting consiste na utilização de um método de aprendizagem fraco
várias vezes para obter uma sucessão de hipóteses. Cada um está focado em aprender
a lidar com as observações difíceis restantes com as quais o preditor anterior teve
dificuldade. Os preditores não são feitos de forma independente, mas sequencialmente,
e cada um aprende com os erros dos preditores anteriores. Isso, por sua vez, faz
com que as observações tenham uma probabilidade desigual de aparecer em modelos
subsequentes e aquelas com o maior erro aparecem mais. AsGradient boosting machines
(GBM) são um exemplo de algoritmo de boosting que se originou da observação de
Breiman Breiman [1997]: o boosting pode ser interpretado como um algoritmo de
otimização sobre uma função de perda adequada.

Sejam y os valores reais da variável de saída, i uma iteração do algoritmo gradient
boosting e Fi(x) a saída do modelo proposto no tempo i. O algoritmo de gradient bo-
osting melhora Fi(x) construindo um novo modelo que adiciona um estimador h para
fornecer um modelo melhor, o que leva a Fi+1(x) = Fi(x) + h(x). Um h perfeito impli-
caria em h(x) = y−Fi(x). Portanto, a abordagem de gradient boosting tentará ajustar
h à perda residual. No entanto, para problemas de classificação e ranqueamento, os
resíduos y−F (x) para um determinado modelo são os gradientes negativos em relação
a F (x). Com isso, o gradient boosting é um algoritmo de descida de gradiente para
combinar e treinar preditores fracos. Um preditor comumente usado são as florestas
aleatórias.

Neste trabalho, empregamos o XGBoost, que melhora a performance do GBM
Chen & Guestrin [2016] original. Por exemplo, ele permite que árvores sejam criadas
de maneira gulosa a partir de subamostras do conjunto de dados de treinamento. Isso
leva à redução da correlação entre as árvores e evita o excesso de overfitting. Esta
variação do boosting é chamada de gradient boosting estocástico.

3.3 Interpretabilidade dos modelos

Existem na literatura alguns métodos para a atribuição de importância a atributos
como o LIME [Ribeiro et al., 2016] e o SHAP [Lundberg & Lee, 2017]. Este último
tem apresentado os melhores resultados, justamente por ser uma unificação do anterior
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com outras ferramentas de mesmo propósito. Sendo assim, utilizaremos o SHAP para
realizar a interpretação dos modelos.

O SHAP (SHApley Additive exPlanations) é uma abordagem unificada desenvol-
vida para explicar a saída de qualquer modelo de aprendizado de máquina. O SHAP
combina teoria dos jogos e explicações locais, unindo vários métodos anteriores e repre-
sentando um robusto método de atribuição de importância a atributos de um modelo
com base em expectativas. Basicamente, o SHAP possui uma abordagem baseada em
permutações para atribuir a importância de atributos e define um modelo como uma
cooperação de características, atribuindo um valor para cada atributo nessa coopera-
ção baseada na sua contribuição para as decisões do modelo. O SHAP possui três
propriedades que são essenciais no desenvolvimento deste trabalho:

• Precisão local: as explicações explicam o modelo com corretude.

• Atributos faltantes: os atributos faltantes não têm impacto atribuído às deci-
sões do modelo.

• Consistência: se um modelo mudar para que a contribuição de algum atributo
aumente ou permaneça a mesma, independentemente dos outros atributos, o
impacto desse atributo não deve diminuir.

O valor de Shapley é um conceito de solução na teoria dos jogos cooperativos
Shapley [1953]. Em cada jogo, é fornecida uma distribuição única das recompensas
geradas pela cooperação de todos os jogadores, dadas todas as coalizões possíveis de
jogadores. Aplicado ao XGBoost, o valor de Shapley dá a contribuição de cada atributo
para a explicação das predições modelo. A coalizão é formada seguindo os nós nas
árvores geradas pelo modelo XGBoost.

Basicamente, o valor de Shapley é a contribuição média esperada de um jogador
após todas as combinações possíveis terem sido consideradas. Podemos construir uma
coalizão com apenas um jogador e então adicionar interativamente os outros, um de
cada vez, até que todo o grupo esteja na coalizão. Adicionar um jogador a uma coa-
lizão existente aumenta seu retorno esperado e, portanto, isso pode ser contabilizado
como sua parcela do retorno. No entanto, há muitas maneiras possíveis de formar uma
coalizão. A ordem em que cada jogador é adicionado pode influenciar em sua partici-
pação no retorno agregado. O valor de Shapley para cada jogador consiste na média
dessa contribuição sobre as diferentes permutações possíveis em que a coalizão pode
ser formada.

Seja N um conjunto de n jogadores, S uma coalizão de jogadores e v seja uma
função característica sobre S. Ou seja, v(S) denota o valor de uma coalizão S e descreve
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a soma total esperada de compensações que os membros de S obtêm por cooperação.
Adicionar o jogador ni a uma coalizão S existente aumenta o retorno esperado para
a coalizão em v(S ∪ {ni}) − v(S). Uma vez que existem n! maneiras possíveis de se
organizar os jogadores n e o jogador ni deve ser precedido por todos os membros de
S e seguido pelos jogadores restantes em N , existem |S|!(n − 1 − |S|)! formações em
que o jogador ni junta-se à coalizão existente S. Se somarmos sua contribuição sobre
todas as formações em que ni se junta a S e, em seguida, sobre todas as possíveis
coalizões S das quais ele possa se juntar, obteremos sua contribuição total sobre todas
as formações possíveis de N .

Por fim, o valor de Shapley ϕni
(v) do jogador ni no jogo cooperativo (v,N) é a

média de sua contribuição total em todos os cenários possíveis:

ϕni
(v) =

∑
S⊆N\{ni}

=
1

n!
|S|!(n− 1− |S|)! (v(S ∪ {ni})− v(S)) (3.1)

A ideia do SHapley Additive Explanations (SHAP) é usar este conceito da teoria
dos jogos para interpretar um modelo de aprendizado de máquina [Lundberg & Lee,
2017]. Todos os atributos são jogadores tentando prever uma determinada tarefa que
pode ser vista como um jogo cooperativo. A contribuição agregada de cada atributo,
sua recompensa, é seu valor real menos a previsão do modelo. O impacto de cada
atributo pode, portanto, ser encontrado calculando seu valor de Shapley. No entanto,
o cálculo exato dos valor de Shapley é desafiador. O SHAP propõe vários métodos
de aproximação. A independência de atributos e a linearidade do modelo são duas
suposições opcionais que simplificam o cálculo dos valores esperados.

3.4 Aprendizado de máquina na siderurgia

A natureza dos sistemas de manufatura enfrenta comportamentos cada vez mais com-
plexos, dinâmicos e às vezes até caóticos. Para poder atender com eficiência a demanda
por produtos de alta qualidade, é imprescindível utilizar todos os meios disponíveis.
Uma área, que teve um desenvolvimento acelerado em termos de resultados promisso-
res, mas também de usabilidade, é o aprendizado de máquina [Wuest et al., 2016]. O
aprendizado de máquina e a inteligência artificial conquistaram um papel fundamental
no que hoje conhecemos como a quarta revolução industrial. Muito do hype em torno
da inteligência artificial na manufatura está focado na automação industrial, mas este é
apenas um dos aspectos da revolução das fábricas inteligentes. A inteligência artificial
também traz para a mesa da indústria e da siderurgia, em especial, a possibilidade de
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ganhos de eficiência através de aplicações como a predição de qualidade, a manutenção
preditiva e a modelagem generativa dos materiais.

Dentro da seara de aplicações de aprendizado de máquina na siderurgia, Li et al.
[2018] apresenta um sistema baseado em Aprendizado de Máquina para se estimar a
qualidade do aço no final do processo de fabricação. Eles utilizam um conjunto de
dados composto de 51 atributos que variam desde as composições químicasdo aço até
variáveis de processo, como a temperatura do forno. O problema é apresentado como
uma tarefa de regressão em que o objetivo é prever o valor de certas propriedades do
produto acabado.

Ainda segundo Li et al. [2018], o problema é melhor tratado agrupando-se vários
algoritmos de aprendizagem em forma de ensemble aliados à enorme quantidade de
dados históricos de produção disponíveis. Os resultados indicam que o sistema de
previsão de controle de qualidade do aço com base em um modelo de aprendizagem
de máquina pode oferecer resultados promissores, ao mesmo tempo que oferece alta
usabilidade para que fabricantes locais resolvam o problemas na produção com auxílio
do desenvolvimento de técnicas de aprendizado de máquina. Além disso, a implantação
do mundo real deste sistema é demonstrada e discutida.

Seguindo a mesma linha do trabalho anterior, Ruiz et al. [2020] utiliza procedi-
mentos de Aprendizado de Máquina para prever a resistência à tração de barras de
aço. O conjunto de dados disponível inclui 5540 observações e 97 atributos monito-
rados durante as diferentes etapas do processo - forno elétrico a arco, forno panela,
lingotamento contínuo e laminação a quente. Diversos algoritmos de regressão foram
testados, com o algoritmo Random Forest, que utiliza dos mesmos princípios teóricos
do XGBoost, obteve a melhor performance com um R2 de 0,775 no conjunto de dados
de teste.

Além disso, técnicas de explicabilidade foram aplicadas para definir quais variáveis
possuem maior influência na resistência à tração das barras de aço. Mais precisamente,
os algoritmos Feature Importance e Permutation Importance mostraram que as variá-
veis químicas têm maior influência na resistência do material. A influência quantitativa
dessas variáveis foi representada por meio de gráficos de dependência parcial. Por fim,
estas informações foram utilizadas para uma tomada de decisão com o objetivo de se
otimizar a resistência das barras de aço.

Apesar de existirem algumas diretrizes a respeito dos componentes relacionados à
formação de lascas de aquecimento no aço inoxidável duplex, como em Chai & Kangas
[2014], não encontramos, até o momento, nenhuma análise de causa raiz profunda e que
utilize um conjunto de dados em larga escala considerando toda a gama de elementos
químicos presentes no aço inoxidável duplex e nem em outros tipos de ligas de aço.
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Metodologia

4.1 Caracterização do conjunto de dados

O conjunto de dados fornecido pela APERAM South America é composto pela com-
posição química de placas de aço inoxidável duplex medidas durante o processo de
fabricação do aço. Espectrômetros foram utilizados para avaliar as quantidades re-
lativas (%) para cada elemento químico em uma determinada placa. Cada elemento
possui um padrão espectral particular e, assim, os picos nos espectros são associados a
elementos específicos, com base na comparação com os resultados das amostras de refe-
rência. No total, temos 20 elementos químicos que são medidos em diferentes estágios
do processo de fabricação de aço.

Enquanto várias medições são realizadas durante o processo de fabricação de
aço, consideramos apenas as composições químicas finais registradas para aprender
nossos modelos. Os dados foram coletados durante todo o ano de 2018 e, durante esse
período, especialistas metalúrgicos da APERAM South America realizaram uma série
de estudos, testando composições químicas ligeiramente diferentes, com o objetivo de
se evitar a formação de lascas. O conjunto de dados final é composto por 122 placas
para as quais as composições químicas correspondentes foram aferidas no início da
etapa de lingotamento contínuo. Existem 71 placas defeituosas (que possuem lascas) e
as 51 restantes não possuem defeitos (sem lascas).

Como também consideramos as proporções entre esses elementos como atributos
para aprender nossos modelos, estendemos o espaço de atributos para 380 atributos.
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4.2 Encontrando padrões defeituosos na

composição química do aço

Nesta seção, propomos uma nova abordagem para modelar a formação de lascas no aço
inoxidável duplex. Essa modelagem é desafiadora porque pode ser definida por várias
estruturas locais no espaço dos dados.1 Como resultado, o problema de aprendizagem
correspondente tem uma superfície de erro não-convexa sem um mínimo global óbvio,
implicando que podemos gerar múltiplos modelos que são performáticos, cada um deles
fornecendo uma explicação diferente para a formação de lascas. Portanto, podem
emergir interpretações opostas ou concorrentes para o mesmo fenômeno.

Nossa abordagem, pretende-se encontrar uma explicação para a formação de las-
cas de aquecimento que seja coerente com muitas explicações concorrentes. Portanto,
propomos a decomposição do conjunto original de atributos em vários subconjuntos
para que um modelo específico seja construído para cada subconjunto de atributos
(elementos químicos, no nosso caso). Por fim, os modelos gerados são agrupados de
acordo com suas explicações, promovendo a diversidade em termos de possíveis expli-
cações para a formação de lascas. Espera-se que padrões químicos fortes surjam do
conjunto de modelos, e esses padrões quando analisados em conjunto podem fornecer
uma visão mais global do mecanismo de formação de lascas de aquecimento.
Podemos resumir nossa abordagem da seguinte maneira:

1. Aprendemos um grande número de modelos com o mesmo conjunto de dados de
composição química. Cada modelo utiliza um conjunto diferente de característi-
cas - ou seja, elementos químicos e suas concentrações relativas.

2. Organizamos os modelos em função das suas previsões e também das explicações
fornecidas.

3. Selecionamos padrões defeituosos e não defeituosos presentes em um conjunto de
modelos representativos.

4.2.1 Estruturas locais nos dados

Um espaço de dados é definido como um conjunto de n pontos da forma (x, y)n, de
modo que x ∈ Rd é dado como um vetor de característica {x1,x2, . . . ,xd} e y é a saída
verdadeira para x. Frequentemente, em espaços de dados de alta dimensão, existem

1Embora a composição química não seja o único fator relacionado à formação de lascas, assumi-
remos que as características relacionadas às etapas posteriores são constantes até certo ponto.
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regiões que mostram correlações complexas entre um conjunto específico de caracterís-
ticas e o rótulo alvo, e as mesmas correlações não são necessariamente observadas com
tanta força em outras regiões do espaço de dados. Assim, a teoria do relacionamento −
os dados variam em diferentes regiões do espaço de dados, formando estruturas locais
definidas como subespaços abrangidos por um conjunto de pontos de dados e um con-
junto de características [Tanay et al., 2005]. As estruturas locais podem se sobrepor
e geralmente são o resultado da mistura de diferentes subpopulações ou distribuições
no mesmo espaço de dados e, portanto, não é possível separá-las facilmente em vários
subespaços. Um tipo específico de estrutura local se assemelha a um esqueleto, no sen-
tido de que há um conjunto de características (também conhecido como características
esqueleto) que mostram forte correlação com um outro conjunto específico de carac-
terísticas. Portanto, forçar uma característica esqueleto a aparecer no mesmo modelo
com características não relacionadas pode resultar em situações confusas.

4.2.2 Amostragem do Espaço do Modelos

Aprender um modelo a partir espaço de dados requer a minimização de uma função
objetivo f(x). Em vez de simplesmente misturar várias estruturas diferentes em um
único modelo x e minimizar f(x), amostramos o espaço de modelos minimizando dife-
rentes funções f(x′), de modo que x′ ⊆ x e |x′| � |x|. As características que compõem
cada modelo x′ são selecionadas aleatoriamente, e usamos gradient boosted trees [Chen
& Guestrin, 2016] como o algoritmo de aprendizagem2 (mas outros algoritmos também
podem ser aplicados). Depois de amostrar o espaço de modelos, cada modelo x′ é ava-
liado em através de uma métrica de erro `(x′) em um conjunto de validação, de modo
que apenas modelos com desempenho mínimo para os quais `(x′) ≤ ε estão incluídos
no espaço de modelos final H′. Neste ponto, esperamos que H′ contenha modelos per-
formáticos que correspondam a possíveis explicações para o mecanismo de formação
de lascas.

4.2.3 Representando as preferências do modelo

Representamos a preferência do modelo como um vetor n-dimensional P(x′) = {p1,p2,

. . . ,pn}, onde pi corresponde à probabilidade que o modelo x′ atribuiu ao vetor de da-
dos i. Esperamos que os modelos (performáticos) em H′ sejam representativos das
diversas estruturas locais que existem no espaço de dados. Ao filtrar os modelos pe-

2Uma vez que as características de composição química consideradas podem ter uma variedade
de interações não lineares complexas, empregamos um algoritmo de classificação com flexibilidade
significativa.
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formáticos para os quais `(x′) ≤ ε esperamos que a estrutura local correspondente seja
devidamente explicada pelo modelo correspondente x′.

4.2.4 Representando as explicações do modelo

Representamos como o modelo x′ explica o fenômeno como um vetor d-dimensional
E(x′) = {e1, e2, . . . , ed} mostrando quais características estão conduzindo a previsão
do modelo. Especificamente, ei assume um valor que corresponde à influência que a
respectiva característica xi teve na decisão do modelo. Visto que não assumimos a
independência dos atributos enquanto minimizamos f(x′), as características correlaci-
onadas dentro do modelo x′ deveriam compartilhar seu crédito ou importância. Por
esse motivo, usamos os valores médios de SHAP para avaliar a importância de cada
característica.

4.2.5 Prevenindo a formação de lascas evitando padrões

defeituosos e impondo padrões não defeituosos na

composição química

Como H′ pode conter modelos com explicações concorrentes sobre suas decisões, que-
remos construir um modelo sintético de H′ explorando dois conceitos:

• O conceito de diversidade entre modelos individuais. Reconhecemos a diversi-
dade como um elemento central para obter uma compreensão mais geral sobre
a formação da lasca. Assumimos que o mecanismo de formação das lascas não
está relacionado a um único fator causal e que os fatores causais podem variar
dependendo das transformações realizadas em etapas posteriores do processo de
fabricação de aço (ou seja, laminação a quente e lingotamento). A fim de promo-
ver a diversidade ao encontrar padrões defeituosos, agrupamos modelos em H′

com base na distância entre seus vetores de explicação (ou seja, valores SHAP).
Idealmente, isso cria uma série de grupos de modelos que são internamente densos
e também separados do resto dos modelos em termos de seus fatores explicativos,
ou seja, dentro de cada cluster os fatores explicativos são semelhantes, enquanto
os fatores dentro de clusters disjuntos são diferentes.

• O conceito de estabilidade entre a explicação do modelo e as previsões empíri-
cas [Shmueli, 2010]. Definimos uma configuração de clusters como estável se
os modelos dentro do mesmo cluster estão associados aos mesmos fatores expli-
cativos e realizam previsões semelhantes. Alcançar a estabilidade dos clusters
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é desafiador, pois os modelos que realizam previsões semelhantes podem ser as-
sociados a fatores explicativos muito diferentes. A fim de avaliar a estabilidade
da previsão-explicação ao encontrar padrões defeituosos, agrupamos o espaço do
modelo com base na distância entre o vetor de explicação (ou seja, valores SHAP)
associado a cada modelo e, em seguida, projetamos os agrupamentos no espaço
de preferências dos modelos. Isso impõe uma configuração estável de clusters con-
tendo modelos que são semelhantes em termos de suas previsões e seus fatores
explicativos.

Uma vez que os clusters são encontrados, selecionamos um modelo protótipo
dentro de cada cluster, de modo que tenhamos o mesmo número de modelos protótipos
e clusters. Em particular, selecionamos o modelo centróide dentro de cada cluster.
A intuição é que o mecanismo de formação das lascas pode ter várias explicações, e
cada modelo de protótipo é uma possível explicação para o fenômeno. Para selecionar
padrões defeituosos e não defeituosos na composição química, separamos caminhos em
cada árvore que compõe o ensemble que levam a nós puros. Em seguida, verificamos
os padrões incluídos, mantendo os mais específicos. Finalmente, padrões com e sem
defeitos são empregados para prevenir a formação de lascas.





Capítulo 5

Experimentos

5.1 Configuração dos experimentos

Durante a amostragem do espaço de modelos, definimos aleatoriamente o número de
características que compõem cada modelo, mas garantimos que nenhum modelo utiliza
mais que 15 delas. Os atributos que compõem cada modelo também são selecionados
aleatoriamente a partir do conjunto de todos os 400 atributos disponíveis. Os modelos
são construídos usando implementações do SciKit-Learn e os algoritmos XGBoost [Pe-
dregosa et al., 2011]. Construimos um total de 113.966 modelos de XGBoost1. Para
avaliar o desempenho, usamos a medida AUC (área sob a curva ROC) padrão [Hanley
& McNeil, 1982; Fawcett, 2006]. Realizamos uma validação cruzada em cinco conjun-
tos, ou seja, os dados são organizados em cinco conjuntos e, a cada execução, quatro
deles são usados como conjunto de treinamento e o conjunto restante é usado como
conjunto de teste. Também utilizamos um conjunto de validação separado usado para
selecionar os melhores modelos. Relatamos o valor médio de AUC ao longo das cinco
execuções.

Como não há uma comparação de base disponível na literatura, usamos a abor-
dagem com todas os atributos em um único modelo para fornecer uma comparação de
base. Essa aborgadem utiliza a mesma implementação XGBoost, mas produz apenas
um único modelo composto de todos os recursos disponíveis. Os valores médios de
AUC obtidos pelo modelo único sem expansão de atributos foi de 0, 63. Portanto, con-
sideramos um modelo com performance minimamente aceitável se seu valor médio de
AUC for pelo menos 0, 63. Este limite de desempenho resultou em um espaço amostral
de modelos H′ contendo 40.121 modelos dos 113.966 originais (35, 20% dos modelos

1Executamos o XGBoost 113.966 vezes, e a cada vez um subconjunto diferente de características
é considerada.
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Figura 5.1. T-SNE [van der Maaten, 2009] do espaço amostral de modelos H′.
Cada ponto representa um modelo x′. Os modelos são posicionados de acordo
com as probabilidades de defeito atribuídas a cada placa de aço, de forma que
os modelos que atribuem probabilidades semelhantes às mesmas placas sejam
colocados mais próximos no espaço. A cor indica o cluster para o qual o modelo
foi atribuído.

têm desempenho melhor do que o modelo único). Para uma visualização mais fácil,
mostramos apenas os modelos 2% principais em nossos gráficos, o que leva a um limiar
de performance de 0, 7015.

5.2 Resultados

A Figura 5.1 mostra o espaço amostral dos modelos. Na figura, cada ponto corres-
ponde a um modelo, e as cores indicam o cluster atribuído ao modelo. Usamos o
K-Means [Forgy, 1965] para agrupar os modelos em clusters e encontramos um número
adequado de clusters maximizando o valor da silhueta. A silhueta é uma medida de
quão semelhante um modelo é ao seu próprio cluster (coesão) em comparação com ou-
tros clusters (separação). A silhueta varia de −1 a +1, onde um valor alto indica que
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Figura 5.2. Análise de silhueta para cada cluster. O valor médio da silhueta
sugere coesão e separação.

o modelo combina bem com seu próprio cluster e não combina com clusters vizinhos.
Se a maioria dos modelos possuir um valor alto, a configuração de clusters é consi-
derada apropriada. As melhores pontuações de silhueta são mostradas na Figura 5.2.
Após uma inspeção mais detalhada, pudemos determinar que os clusters são divididos
principalmente por quais atributos compõem seus modelos. Considere, por exemplo, o
segundo cluster. Todos os modelos deste cluster consideram os valores de um mesmo
elemento dado na mistura e, portanto, possuem valores de SHAP próximos para este
elemento. Isso, por sua vez, os leva a ficarem próximos no espaço de preferências dos
modelos, uma vez que os valores de coesão são relativamente altos.

A Figura 5.3 ilustra o valor de AUC de cada modelo. Podemos observar que os
modelos performáticos estão bem espalhados pelo espaço de modelos, indicando que
existem modelos com preferências diferentes e com fatores explicativos diferentes, mas
com desempenhos semelhantes não importando o cluster atribuído a eles. Ou seja,
os modelos associados a diferentes fatores explicativos têm números de desempenho
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Figura 5.3. Distribuição dos valores de AUC em cada cluster. Os modelos
performáticos estão distribuídos pelos clusters.

semelhantes. Não existe um padrão na distribuição de clusters por AUC. De fato,
ambas as correlações de Pearson e Spearman entre os clusters e a AUC são inferiores
a 0, 1, como também mostrado na Figura 5.3.

A Figura 5.4 mostra o número de modelos em que cada característica apareceu.
Observa-se que os elementos molibdênio, níquel e nióbio aparecem em muitos modelos,
mas geralmente em conjunto com outras características.

O próximo experimento é dedicado a investigar a relação entre as características
disponíveis. Especificamente, estamos interessados em investigar quais características
aparecem em modelos semelhantes. Isso pode ser útil porque algumas reações químicas
podem ser mais difíceis de realizar do que outras e, portanto, características seme-
lhantes podem fornecer alternativas aos elementos originais. Para isso, simplesmente
tratamos os modelos como contextos e rodamos o algoritmo SkipGram [Mikolov et al.,
2013] para aprender representações distribuídas para as características, de modo que
possamos comparar as características em termos de modelos nos quais elas apareceram.
Definimos o tamanho do contexto como o número de características dentro do modelo.
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Figura 5.4. Número de modelos em que cada característica apareceu.
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Figura 5.5. Representação distribuída de cada feature.

A Figura 5.5 mostra algumas das características, e a intuição básica aqui é que as ca-
racterísticas próximas umas das outras apareceram em modelos semelhantes, enquanto
as características distantes umas das outras apareceram em modelos diferentes.

5.3 Interpretabilidade dos modelos

A interpretabilidade dos modelos é um dos principais requisitos para que seja possível
a modelagem de novos materiais de aço. Um modelo interpretável precisa ser trans-
parente quanto à lógica por trás da sua previsão. A Figura 5.6 (à esquerda) mostra
curvas ROC para os modelos centróide dentro de alguns dos clusters. Tomamos esses
centróides como modelos representativos para uma investigação mais profunda. A Fi-
gura 5.6 (à direita) mostra os gráficos de resumo do SHAP. Esses gráficos mostram os
valores de SHAP de cada característica para cada placa de aço no conjunto de dados
de composição química. Em cada gráfico, as características são classificadas pela soma
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Figura 5.6. Modelos representativos para alguns clusters. Esquerda − Curva
ROC mostrando o desempenho do modelo. Direita − O summary plot SHAP cor-
respondente mostrando uma visão geral de quais atributos são mais importantes
para o modelo.

das magnitudes dos valores SHAP sobre todos as instâncias de dados. A cor representa
o valor da característica.

Curiosamente, existem elementos que parecem ser muito relevantes, visto que
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ocorrem muito frequentemente em modelos dentro de diferentes clusters. Em geral, no
entanto, os gráficos de resumo mostram que as características nos modelos dentro de
diferentes clusters são bastante distintas. No todo, o comportamento predominante é
que grupos específicos de características estão associadas a espaços de solução distintos
e nenhuma relação clara entre conjuntos de características e desempenho pode ser vista.

Depois de selecionar um modelo representativo para cada cluster, pedimos a opi-
nião dos especialistas em metalurgia da APERAM South America. A principal lição é
que há casos em que algumas das conclusões encontradas não se enquadram em cená-
rios realistas. Por exemplo, um dos modelos pode alegar que uma grande quantidade
de carbono é necessária para evitar a formação de lascas. Porém, para produzir aço
inoxidável duplex são necessários baixos percentuais de carbono e tal característica não
pode ser aceita pelos especialistas. Felizmente, existem muitos padrões que podem ser
acionados, especialmente aqueles relativos aos principais elementos químicos usados
durante o processo de produção do aço inoxidável.

Alguns dos padrões descobertos estão sendo usados atualmente para produzir
placas não defeituosas. Para aqueles padrões que não se encaixam em cenários realistas,
os especialistas estão atualmente avaliando padrões obtidos a partir de características
alternativas, conforme mostrado na Figura 5.5.





Capítulo 6

Conclusões e trabalhos futuros

Neste trabalho, estudamos um problema subexplorado de aprendizado de máquina para
projetar novos materiais de aço que são menos propensos a um defeito conhecido como
lasca de aquecimento. Nosso estudo é realizado em parceria com a APERAM South
America, maior fabricante brasileira de aços inoxidáveis. A tarefa foi formulada como
um problema de classificação binária para prever quais combinações de componentes
químicos podem estar associadas à formação de lascas. Implementamos uma ferra-
menta que encontra padrões de defeituosos e não defeituosos na composição química
do aço inoxidável duplex. A ferramenta implantada forneceu várias regras para orien-
tar a produção de placas de aço sem defeito. Para isso, todos os modelos produzidos
pela ferramenta implantada são interpretáveis por humanos e as árvores geradas foram
encaminhadas para a linha de produção da APERAM. Placas de aço inoxidável que
seguem as diretrizes propostas estão atualmente em construção e os especialistas estão
entusiasmados com a análise preliminar.
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