
Utilização da Programação Evolutiva em Redes Neurais para
Meta-Aprendizado

Pesquisa Cientı́fica - Projeto Orientado a Computação II

Aluno: Gabriel M. M. Sales1, Orientador: Adriano A. Veloso1

1Departamento de Ciência da Computação – Universidade Federal de Minas Gerais
(UFMG) – Belo Horizonte, MG – Brasil

{gabriel.sales, adrianov}@dcc.ufmg.br

1. Introdução
Nos últimos anos, o campo da inteligência artificial tem testemunhado avanços notáveis,
especialmente no que diz respeito às Redes Neurais Artificiais (RNAs). As RNAs, inspi-
radas no funcionamento do cérebro humano, têm se mostrado uma ferramenta poderosa
para resolver uma variedade de problemas complexos, desde reconhecimento de padrões
até a tomada de decisões autônomas [Oludare Isaac Abiodun 2018]. No entanto, o desen-
volvimento de RNAs eficientes e eficazes continua sendo um desafio significativo devido
à complexidade das tarefas que elas enfrentam e à necessidade de otimizar sua arquitetura
e parâmetros.

Dentro do âmbito das redes neurais, elas são projetadas para abordar problemas
nos quais os seres humanos demonstram excelência, mas que são notoriamente difı́ceis
de serem resolvidos por meio de abordagens programáticas convencionais. Durante o
treinamento desses modelos, fazemos uso de funções de perda e otimizadores; contudo,
esse processo não garante que a arquitetura da rede alcance um desempenho ótimo, visto
que está sujeita a convergir para mı́nimos locais.

Além disso, estes modelos necessitam de uma grande quantidade de exemplos de
treino, enquanto nós, seres humanos, não precisamos de muitos exemplos para aprender
uma nova tarefa. O conceito de meta-aprendizado almeja diminuir o número de exem-
plos necessários para aprender uma nova tarefa, treinando o modelo para várias tarefas
diferentes [Chelsea Finn 2017].

Nesse contexto, este projeto de pesquisa tem como objetivo investigar novas for-
mas de Meta-Aprendizado (MA). A estratégia de aprendizado a ser explorada será a
utilização da programação evolutiva para otimizar os pesos de uma rede neural.

A programação evolutiva (PE) é uma metodologia que ganhou destaque na
otimização de sistemas complexos, fundamentando-se em princı́pios inspirados na
evolução biológica, tais como seleção natural, reprodução e mutação, para buscar
soluções eficientes em espaços de busca de alta dimensionalidade [Mitchell 1995]. A
combinação da PE com RNAs pode aprimorar o treinamento e a otimização de RNAs,
tornando-as mais generalistas e eficientes [Jatinder N. D. Gupta 1999].

No âmbito da disciplina Projeto Orientado em Computação I (POC I), foram se-
lecionadas as bases de dados Omniglot [Brenden M. Lake 2015] e Oxford 102 Flower
[Nilsback and Zisserman 2008] para o treinamento e avaliação de modelos propostos.

A escolha das referidas bases se deu em função da presença de um elevado número de
classes, bem como da existência de uma ampla variedade de classes, englobando tanto
aquelas que apresentam similaridade semântica quanto aquelas que são distintas.

Adicionalmente, explorou-se a viabilidade da PE para otimizar pesos de RNAs
no contexto do MA. Foi implementado parcialmente um algoritmo de MA com PE
que será aprimorado nesta disciplina de Projeto Orientado em Computação II (POC
II). Investigar-se-á se a utilização da técnica de Layer-wise Relevance Propagation
[Grégoire Montavon 2019] para realizar a reprodução dos modelos resultará em mode-
los com melhor performance em múltiplas tarefas. Até o final da disciplina, também
será realizada uma comparação meticulosa com abordagens existentes para otimização de
RNAs através de testes de hipóteses.

2. Referencial Teórico
2.1. Gradiente Descendente
O Método do Gradiente Descendente é uma estratégia popular utilizada para minimizar
uma função objetivo J(θ) que depende dos parâmetros θ de um modelo, onde θ pertence
ao conjunto ℜd. Esse método funciona atualizando os parâmetros na direção oposta ao
gradiente da função objetivo ∇θJ(θ). A taxa de aprendizado η determina a magnitude
das atualizações dos parâmetros para aproximar de um mı́nimo local [Ruder 2017].

O algoritmo tem diversas variantes, entre as mais comuns estão: Gradiente De-
scendente em Lote; Gradiente Descendente Estocástico e o Gradiente Descendente em
Mini Lotes.

2.1.1. Gradiente Descendente em Lote

O Gradiente Descendente em Lote (Batch Gradient Descent, BGD) é a variante original
e calcula o gradiente da função objetivo para todo o conjunto de treino:

θ = θ − η∇θJ(θ) (1)

Observe que todo o conjunto de dados é alocado na memória, portanto este método
não é aconselhado quando o conjunto de treino não cabe na memória. Além disso, o
tempo gasto por cada atualização de parâmetros é maior, o que pode fazer com que o
modelo demore mais tempo para atingir um mı́nimo local [Ruder 2017].

2.1.2. Gradiente Descendente Estocástico

O Gradiente Descendente Estocástico (SGD) é uma variante do algoritmo de otimização
do Gradiente Descendente que acelera o treinamento de modelos de aprendizado de
máquina.

Em vez de calcular o gradiente da função de perda usando todos os dados a cada
iteração, o SGD realiza atualizações de parâmetros com base em amostras individuais
(x(i) e y(i)), selecionadas aleatoriamente, tornando o processo menos computacionalmente
intensivo e permitindo uma convergência mais rápida em muitos casos.

θ = θ − η∇θJ(θ;x
(i); y(i)) (2)

Contudo, com as atualizações individuais o modelo é atualizado com uma
variância alta, o que dificulta a convergência para um mı́nimo local, em contrapartida isso
permite que o modelo explore outros vales e consiga melhorar sua solução [Ruder 2017].

2.1.3. Gradiente Descendente em Mini Lotes

O Gradiente Descendente em Mini Lotes utiliza um número intermediário, n, de exemplos
para calcular o gradiente da função de perda:

θ = θ − η∇θJ(θ;x
(i:i+n); y(i:i+n)) (3)

Sua principal vantagem reside na combinação dos benefı́cios do Gradiente De-
scendente Estocástico e do Gradiente Descendente em Lotes. Ao dividir o conjunto de
dados em pequenos lotes, ele oferece uma abordagem eficaz para otimização que com-
bina eficiência computacional e convergência estável. Isso permite que os algoritmos de
aprendizado de máquina atualizem os parâmetros do modelo de forma mais frequente e
rápida em comparação com o Gradiente Descendente em Lotes, acelerando o processo
de treinamento. Além disso, a variabilidade introduzida pelos mini lotes ajuda a evitar
mı́nimos locais indesejados, melhorando a capacidade do algoritmo de escapar de ótimos
locais subótimos [Ruder 2017].

2.2. Adam

O otimizador Adam (Adaptive Moment Estimation) é um algoritmo de otimização pop-
ular que combina os conceitos do SGD com momentos adaptativos. Isso permite que
o otimizador ajuste a taxa de aprendizado de forma adaptativa para cada parâmetro,
acelerando o treinamento no inı́cio e desacelerando à medida que se aproxima do ótimo,
resultando em uma convergência mais eficiente e estável [Diederik P. Kingma 2017] e
[Ruder 2017].

O Adam mantém duas estimativas móveis: o primeiro momento, média dos gradi-
entes, e o segundo momento, média dos gradientes ao quadrado, das variáveis do modelo:

mt = β1mt−1 + (1− β1)gt

vt = β2vt−1 + (1− β2)g
2
t

(4)

Como essas estimativas são nulas no começo do algoritmo, seus valores são
enviesados para o 0. Os autores propuseram remover esse viés através da seguinte
modificação:

m̂t =
mt

1− βt
1

v̂t =
vt

1− βt
2

(5)

Utilizando esses valores, os parâmetros do modelos são atualizados da seguinte
forma:

θt+1 = θt −
η√

v̂t + ϵ
m̂t (6)

2.3. Meta-Aprendizado

O conceito de Meta-Aprendizado (MA) ainda não é acordado entre os acadêmicos, con-
tudo eles concordam que o MA procura capacitar um modelo a aprender a aprender. Em
vez de treinar um modelo para executar uma tarefa especı́fica, o objetivo do meta apren-
dizado é treinar um modelo em uma variedade de tarefas de aprendizado, de modo que
ele possa adaptar rapidamente seus parâmetros a novas tarefas com base em apenas em
um número pequeno de exemplos de treinamento [Ricardo Vilalta 2002].

Para que isso ocorra, é necessário treinar o modelo de forma que após algumas
etapas de gradiente, ou até mesmo apenas uma única etapa de gradiente, ele seja capaz
de produzir resultados satisfatórios em uma nova tarefa. Isso pode ser compreendido do
ponto de vista técnico como a construção de uma representação interna que seja aplicável
a diversas tarefas. Essa representação interna, quando adequada, permite que simples
ajustes nos parâmetros, como a modificação dos pesos da camada superior em um modelo
feedforward, sejam suficientes para obter bons resultados [Chelsea Finn 2017].

O meta-aprendizado é particularmente relevante em cenários em que o acesso a
grandes conjuntos de dados de treinamento é limitado, tornando-o uma técnica valiosa
para o aprendizado de máquina em situações de poucos dados [Lisha Chen 2022].

2.4. Programação Evolutiva

A Programação Evolutiva (PE) é uma técnica de otimização inspirada no processo de
evolução biológica. O conceito central por trás da PE é simular um processo evolutivo
em um ambiente controlado, onde populações de soluções candidatas passam por uma
sequência de gerações para encontrar a melhor solução possı́vel para um problema es-
pecı́fico [Kramer 2017].

Um algoritmo de programação evolutiva pode ser definido nas etapas a seguir
[Mitchell 1995] e [Kramer 2017]:

1. Inicialização da População: no inı́cio, uma população de soluções candidatas é
gerada aleatoriamente. Cada solução representa uma possı́vel resposta para o
problema em questão.

2. Avaliação: as soluções candidatas são avaliadas quanto à sua adequação em
relação ao objetivo. Isso é feito usando uma função de avaliação que atribui uma
pontuação a cada solução com base em quão bem ela resolve o problema.

3. Seleção: as soluções mais adequadas, ou seja, aquelas com as melhores
pontuações, são selecionadas para “reprodução”. Soluções de alto desempenho
têm uma maior probabilidade de serem escolhidas, mas uma variedade de
soluções é mantida para manter a diversidade genética.

4. Recombinação (Crossover): pares de soluções selecionadas são combinados para
criar novas soluções. Isso envolve a troca de informações genéticas entre as
soluções paı́s, criando uma descendência que herda caracterı́sticas das soluções
originais.

5. Mutação: algumas das novas soluções geradas por recombinação sofrem
mutações aleatórias, introduzindo variação genética na população.

6. Substituição: as novas soluções resultantes da recombinação e mutação sub-
stituem parte da população anterior. As soluções menos adequadas podem ser
eliminadas.

7. Critério de Parada: o processo de avaliação, seleção e geração de descendentes é
repetido por várias gerações até que um critério de parada seja atingido. Isso pode
ser um número fixo de gerações, uma melhoria na qualidade da solução ou outras
condições especı́ficas.

2.5. Layer-wise Relevance Propagation
A Layer-wise Relevance Propagation (LRP) é uma técnica utilizada para interpretar as de-
cisões de uma rede neural, atribuindo importância a cada entrada do modelo com relação
à saı́da final. Desenvolvida como uma abordagem de explicabilidade em redes neurais, a
LRP busca decompor a saı́da da rede em contribuições de cada entrada, permitindo enten-
der quais caracterı́sticas ou entradas foram mais relevantes para uma decisão especı́fica
[Grégoire Montavon 2019].

A abordagem da LRP é baseada no princı́pio de conservação de relevância, que
estabelece que a soma das importâncias atribuı́das a todas as entradas deve ser igual à
saı́da da rede. Dessa forma, a relevância é propagada camada por camada, da saı́da para a
entrada, atribuindo valores proporcionais à influência de cada neurônio em relação à saı́da
final.

A relevância, R(l)
i , de um neurônio i de uma camada l, pode ser calculada com a

seguinte fórmula:

R
(l)
i =

∑
j

zijR
(l+1)
j∑

i′ zi′j
(7)

em que zij é igual a x
(l)
i w

(l,l+1)
ij .

A LRP é valiosa não apenas para interpretar as decisões da rede, mas também
para identificar potenciais fontes de viés e entender como diferentes entradas contribuem
para o resultado final. Essa técnica tem sido aplicada em diversas áreas, desde visão
computacional até processamento de linguagem natural, proporcionando insights valiosos
sobre o funcionamento interno de modelos complexos de aprendizado profundo.

3. Metodologia
Este projeto se divide em quatro etapas: ”Implementação do Layer-wise Relevance Prop-
agation”, ”Formulação das Hipóteses”, ”Execução dos Modelos” e ”Analise dos Resulta-

dos”.

3.1. Implementação do Layer-wise Relevance Propagation

No contexto da etapa de reprodução de dois modelos de RNAs no algoritmo de PE, di-
versas metodologias podem ser utilizadas para a combinação dos pesos dos modelos. A
seguir, são apresentadas algumas abordagens triviais:

WC =
WA +WB

2

WC =
WASA +WBSB

SA + SB

WC =
WA|WA|+WB|WB|

|WA|+ |WB|

(8)

onde WA e WB são os pesos dos modelos pais, WC é o peso do modelo filho, SA

e SB são os scores dos modelos pais. Lembrando que o score de um modelo foi definido
da seguinte forma em POC I:

ModelScore = TrainAccuracy + αValidationAccuracy

onde α é um hiperparâmetro.

Uma forma alternativa de combinar os pesos de dois modelos seria utilizar a
relevância da LRP da seguinte forma:

WC =
WARA +WBRB

RA +RB

onde RA e RB são as relevâncias dos modelos pais. Esta alternativa tem o poten-
cial de gerar modelos que preservam a estrutura dos pesos dos modelos pais que apresen-
tam maior ativação.

Nesta etapa, será realizada a implementação do algoritmo de LRP e subsequente-
mente implementação da combinação de modelos utilizando a relevância como peso.

3.2. Formulação das Hipóteses

Nesta etapa, serão formulados os testes de hipóteses necessários para verificar se o algo-
ritmo proposto apresenta algum ganho em desempenho no contexto de MA. Um exemplo
de hipótese seria: sob as mesmas condições computacionais, o modelo proposto treinado
por uma quantidade especı́fica de tempo apresenta desempenho superior a um modelo
convencional treinado pelo mesmo perı́odo de tempo.

Adicionalmente à formulação dos testes, será necessário analisar sua viabilidade,
considerando os recursos computacionais e o tempo disponı́vel. Um modelo base de
RNA com menor número de parâmetros pode ser treinado e testado mais vezes em um

perı́odo de tempo fixo, o que resultaria em um intervalo de confiança menor por existirem
mais amostras. No entanto, a diferença de desempenho entre o algoritmo proposto e
o convencional pode ser menor, exigindo mais treinos e testes. Pontanto, nesta etapa
também se fará necessario ponderar sobre a escolha do modelo base.

3.3. Execução dos Modelos
Nesta etapa, a implementação do algoritmo MA é posta em prática, levando em
consideração a influência das condições computacionais. Durante esta etapa, é possı́vel
adaptar o algoritmo de MA e realizar ajustes nos hiperparâmetros tanto da PE quanto da
RNA com o objetivo de otimizar o desempenho.

Durante essa fase, os modelos serão treinados nas bases de treino e, subse-
quentemente, serão executados em um conjunto de teste para avaliar sua capacidade de
generalização e seu desempenho em cenários do mundo real. Para fins de comparação e
validação dos resultados obtidos com a nova metodologia, também serão realizados testes
com abordagens convencionais de otimização de pesos de RNAs.

3.4. Analise dos Resultados
Comparar o desempenho das RNAs geradas com abordagens convencionais de treina-
mento em novas tarefas. Discutir as vantagens e desvantagens da abordagem de meta-
aprendizado proposta em relação a outros métodos. Criar gráficos que ilustram e compro-
vam as vantagens e desvantagens mencionadas.

4. Resultados Esperados
Os resultados esperados até o final do projeto de POC II envolvem realizar uma análise
das técnicas de otimização convencionais aplicadas às RNAs para MA, permitindo uma
comparação minuciosa de suas vantagens e desvantagens em termos de convergência,
eficiência computacional e capacidade de generalização em relação ao algoritmo proposto
que envolve PE.

Espera-se que os resultados contribuam significativamente para o conhecimento
cientı́fico, podendo ser disseminados em artigos e conferências, enquanto também se es-
pera que tenham aplicações práticas em cenários do mundo real. No geral, o projeto tem o
potencial de aprimorar a compreensão do meta-aprendizado e fornecer soluções valiosas
para problemas de otimização de redes neurais.

5. Etapas e Cronogramas
O desenvolvimento deste projeto em POC II será separado nas etapas citadas na
Metodologia e seguirá o seguinte cronograma:

Etapa Tempo em Semanas
Implementação do Layer-wise Relevance Propagation 4
Formulação das Hipóteses 2
Execução dos Modelos 3
Analise dos Resultados 3
Total 12

Assim, o cronograma completo do projeto, considerando POC I e II, ficará da
seguinte forma:

Etapa Tempo em Semanas
Seleção das Arquiteturas 3
Seleção das Bases de Dados 3
Pré-processamento dos Dados 3
Implementação do Pipeline de PE 3
POC I 12
Implementação do Layer-wise Relevance Propagation 4
Formulação das Hipóteses 2
Execução dos Modelos 3
Analise dos Resultados 3
POC II 12
Total 24

References
Brenden M. Lake, Ruslan Salakhutdinov, J. B. T. (2015). Human-level concept learning

through probabilistic program induction. In Science, pages 1332–1338. 350 edition.

Chelsea Finn, Pieter Abbeel, S. L. (2017). Model-agnostic meta-learning for fast adapta-
tion of deep networks.

Diederik P. Kingma, J. B. (2017). Adam: A method for stochastic optimization.

Grégoire Montavon, Alexander Binder, S. L. W. S. . K.-R. M. (2019). Layer-wise rele-
vance propagation:an overview. In Explainable AI: Interpreting, Explaining and Visu-
alizing Deep Learning.

Jatinder N. D. Gupta, R. S. S. (1999). Comparing backpropagation with a genetic algo-
rithm for neural network training. Omega.

Kramer, O. (2017). Genetic Algorithm Essentials, volume 679. Studies in Computational
Intelligence.

Lisha Chen, Sharu Theresa Jose, I. N. S. P. T. C. O. S. (2022). Learning with limited
samples: Meta-learning and applications to communication systems.

Mitchell, M. (1995). Genetic algorithms: An overview. Complexity.

Nilsback, M.-E. and Zisserman, A. (2008). Automated flower classification over a large
number of classes. In Indian Conference on Computer Vision, Graphics and Image
Processing.

Oludare Isaac Abiodun, Aman Jantan, A. E. O. K. V. D. N. A. M. H. A. (2018). State-of-
the-art in artificial neural network applications: A survey. Heliyon.

Ricardo Vilalta, Y. D. (2002). A perspective view and survey of meta-learning. Artificial
Intelligence Review.

Ruder, S. (2017). An overview of gradient descent optimization algorithms.

