Utilizacao da Programacao Evolutiva em Redes Neurais para
Meta-Aprendizado

Pesquisa Cientifica - Projeto Orientado a Computacao I1
Aluno: Gabriel M. M. Sales', Orientador: Adriano A. Veloso!

'Departamento de Ciéncia da Computagio — Universidade Federal de Minas Gerais
(UFMG) - Belo Horizonte, MG — Brasil

{gabriel.sales, adrianov}@dcc.ufmg.br

1. Introducao

Nos ultimos anos, o campo da inteligéncia artificial tem testemunhado avancos notéveis,
especialmente no que diz respeito as Redes Neurais Artificiais (RNAs). As RNAs, inspi-
radas no funcionamento do cérebro humano, tém se mostrado uma ferramenta poderosa
para resolver uma variedade de problemas complexos, desde reconhecimento de padrdes
até a tomada de decisoes autonomas [Oludare Isaac Abiodun 2018]. No entanto, o desen-
volvimento de RNAs eficientes e eficazes continua sendo um desafio significativo devido
a complexidade das tarefas que elas enfrentam e a necessidade de otimizar sua arquitetura
e parametros.

Dentro do ambito das redes neurais, elas sdo projetadas para abordar problemas
nos quais os seres humanos demonstram exceléncia, mas que sao notoriamente dificeis
de serem resolvidos por meio de abordagens programadticas convencionais. Durante o
treinamento desses modelos, fazemos uso de funcdes de perda e otimizadores; contudo,
esse processo nao garante que a arquitetura da rede alcance um desempenho 6timo, visto
que estd sujeita a convergir para minimos locais.

Além disso, estes modelos necessitam de uma grande quantidade de exemplos de
treino, enquanto nds, seres humanos, ndo precisamos de muitos exemplos para aprender
uma nova tarefa. O conceito de meta-aprendizado almeja diminuir o nimero de exem-
plos necessarios para aprender uma nova tarefa, treinando o modelo para vérias tarefas
diferentes [Chelsea Finn 2017].

Nesse contexto, este projeto de pesquisa tem como objetivo investigar novas for-
mas de Meta-Aprendizado (MA). A estratégia de aprendizado a ser explorada serd a
utilizagdo da programacao evolutiva para otimizar os pesos de uma rede neural.

A programagdo evolutiva (PE) € uma metodologia que ganhou destaque na
otimizacdo de sistemas complexos, fundamentando-se em principios inspirados na
evolucdo bioldgica, tais como selecdao natural, reproducdo e mutagdo, para buscar
solugdes eficientes em espagos de busca de alta dimensionalidade [Mitchell 1995]. A
combinac¢do da PE com RNAs pode aprimorar o treinamento e a otimizacdo de RNAs,
tornando-as mais generalistas e eficientes [Jatinder N. D. Gupta 1999].

No ambito da disciplina Projeto Orientado em Computagao I (POC 1), foram se-
lecionadas as bases de dados Omniglot [Brenden M. Lake 2015] e Oxford 102 Flower
[Nilsback and Zisserman 2008] para o treinamento e avaliacdo de modelos propostos.

A escolha das referidas bases se deu em funcdo da presenca de um elevado nimero de
classes, bem como da existéncia de uma ampla variedade de classes, englobando tanto
aquelas que apresentam similaridade semantica quanto aquelas que sdo distintas.

Adicionalmente, explorou-se a viabilidade da PE para otimizar pesos de RNAs
no contexto do MA. Foi implementado parcialmente um algoritmo de MA com PE
que serd aprimorado nesta disciplina de Projeto Orientado em Computacio II (POC
IT). Investigar-se-4 se a utilizagdo da técnica de Layer-wise Relevance Propagation
[Grégoire Montavon 2019] para realizar a reprodu¢do dos modelos resultard em mode-
los com melhor performance em multiplas tarefas. Até o final da disciplina, também
serd realizada uma comparagao meticulosa com abordagens existentes para otimizacao de
RNA s através de testes de hipoteses.

2. Referencial Teorico

2.1. Gradiente Descendente

O Meétodo do Gradiente Descendente é uma estratégia popular utilizada para minimizar
uma fungio objetivo J(6) que depende dos pardmetros # de um modelo, onde 6 pertence
ao conjunto R¢. Esse método funciona atualizando os pardmetros na dire¢iio oposta ao
gradiente da fungdo objetivo V,J(f). A taxa de aprendizado 1 determina a magnitude
das atualizacdes dos parametros para aproximar de um minimo local [Ruder 2017].

O algoritmo tem diversas variantes, entre as mais comuns estdo: Gradiente De-
scendente em Lote; Gradiente Descendente Estocastico e o Gradiente Descendente em
Mini Lotes.

2.1.1. Gradiente Descendente em Lote

O Gradiente Descendente em Lote (Batch Gradient Descent, BGD) € a variante original
e calcula o gradiente da fun¢do objetivo para todo o conjunto de treino:

0=0—nVeJ(0) ey

Observe que todo o conjunto de dados € alocado na memoria, portanto este método
nao é aconselhado quando o conjunto de treino ndo cabe na memoria. Além disso, o
tempo gasto por cada atualizacdo de parametros é maior, o que pode fazer com que o
modelo demore mais tempo para atingir um minimo local [Ruder 2017].

2.1.2. Gradiente Descendente Estocastico

O Gradiente Descendente Estocéstico (SGD) € uma variante do algoritmo de otimizagao
do Gradiente Descendente que acelera o treinamento de modelos de aprendizado de
maquina.

Em vez de calcular o gradiente da funcdo de perda usando todos os dados a cada
iteracdo, o SGD realiza atualiza¢des de parametros com base em amostras individuais
(™ e y™), selecionadas aleatoriamente, tornando o processo menos computacionalmente
intensivo e permitindo uma convergéncia mais radpida em muitos casos.

0 =0 —nVyJ(0;29;yD) 2)

Contudo, com as atualiza¢des individuais o modelo é atualizado com uma
variancia alta, o que dificulta a convergéncia para um minimo local, em contrapartida isso
permite que o modelo explore outros vales e consiga melhorar sua soluc¢do [Ruder 2017].

2.1.3. Gradiente Descendente em Mini Lotes

O Gradiente Descendente em Mini Lotes utiliza um ndmero intermediario, n, de exemplos
para calcular o gradiente da funcdo de perda:

0=0—nVeJ(0; x(“”r"); y(i:i+n)) 3)

Sua principal vantagem reside na combinagdo dos beneficios do Gradiente De-
scendente Estocéstico e do Gradiente Descendente em Lotes. Ao dividir o conjunto de
dados em pequenos lotes, ele oferece uma abordagem eficaz para otimiza¢do que com-
bina eficiéncia computacional e convergéncia estavel. Isso permite que os algoritmos de
aprendizado de méquina atualizem os parametros do modelo de forma mais frequente e
rapida em comparacdo com o Gradiente Descendente em Lotes, acelerando o processo
de treinamento. Além disso, a variabilidade introduzida pelos mini lotes ajuda a evitar
minimos locais indesejados, melhorando a capacidade do algoritmo de escapar de 6timos
locais subdtimos [Ruder 2017].

2.2. Adam

O otimizador Adam (Adaptive Moment Estimation) € um algoritmo de otimizagao pop-
ular que combina os conceitos do SGD com momentos adaptativos. Isso permite que
o otimizador ajuste a taxa de aprendizado de forma adaptativa para cada parametro,
acelerando o treinamento no inicio e desacelerando a medida que se aproxima do 6timo,
resultando em uma convergéncia mais eficiente e estavel [Diederik P. Kingma 2017] e
[Ruder 2017].

O Adam mantém duas estimativas méveis: o primeiro momento, média dos gradi-
entes, e o segundo momento, média dos gradientes ao quadrado, das variaveis do modelo:

my = Py + (1 — B1) g

4
vy = Bavy_1 + (1 — B2)g} @

Como essas estimativas sao nulas no comeco do algoritmo, seus valores sao
enviesados para o 0. Os autores propuseram remover esse Vviés através da seguinte
modificacio:

my

V¢ (5)

Utilizando esses valores, os parametros do modelos sdo atualizados da seguinte
forma:

Oppr = 0, — — i, 6)

Vo + €
2.3. Meta-Aprendizado

O conceito de Meta-Aprendizado (MA) ainda nao é acordado entre os académicos, con-
tudo eles concordam que o0 MA procura capacitar um modelo a aprender a aprender. Em
vez de treinar um modelo para executar uma tarefa especifica, o objetivo do meta apren-
dizado € treinar um modelo em uma variedade de tarefas de aprendizado, de modo que
ele possa adaptar rapidamente seus parametros a novas tarefas com base em apenas em
um numero pequeno de exemplos de treinamento [Ricardo Vilalta 2002].

Para que isso ocorra, € necessario treinar o modelo de forma que apds algumas
etapas de gradiente, ou até mesmo apenas uma unica etapa de gradiente, ele seja capaz
de produzir resultados satisfatérios em uma nova tarefa. Isso pode ser compreendido do
ponto de vista técnico como a constru¢do de uma representacao interna que seja aplicavel
a diversas tarefas. Essa representacdo interna, quando adequada, permite que simples
ajustes nos parametros, como a modificacao dos pesos da camada superior em um modelo
feedforward, sejam suficientes para obter bons resultados [Chelsea Finn 2017].

O meta-aprendizado é particularmente relevante em cendrios em que 0 acesso a
grandes conjuntos de dados de treinamento € limitado, tornando-o uma técnica valiosa
para o aprendizado de maquina em situagdes de poucos dados [Lisha Chen 2022].

2.4. Programacao Evolutiva

A Programacgao Evolutiva (PE) é uma técnica de otimizacdo inspirada no processo de
evolucdo bioldgica. O conceito central por tras da PE é simular um processo evolutivo
em um ambiente controlado, onde populacdes de solugdes candidatas passam por uma
sequéncia de geracdes para encontrar a melhor soluc@o possivel para um problema es-
pecifico [Kramer 2017].

Um algoritmo de programacdo evolutiva pode ser definido nas etapas a seguir
[Mitchell 1995] e [Kramer 2017]:

1. Inicializacdo da Populagcdo: no inicio, uma populacdo de solucdes candidatas é
gerada aleatoriamente. Cada solug@o representa uma possivel resposta para o
problema em questao.

2. Avaliacdo: as solugdes candidatas sdo avaliadas quanto a sua adequacdo em
relac@o ao objetivo. Isso € feito usando uma fungdo de avaliagdo que atribui uma
pontuacdo a cada solu¢do com base em quao bem ela resolve o problema.

3. Selecdo: as solugdes mais adequadas, ou seja, aquelas com as melhores
pontuacdes, sdo selecionadas para “reproducao”. Solucdes de alto desempenho
tétm uma maior probabilidade de serem escolhidas, mas uma variedade de
solucdes € mantida para manter a diversidade genética.

4. Recombinagdo (Crossover): pares de solugdes selecionadas sdo combinados para
criar novas solucdes. Isso envolve a troca de informagdes genéticas entre as
solucdes pais, criando uma descendéncia que herda caracteristicas das solucdes
originais.

5. Mutacdo: algumas das novas solucdes geradas por recombinacdo sofrem
mutacdes aleatorias, introduzindo variagdo genética na populagdo.

6. Substituicdo: as novas solugdes resultantes da recombina¢do e mutacdo sub-
stituem parte da populacdo anterior. As solucdes menos adequadas podem ser
eliminadas.

7. Critério de Parada: o processo de avaliacdo, selecdo e geracao de descendentes €
repetido por varias geragdes até que um critério de parada seja atingido. Isso pode
ser um ndmero fixo de gera¢des, uma melhoria na qualidade da solucao ou outras
condicoes especificas.

2.5. Layer-wise Relevance Propagation

A Layer-wise Relevance Propagation (LRP) é uma técnica utilizada para interpretar as de-
cisoes de uma rede neural, atribuindo importancia a cada entrada do modelo com relagdo
a saida final. Desenvolvida como uma abordagem de explicabilidade em redes neurais, a
LRP busca decompor a saida da rede em contribuicdes de cada entrada, permitindo enten-
der quais caracteristicas ou entradas foram mais relevantes para uma decisdo especifica
[Grégoire Montavon 2019].

A abordagem da LRP € baseada no principio de conservacdo de relevancia, que
estabelece que a soma das importancias atribuidas a todas as entradas deve ser igual a
saida da rede. Dessa forma, a relevancia é propagada camada por camada, da saida para a
entrada, atribuindo valores proporcionais a influéncia de cada neurdnio em relagdo a saida
final.

A ! N
A releviancia, Rg), de um neurdnio ¢ de uma camada [, pode ser calculada com a
seguinte férmula:

Zii
RV =3 L7 (7)

em que z;; € igual a J;gl)wg’lﬂ)

A LRP ¢ valiosa ndo apenas para interpretar as decisdes da rede, mas também
para identificar potenciais fontes de viés e entender como diferentes entradas contribuem
para o resultado final. Essa técnica tem sido aplicada em diversas areas, desde visdo
computacional até processamento de linguagem natural, proporcionando insights valiosos
sobre o funcionamento interno de modelos complexos de aprendizado profundo.

3. Metodologia

Este projeto se divide em quatro etapas: “Implementacdo do Layer-wise Relevance Prop-
agation”, "Formulacao das Hipoteses”, "Execucdo dos Modelos” e ”Analise dos Resulta-

2

dos”.

3.1. Implementacao do Layer-wise Relevance Propagation

No contexto da etapa de reproducdo de dois modelos de RNAs no algoritmo de PE, di-
versas metodologias podem ser utilizadas para a combinacdo dos pesos dos modelos. A
seguir, sdo apresentadas algumas abordagens triviais:

o Wat Ws
2
WASA+WBSB
We =
Sa+ Sp (8)
W4 |W. Wg|W.
We = A|Wal| + Wg|Wp|

[Wal + [Wh|

onde W, e Wp sdo os pesos dos modelos pais, W € o peso do modelo filho, S4
e Sp sao os scores dos modelos pais. Lembrando que o score de um modelo foi definido
da seguinte forma em POC I:

Modelseore = Trainpceuracy + aValidationaceyracy

onde « € um hiperparametro.

Uma forma alternativa de combinar os pesos de dois modelos seria utilizar a
relevancia da LRP da seguinte forma:

i WaRa + WpRs
© Ri+ Rp

onde R4 e Rp sao as relevancias dos modelos pais. Esta alternativa tem o poten-
cial de gerar modelos que preservam a estrutura dos pesos dos modelos pais que apresen-
tam maior ativagao.

Nesta etapa, serd realizada a implementacdo do algoritmo de LRP e subsequente-
mente implementacdo da combina¢do de modelos utilizando a relevancia como peso.

3.2. Formulacao das Hipoteses

Nesta etapa, serdo formulados os testes de hipoteses necessarios para verificar se o algo-
ritmo proposto apresenta algum ganho em desempenho no contexto de MA. Um exemplo
de hipotese seria: sob as mesmas condi¢des computacionais, 0 modelo proposto treinado
por uma quantidade especifica de tempo apresenta desempenho superior a um modelo
convencional treinado pelo mesmo periodo de tempo.

Adicionalmente a formulacao dos testes, serd necessario analisar sua viabilidade,
considerando os recursos computacionais € o tempo disponivel. Um modelo base de
RNA com menor nimero de parametros pode ser treinado e testado mais vezes em um

periodo de tempo fixo, o que resultaria em um intervalo de confianca menor por existirem
mais amostras. No entanto, a diferenca de desempenho entre o algoritmo proposto e
o convencional pode ser menor, exigindo mais treinos e testes. Pontanto, nesta etapa
também se fard necessario ponderar sobre a escolha do modelo base.

3.3. Execucao dos Modelos

Nesta etapa, a implementacdo do algoritmo MA € posta em pratica, levando em
consideragdo a influéncia das condi¢des computacionais. Durante esta etapa, € possivel
adaptar o algoritmo de MA e realizar ajustes nos hiperparametros tanto da PE quanto da
RNA com o objetivo de otimizar o desempenho.

Durante essa fase, os modelos serao treinados nas bases de treino e, subse-
quentemente, serdo executados em um conjunto de teste para avaliar sua capacidade de
generalizagdo e seu desempenho em cendrios do mundo real. Para fins de comparagao e
valida¢ao dos resultados obtidos com a nova metodologia, também serdo realizados testes
com abordagens convencionais de otimizacao de pesos de RNAs.

3.4. Analise dos Resultados

Comparar o desempenho das RNAs geradas com abordagens convencionais de treina-
mento em novas tarefas. Discutir as vantagens e desvantagens da abordagem de meta-
aprendizado proposta em relacdo a outros métodos. Criar graficos que ilustram e compro-
vam as vantagens e desvantagens mencionadas.

4. Resultados Esperados

Os resultados esperados até o final do projeto de POC II envolvem realizar uma anélise
das técnicas de otimizacdo convencionais aplicadas as RNAs para MA, permitindo uma
comparacdo minuciosa de suas vantagens e desvantagens em termos de convergéncia,
eficiéncia computacional e capacidade de generalizacdo em relagdo ao algoritmo proposto
que envolve PE.

Espera-se que os resultados contribuam significativamente para o conhecimento
cientifico, podendo ser disseminados em artigos e conferéncias, enquanto também se es-
pera que tenham aplicagdes praticas em cendrios do mundo real. No geral, o projeto tem o
potencial de aprimorar a compreensao do meta-aprendizado e fornecer solugdes valiosas
para problemas de otimizacdo de redes neurais.

5. Etapas e Cronogramas

O desenvolvimento deste projeto em POC II serd separado nas etapas citadas na
Metodologia e seguird o seguinte cronograma:

Etapa Tempo em Semanas
Implementacdo do Layer-wise Relevance Propagation 4
Formulagdo das Hipdteses 2
Execucdo dos Modelos 3
Analise dos Resultados 3
Total 12

Assim, o cronograma completo do projeto, considerando POC I e II, ficara da
seguinte forma:

Etapa Tempo em Semanas
Selecao das Arquiteturas 3
Selecao das Bases de Dados 3
Pré-processamento dos Dados 3
Implementacdo do Pipeline de PE 3
POC1 12
Implementacdo do Layer-wise Relevance Propagation 4
Formulagdo das Hipdteses 2
Execuc¢ao dos Modelos 3
Analise dos Resultados 3
POC II 12
Total 24
References

Brenden M. Lake, Ruslan Salakhutdinov, J. B. T. (2015). Human-level concept learning
through probabilistic program induction. In Science, pages 1332-1338. 350 edition.

Chelsea Finn, Pieter Abbeel, S. L. (2017). Model-agnostic meta-learning for fast adapta-
tion of deep networks.

Diederik P. Kingma, J. B. (2017). Adam: A method for stochastic optimization.

Grégoire Montavon, Alexander Binder, S. L. W. S. . K.-R. M. (2019). Layer-wise rele-
vance propagation:an overview. In Explainable Al: Interpreting, Explaining and Visu-
alizing Deep Learning.

Jatinder N. D. Gupta, R. S. S. (1999). Comparing backpropagation with a genetic algo-
rithm for neural network training. Omega.

Kramer, O. (2017). Genetic Algorithm Essentials, volume 679. Studies in Computational
Intelligence.

Lisha Chen, Sharu Theresa Jose, I. N. S. P. T. C. O. S. (2022). Learning with limited
samples: Meta-learning and applications to communication systems.

Mitchell, M. (1995). Genetic algorithms: An overview. Complexity.

Nilsback, M.-E. and Zisserman, A. (2008). Automated flower classification over a large
number of classes. In Indian Conference on Computer Vision, Graphics and Image
Processing.

Oludare Isaac Abiodun, Aman Jantan, A. E. O. K. V. D. N. A. M. H. A. (2018). State-of-
the-art in artificial neural network applications: A survey. Heliyon.

Ricardo Vilalta, Y. D. (2002). A perspective view and survey of meta-learning. Artificial
Intelligence Review.

Ruder, S. (2017). An overview of gradient descent optimization algorithms.

