
Usando aprendizado de máquina para predição de falhas
no processo de desodorização de alimentos

Luis Gabriel Caetano Diniz

Disciplina: Monografia em Sistema de Informação II

Orientador: Adriano Alonso Veloso

Departamento de Ciência da Computação - Universidade Federal de Minas Gerais -
Belo Horizonte, Brasil

lgcaetano@ufmg.br

Abstract. This paper explores predicting vacuum pressure loss in food
deodorization using machine learning. Techniques for a wide range of purposes
including exploratory data analysis and data preprocessing were utilized on
time series data. Many machine learning techniques were utilized from simple
models based on the ARIMA algorithm to complex transformer neural
networks, with model validation techniques. The balance between the earliness
and quality of prediction was a focus. The study analyzes the performance of
the models developed using methods that show this relationship between
prediction horizon and prediction accuracy.

Resumo. Este artigo explora a predição da perda de pressão a vácuo em
processos de desodorização de alimentos usando aprendizado de máquina.
Técnicas para uma série de propósitos incluindo análise exploratória de dados
e pré-processamento de dados foram utilizadas em dados de séries
temporais.Diversos algoritmos de aprendizado de máquina foram utilizados,
desde modelos simples baseados no algoritmo ARIMA até redes neurais
complexas baseadas na arquitetura transformer. O equilíbrio entre a
antecipação e a qualidade da previsão foi um foco. O estudo analisa o
desempenho dos modelos desenvolvidos através de métodos que ilustram a
relação entre horizonte de previsões e acurácia das previsões.

1. Introdução

1.1 Caracterização do problema

É muito comum em diversas indústrias, existirem uma série de processos de
produção que estão sujeitos a falhas que, se fossem evitadas, tornariam a cadeia mais
eficiente e econômica. Existe um custo considerável incorrido pelo desperdício de tempo
e insumos. Na indústria alimentícia, não é diferente e foi assim que este trabalho surgiu,
com o propósito de buscar soluções para um problema constatado em processos dessa
cadeia de produção.

O problema encontrado nas cadeias de produção de alimentos diz respeito ao
processo de desodorização de alimentos, processo comumente aplicado na produção de
óleos e gorduras comestíveis, responsável por remover alguns compostos indesejáveis
desses produtos. Este processo possui diversas etapas e é importante que algumas



condições sejam mantidas dentro do desodorizador para que o processo ocorra sem
problemas, por exemplo, durante o processo de desodorização de alguns óleos é
necessário que estes sejam aquecidos a temperaturas relativamente elevadas e precisam
ficar em contato com vapor, que é responsável por remover os sabores e cheiros
desagradáveis. Uma das condições que afetam significativamente o processo é a pressão
encontrada dentro do desodorizador durante o processo, que geralmente deve estar baixa
ou até mesmo próxima ao vácuo.

Contudo, apesar de se ter conhecimento dessa necessidade de manter a pressão
em níveis baixos para a realização do processo, é difícil controlar a pressão dentro do
desodorizador e prever quando ocorrerá um aumento significativo da mesma que causaŕa
falhas no processo. Essa situação foi embrionária para o tema do trabalho, já que foi
neste contexto que se viu a oportunidade de se coletar dados sobre o ambiente de
desodorização para a aplicação de técnicas da ciência de dados e do aprendizado de
máquina a fim de prever a ocorrência de falhas, encontrar padrões estatísticos que
indiquem o porquê dessas falhas acontecerem para que elas possam ser evitadas no
futuro.

1.2 Motivação e objetivos

Estes são os principais objetivos do trabalho, encontrar maneiras de utilizar da
ciência de dados e aprendizado de máquina para ajudar a mitigar um problema real que
causa desperdício e ineficiência em uma indústria muito relevante como a alimentícia.
Contudo, para que isso seja feito, dados sobre o ambiente tiveram de ser coletados para
serem utilizados nas análises e treinamentos dos modelos. Estes dados formam séries
temporais, sequências de medições automáticas realizadas nos desodorizadores
periodicamente. Dados que possuem esta característica têm de ser tratados de forma
específica, a separação da base dados em dados de treino e teste tem que considerar a
ordem em que as medições foram feitas, por exemplo. Além disso, o problema em
questão acaba tendo outras características também, o que levanta questões interessantes
que este trabalho buscará responder.

Uma das questões mais interessantes a se considerar diz respeito ao intervalo
entre o momento que o modelo realiza uma previsão de ocorrência de uma falha no
processo e a concretização da mesma, já que existe um trade-off que pode ser
observado: é desejável que as previsões de falhas ocorram o mais cedo possível,
evitando perda de tempo e insumos, mas também é muito provável que seja observada
uma relação inversamente proporcional entre o intervalo citado e a acurácia do modelo,
ou seja, uma previsão do modelo que indique que o desodorizador irá falhar em algumas
horas provavelmente tem menos chance de estar correta do que uma falha idêntica
ocorrerá em alguns minutos, contudo, se ambas as previsões estiverem corretas, a
primeira terá sido muito mais útil, pois terá evitado maiores desperdícios.

Portanto, além dos objetivos principais, que buscam atacar o problema
encontrado no processo de desodorização, existem questões relacionadas ao
aprendizado de máquina que se deseja observar e se levar em consideração durante o
processo de desenvolvimento dos modelos, como este trade-off citado, seria muito
enriquecedor se fosse possível encontrar uma espécie de equilíbrio nessa situação, por
exemplo.



1.3 Estrutura do trabalho

O Capítulo 2 fornece um referencial teórico, identificando trabalhos correlatos e
estabelecendo a base acadêmica para este estudo.

No Capítulo 3, apresentamos nossa contribuição para este campo de pesquisa.
Nele, descrevemos em detalhe as atividades realizadas, desde o entendimento dos dados,
passando pelo seu pré processamento, até a modelagem e validação dos modelos de
aprendizado de máquina. Também discutimos as técnicas usadas para lidar com séries
temporais e a abordagem adotada para lidar com o trade-off entre antecipação e precisão
na previsão de falhas.

O Capítulo 4 conclui o estudo, destacando as principais conclusões e sugerindo
direções para trabalhos futuros.

O trabalho inclui também uma lista de referências bibliográficas.

2. Referencial teórico e trabalhos correlatos

Para este trabalho, foi escolhido um problema bastante específico, que, apesar de
relevante, pouco foi tratado do ponto de vista acadêmico na área da ciência de dados e
aprendizado de máquina, algo que não é surpreendente, já que representa apenas parte de
um processo produtivo que possui diversas fases e que não é muito conhecido por
pessoas leigas. Contudo, apesar da escassez de referências bibliográficas tratando deste
problema específico, foi possível encontrar muito material relacionado a problemas que
podem ser considerados similares. Os dados neste caso formam uma série temporal com
medidas de condições do ambiente de desodorização, essas medidas incluem
temperatura de componentes do desodorizador, pressão de componentes, vazão de
insumos e produtos secundários, etc., e o objetivo principal é criar modelos de
aprendizado de máquina que sejam capazes de realizar previsões de perda vácuo neste
processo. São estas características que indicam as maiores similaridades com outros
tipos de problema.

Pode-se dividir os trabalhos correlatos em certos grupos de acordo com como
eles se relacionam com este trabalho e porque eles foram considerados relevantes.

2.1 Manutenção Preventiva utilizando Aprendizado de Máquina

Dentre os trabalhos e materiais correlatos encontrados, aqueles que mais se
assemelham a este, são os que tratam de problemas de manutenção preventiva no
contexto da ciência de dados e aprendizado de máquina, já que são trabalhos que lidam
com séries temporais e tentam prever a ocorrência de uma falha em um processo e que,
portanto, acabam tendo de lidar com questões e obstáculos extremamente similares aos
encontrados no desenvolvimento deste trabalho.

Estes trabalhos não só suportam a viabilidade do propósito deste trabalho, já que



tratam de exemplos reais o uso de aprendizado de máquina para previsão de falhas em
processos industriais como trazem conhecimento sobre a utilização de diversas técnicas
neste contexto. Por exemplo, foram encontrados trabalhos que demonstram a eficácia do
uso de redes neurais recorrentes para manutenção preventiva em motores de aeronaves
(Hermawan et al., 2020), uma situação onde a tolerância a falhas é praticamente nula,
trabalhos que dão uma visão mais ampla do tema de manutenção preventiva, explorando
diversas técnicas de aprendizado de máquina clássico e aprendizado profundo e
apontando por exemplo as vantagens de cada abordagem, apontando por exemplo que o
uso de técnicas de aprendizado profundo pode ser mais eficaz e preciso, mas menos
explicável (Sohaib et al., 2021), o que é muito relevante neste contexto, já que
evidentemente é desejável que exista a possibilidade de se explicar as previsões
eventualmente realizadas pelo modelo, até mesmo para fins de correções a serem feitas
no processo analisado. Essa conclusão foi um dos motivos para uma decisão tomada
neste trabalho de se experimentar com estas duas classes de modelos e de comparar os
resultados. O desafio de lidar com os problemas resultantes de se lidar com dados
captados por sensores industriais foi ressaltado também, já que há muito ruído neste tipo
de dado, o que faz com que um processo de limpeza dos mesmo seja altamente
recomendado (Sohaib et al., 2021).

Apesar da grande utilidade deste tipo de trabalho, poucos foram os exemplares
encontrados que se enquadram nesta classe, como mesmo ressalta o trabalho de Sohaib
et al., ainda há muito o que se explorar pela comunidade acadêmica se tratando de
manutenção preventiva utilizando aprendizado de máquina.

2.2 Séries Temporais

A maior parte do referencial teórico do trabalho pode ser englobada nesta
categoria, já que existem muitos e muitos trabalhos tratando de séries temporais e
aplicando aprendizado de máquina para realizar a previsão das mesmas, o que foi muito
útil, pois foi encontrado conhecimento em todas as fases do desenvolvimento de um
modelo de aprendizado de máquina, desde o processo de compreensão e análise dos
dados utilizados até a fase de validação, passando pelo processamento dos dados e
modelagem.

Na fase de compreensão dos dados, haviam muitas técnicas já preestabelecidas e
consolidadas na literatura, como a utilização de gráficos para visualização dos dados e
de certas estatísticas derivadas dos mesmos, como média, variância, moda, desvio
padrão, etc. Contudo, dada a natureza temporal dos dados em questão, buscou-se
encontrar técnicas que permitissem observar caracterĩsticas dos dados, como
sazonalidade, tendência, enfim, dependências temporais dos dados. Alguns dos artigos
encontrados apresentavam uma ampla gama de técnicas de decomposição de séries
temporais para fins de análise (Plummer, 2020) que acabaram sendo utilizadas nesta fase
do trabalho, como a decomposição aditiva e a visualização através de ACF (função de
autocorrelação) e PACF (função de autocorrelação parcial). Outros conhecimentos
foram adquiridos, como técnicas para identificação de relações causais em séries
temporais (McCracken, 2016), mas não necessariamente implementados neste trabalho,
contudo sua aplicação em trabalhos futuros seria extremamente enriquecedora.

Quanto à fase de pré-processamento dos dados, diversas técnicas foram



encontradas na literatura e analisadas, especialmente relacionadas a seleção de features e
engenharia de dados. Neste contexto, foram identificadas diversas técnicas que se vêm
muito úteis no contexto das séries temporais, como o uso de médias móveis das features,
algo que se vê necessário para utilizar algoritmos clássicos de aprendizado de máquina,
que não conseguem lidar com médias temporais automaticamente, features lags, que
representam valores recentes obtidos na série temporal (Surakhi, 2021) (Cerliani, 2022),
além da possível utilização de técnicas mais complexas para criação de novas features,
como a utilização de autoencoders (Ntakaris et al., 2019) e outras técnicas de
aprendizado não-supervisionado (Längkvist et al., 2014) (Erhan et al., 2010) (Gamboa,
2017). Além disso, foram analisadas técnicas para remoção de possíveis features, para
evitar lidar com o problema de overfitting, que ocorre quando a dimensionalidade dos
dados é grande demais (Pudjihartono et al., 2022).

Um problema encontrado no desenvolvimento do trabalho consistia na
dificuldade de encontrar técnicas de resampling, já que foram identificados dados sujos
na base, que tiveram de ser retirados e outliers que podem trazer grande impacto
negativo no poder preditivo dos modelos. Como “completar” os buracos remanescentes
desse processo de limpeza dos dados? Para isso, foram procurados artigos que
identificassem técnicas robustas e mais complexas para preencher estas lacunas (Moniz
et al., 2017) (Camponovo et al., 2010), apesar de ter-se decidido por utilizar técnicas
triviais, como backward fill, já que se mostraram mais viáveis de se utilizar, por serem
menos computacionalmente custosas.

A fase de modelagem talvez seja a que mais trouxe conhecimento novo e onde
foram encontrados mais materiais relacionados a este trabalho. Muitos deles
descrevendo modelos específicos para uso em séries temporais como Prophet (Taylor e
Letham, 2017), autoregressão de vetores (Zivot e Wang, 2003), métodos ensemble no
geral (Gastinger et al., 2021), que levaram à utilização do algoritmo XGBoost neste
trabalho (um algoritmo de boosting, e portanto, também ensemble), além de diversas
arquiteturas de redes neurais, especialmente redes neurais recorrentes, como LSTMs,
GRUs e redes neurais convolucionais (Karpathy, 2015) (Fawaz et al., 2018) (Sohaib et
al., 2021) (Hermawan et al., 2020) (Parmezan et al., 2019) (Jordan et al., 2019) (Han et
al., 2019). Além da análise da performance de modelos, outros artigos tratam também da
seleção de modelos, sugerindo meta-aprendizado para selecionar modelos ensemble
(Gastinger et al., 2021) e analisando diferentes formatos de arquitetura de redes neurais
para séries temporais (Peter, et al., 2019). Além disso, alguns artigos recentes se
mostraram muito pertinentes para o contexto do trabalho, já que tratam da utilização de
transformers para previsões de séries temporais. A comunidade HuggingFace se
mostrou uma grande aliada na realização desse trabalho, já que sua biblioteca
transformers para a linguagem Python já trazia consigo a implementação de alguns
algoritmos descritos nestes trabalhos. Um desses algoritmos é a implementação original
da arquitetura (Vaswani et al., 2017), mas além desta, implementações de algoritmos
mais complexos e com arquitetura desenhada especificamente para a resolução de
problemas de previsões de séries temporais como o Autoformer(Wu, Haixu, et al., 2021)
e o Informer (Zhou, Haoyi, et al., 2021) cujo artigo foi eleito o melhor da conferência
AAAI em 2021. Apesar de apresentarem ferramentas interessantes para o contexto do
trabalho, havia a dúvida de como seria o desempenho dos transformers considerando
algumas ressalvas feitas pelos autores dos artigos citados. Primeiramente, é importante
ressaltar que os artigos encontram resultados melhores quando utilizando apenas dados



univariados, o que no nosso caso significaria desperdiçar uma grande abundância de
dados que poderiam ser utilizados para modelar relações mais complexas nos dados.
Levando isso em consideração, foi tomada a decisão de construir uma variante
univariada para cada algoritmo transformer utilizado a fim de verificar se o desempenho
destes é de fato superior neste caso. Como é destacado no artigo sobre o
Autoformer(Wu, Haixu, et al., 2021), em alguns casos é comum que modelos de séries
temporais univariadas superem modelos multivariados devido à dificuldade de
algoritmos de modelar relações cruzadas entre as diferentes séries temporais. Alguns
artigos recentes apresentam algoritmos cuja arquitetura foi desenhada exatamente com
este problema em mente, como o Crossformer (Zeng, Chen et al. 2023), contudo, essas
técnicas não puderam ser exploradas neste trabalho, mas parecem ser extremamente
pertinentes para este caso.

Finalmente, foram encontrados alguns artigos tratando da fase de validação dos
modelos. Evidentemente, os artigos que tratam da seleção de modelos e que comparam a
performance de algoritmos no contexto de séries temporais, já tratam parcialmente do
processo de validação, já que ela é necessária para estas tarefas, não há como comparar a
performance de um modelo sem validá-lo de alguma forma. Geralmente, no caso de
séries temporais, se separa uma parte inicial da base de dados para o treinamento do
modelo e uma parte final para validação (Bergmeier e Benítez, 2012), garantindo assim,
que o modelo não é testado em dados anteriores aos seus dados de treinamento.
Contudo, isso tra limitações na fase de validação, já que em problemas clássicos de
aprendizado de máquina, pode-se utilizar da validação cruzada para validação, uma
técnica que permite que o modelo seja avaliado utilizando quase todo o dado disponível
para treino. Por isso, buscou-se encontrar técnicas similares a essa que seriam aplicáveis
no contexto do trabalho e foi encontrada uma forma de conciliar o “melhor dos dois
mundos”: utilizando validação cruzada em bloco (Bergmeier e Benítez, 2012) mantendo
a cronologia correta dos dados de treino e teste, mas utilizando o máximo possível dos
dados para treino. Contudo, esta técnica não se vê tão útil neste contexto considerando
um dos objetivos do trabalho, o de observar e analisar o trade-off entre antecipação da
previsão e qualidade da mesma. Com a forma de validação original, é possível observar
como a performance do modelo se comporta conforme ele realiza previsões cada vez
mais distantes no tempo.

3. Desenvolvimento do trabalho

Para a realização do trabalho, foi utilizada a linguagem Python com auxílio de
diversas bibliotecas comumente utilizadas em projetos de ciência de dados e
aprendizado de máquina, como scikit-learn, pandas, statsmodels, numpy, matplotlib,
seaborn, etc. Essas bibliotecas foram utilizadas ao longo do projeto para auxiliar na
visualização, análise e preprocessamento dos dados, além da fase de modelagem e
validação.

Na fase de modelagem, a biblioteca keras, utilizada para modelar a rede neural
LSTM e a biblioteca transformers, do HuggingFace, utilizada para criar os modelos
transformers, se mostraram essenciais para o desenvolvimento do trabalho, já que
facilitaram muito o desenvolvimento de redes neurais com arquiteturas complexas. A
biblioteca transformers já possui implementações de três arquiteturas diferentes de
transformers especificamente criadas para modelar séries temporais, por exemplo.



3.1 Análise exploratória dos dados

O primeiro passo a ser realizado no projeto foi a limpeza de alguns dados
problemáticos do dataset, estes dados consistiam de medições que possuíam valores para
a variável alvo (uma das medições de pressão no desodorizador) acima de 50. Esses
dados foram removidos, pois foi constatado que essas medições somente ocorriam em
situações atípicas e problemáticas como na ausência de eletricidade, portanto, sua
presença poderia ter impacto negativo significativo na performance dos modelos.

Após a remoção destes dados problemáticos, se iniciou o processo de análise e
visualização da base de dados. Primeiramente, a base de dados inteira foi plotada em
forma cronológica mostrando a variação da variável alvo:

Figura 1. Pressão de vácuo do desodorizador ao longo do tempo

Como pode ser observado na figura, pode-se observar, após a remoção dos dados
faltosos, lacunas muito claras ficaram evidentes nos dados, isso é um problema quando
lidando com séries temporais, já que trás alguns obstáculos para o processo de criação
dos modelos. Um exemplo disso é o fato de que alguns algoritmos para previsão de
séries temporais presumem um intervalo temporal uniforme entre os diversos pontos dos
dados, o que claramente não ocorre nessa situação. Além disso, foi constatado que
apesar da grande maioria dos intervalos entre as medições serem de apenas 3 segundos,
haviam diversas ocorrências de intervalos de 6, 9 ou 12 segundos.

Essas observações acabaram levando à decisão de realizar um processo de
resampling sobre os dados, preenchendo as lacunas existentes e uniformizando o
intervalo de tempo entre os diversos dados coletados. Este processo será melhor relatado
nas próximas subseções já que faz parte da fase de tratamento dos dados e não da
análise exploratória.



Felizmente, não haviam dados com valores faltantes, ou seja, todas as medições
ainda remanescentes na base de dados após a filtragem inicial possuíam uniformidade
quanto às features.

Em seguida, foram visualizadas e analisadas a média, mediana e desvio padrão
da variável alvo:

Figura 2. Média, desvio padrão e mediana da variável alvo

Como pode ser observado na figura, o desvio padrão é relativamente grande em
relação à média e à mediana, sendo equivalente à 81,12% e 96,26% de cada,
respectivamente. indicando grande variedade nos dados, que poderia ser explicada pela
presença de outliers os dados, possivelmente resultantes de medições errôneas. Um sinal
disso é a grande presença de dados que possuem a variável alvo com medições próximas
de 50, que foi justamente a quantidade utilizada para delimitar os dados “sujos”
presentes no dataset. Considerando que a média e mediana da variável alvo ficaram
próximas de 5, não é de se estranhar que a presença de anomalias poderia distorcer
significativamente os dados, já que a magnitude delas é muito maior do que a dos dados
corretamente coletados.

Essa constatação também motivou a utilização de um algoritmo para detecção de
outliers que seriam removidos da base futuramente antes do processo de resampling.

Já pensando no processo de seleção de features e possível enriquecimento dos
dados a partir da criação de novas características para os dados, especialmente algumas
estatísticas relevantes e comumente usadas no contexto das séries temporais, como

variáveis de atraso (“lags”), médias móveis, etc., foi feita a visualização de duas funções
muito relevantes para dados em formato de série temporal: a função de autocorrelação
(ACF) e a função de autocorrelação parcial (PACF). A ACF mede a correlação linear
entre pontos de dados que são separados por um intervalo de tempo específico, o 'lag'.
Em outras palavras, a ACF fornece a correlação de uma série com a sua própria versão



defasada. Ela é útil para identificar padrões sazonais ou cíclicos em uma série temporal.
Por outro lado, a PACF fornece a correlação de uma série com a sua própria versão

defasada, mas após controlar ou eliminar as correlações de todas as defasagens menores.
Ou seja, a PACF mede a correlação direta entre pontos de dados que são separados por
um número de intervalos de tempo, ignorando qualquer correlação potencial que possa

ser explicada por pontos de dados entre esses intervalos.

Figura 3. Visualização da PACF da variável alvo

Figura 4. Visualização do ACF da variável alvo, obtido com auxílio da transformada
rápida de Fourier

As visualizações dessas funções foram obtidas com auxílio da biblioteca
statsmodels, e, como ressaltado abaixo da figura 4, o cálculo da função ACF teve de ser



feito com auxílio da transformada rápida de Fourier, já que a forma tradicional consumia
muitos recursos computacionais para uma base de dados tão grande quanto a utilizada
neste projeto. Além disso, como pode ser observado na mesma figura 4, a biblioteca
adiciona automaticamente um intervalo de relevância para os dados sobre a
autocorrelação que pode ser observado em um leve tom de azul. Levando isso em
consideração, chega-se à conclusão de que as autocorrelações da variável alvo são muito
significativas, ou seja, os valores anteriores da variável alvo estão altamente
correlacionados com seus valores futuros, já que até uma defasagem de mais de 12000
períodos a autocorrelação ainda se encontra acima do limiar de relevância. Como o
período nessas circunstâncias é de 3 segundos, até um intervalo de 10 horas entre
medições apresenta autocorrelação relevante. Já a função PACF traz dados diferentes, a
autocorrelação parcial fica abaixo do mesmo limiar de relevância após 6 períodos.

Outra forma de visualizar relações relevantes nos dados é observar as
correlações entre as features. A visualização da correlação pode ajudar a identificar
quais recursos estão mais fortemente relacionados à variável alvo, o que pode ser
extremamente útil para fins de seleção de features. Além disso, se houverem muitas
características altamente correlacionadas, podemos considerar a remoção de algumas
delas para reduzir a dimensão do espaço de características, o que pode ajudar a evitar o
overfitting e melhorar a eficiência. A correlação entre as features pode ser observada no
mapa de calor a seguir:



Figura 5. Mapa de correlações das features da base de dados



Como pode ser observado no mapa de correlações, algumas features apresentam
correlações significativas com a variável alvo, especialmente a temperatura dos
condensadores, das bandejas, dos gases do scrubber, além da pressão dos ejetores e de
vapores, vácuo após o scrubber e vazão de vapores. É sempre importante ressaltar que
correlação não implica em causalidade, portanto, não se pode afirmar que estes fatores
sejam de alguma forma os causadores da pressão alta e da perda de vácuo nos
desodorizadores, contudo, somando essas observações ao conhecimento que se tem do
domínio do problema, é inevitável que surjam algumas teorizações. Por exemplo, é de
conhecimento geral que temperatura e pressão possuem uma relação bem próxima na
física, já que substâncias e materiais que possuam temperaturas mais altas tendem a se
expandir, ocupar mais espaço. Essa relação é tão importante que até hoje é utilizada na
produção de energia elétrica a partir do vapor d’água, cuja pressão move válvulas que
por sua vez produzem carga elétrica. Portanto, não seria surpreendente se a causa das
perdas de vácuo fosse a temperatura alta de alguns componentes.

A vazão dos vapores também apresenta uma situação similar, como o exemplo
dado anteriormente evidencia. O vapor d’água é utilizado muitas vezes em processos
exatamente devido à pressão causada por ele.

Por outro lado, é provável que a correlação da variável alvo com outras features
não represente nenhuma relação implícita de causalidade, a pressão nos ejetores pode
estar correlacionada com a pressão de vácuo no desodorizador pelo fato de que algo está
causando aumento de pressão em todos os componentes, por exemplo.

3.2 Transformação dos dados

Após o processo de análise exploratória da base de dados, foi iniciado o processo
de transformação efetiva dos dados. Primeiramente, foi realizada a análise e remoção de
outliers. Estes outliers foram identificados com a utilização do algoritmo Isolation
Forests. Inicialmente, desejava-se utilizar o algoritmo DBSCAN, mas o custo
computacional era muito grande e muito tempo também era despendido neste processo,
ao contrário do Isolation Forests, que é mais eficiente e simples. O algoritmo encontrou
mais de 10000 outliers (quantidade varia por execução devido à natureza do algoritmo,
já foram encontrados 10682, 10731, 11092, etc.) que foram removidos da base de dados.
Estes outliers representam cerca de 1% da base, que possui mais de 1 milhão de
medições coletadas.

Esta foi a última remoção feita sobre a base de dados, após a realização deste
processo foi feito o procedimento de resampling dos dados mencionado anteriormente.
Como dito anteriormente, a uniformidade do intervalo entre os dados em uma série
temporal é fundamental para muitos métodos de análise de séries temporais, que
pressupõem que as observações sejam espaçadas igualmente ao longo do tempo. Isso se
deve a vários fatores:

1. Muitos modelos estatísticos para séries temporais, como ARIMA, pressupõem
observações em intervalos regulares. Se esse pressuposto for violado, as
estimativas dos parâmetros do modelo podem ser enviesadas, levando a
previsões imprecisas.

2. A estacionariedade é uma propriedade desejável em muitas análises de séries
temporais, pois permite que o modelo generalize padrões passados para o futuro.



No entanto, se os intervalos entre as observações forem irregulares, pode ser
difícil determinar se a série é estacionária.

3. Ter dados em intervalos regulares simplifica a manipulação de dados, pois
permite usar métodos padrão para agregar, interpolar, deslocar e outras
operações comuns em séries temporais. Se os intervalos não forem regulares,
essas operações podem requerer métodos mais complexos e propensos a erros.

Em resumo, ter um intervalo uniforme em uma série temporal facilita a análise,
a modelagem e a interpretação dos dados, tornando mais provável que as conclusões
tiradas dos dados sejam precisas e úteis.

Inicialmente, o resampling foi feito utilizando uma técnica que pode ser
considerada trivial, o backwards fill, que preenche as lacunas encontradas na série
temporal com o próximo valor válido na série. Esta tática pode não apresentar nenhum
problema aparente de início, mas após inspeção um pouco mais minuciosa dos dados
apresentados na Figura 1, podemos observar que muitas das lacunas nos dados ficam
rodeadas por outliers, ou seja, lacunas nos dados são geralmente sucedidas por medições
com valores bem altos da variável alvo, o que fez com que as lacunas fossem
preenchidas com valores muito distantes da média e mediana dos dados originais. Em
suma, este processo produziu novos outliers e distorceu a característica dos dados. Por
esta razão, decidiu-se por adotar outra estratégia: os dados foram preenchidos a partir de
médias móveis das medidas obtidas anteriormente. O resultado dessa operação pode ser
observado a seguir:

Figura 6. Variável alvo após resampling e remoção de outliers

Ao observar a Figura 6, fica evidente que existem problemas na estratégia
escolhida, as lacunas foram preenchidas sem apresentar os mesmos padrões de outras
regiões dos dados, que possuem variação muito maior da variável alvo. Além disso,
pode-se observar que a remoção de outliers teve um efeito visível nos dados da variável



alvo, que anteriormente possuíam muitos exemplares que se aproximavam de 50 e após
este processo de transformação mal possuem dados acima de 30. Apesar desses
problemas, essas transformações foram mantidas para o desenvolvimento dos modelos.
As mudanças causadas por esses processos ficam evidentes ao se observar as alterações
causadas na média, mediana e desvio padrão:

Figura 7. Estatísticas da variável alvo após resampling e remoção de outliers

Agora o desvio padrão representa apenas 54,68% da média (antes eram 81,12%)
e 60,26% da mediana (antes, 96,26%).

Após este pequeno processo de transformação dos dados, foram realizados
processos já pensando na fase de modelagem do projeto. Uma técnica importante
quando se tratando de séries temporais é a decomposição das mesmas em sazonalidade,
tendência e valores residuais. A tendência mostra a direção geral dos dados ao longo do
tempo, independentemente das flutuações. A sazonalidade mostra as variações
periódicas nos dados - por exemplo, um aumento nas vendas de sorvete durante o verão.
Finalmente, o resíduo é o que resta depois de remover a tendência e a sazonalidade dos
dados.

No caso deste projeto e devido a algumas características da base de dados, foi
realizada a decomposição aditiva dos mesmos. Visualizar a decomposição aditiva de
uma série temporal é útil por várias razões. Em primeiro lugar, ajuda a identificar se
existe uma tendência subjacente ou um padrão sazonal nos dados, o que pode ser
importante ao escolher o tipo de modelo de série temporal a ser utilizado. Além disso, ao
decompor uma série temporal em seus componentes aditivos - tendência, sazonalidade e
resíduo - somos capazes de entender melhor se a série é estacionária ou não. Se a
tendência é não-constante ou se existe uma sazonalidade que varia com o tempo, a série
temporal não será estacionária. A importância de observar a estacionariedade de uma
série temporal reside no fato de que muitos modelos de séries temporais, incluindo o
ARIMA, pressupõem estacionariedade.

Portanto, a decomposição aditiva nos ajuda a entender e a tratar a não
estacionariedade em uma série temporal. Ao remover a tendência e a sazonalidade
(através da diferenciação dos dados, por exemplo), podemos transformar uma série não
estacionária em uma série estacionária, que é mais adequada para a modelagem e



previsão. A decomposição da série temporal da variável alvo pode ser observada a
seguir:

Figura 8. Decomposição aditiva da série temporal da variável alvo

Para realizar a decomposição aditiva, é necessário ao menos estimar o número de
ciclos ocorrentes na série a ser decomposta. No caso deste projeto, o número de ciclos
foi estimado em 31 a partir da visualização dos dados. Como pode ser observado na
figura 8, os dados inicialmente não formam uma série temporal estacionária, isso é
evidenciado pelas características da tendência, que não é constante e é sempre positiva,
indicando que a média e outras propriedades estatísticas apresentam variações
significativas ao longo do tempo. Como o modelo ARIMA e outros algoritmos para
modelagem de séries temporais demandam que os dados sejam estacionários, foi preciso
fazer com que os dados passassem por processos de diferenciação até que eles
adquirissem as propriedades desejadas. A seguir pode-se observar o resultado da
decomposição após uma diferenciação da série da variável alvo.



Figura 9. Decomposição aditiva da série da variável alvo diferenciada 1 vez

Como pode ser observado na Figura 9, após realizar a diferenciação da variável
alvo, observa-se grandes diferenças nos três componentes da série. Primeiramente, é
possível observar que a tendência se comporta de forma completamente diferente,
apresentando mais variações de baixíssima magnitude (o valor absoluto da tendência
não passa de 0.001), indicando que a média, variância e demais estatísticas passam por
pequenas variações ao longo do tempo, indicando que a série é pelo menos fracamente
estacionária após passar por este processo. Para nos assegurarmos da estacionariedade
da série temporal, seria necessário aplicar um teste como o teste de Dickey-Fuller, algo
que foi tentado, mas que se mostrou inviável devido ao consumo muito alto de recursos
computacionais. Além da tendência, pode-se observar que os valores residuais
apresentaram mudanças significativas. Antes da diferenciação eles eram quase sempre
positivos e apresentavam maiores variações. Após a diferenciação, eles passaram a
variar menos e diversas vezes assumem valores negativos.

Esse processo de diferenciação seguido de decomposição aditiva para fins de
verificação da estacionariedade foi repetido mais algumas vezes, contudo, os resultados
não apresentaram grandes diferenças para estes observados após um passo de
diferenciação e portanto, quando foi necessário utilizar dados estacionários nas fases
seguintes do projeto, optou-se por utilizar apenas um passo de diferenciação, ou
diferenciação direta.

3.3 Modelagem e Validação

3.3.1 Modelagem com o algoritmo ARIMA

O modelo ARIMA, que significa Modelo AutoRegressivo Integrado de Médias
Móveis, é uma classe popular de modelos para prever séries temporais. Em sua forma
básica, ele usa a ideia de autocorrelação, diferenciação (para tornar a série estacionária),
e uma média móvel para prever valores futuros. O modelo ARIMA é tipicamente



univariado, ou seja, é projetado para prever uma série temporal com base em seus
próprios valores passados, sem considerar variáveis exógenas (demais features dos
dados, que não a variável alvo). Este é o caso do modelo que foi construído neste
projeto. Ou seja, o modelo construído a partir do algoritmo ARIMA prevê os futuros
valores da pressão de vácuo no desodorizador utilizando apenas os valores anteriores
observados da pressão. Os parâmetros em um modelo ARIMA são geralmente
denotados como ARIMA(p, d, q), onde:

● p é a ordem do termo auto regressivo. Ele permite incorporar o efeito de valores
passados na previsão. Por exemplo, se p é 5, os cinco valores anteriores da série
temporal são usados para prever o próximo valor.

● d é a ordem de diferenciação. Diferenciação é o processo de subtrair a observação
atual da observação anterior para tornar a série estacionária. Por exemplo, se d é
1, estamos usando uma primeira diferença, que é exatamente o que fizemos na
subseção anterior ao entre os processos de decomposição aditiva.

● q é a ordem do termo da média móvel. Uma média móvel permite que
incorporemos o efeito de erros passados na previsão.

Existem várias técnicas para selecionar esses valores, o parâmetro, uma delas
envolve a análise do ACF e PACF da série temporal APÓS A DIFERENCIAÇÃO. Em
geral, o valor de 'p' pode ser estimado pelo atraso em que o PACF corta o limite de
confiança superior pela primeira vez. Da mesma forma, 'q' pode ser estimado pelo atraso
em que o ACF cruza o limite de confiança superior pela primeira vez. Devido à
simplicidade desta técnica, tanto em termos de compreensão de seu funcionamento
quanto em consumo de recursos computacionais, ela foi a selecionada para determinar
os parâmetros p e q. O parâmetro d já foi determinado na seção anterior ao
averiguarmos que apenas um passo de diferenciação já aparentou ser suficiente para
tornar a série ao menos fracamente estacionária.

Para obtermos os valores para os outros parâmetros, foram visualizadas as
funções ACF e PACF novamente, agora aplicadas aos dados diferenciados uma vez.

Figura 10. Visualização da PACF da variável alvo após diferenciação



Figura 11. Visualização da ACF da variável alvo após diferenciação

Após realizar a observação das funções, os parâmetros escolhidos foram 2 e 8
para p e q, respectivamente.

3.3.2 Validação do modelo ARIMA

A fase de validação dos modelos apresentou obstáculos devido a diversas
características deste trabalho. Primeiramente, o caráter dos dados, que formam uma
série temporal, já que nestes casos, uma das principais técnicas utilizadas na validação
de modelos construídos para lidar com problemas tradicionais de aprendizado de
máquina, a validação cruzada, não pode ser utilizada neste caso, já que ela presume que
os dados podem ser divididos separados em dados de teste e de treino de forma
randômica e ao validar uma série temporal é necessário que a ordem dos dados seja
cronológica e que nenhum dado de teste seja anterior a um dado de treino. Portanto, a
única forma de realizar a validação é seccionando a base de dados em um ponto e
utilizando os dados anteriores àquele ponto como treino e os posteriores como teste.

Contudo, outro desafio é introduzido pelo objetivo de observar como a
performance do modelo se comporta conforme o mesmo realiza previsões mais distantes
no futuro, observar o trade-off entre antecipação das previsões e qualidade das mesma.
Por isso, foi selecionada uma forma talvez pouco convencional para visualização da
performance dos modelos. Geralmente, se separariam os dados entre treino e teste, se
realizariam as previsões sobre os dados de teste e se obteriam estatísticas como erro
quadrático médio. Contudo, partindo desse desejo de observar a variação da
performance em maiores horizontes de tempo, se decidiu calcular o erro quadrático
médio sucessivas vezes, adicionando uma nova previsão de teste por iteração, além disso
foram plotados o erro absoluto, o valor da previsão e o valor real observado.



Figura 12. Resultados da validação do modelo ARIMA

Logo ao observar o gráfico da Figura 12, percebe-se alguns problemas com o
modelo construído. Primeiramente, apesar de seu erro inicialmente ser baixo, ele
aparenta realizar previsões praticamente constantes (não são totalmente constantes,
como pode ser observado na Figura 13, localizada abaixo). Isso não é um problema para
o início dos dados de teste, que pouco distam desse valor quase constante, por isso o erro
absoluto e o erro quadrático médio permanecem bem baixos até que chega um ponto em
que os valores reais de teste aumentam significativamente, uma tendência que o modelo
ARIMA foi completamente incapaz de prever. A partir deste momento, o erro absoluto e
quadrático médio disparam, mostrando que o modelo ARIMA provavelmente é simples
demais para este problema. Isso não era surpreendente considerando que o modelo em
questão é univariado, ou seja, somente utiliza de dados anteriores da variável alvo para
realizar suas previsões, não pode levar em consideração alterações, valores e tendências
observadas em variáveis exógenas (as demais features dos dados, que não são o target).

Figura 13. Previsões do modelo ARIMA isoladas



3.3.3 Modelagem com modelo de boosting

Como foi ressaltado na última subseção, o algoritmo ARIMA tem suas
limitações. Ele é projetado apenas para séries temporais univariadas, o que significa que
só pode levar em consideração uma única série temporal de cada vez. Se existem
múltiplas séries temporais relacionadas que interagem entre si, o ARIMA pode não ser
capaz de capturar essas interações. Além disso, o ARIMA assume que a série temporal é
linear e segue uma distribuição normal. Se essas suposições não são atendidas, o
desempenho do ARIMA pode ser comprometido, o que pode explicar sua performance
bem ruim.

Em contraste, o XGBoost (Extreme Gradient Boosting) é uma técnica de
aprendizado de máquina que pode lidar com problemas de aprendizado supervisionado
multivariados. Ele pode levar em consideração várias séries temporais ao mesmo tempo
e capturar as interações entre elas. Além disso, o XGBoost não faz suposições sobre a
linearidade ou a distribuição dos dados, tornando-o uma ferramenta de previsão mais
flexível e robusta. Uma abreviação de eXtreme Gradient Boosting, ele é um algoritmo
de aprendizado de máquina que pertence à classe dos algoritmos de boosting. O
boosting é um método de aprendizado em conjunto que visa a criar um modelo preditivo
forte e preciso a partir da combinação de vários modelos preditivos fracos.

Em problemas de séries temporais, as observações são dependentes do tempo,
ou seja, a observação em um determinado momento é muitas vezes influenciada pelas
observações em momentos anteriores. Portanto, ao lidar com séries temporais, é
essencial capturar essa dependência temporal nos dados. O XGBoost, assim como
muitos outros algoritmos de aprendizado de máquina, são originalmente projetados para
problemas onde as observações são independentes umas das outras. Isso significa que,
se os dados de séries temporais forem fornecidos a esses algoritmos sem qualquer
modificação, eles não conseguirão capturar as dependências temporais inerentes aos
dados, resultando em modelos que provavelmente terão um desempenho inferior. Para
superar isso, uma abordagem comum é transformar os dados de séries temporais para
incluir recursos que possam capturar a dependência temporal. Isso é feito criando
recursos derivados como lags e médias móveis. Essa foi a abordagem utilizada neste
projeto.

3.3.4 Validação do modelo XGBoost

Um problema não mencionado na seção sobre a modelagem com o algoritmo
ARIMA, é a de que o ARIMA não é um modelo típico de aprendizado de máquina, ele
não funciona como os demais modelos implementados neste trabalho, por isso foi
necessário realizar uma forma de validação um pouco diferente para observar como o
seu erro de previsão aumentava conforme o horizonte de previsões era expandido.
Contudo, os demais modelos podem ser validados de forma mais convencional,
possibilitando observar a relação do erro com a antecedência da previsão de forma clara
e permitindo compará-los, já que eles serão treinados com os mesmos dados e treinados
com os mesmos dados. Para que o mesmo fosse feito com o modelo ARIMA, ele teria
de ser retreinado várias vezes, já que não é um modelo que recebe uma entrada na hora
da previsão, somente na hora do treinamento.

A métrica utilizada para esta validação e que será utilizada para realizar a



validação dos demais modelos foi a raiz quadrada do erro quadrático médio. Diversos
fatores tornam esta escolha adequada neste caso: primeiramente, essa métrica devido ao
cálculo do erro quadrático inicialmente, pune mais erros grandes de previsão do que
erros pequenos, o que é muito pertinente nessa situação, já que erros grandes na previsão
da pressão dentro do desodorizador são muito mais problemáticos, já que as situações de
perdas de vácuo representam variações bem grandes no valor da pressão, ou seja, um
erro grande de previsão geralmente ocorrerá quando a perda de vácuo ocorrer, que é
justamente a situação que está tentando se prever aqui. Não à toa, a função de perda
escolhida para os modelos de redes neurais desenvolvidas é justamente o erro quadrático
médio. Além disso, como estamos utilizando a raiz quadrada do erro quadrático médio,
obtemos uma métrica mais interpretável, já que o erro está na mesma escala dos dados,
permitindo-nos compará-lo com estatísticas da variável alvo como a média e o desvio
padrão.

Figura 14. Resultados da validação do modelo XGBoost

Como pode ser visto na Figura 14, a performance do modelo XGBoost
apresentou erro bastante estável conforme o horizonte de previsões ia sendo aumentado.
Isso foi inesperado, mas pode ser explicado por alguns fatores, é provável que se o
horizonte de previsões continuasse sendo expandido (a base de dados contém vários
meses de medições feitas a cada 3 segundos, e portanto o horizonte de previsões poderia
ter uma escala muito maior) o erro iria adquirir uma tendência de crescimento, mas isso
não foi feito, pois não fazia muito sentido desenvolver um modelo que realizasse
previsões com antecedências muito maiores do que as já feitas, já que 20 minutos é uma



janela de tempo suficiente para prevenção de falhas no desodorizador.
Considerando que o desvio padrão está próximo de 3, temos que o desempenho

deste modelo é pelo menos superior ao que se esperaria de uma estratégia ingênua de
sempre prever a média, já que se seguíssemos esta estratégia, o RMSE deveria ser o
desvio padrão (ou próximo, já que não necessariamente o desvio padrão da base toda é
igual ao desvio padrão dos dados de teste).

Contudo, este tipo de algoritmo não é considerado o estado da arte para séries
temporais e, portanto, foram desenvolvidos modelos utilizando redes neurais com
arquiteturas especificamente criadas para lidar com dados sequenciais como séries
temporais.

3.3.5 Modelagem com rede neural LSTM

As redes neurais Long Short-Term Memory (LSTM) são uma categoria especial
de redes neurais recorrentes (RNNs), projetadas para lidar com sequências de dados.
Elas são particularmente adequadas para prever séries temporais devido à sua
capacidade de capturar dependências de longo prazo em dados sequenciais.

Uma rede LSTM é composta por unidades chamadas células LSTM. Cada célula
tem três portas: a porta de esquecimento, a porta de entrada e a porta de saída. Essas
portas controlam o fluxo de informações dentro e fora da célula. A porta de
esquecimento decide quanta informação do estado anterior será mantida ou descartada.
Isso é crucial para evitar o problema de dependências de longo prazo, onde a rede não
consegue aprender conexões entre eventos separados por longos intervalos de tempo. A
porta de entrada controla a quantidade de informação nova que será adicionada ao estado
da célula. O estado da célula é atualizado com base nas informações que passam pela
porta de esquecimento e pela porta de entrada. Este estado é o "coração" da LSTM,
carregando informações ao longo das sequências. Além disso, a porta de saída decide
quais informações do estado da célula serão usadas para gerar a saída da célula. Em cada
passo de tempo, a LSTM recebe um input, atualiza seu estado interno (memória de
longo prazo) e produz um output. Este processo é repetido para cada elemento da
sequência de entrada.

Além disso, elas têm sido usadas com sucesso em uma variedade de tarefas de
séries temporais, como previsão do mercado de ações, previsão meteorológica e análise
de tendências de consumo.

Como estamos tratando de redes neurais neste caso, temos diversas questões a
serem decididas antes de construir um modelo. Qual deve ser a estrutura da rede?
Quantas camadas e quantos neurônios devem existir em cada camada? Qual otimizador
deve ser utilizado? Após diversas experimentações, a configuração de três camadas
LSTM, contendo 50, 30 e 20 neurônios cada, com camadas de dropout de 0.2
interpolando-as se mostrou a melhor. Uma boa regra para se definir a quantidade de
neurônios da primeira camada de uma rede como esta é utilizar o tamanho do dado, que
neste caso é exatamente 50, ou seja, a regra se provou útil no contexto do trabalho. O
otimizador utilizado foi o Adam e a função de perda foi o erro quadrático médio.



3.3.5 Validação da rede neural LSTM

A validação da rede neural LSTM desenvolvida foi feita da mesma maneira
utilizada para validar o modelo XGBoost. Abaixo estão os resultados encontrados:

Figura 15. Resultados da validação do modelo de rede neural LSTM

Como pode ser observado na figura 15, o RMSE da rede neural oscila conforme
a distância temporal da previsão aumenta, apresentando erros maiores quando a previsão
é feita com antecedência de 7 a 10 minutos, mas os melhores resultados foram
encontrados nas menores distâncias temporais, como esperado. Contudo, é notável a
estabilidade do erro, já que o aumento observado entre as menores distâncias temporais
e as maiores é pequeno e o erro é menor que o observado para o modelo XGBoost, que
apresentou valores de raiz do erro quadrático médio próximos a 2, enquanto a LSTM
apresentou resultados abaixo de 1 e todos os erros ficaram abaixo de 1,2. Considerando
o valor do desvio padrão, percebe-se que os resultados têm alguma relevância, já que o
desempenho é ao menos melhor que uma estratégia ingênua.

Esperava-se que o aumento da janela de previsões tivesse grande impacto no
erro do modelo, mas o aumento foi relativamente pequeno, e, considerando o contexto
de possível aplicação destes modelos, atuando em sistemas de prevenção de falhas na
indústrias, é muito relevante que se tenha um sistema que não só seja capaz de prever a
ocorrência de problemas, mas de fazê-lo com certa antecedência.



3.3.6 Modelagem com redes neurais Transformer

Apesar de terem sido desenvolvidas com o intuito de tratar dados sequenciais e
terem sido utilizadas em larga escala para a criação de modelos de previsão de séries
temporais, as redes neurais LSTM têm sido substituídas por redes neurais de arquitetura
Transformer em diversos contextos, especialmente na área de processamento de
linguagem natural. Modelos de linguagem extremamente complexos têm se mostrado
extremamente capazes de resolver problemas de linguagem e existem diversas
semelhanças entre problemas envolvendo linguagem e problemas envolvendo śeries
temporais. Essas semelhanças ajudam a explicar porque o uso de redes neurais com essa
arquitetura é adequado para o contexto deste trabalho.

A grande semelhança entre linguagem e séries temporais é que ambos são dados
sequenciais, a ordem das palavras importam, assim como a ordem cronológica das
medições das condições dentro do desodorizador importam também. É neste contexto
que as redes Transformer se inserem, já que a arquitetura foi criada com o intuito de
modelar relações entre diferentes partes de uma sequência (Vaswani et al., 2017) através
do mecanismo de atenção, especificamente o "self-attention". Este mecanismo permite
que o modelo pondere a importância de diferentes partes da entrada ao processar cada
palavra (ou parte de uma sequência). Em outras palavras, ele permite que o modelo
aprenda contextos e relações dentro da sequência.

Um Transformer típico é composto por um encoder e um decoder. O encoder
processa a sequência de entrada e gera uma representação rica em contexto e o decoder
gera a sequência de saída, passo a passo, usando a saída do encoder e o que foi gerado
até o momento. Tanto o encoder quanto o decoder são compostos por várias camadas
idênticas que contêm mecanismos de atenção e redes neurais feedforward. Além disso,
diferentemente das LSTMs, os Transformers não processam os dados sequencialmente.
Isso permite o processamento paralelo dos dados, tornando-os muito mais eficientes em
termos de tempo de treinamento. Isso pode soar estranho devido ao fato de que estamos
tratando de séries temporais, mas apesar de processarem todos os elementos
simultaneamente, os Transformers ainda são capazes de entender a ordem dos dados.
Isso é alcançado através do uso de positional encodings. Estes são vetores adicionados à
entrada que fornecem informações sobre a posição de cada elemento na sequência.

Portanto, devido a essas inúmeras vantagens apresentadas pelos Transformers em
relação às LSTMs, se decidiu por implementar diferentes modelos a fim de atingir
melhores resultados nas previsões e comparar os modelos de diferentes arquiteturas.

3.3.6.1 Modelagem do Time Series Transformer Multivariado

A primeira implementação de modelo transformer feita no trabalho utiliza do
algoritmo Time Series Transformer da biblioteca transformers do HuggingFace. Este
algoritmo implementa a arquitetura originalmente proposta pelo artigo “Attention is all
you need” (Vaswani et al., 2017) que introduziu a arquitetura. O algoritmo foi criado
com foco no problema univariado originalmente, mas suporte para problemas



multivariados, como o caso deste trabalho, foi adicionado após algum tempo. Isso
mostra um dos problemas enfrentados nesse trabalho: diversos algoritmos e trabalhos
relacionados a séries temporais presumem um problema de previsão univariada, o que
neste caso é ruim, pois há uma abundância de dados relevantes que podem ser utilizados
para modelar relações complexas entre as features. Por isso, decidiu-se por criar duas
implementações diferentes para cada arquitetura transformer utilizada, uma variante
univariada e outra multivariada. O artigo que introduz o Autoformer (Wu, Haixu, et al.,
2021) destaca que o desempenho da implementação univariada do estudo superou a
implementação multivariada em um problema de regressão, o que mostra a relevância
desta questão.

O algoritmo possui diversos hiperparâmetros, a melhor configuração neste caso
possuía 8 camadas no encoder e no decoder, com 32 neurônios em cada camada e o
treinamento foi feito utilizando o otimizador Adam, por 4 épocas, utilizando batches
com 512 instâncias de treino.

3.3.6.2 Validação do modelo Time Series Transformer Multivariado

A validação foi feita da mesma maneira que os dois modelos anteriores. A seguir
estão os resultados encontrados:

Figura 16. Resultados da validação do Time Series Transformer Multivariado



Como pode ser observado na Figura 16, o RMSE do modelo Time Series
Transformer oscila entre valores de 1,5 a 2. Os valores encontrados são similares aos
observados na validação do modelo XGBoost, mas são piores que os encontrados na
validação da rede neural LSTM. Novamente, temos um modelo que apresenta resultado
surpreendente e contra intuitivo quanto à variação do erro conforme a distância temporal
da previsão cresce, o erro do modelo quando a distância temporal é de 1 minuto é menor
que quando a distância é de 20 minutos.

Apesar do desempenho ser pior quando comparado à rede neural LSTM, o
modelo ainda apresenta erros menores que o desvio padrão da variável alvo, que seria o
erro esperado da estratégia ingênua descrita anteriormente.

3.3.6.3 Modelagem do modelo Autoformer Multivariado

O Autoformer é uma arquitetura de rede neural transformer criada
especificamente para lidar com séries temporais. Ele incorpora diversos mecanismos de
decomposição das séries temporais e um mecanismo de autocorrelação. Assim como no
caso do Time Series Transformer, o algoritmo foi criado e testado majoritariamente em
séries temporais univariadas e apresentou resultados piores quando incorporando
múltiplas variáveis do que modelando apenas a variável alvo em bases de dados que
permitiam essa comparação (Wu, Haixu, et al., 2021). Apesar dessa ressalva, o
Autoformer apresentou resultados relevantes à época de publicação do artigo que
introduziu a arquitetura, como uma melhora de 38% em benchmarks que cobriam uma
série de aplicações de previsão a longo prazo, como meteorologia e tráfego urbano. O
fato de que a arquitetura se saiu bem em previsões a longo prazo o torna muito relevante
neste caso, devido ao desejo de se observar como a distância temporal afeta o erro, e por
isso o algoritmo se mostrou promissor.

Apesar das expectativas iniciais, a modelagem do Autoformer multivariado foi
muito problemática, o modelo durante o treinamento demorava muito a convergir, os
erros de treinamento eram muito grandes e os de validação mais ainda. Não foi possível
descobrir ao certo o que causou os problemas, mas os problemas parecem estar
relacionados com a dimensionalidade dos dados, como dito anteriormente, o modelo
apresentou problemas para modelar as relações entre as diferentes séries temporais no
estudo original que o propôs.

A validação do modelo foi realizada, mas os erros se mostraram muito acima de
um limiar razoável, apesar de várias modificações nos hiperparâmetros. Estes problemas
não se repetiram nos outros casos, e a arquitetura pode ser testada com uma variante
univariada.

3.3.6.4 Modelagem do modelo Informer Multivariado

Assim como o Autoformer, o Informer é uma arquitetura de rede neural
transformer criada com o intuito de lidar com séries temporais, com enfoque especial a
problemas de precisão a longo prazo. O artigo que introduziu a arquitetura venceu o
prémio de melhor artigo da conferência da AAAI em 2021. A arquitetura é baseada na
arquitetura transformer original, mas com algumas modificações: mecanismo de



auto-atenção ProbSparse, que reduz significativamente a complexidade de tempo e
memória associada com o mecanismo de auto-atenção dos transformer convencionais e
apresenta desempenho comparável em termos de alinhamento de dependências
sequenciais; um processo de “destilação” para redução do tamanho do input entre
camadas da rede e um decoder que, ao contrário dos modelos transformer convencionais
e do modelo anterior, realize todas as previsões do horizonte de previsões
pré-determinado em apenas um passo, ao contrário dos demai modelos que o fazem
passo-a-passo, geralmente de maneira autoregressiva (utilizando das próprias previsões
como input para as previsões seguintes). Essas modificações tornam o modelo muito
mais flexível e rápido, a complexidade da previsão pelo decoder, por exemplo, cai de
O(h), onde h é o tamanho do horizonte de previsões, para O(1).(Zhou, Haoyi, et al.,
2021). Todas as modificações feitas tentam tratar de problemas de complexidade de
tempo e de memória, o que por si só não é evidência de que o modelo captura relações
temporais longas nas séries de forma melhor que a implementação original da
arquitetura, então por que o modelo apresentaria melhores resultados para previsões de
longo prazo? Porque as reduções de complexidade tornam mais viável a utilização de
mais dados. Por isso, este modelo foi treinado com mais lags que os demais, pois seu
treinamento e validação se mostraram extremamente eficientes em termos de memória e
tempo, consumindo a mesma quantidade de tempo, mas processando quantidades
maiores de dados.

Os hiperparâmetros a serem determinados eram os mesmos do algoritmo Time
Series Transformer, e, portanto, se encontrou a melhor configuração para o modelo, com
8 camadas de neurônios no encoder e decoder e 32 neurônios em cada camada. O fato de
a melhor configuração encontrada ter sido a mesma para ambos os modelos não é uma
coincidência considerando os resultados encontrados na validação do Informer, que
mostraram que os dois modelos multivariados possuem muitas similaridades em seu
comportamento.

3.3.6.5 Validação do modelo Informer Multivariado

A validação foi feita da mesma maneira que nos casos anteriores, a seguir estão
os resultados encontrados:



Figura 17. Resultados da validação do Informer Multivariado

Como pode ser observado na Figura 17, os resultados encontrados para o modelo
Informer são muito similares aos encontrados na validação do modelo transformer sem
modificações, mesmo com o Informer tendo sido treinado com mais lags no treino. É
claro que os erros encontrados não foram idênticos nos dois casos, mas a semelhança
tanto na magnitude dos erros, que variam entre 1,5 e 2 em ambos os casos, quanto nas
variações ao longo do gráfico são muito parecidas. Essa constatação é no mínimo
curiosa, mas pode ser explicada: o modelo transformer original já incorporava uma
grande quantidade de lags, e, como ressaltado anteriormente, a arquitetura do modelo
Informer introduz modificações que teoricamente impactaram apenas a complexidade de
tempo e memória do transformer original, portanto funcionalmente, a arquitetura do
modelo é a mesma, e os dados utilizados para treinamento foram os mesmos e estes
foram processados na mesma ordem em ambos os treinamentos. Portanto, o que aparenta
ter ocorrido neste caso é que o modelo Informer não aprendeu relações significativas
entre os lags adicionais, e encontrou relações semelhantes às encontradas pelo modelo
transformer original. As pequenas diferenças observadas podem ser explicadas pelos
lags adicionais.

3.3.6.6 Modelagem do Time Series Transformer Univariado

Como ressaltado anteriormente, é muito comum em séries temporais que
modelos univariados, aqueles que levam em consideração apenas valores passados da
variável alvo para realizar suas previsões, comumente superam modelos multivariados,
que teoricamente seriam capazes de modelar relações mais complexas nos dados. Além
disso, alguns artigos que propõem arquiteturas transformer, como o Autoformer (Wu,
Haixu, et al., 2021), mostram redes neurais transformer univariadas tendo desempenho
superior às variantes multivariadas. Além disso, por levarem em consideração apenas os
valores da variável alvo, os dados utilizados para treinamento dos modelos univariados
ocupam menos memória e seu processamento é mais rápido, perimitindo que essas redes
sejam treinadas de formas diferentes, com mais lags. Devido a estes fatores, foram
construídos modelos univariados.



O Time Series Transformer univariado possuía os mesmos hiperparâmetros que o
modelo multivariado. A rede com melhor configuração possui 6 camadas no encoder e
decoder com 48 neurônios em cada camada.

3.3.6.7 Validação do Time Series Transformer Univariado

A validação foi feita da mesma maneira que nos casos anteriores, a seguir estão
os resultados encontrados:

Figura 18. Resultados da validação do Time Series Transformer Univariado

Como pode ser observado na Figura 18, ao contrário do que foi observado nas
demais validações, o Time Series Transformer não apresenta erros estáveis conforme o
horizonte de previsões vai sendo expandido, mas isso não torna os resultados menos
curiosos, já que ao contrário do que esperaria intuitivamente, os erros parecem cair
conforme a distância temporal vai aumentando, os resultados foram bem inesperados. O
que eles podem indicar é que o modelo conseguiu modelar as relações a longo prazo
melhor que as de curto prazo. O resultado é ainda mais surpreendente quando se
considera que o erro quando a distância temporal da previsão é 20 minutos chega a ficar
abaixo de 1, o melhor de todos os resultados. Apesar de surpreendentes e positivos, o
menor erro encontrado ainda não supera os resultados da LSTM. Além disso, quando a
distância temporal é menor, como a 3 minutos, o erro supera 2,7, se aproximando o
desvio padrão da variável alvo, que seria o erro esperado da estratégia ingênua que prevê



a média todas as vezes, o que coloca em cheque o desempenho do modelo. Apesar dos
resultados relativamente positivos com grandes distâncias temporais, (afinal, os dois
transformers multivariados construídos apresentaram desempenhos piores para janelas
deste tamanho) o desempenho para janelas menores parece ser bem insatifastório.
Considere por exemplo, que a média da variável alvo é cerca de 5 e ela permanece em
valores similares por boa parte do tempo e que quando a variável alvo supera 10, uma
falha está configurada, fica evidente que um erro de 2,7 na previsão é muito
significativo.

3.3.6.8 Modelagem do Autoformer Univariado

Ao contrário do que ocorreu com a variante multivariada do algoritmo
Autoformer, a versão univariada foi implementada sem maiores problemas, sua melhor
configuração consistiu de 8 camadas no encoder e decoder com 48 neurônios em cada
camada.

3.3.6.9 Validação do Autoformer Univariado

A validação foi feita da mesma maneira que nos casos anteriores, a seguir estão
os resultados encontrados:

Figura 19. Resultados da validação do Autoformer Univariado



Como pode ser observado na Figura 19, os resultados encontrados para o
Autoformer univariado são semelhantes aos encontrados na validação do Time Series
Transformer Multivariado e do Informer Multivariado, contudo, os resultados foram um
pouco melhores neste caso, mesmo que isso não esteja visível neste gráfico. Assim como
com estes algoritmos anteriores, o modelo apresentou um erro estável, pouco afetado
pela distância temporal das previsões, e que ao menos é menor que o desvio padrão do
alvo. Apesar da melhora nos resultados em relação aos transformer predecessores, o
Autoformer Univariado apresentou resultados significativamente piores que a LSTM
construída.

3.3.6.10 Modelagem do Informer Univariado

Assim como foi feito com os outros algoritmos, se implementou uma versão
univariada do modelo Informer, que foi construído com 6 camadas no encoder e decoder
e 48 neurônios em cada camada, a mesma configuração do Time Series Transformer
Univariado.

3.3.6.11 Validação do Informer Univariado

A validação foi feita da mesma maneira que nos casos anteriores, a seguir estão
os resultados encontrados:

Figura 20. Resultados da validação do Informer Univariado

Assim como o Informer Multivariado apresentou validação com resultados muito
semelhantes ao Time Series Transformer Multivariado, o Informer Univariado também
apresenta semelhanças no comportamento do seu erro com o Time Series Transformer



Univariado. Apesar das diferenças entre os erros serem muito maiores neste caso, ambos
apresentam tendência de queda conforme a distância temporal vai sendo aumentada. Por
outro lado, o erro do Informer Univariado é bem mais estável que o do Time Series
Transformer, enquanto o erro do Informer nas menores distâncias temporais é bem
menor, para maiores distâncias o Time Series Transformer apresenta desempenho bem
superior. O maior erro encontrado nas janelas de previsão do Informer foi cerca de 2,4 e
o menor cerca de 1,3 (superando os demais transformers na maior janela testada).

3.3.6.12 Comparação geral dos modelos

A fim de visualizar o desempenho dos modelos comparativamente, foi plotado
um gráfico com a performance de cada um para cada distância temporal de previsão. O
modelo ARIMA e o modelo Autoformer Multivariado foram excluídos dessa
comparação, por terem apresentado desempenhos muito ruins em comparação com os
demais. Além disso, em subseções anteriores foram destacadas peculiaridades do
modelo ARIMA que inviabilizaram a realização da sua validação da mesma maneira que
foi feita com os demais modelos. Uma estratégia de mean guessing foi incluída. Esta
estratégia é a estratégia ingênua mencionada anteriormente, ou seja, o erro de um
modelo que sempre prevesse a média da variável alvo.

Figura 21. Quadro comparativo dos modelos desenvolvidos



O quadro mostra claramente a superioridade da rede neural LSTM em relação
aos demais modelos. O erro deste modelo é o menor de todos para quase todas as janelas
de previsão, com exceção relevante da maior janela de todas, quando a LSTM é
superada pelo Time Series Transformer Univariado. Além dos resultados
impressionantes da LSTM em comparação com os demais, é notável também a
tendência de queda no erro apresentada pelos Time Series Transformer e Informer
univariados. É possível que estes modelos tenham sido capazes de modelar
relacionamentos a longo prazo na variável alvo melhor do que os relacionamentos de
curto prazo, por mais contraintuitivo isso seja. O fato de que esse comportamento não
foi observado no outro modelo univariado, o Autoformer, é um indício de que o
mecanismo de auto-atenção tradicional teve melhor capacidade de modelar as relações
de longo prazo do que o Autoformer, mesmo sendo uma arquitetura desenhada
especificamente para tarefas de previsão a longo prazo.

Os modelos transformers multivariados, o Autoformer Univariado e o modelo
XGBoost apresentaram desempenho bastante próximo, sugerindo que os transformers
não foram capazes de modelar relações muito complexas nos dados, considerando que
não se saíram muito melhor que um modelo de aprendizado de máquina clássico, o
mecanismo de auto-atenção não parece ter sido potencializado pelos modelos.

Por outro lado, como o gráfico evidencia, todos os modelos se saíram melhor que
a estratégia ingênua, que fornece um baseline bem útil neste caso, já que pode ser
utilizada para futuramente determinar a viabilidade da aplicação de alguns destes
modelos.

4. Conclusão e trabalhos futuros

Este trabalho explorou a aplicação do aprendizado de máquina para a previsão
de falhas no processo de desodorização de alimentos. A partir da análise exploratória de
dados e do pré-processamento de dados de séries temporais, foram desenvolvidos
modelos utilizando o modelo ARIMA, o algoritmo XGBoost e redes neurais de
arquitetura LSTM e Transformer. Os resultados iniciais indicaram que o modelo
ARIMA não foi tão eficaz, o que era esperado devido à natureza simples e univariada do
algoritmo. Além disso, o modelo multivariado baseado na arquitetura Autoformer
apresentou muitos problemas no processo de implementação e erros muito acima do
esperado e não se mostrou nem um pouco viável.

Os demais modelos foram implementados e avaliados como planejado,
buscando-se observar o trade-off existente entre antecedência de uma previsão e
qualidade da mesma. As validações apresentaram resultados bastante surpreendentes e
intrigantes: todos os modelos mostraram-se ao menos tão efetivos nas maiores
distâncias temporais quanto nas menores e alguns se mostraram bem melhores quando
lidando com horizontes de previsão maiores, caso do Time Series Transformer
Univariado e do Informer Univariado. Como ressaltado anteriormente, estes dois
algoritmos possuem diversas similaridades e não foi surpreendente que eles tenham
apresentado desempenho tão similar tanto no caso univariado quanto no multivariado.

Apesar de nas menores distâncias de previsões os modelos multivariados terem



apresentado superioridade em relação aos seus equivalentes univariados, os resultados
encontrados parecem ao menos em parte corroborar uma tendência apresentada em
outros trabalhos com o artigo introdutor do Autoformer: transformers apresentando
dificuldades em modelar relações cruzadas nas diferentes séries temporais. Isso fica
muito evidente quando se observa o desempenho do Autoformer Univariado em
comparação com os transformers multivariados, os resultados são similares, mas em
todas as janelas de previsões há uma pequena vantagem do Autoformer Univariado, que
por sinal, é bem mais eficiente em termos de recursos computacionais pela
dimensionalidade muito reduzida do dado.

De todos os resultados encontrados, o mais surpreendente foi o desempenho da
rede neural LSTM. Além de superar os modelos Transformer, que vêm substituindo
redes LSTM em diversas aplicações, a LSTM apresentou erro bastante estável, e
enquanto os demais modelos se mostraram no máximo duas vezes melhores que a
estratégia ingênua, a LSTM apresenta erro cerca de três vezes menor para a maioria das
distâncias temporais, o que evidencia maior significância dos resultados. Isso não
significa que seria viável implantar este modelo na cadeia de produção da indústria
alimentícia, apenas indica que a rede LSTM se mostrou melhor que os demais modelos.
É possível que a LSTM tenha se saído melhor devido a dificuldades dos modelos
transformers implementados de modelar relações entre as diferentes features, enquanto
a LSTM tenha sido capaz de fazer o mesmo, afinal, vale ressaltar, a rede LSTM
desenvolvida era multivariada, ou seja, as diversas features sobre temperatura dos
componentes do desodorizador, pressão de vapor, etc. são levadas em consideração pelo
modelo.

Seria interessante em trabalhos futuros explorar arquiteturas que atacam
exatamente este problema mencionado, que possivelmente explica o porquê dos
modelos Transformer multivariados não terem se saído tão bem: a dificuldade de
modelar relações entre diferentes séries temporais. Uma das arquiteturas mais
interessantes que foram introduzidas recentemente é o CrossFormer (Zeng, Chen et al.
2023), cuja aplicação em um contexto similar ao deste trabalho seria extremamente
pertinente.

5. Referências bibliográficas

Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and
Pierre-Alain Muller 2018. Deep learning for time series classification: a review.
arXiv: Learning.

Ade Pitra Hermawan, Dong-Seong Kim, and Jae-Min Lee 2020. Predictive Maintenance
of Aircraft Engine using Deep Learning Technique. Information and
Communication Technology Convergence.

Nicholas Pudjihartono, Tayaza Fadason, Andreas W. Kempa-Liehr, and Justin M.
O'Sullivan 2022. A Review of Feature Selection Methods for Machine
Learning-Based Disease Risk Prediction. Frontiers in bioinformatics.



Chong Chen, Ying Liu, Xianfang Sun, Carla Di Cairano-Gilfedder, and Scott Titmus
2019. Automobile maintenance prediction using deep learning with GIS data.
Procedia CIRP.

James M. McCracken 2016. Exploratory Causal Analysis with Time Series
Data. Exploratory Causal Analysis with Time Series Data.

Christoph Bergmeir, and José Manuel Benítez 2012. On the use of cross-validation for
time series predictor evaluation. Information Sciences.

John Cristian Borges Gamboa 2017. Deep Learning for Time-Series Analysis. arXiv:
Learning.

Muhammad Sohaib, Muhammad Sohaib, Shiza Mushtaq, Jia Uddin, and Jia Uddin
2021. Deep Learning for Data-Driven Predictive Maintenance. null.
Julia Gastinger, Sebastien Nicolas, Dusica Stepic, Mischa Schmidt, and Anett Schulke

2021. A study on Ensemble Learning for Time Series Forecasting and the need
for Meta-Learning. IEEE International Joint Conference on Neural Network.

Gladilin Peter, Gladilin Peter, and Maria Matskevichus 2019. Hyperparameters Tuning
for Machine Learning Models for Time Series Forecasting. International Conference on
Social Networks Analysis, Management and Security.

Nuno Moniz, Paula Branco, and Luís Torgo 2017. Resampling strategies for imbalanced
time series forecasting. Journal of data science.

Lorenzo Camponovo, Olivier Scaillet, and Fabio Trojani 2010. Robust Resampling
Methods for Time Series. null.

Ola Surakhi, Ola Surakhi, Martha A. Zaidan, Pak Lun Fung, Naser Hossein Motlagh,
Sami Serhan, Mohammad AlKhanafseh, Rania M. Ghoniem, and Tareq Hussein
2021. Time-Lag Selection for Time-Series Forecasting Using Neural Network
and Heuristic Algorithm. Electronics.

Dumitru Erhan, Aaron Courville, Yoshua Bengio, and Pascal Vincent 2010. Why Does
Unsupervised Pre-training Help Deep Learning?. International Conference on
Artificial Intelligence and Statistics.

Antonio Rafael Sabino Parmezan, Vinícius Mourão Alves de Souza, Vinícius Mourão
Alves de Souza, and Gustavo E. A. P. A. Batista 2019. Evaluation of statistical
and machine learning models for time series prediction: identifying the
state-of-the-art and the best conditions for the use of each model. Information
Sciences.

Lei Li, Yihang Ou, Yabin Wu, Qi Li, Qi Li, and Daoxin Chen 2018. Research on feature
engineering for time series data mining. IEEE International Conference on
Network Infrastructure and Digital Content.

Martin Längkvist, Lars Karlsson, and Amy Loutfi 2014. A review of unsupervised



feature learning and deep learning for time-series modeling ☆. Pattern
Recognition Letters.

Ian D. Jordan, Piotr Aleksander Sokol, and Il Memming Park 2019. Gated recurrent
units viewed through the lens of continuous time dynamical systems. arXiv:
Learning.

Zhongyang Han, Jun Zhao, Jun Zhao, Henry Leung, King Ma, King Fai Ma, Wei Wang,
Wei Wang, Wei Wang, and Wei Wang 2019. A Review of Deep Learning
Models for Time Series Prediction. IEEE Sensors Journal.

Eric Zivot, and Jiahui Wang 2003. Vector Autoregressive Models for Multivariate Time
Series. null.

Sean J. Taylor, and Benjamin Letham 2017. Forecasting at Scale.. PeerJ.

Adamantios Ntakaris, Giorgio Mirone, Juho Kanniainen, Moncef Gabbouj, and
Alexandros Iosifidis 2019. Feature Engineering for Mid-Price Prediction with
Deep Learning. arXiv: Statistical Finance.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong,
Wancai Zhang 2021. Informer: Beyond Efficient Transformer for Long
Sequence Time-Series Forecasting arXiv: Machine Learning.

Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long 2021. Autoformer:
Decomposition Transformers with Auto-Correlation for Long-Term Series
Forecasting arXiv: Machine Learning.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, Illia Polosukhin 2017. Attention Is All You Need arXiv:
Computation and Language

Yunhao Zhang, Junchi Yan 2023.Crossformer: Transformer Utilizing Cross-Dimension
Dependency for Multivariate Time Series Forecasting ICLR 2023

Marco Cerliani 2022. Time Series Forecasting with Feature Selection: Why you may
need it.
https://towardsdatascience.com/time-series-forecasting-with-feature-selection-why-you
may-need-it-696b23ecc329

Andrej Karpathy 2015. The Unreasonable Effectiveness of Recurrent Neural Networks
https://karpathy.github.io/2015/05/21/rnn-effectiveness/

Andrew Plummer 2020. Different Types of Time Series Decomposition
https://towardsdatascience.com/different-types-of-time-series-decomposition-396c09f92
693


