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Learning to rank (L2R) algorithms use a labeled training
set to generate a ranking model that can later be used to
rank new query results. These training sets are costly
and laborious to produce, requiring human annotators
to assess the relevance or order of the documents in
relation to a query. Active learning algorithms are able to
reduce the labeling effort by selectively sampling an
unlabeled set and choosing data instances that maxi-
mize a learning function’s effectiveness. In this article,
we propose a hovel two-stage active learning method for
L2R that combines and exploits interesting properties of
its constituent parts, thus being effective and practical.
In the first stage, an association rule active sampling
algorithm is used to select a very small but effective
initial training set. In the second stage, a query-by-
committee strategy trained with the first-stage set is
used to iteratively select more examples until a preset
labeling budget is met or a target effectiveness is
achieved. We test our method with various LETOR
benchmarking data sets and compare it with several
baselines to show that it achieves good results using
only a small portion of the original training sets.

Introduction

Ranking is an essential feature of many applications:
From web search to product recommendation systems and
online advertising, results have to be ordered based on their
estimated relevance with respect to a query or based on a
user profile or personal preferences. Learning to rank (L2R)
algorithms, which deliver superior performance when com-
pared with more traditional approaches such as BM25
(Robertson, Walker, & Hancock-Beaulieu, 1995), rely on
labeled or ordered training sets to build ranking models that
are used to rank results at query time. To create these train-
ing sets, human annotators must evaluate a portion or all
documents returned by a set of queries. After selecting a
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group of representative queries, a classic information
retrieval (IR) method (such as BM25) is used to retrieve and
rank the documents associated with each query and an
expert evaluates the first » documents, labeling each accord-
ing to its relevance to the given query. Depending on the
type of rank learning algorithm used, it may be necessary to
provide a binary relevance judgment (i.e., relevant, not
relevant) or a relevance level (e.g., somewhat relevant, very
relevant, extremely relevant), a pairwise ordering (e.g.,
document d; is more relevant than document d; or d; > d;),
or a complete or partial ordering of the documents returned
by a query (e.g., d;>d;>[...] >d). These different
relevance judgment types correlate to the three main
approaches used by L2R methods: pointwise, pairwise, and
listwise (Liu, 2009). Independently of how the training set is
constructed, it is costly and laborious to produce any amount
of it.

Active learning techniques have been proposed to help
deal with the labeling effort problem in L2R (Cai, Gao,
Zhou, & Wong, 2011; Donmez & Carbonell, 2009, 2008;
Long etal.,, 2010; Radlinski & Joachims, 2007; Silva,
Gongalves, & Veloso, 2011; Yu, 2005). The motivation
behind active learning is that it may be possible to achieve
highly effective learned functions by carefully selecting and
labeling instances that are “informative” to the learning
algorithm. Using active learning, we can reduce the cost of
producing training sets for rank learning algorithms and
improve the effectiveness of the learned functions by avoid-
ing adding “noisy” or redundant instances to the training
sets. Furthermore, human annotators can spend more time
analyzing the relevance of each selected instance, which
produces better training sets (Geng, Qin, Liu, Cheng, & Li,
2011). Active learning can dramatically reduce the size of
the training sets created without affecting the quality of the
resulting learned models by carefully selecting the docu-
ments to be labeled.

In a typical active learning scenario, data instances are
selected from an unlabeled set one at a time and labeled by
a human expert. Every time a new sample is selected and
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labeled, a new learning model is produced and the active
learning algorithm again chooses a new instance from the
unlabeled set. This process is repeated as long as necessary
or until the labeling budget is exhausted. Several studies
propose active learning methods for classification tasks (see,
e.g., Donmez, Carbonell, & Bennett, 2007; Mccallum, 1998;
Nguyen & Smeulders, 2004; Schohn & Cohn, 2000; Tong &
Koller, 2002). Whereas classification functions output a dis-
tinct class for each data item, ranking functions must
produce partial orders of items either through some scoring
function, pairwise ordering, or listwise ordering of the
items. Most active sampling methods for classification try to
directly minimize the classification error, but it is not
straightforward to extend this approach to the ranking
problem because, as noted by Liu (2009), position-based
measures such as the mean average precision (MAP) and the
normalized discounted cumulative gain (NDCG) are usually
noncontinuous and nondifferentiable. In addition, in most
supervised classification learning settings, samples can be
treated as independent of each other, which is not the case
for L2R where each sample represents a document relative
to a query. In classification, two instances that have very
similar feature-values usually will be assigned the same
class. In L2R, most features characterize the document given
the query: Two documents returned by different queries can
have similar feature-values and yet appear at diverse points
of each query’s rankings (or be considered relevant in one
case and not relevant in the other). Thus, in L2R, instances
are conditionally independent given a query (see Long et al.,
2010).

Despite the differences between classification and L2R,
active learning methods proposed in both fields have
common general outlines or strategies. In some methods, the
most ambiguous, or those instances for which the learner is
most uncertain, are selected (Lewis & Gale, 1994; Tian &
Lease, 2011). In a related strategy, a query-by-committee
(QBCO) strategy is used where competing learners vote on the
label of the candidate samples and the one selected for
labeling is the one about which the members of the commit-
tee most disagree in classifying (Cai et al., 2011; Seung,
Opper, & Sompolinsky, 1992). Some algorithms select
samples that would cause the greatest change to the current
learned function (Donmez & Carbonell, 2008; Settles,
Craven, & Ray, 2008). Other methods select instances that
would lead to the minimal expected future error or, similarly,
optimize some other metric such as precision or recall
(Donmez & Carbonell, 2009; Settles, 2009).

In this article, we propose a novel two-stage active learn-
ing technique for L2R. The first stage uses an association
rule-based strategy that selects nonredundant, informative
samples from a completely unlabeled set so that “noisy”
samples are avoided. The resulting data set, although very
small (yet effective), may be limited in its representative-
ness. Moreover, as the first stage has a clear stopping criteria
(it stops selecting new instances for labeling when it judges
that no other candidate has useful information to be incor-
porated into the training set), it does not provide a simple

way to select more instances (and possibly improve the
ranking quality), even if there is a labeling budget available.
Thus, in the second stage, we use a QBC procedure to
expand the selected set using a completely different selec-
tion criterion that prioritizes a better coverage of the sample
space. The result is still a very small, yet highly effective
training set.

To the best of our knowledge, all previously proposed
methods concerning active learning for L2R have assumed
that an initial labeled seed set is available to be used as a
base for further sample selection or use simple single-
feature and/or semirandom procedures to select initial sets.
Although some labeled samples may be available in certain
scenarios, we believe that in many other cases it is desirable
to create a new L2R training set from scratch. Unlabeled
samples are easily obtained from existing collections and
web crawling efforts. Thus, instead of using random sam-
pling or a classic retrieval method to obtain a small initial set
of documents, labeling them, and then using this seed set to
bootstrap the actual active learning process, our method
actively selects documents to be labeled from the start. This
characteristic allows the proposed method to obtain com-
petitive results right from the start, making it ideal for situ-
ations in which no previously labeled sets are available.
Another advantage of using the association rule-based first
stage to create the initial sets is the fact that it naturally
converges; thus, it is not necessary to arbitrarily choose a
number of documents per query that need to be labeled to
produce the seed sets (as is the case with the Donmez base-
line, as discussed in the Baselines section). These are impor-
tant characteristics of an active learning method because in
a real-world scenario, there is no simple way to evaluate the
quality of the selected training sets; only after reasonably
sized sets are actually selected and labeled (i.e., after a
reasonable part of the labeling budget is spent) can we use
cross-validation to evaluate their quality. We compare our
method against several baselines: random sampling
(Random), a QBC strategy using randomly selected initial
sets (Random-QBC), a combination of the first-stage
method and random second-stage selection (ARLR-
Random), the active learning method proposed by Donmez
and Carbonell (2008) (Donmez), the supervised (i.e., using
the complete training sets) SVMRank results published by
the LETOR producers (SVM Full), and the ARLR-RLR
active learning method presented by Silva etal. (2011).
Experiments were run on the six LETOR (LEarning To
Rank) 3.0 web data sets, iteratively selecting up to 15% of
each original training set for comparative purposes. As dis-
cussed later in the Experimental Evaluation section, our
method obtained excellent results, selecting as little as 6% of
the unlabeled sets. Moreover, its results surpass, in most
cases (on average, all cases), state-of-the-art supervised
algorithms that use the complete training sets, producing
some of the best results ever reported for these data sets
(e.g., considering all the reported LETOR 3.0 benchmark
baselines). We also extend our method to perform both
query- and document-level selections (see Adding Query-
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Level Selection section) and test this modified version on the
LETOR 4.0 collection. This modification allows the method
to be used on data sets that have many queries. We believe
this work is an original and important contribution as the
method is both practical and effective, advancing the state of
the art in active learning mechanisms for L2R.

In summary, the main contributions of this article are as
follows:

e A practical and effective active learning method that can be
used to produce training sets for L2R algorithms

* A method that does not rely on an initial labeled set: It can be
applied directly to select samples from unlabeled sets

* A method that is general and obtains state-of-the-art results
for data sets with very diverse characteristics, such as those
based on informational or navigational queries

The remainder of this article is organized as follows: The
Related Work section discusses related work. The Two-
Stage Active Learning for L2R section presents the two
stages of our proposed method and describes how the
two stages work together. The Experimental Evaluation
section describes our experimental evaluation along with
several analyses. Finally, the Conclusions section wraps up
the article.

Related Work

Some researchers have recently proposed active learning
schemes for L2R based on the optimization of approxima-
tions of position-based measures. Long et al. (2010), for
example, propose a general active learning framework
based on expected loss optimization. Their framework uses
function ensembles to select training examples that mini-
mize a chosen loss function. The authors approach the
unique challenges of active learning in L2R by separating
their selection algorithm into query- and document-level
parts. To approximate their chosen metric, namely, dis-
counted cumulative gain (DCG), they use ensembles of
learners to produce relevance scores and estimate predictive
distributions for the documents in the active learning set. To
produce the ensemble, they use a bootstrap technique that
relies on an initial labeled set. Thus, their technique requires
an initial labeled set to build the ensemble of learners,
which needs to be large enough for the learners in the
ensemble to be minimally effective. They evaluate their
method using a large commercial web search data set (S00K
documents) and using initial (labeled) sets of 2K, 4K, and
8K documents.

An SVM-specific strategy is presented by Donmez and
Carbonell (2008). The method starts with a per-query
labeled seed set. It progresses in rounds, selecting a preset
number of new documents per query that are then labeled
and added to the training set. The basic idea is to estimate,
for each query, what is the capacity of an unlabeled example
to update the current model if it is labeled and added to the
training set. The top five samples for each query that have

the highest estimated impact in the current model are
selected and labeled. The idea is that those instances that
change the current learned model the most will accelerate
the model’s convergence to the true hypothesis. The authors
present results using this sampling technique adapted to
SVMRank and RankBoost. Their method achieves competi-
tive results with around 10% of the original training sets
selected. We have chosen to use this method as a baseline
because it is elegant, simple, and relatively easy to imple-
ment. It also produces results on par with those presented in
the authors’ more recent work, which is described later.
More details about this method are provided in the Baselines
section.

Donmez and Carbonell (2009) rely on the relationship
between the area under the receiver operating characteristic
curve and the hinge rank loss proposed by Steck (2007) to
develop a loss minimization framework for active learning
in ranking. Instead of testing each and every unlabeled
sample to determine the one that has the smallest expected
future error, the authors suggest selecting the examples that
have the largest contribution to the estimated current error.
These are the ones that, when labeled, will potentially bring
more benefit for the functions that will be trained in the next
rounds of the method. The proposed selection criterion is
based on the hinge rank loss calculated on a per-query basis
and depends on the determination of a rank threshold that
estimates the rank position that separates the lowest ranked
relevant element from the highest ranked nonrelevant
example. The algorithm starts with a small, semirandom
labeled per query set and proceeds selecting unlabeled
samples that have the highest uncertainty (as defined by the
rank threshold). These samples are then labeled and added to
the per-query labeled sets, and the process is repeated as
many times as necessary.

Some other studies apply active learning strategies in
association with other techniques such as transfer learning
or relevance feedback (RF). Cai et al. (2011), for instance,
propose a method that integrates domain adaptation and
active learning as a way to reduce labeling costs. They first
use a QBC scheme built on a mixture of source domain and
target domain data to select the most “informative” queries
from the target domain. Then these new labeled sets are used
to adjust the importance weights of source-domain queries
for boosting the transfer of prior ranking knowledge. Their
QBC strategy is based on the query-by-bagging concept
(Abe & Mamitsuka, 1998) where from the currently labeled
set a number of partitions is created by sampling uniformly
with replacement, and the same learning algorithm is trained
using these partitions to obtain different models to be used
as committee. Their method performs only query-level
selection, meaning that all the documents for the selected
queries have to be labeled. Although their method is not
directly comparable with ours (because it uses rank adapta-
tion on top of active learning), it must be noted that by using
query-level selection only, the amount of labeled documents
grows very fast for data sets such as those in LETOR 3.0
(which is used to evaluate their method). In contrast, our
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work uses an ensemble of learners approach to QBC and
performs document-level selection (although, as we discuss
later, it can be easily extended to use query-, document-, or
query-document—level selection), achieving better results
using 15% (usually much less) of the unlabeled sets than
those presented in their work using 100% of the training
sets.

Another work leverages active learning using RF. Tian
and Lease (2011) propose a method that iteractively
improves the rankings shown to the user based on feedback
on which link the user clicks at each round. The method uses
an SVM algorithm to classify the documents into relevant
and not relevant. Their active learning scheme uses two
approaches: In the Simple Margin version, those documents
lying closest to the decision hyperplane are considered the
ones the SVM is most uncertain about. They also propose a
variation, called Local Structure, that takes into account the
proximity of the unlabeled instances to those instances
already labeled. This variation chooses instances close to the
decision surface but also far from already labeled data and
close to more unlabeled samples in an attempt to maximize
the diversity of the selected set and improve the algorithm’s
learning curve. They evaluate their method using Robust04'
and LETOR 3.0, comparing it with RF baselines. Their work
is not directly comparable with ours because we provide a
method for reducing the training set creation effort in which
the human annotators evaluate each document selected by
the system in turn until the (small) labeling budget is met.

Two-Stage Active Learning for L2R
Stage 1: Active Sampling Using Association Rules

To be able to explain how the active sampling technique
that constitutes the first stage (Silva etal., 2011) of our
two-stage approach works, we first briefly describe the
supervised algorithm it is based on and detailed by Veloso,
Almeida, Gongalves, and Meira, Jr. (2008).

RLR. The rule-based learning to rank (RLR) algorithm is a
supervised pointwise method that uses association rules
(Agrawal, Imielifiski, & Swami, 1993) to rank documents.
To use it, we need a labeled training set D composed of
records of the form <gq, d, r>, where g is a query, d is a
document returned by the query and is represented as a list
of m feature-values or {fi, f5, . . ., fu}, and r is the relevance
of d to g. Features include BM25, PageRank, and many
other document and query-document properties that are dis-
cretized to reduce the feature space and allow for the enu-
meration of association rules. The relevance can be either
binary (i.e., 0: not relevant, 1: relevant) or a set of discrete
and ordered possibilities {ro, r1, ..., i} (e.g., 0: not rel-
evant, 1: somewhat relevant, 2: relevant, 3: very relevant).
The test set T consists of records <g, d, ?> for which only

'http://trec.nist.gov/data/robust/04.guidelines.html

the query g and the document d are known, whereas the
relevance of d to g is unknown. From the training set D, we
can derive a rule-set R composed of rules of the form
{ fin.Af — r,-}. These rules can contain any mixture
of the available features in the antecedent and a relevance
level in the consequent. The strength of the association
between antecedent and consequent is measured by a statis-
tic, 6, which is known as confidence (Agrawal et al., 1993)
and is simply the conditional probability of the consequent
given the antecedent. The algorithm works by delaying rule
extraction until query time: When a set of documents is
retrieved for a given query from 7, each individual docu-
ment d in 7, (i.e., the subset of 7 containing the documents
returned by query ¢) is used as a filter to remove irrelevant
features and examples from D. This process produces a
projected training set, D,, which is obtained after removing
all feature-values not present in d. In other words, this pro-
jected training set contains only those instances that have
values in common with the document d that is being ranked
at this point. This process ensures that we can only derive
association rules from the projected training set that are
useful in ranking document d. Thus, a specific rule-set, R,
extracted from P, is produced for each document d in 7;

It is necessary to combine all rules in R, to estimate the
relevance of a document d. R, is viewed as poll, in which
each rule { ¥ —% ’?} € R,is a vote given by a set of fea-
tures X for relevance level r;. Votes have different weights,
depending on the strength of the association they represent
(i.e., 6). The weighted votes for relevance level r; are
summed and then averaged (by the total number of rules in
‘R, that predict relevance level r;), forming the score asso-
ciated with relevance r; for document d, as shown in Equa-
tion 1, where 9(X — 1) is the value 6 assumes for rule
{X = r},and Rj is the set of rules derived for document d
that predict relevance level r;:

Y ox —r)

s(d, r) = =
d

, where X c d. @))

Therefore, for a document d, the score associated with
relevance r; is given by the average 6 values of the rules in
‘R, predicting r;. The likelihood of d having a relevance level
r; is obtained by normalizing the scores, as expressed by
p(r]d), shown in Equation 2:

s(d, 1)
k

plnld)= :

Finally, the relevance or score of document d is estimated
by a linear combination of the likelihoods associated with
each relevance level, as expressed by the ranking function
rank(d), which is shown in Equation 3:

rank(d) = 31 p(r]d), )
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The value of rank(d) is an estimate of the true relevance
of document d using P (r:|d). This estimate ranges from ro to
ri, where ry is the lowest relevance and ry is the highest one.
After rank(d) is calculated for all documents returned for the
query, we can sort the documents by this score in descending
order and obtain the final ranked list.

ARLR. The active learning variation of the rule-based
method briefly discussed earlier was introduced by Silva
etal. (2011). We call it ARLR (Active RLR) throughout this
article. The idea behind the method is that the number of
rules generated by the documents found in the unlabeled set
is an indication of how much information each document
shares with the current selected (and labeled) set.

More formally, from an unlabeled set I/ = {u;, u,, ..., u,},
we want to select highly informative documents to compose
anew labeled training set D such that |D| < |U|. Initially, D
is empty and the algorithm cannot extract any rules from it,
so it selects from U the document that shares the most
feature-values with the other unlabeled documents. This
document is labeled and put into D (but also remains in /).
Then, at each round, the algorithm selects the document that
demands the fewest rules (i.e., the document in U for which
there are less matching rules) because it shares fewer
feature-values with the documents already selected. If only a
few rules are extracted for a document u;, then this is evi-
dence that D does not contain documents that are similar to
u;; thus, the information provided by document u; is not
redundant, and ; is a highly informative document given the
documents already in D. If u; € U is inserted into D, then
the number of rules for documents in U that share feature-
values with u; will increase. However, the number of
rules for those documents in U that do not share any
feature-values with u; will remain unchanged. Therefore, the
number of rules extracted for each document in U can be
used as an approximation of the amount of redundant infor-
mation between documents already in D and documents in
U . The result is a very small training set based on a diversity
criterion: The more diverse documents we have in the train-
ing set, the more we cover the feature space with the small-
est possible amount of documents.

The sampling function used by ARLR exploits this key
idea by selecting documents that contribute primarily with
nonredundant information: These informative documents
are those likely to demand the fewer number of rules from
D. More specifically, the sampling function Y(U) returns a
document in U according to Equation 4:

y(U) = {u; such that Vu, :|R, | <|R,,[}. S

Each document returned by the sampling function is
labeled and inserted into D, but it also remains in /. In the
next round, the sampling function is executed again, but the
number of rules extracted from D for each document in U
is likely to change due to the document recently inserted into
D. After selecting the first document and at each of the
posterior rounds, ARLR executes the sampling function and

a new example is inserted into D. At iteration i, the selected
document is denoted as ¥;(U), and it is likely to be as
dissimilar as possible from the documents already in
D={yi.,(U), Yie,(U),...7;(U)}. All steps of ARLR are
shown in Algorithm 1: The loop (steps 1-12) runs until a
document already inserted into D is selected again (step
12). In each loop, for every document in &/ (2), a projection
of D is created (3) and rules useful for the document under
consideration are derived (4). Initially, D is empty, so we
select the document that shares the most feature-values with
the other unlabeled documents (7). Once D is nonempty, we
select the document that generates the smallest amount of
rules (9).

Algorithm 1 ARLR.

Require: Unlabeled data U, and 0,,, (= 0)
Ensure: The training data D

1: continue

2: for all document u; € U do

3: D,, < D projected according to u;

4: ‘R,, < rules extracted from D, |06 20y,

5: end for

6: if D =(then

7: 7i(U) < u; such that Vu, :[U,|>|U, }

8: else

9: 7:(U) & w; such that Yy, :|R, |< ‘Ru/‘}
10: end if

11: if y;(U) € D then break
12:  else append 7;(U)to D

Natural stop condition. The algorithm stops when all
available documents in {/ are less informative than any
document already inserted into D. This occurs when ARLR
selects a document that is already in D. When this condition
is reached, ARLR will keep selecting the same document
over and over again, and there is no information gain with
the inclusion of these documents.

As explained earlier, ARLR tries to maximize diversity
by selecting documents to cover the feature space as best
and as fast as possible using the number of rules demanded
by each candidate document as a basis. This is in contrast
with other initial set selection strategies (such as the one
used by the Donmez method, as explained in more detail in
the Baselines section), which use the value of only one
feature and random sampling to build the initial sets. By
using ARLR to select our initial sets, we are trying to
provide the QBC stage with a representative and diverse set
of examples that will allow a faster convergence of the
learned model, thus obtaining better results right from the
beginning of the active selection process.

Stage 2: Expanding the Selection

OBC. Stage 1 of our method selects a very small initial set
that can be used as a training set for our query-by-committee
(QBC) iteractive active selection stage. The concept of using
a committee of learners to identify “interesting” data
instances is well known (Baum, 1991; Schapire, 1989;
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Seung et al., 1992). The basic idea is to use an ensemble of
learners or models to classify or rank an unlabeled set, and
those data instances that the various models most disagree
about are deemed the most “informative” and are selected
for labeling. In Seung et al. (1992), the authors call this
process “incremental learning,” where a training algorithm
is used to produce a committee of 2k learners and a query
algorithm selects a sample that is classified positive by half
of the committee and negative by the other half. They show
that, for the Gibbs training algorithm, in the k — oo limit,
each query bisects the version space, maximizing the infor-
mation gain. More general methods have been proposed and
successfully used such as query-by-bagging and query-by-
boosting (Abe & Mamitsuka, 1998; Schapire, 1989). In the
bagging approach, different models are produced using the
same learning algorithm trained on partitions created by
uniformly sampling the current labeled set. Boosting uses a
more sophisticated, round-based resampling method where
the sampling distributions (or instances’ weights) are varied
at each round to focus the learned models on the parts of the
training data on which previous learners performed poorly.
The bagging concept is immediately applicable to active
learning, where the instances selected at each round are
those that the various models most disagree about. In an L2R
scenario, this measure of disagreement could be, for
instance, the Kendall’s 7 rank correlation coefficient or, as
proposed by Cai etal. (2011), a vote entropy (Dagan &
Engelson, 1995) variation adapted for pairwise ranking.
These metrics would allow the measurement of the disagree-
ment of the learners in ranking each query. This means we
would need to select whole queries (i.e., query-level selec-
tion) instead of sampling documents from the unlabeled set.
This may be fine for data sets that contain few documents
per query, but doing query-level selection on the LETOR 3.0
data sets would imply selecting at least 1,000 documents per
round, jeopardizing our goal of minimizing the size of the
training sets that need to be labeled.

Accordingly, our method uses an ensemble approach to
QBC where different algorithms are used to produce diverse
rankings at each round. Thus, we train three distinct algo-
rithms using the same training data (the labeled data avail-
able at each round) and rank the remainer of the unlabeled
set using these three learners. Then, for each document of
each query, we calculate a simple metric to determine which
documents of that query the three learners most disagree in
ranking. At each round, we select the first m documents from
each query that have the highest value for the disagreement
metric described later. To rank the unlabeled sets, we use
three algorithms as our committee: SVMRank (Joachims,
2002), RankBoost (Freund, Iyer, Schapire, & Singer, 2003),
and RLR (Veloso et al., 2008). These algorithms are trained
using the labeled set gathered so far and then used to rank
the remaining instances in the unlabeled set.

We chose to sample m =5 documents per query per
round simply to be able to compare our results with our main
baseline (proposed by Donmez & Carbonell, 2008). As we
discuss in the Results section, this works fine for the LETOR

3.0 data sets, which have few queries and many documents
per query. However, our method can be easily adapted to
either (a) perform a query-level selection for data sets with
many queries and few documents per query (using Kendall’s
T as a measure of rank disagreement, for instance) or (b)
perform first a query-level selection and then a document-
level selection in data sets with many queries and many
documents per query. The latter option is probably the most
reasonable because selecting all documents of a query, even
in data sets with few documents per query, would likely
introduce noisy instances into the selected set, possibly
hurting the results. Furthermore, the second option provides
greater flexibility because we could tune the number of
queries selected per round, as well as the number of docu-
ments selected per query per round, adapting the number of
selected samples per round to a number compatible with the
characteristics of the data set at hand and the labeling
budget. We have implemented both variations (a and b) and
discuss the implementation and results from experiments
run on the LETOR 4.0 collection in the Adding Query-Level
Selection section.

Measuring rank disagreement. At each round, the unla-
beled documents of each query are ranked by the members
of the committee using models trained on the labeled sets
accrued so far. If we were performing query-level selection,
as in Cai et al. (2011), we would need to measure the dis-
agreement of each ranking on the query level. Instead, our
method works at the document level; that is, we want to
measure the disagreement among the learners about the
ranking of each document. We select those documents that
vary the most in their positions in each ranking. One simple
metric would be to calculate the variance or standard devia-
tion of each document’s positions. For example, if we have
three learners and document d; is ranked in positions 10, 15,
and 20 of each ranking, this document would have a ranking
variance of 25 (or a standard deviation, o, of 5). The
problem of this approach is that it gives the same importance
to documents whether they appear at the top or at the bottom
of the rankings. For instance, document d; appearing in
positions 110, 115, and 120 would have the same variance of
25.1In L2R, we are usually more concerned with the very top
of the ranking (Granka, Joachims, & Gay, 2004); thus, it
would seem preposterous to assign the same value of dis-
agreement to documents d; and d; in the earlier example. A
simple solution is to use the coefficient of variation (CV),
which is a normalized measure of dispersion. The CV is
defined as o/u (standard deviation over the mean). Now,
documents far down the rank will need a much greater
variation in their rankings to be selected for labeling. For
example, a document d; with rankings 200, 300, and 400
will have the same CV as document d; with rankings 10, 15,
and 20. Thus, this metric will prioritize the choice of docu-
ments with disagreeing rankings that are closer to the top in
all three rankings but will still sometimes select documents
that are farther from the top if they have a much bigger
divergence in the rankings produced by the three models.

6 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—ee 2013

DOI: 10.1002/asi



The Two Stages Together

Figure 1 shows how the two stages are combined to produce
a small yet effective training set. In the first stage (left),
ARLR is used to produce a training set from scratch. It does
this by inserting an initial document into the empty training
set D (1) (it chooses the document that shares the most
feature-values with all the other samples in the unlabeled
set, U/). Then it loops through each and every of the unla-
beled documents (2), creating a projection of the training set
accrued so far (2a) and deriving association rules from these
projected sets (2b). The document that produces the smallest
amount of rules is selected (3), labeled, and inserted into the
training set D, but not removed from U (5). This process (2,
3, 5) is repeated until a document already selected is chosen
again (4). Once ARLR converges and stops, the selected
training set D is passed on to the QBC stage. At this point,
the selected documents are removed from the unlabeled set
U , from which the QBC stage will select more samples.
In the second stage (QBC, to the right), the training set
produced by ARLR is initially used to train the committee
members (I). After ranking the unlabeled set (I), the CV is
calculated for all documents in / (III) and used to select
five documents from each query in the unlabeled set (IV).

ARLR

After being labeled, these documents are inserted into the
training set D and removed from {/. This ends one round of
the QBC stage. If more rounds are required, the process
is repeated using the augmented training set (transition from
V to I).

In our experiments, we ran the loop to the right (QBC) for
25 rounds for evaluation purposes. At each new round, the
training set composed of the ARLR-selected documents plus
the instances selected in all previous rounds is used to
produce the committee ranking models, rank the unlabeled
set, and select new documents based on the calculated CV
values.

Experimental Evaluation
Data Sets

To evaluate the effectiveness of our method, we per-
formed extensive experimentation on the L2R (LETOR)
benchmark data sets version 3.0. LETOR 3.0 is composed of
six web data sets plus the OHSUMED corpus. The web data
sets contain labeled instances selected from web pages
obtained from a 2002 crawl of the .gov top level domain
(TLD). These collections are separated in three search
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tasks—topic distillation (TD), home-page finding (HP), and
named page finding (NP)—and contain two sets each
(namely, Text REtrieval Conference [TREC] 2003 and
2004). The TD data sets are basically composed of “infor-
mational” queries, that is, queries whose targets are docu-
ments containing information about a specific topic, theme,
or entity. The HP and NP data sets are focused on “naviga-
tional” queries whose target is usually a single, specific web
page.

These collections contain instances represented by 64
features for the top 1,000 documents returned for a specific
set of queries using the BM25 model (Qin, Liu, Xu, & Li,
2010). These data sets use a binary relevance judgment
indicating whether a document is relevant to a given query.
We evaluate our method on all the largest, most diverse
LETOR 3.0 web data sets. In all data sets, we have used the
query-based normalized versions as suggested by the pro-
ducers of the LETOR benchmarking data sets. We also use
five-fold cross validation for all results reported and the
evaluation script provided in the LETOR package to gener-
ate the final MAP and NDCG metrics (see Baeza-Yates &
Ribeiro-Neto [2011], for definitions of these metrics).

Experimental Setup

In our active learning scenario, we consider the original
training sets of each data set as unlabeled sets from which
we select instances to be labeled. The label for these
instances is not used until they are selected, and we assume
that a human annotator evaluates and labels each selected
document. The active learning process is done offline: After
the documents are selected and labeled, the selected sets are
used as training sets by an L2R algorithm to create a ranking
model that can then be used to rank the test sets (or new user
queries). Our active method, ARLR-QBC, is run on each
fold of each data set in the following manner.

First stage (ARLR). In the first stage, the unlabeled and test
sets are discretized using the Tree-based Unsupervised Bin
Estimator (TUBE) proposed by Schmidberger and Frank
(2005). TUBE is a greedy nonparametric density estimation
algorithm that uses the log-likelihood measure and a top-
down tree-building strategy to define varying-length bins for
each attribute in the data set. All sets are discretized using 10
varying-length bins. The discretization is necessary because
ARLR uses association rules with nominal values in the
antecedent. Then the unlabeled set is partitioned into five
vertical partitions as proposed by Silva et al. (2011). Each
partition contains all unlabeled instances, but only a group
of each instance’s features. ARLR is run on each partition,
selecting instances based on distinct feature sets. This
process is done to increase the number of selected instances,
because for each partition the algorithm will choose those
that are most informative given the features in that partition.
It also improves the diversity of the samples because they
are selected based on distinct characteristics. The final

product of this first stage of the method is a very small
labeled set that we use as an initial training set for stage 2.

Second stage (OBC). The first step in stage 2 is to determine
the best parameters for the algorithms used in the committee.
To do that, we split the tiny labeled sets produced in stage 1
into training (50%) and validation (50%) sets. We then run the
algorithms varying the parameters and choose the param-
eter(s) that gives us the best MAP. Stage 2 progresses in
rounds where, at each round, five instances are selected
per query. This number is used so that we can compare our
method with Donmez, one of our baselines. At the first round,
we use the labeled set produced in stage 1 to train our three
supervised algorithms: SVMRank, RLR, and RankBoost.
The models produced are used to rank the unlabeled sets
(which, at this point, are the original training sets minus the
instances selected in stage 1). Then, for each query, the
rankings are evaluated and the metric described in the Stage
2: Expanding the Selection section (CV) is calculated for each
document. The five documents with the highest CV value are
then selected to be labeled. At the end of the round, five times
the number of queries in the unlabeled set need to be labeled
by the human annotators (in TD2004, for instance,
5 x 45 =225 documents are selected per round; for all data
sets, the number of documents selected per round represents
0.5% of the unlabeled sets). Once these documents are
labeled, they are inserted into our labeled training set and
removed from the unlabeled set. As another round starts, the
augmented training sets are used to train the three committee
members and the process described earlier is repeated. This
procedure can be repeated as many times as desired or until
the labeling budget is exhausted.

We performed extensive comparison of our method with
the chosen baselines and provide the results of statistical
significance tests where appropriate.

Baselines

Donmez. Our main baseline, which we call “Donmez,” is
an implementation we did of the method described by
Donmez and Carbonell (2008). The Donmez method is
based on the assumption that those instances that change the
current model the most are more “interesting.” The rationale
behind this strategy is that the initial model is far from the
ideal hypothesis and that by selecting the instances that are
estimated to change the current model the most, it will
approach the best hypothesis faster. Instead of retraining the
learner on each and every unlabeled sample one by one,
Donmez and Carbonell propose calculations to estimate the
change in the current learner for SVMRank. The original
method starts with an initial labeled set composed of 15
randomly picked documents plus exactly one relevant docu-
ment per query. We have implemented this initial set selec-
tion (i.e., selecting an initial set containing 16 instances per
query before starting the round-based selection proposed by
Donmez) in the following manner: An “oracle” uses the
labeled set to determine which feature gives the best mean
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reciprocal rank (MRR; see Baeza-Yates & Ribeiro-Neto
[2011], for a definition of this metric) value by ranking all
instances using the values of each feature in turn. Then we
start selecting instances for each query in the order deter-
mined by this selected feature: If, before selecting 16
instances, one of them is found to be relevant, then the
remaining instances (up to 16) are randomly sampled. If a
relevant sample is not found in the first 16, then we keep
selecting in the order determined by the oracle until either 50
samples are selected or a relevant one is found. Thus, the
initial sets contain at least 1.6% of the original training sets
but are usually a little larger, because for some queries, a
relevant document is not found in the first 16 sampled docu-
ments. After gathering these initial sets, we proceed by using
Donmez’s method to select, at each round, five new docu-
ments per query (amounting to 0.5% of the original training
sets selected per round). To make the comparison easier, our
method also selects 5 documents per query per round, and
we also run our experiments for 25 rounds. Because
Donmez uses some randomly selected instances in the initial
sets, results reported are averages for 10 runs for each fold.

Random-QBC. To understand how our initial selection
method, ARLR, influences the second stage, we ran QBC
with randomly chosen initial sets (16 samples per query).
Results reported are averages for 10 runs on each fold.

ARLR-Random. Conversely, we also ran a random second
stage to show that QBC is an effective selection strategy. In
this baseline, we start with the ARLR-selected sets and then
run a random selection process where five instances are
selected per query per round. Results reported are averages
for 10 runs on each fold.

Random. In this baseline, all instances are randomly
selected. The amount of instances selected is the same as
Donmez’s original method: It starts with an initial random
set of 16 instances per query (1.6% of each set) and selects
5 random instances per query per round (or 0.5% of each
set). Results reported are averages for 10 runs on each fold.

SVM Full. These are the results provided by the LETOR
publishers for the SVMRank algorithm. This is a natural
baseline because SVMRank is used by Donmez and by us to
generate the final ranking in each round, thus allowing a
direct comparison regarding the active selection process.
SVMRank is also a popular L2R method® and a strong
baseline in several LETOR data sets. We include this base-
line as a line in each plot as a reference to put our results and
the other baselines in perspective. Notice that these results
are for SVMRank using 100% of the training sets. In the
Results section, we also compare our method with the other

2Its code is freely available at http://www.cs.cornell.edu/people/tj/
svm_light/svm_rank.html.

11 supervised baselines published by the LETOR producers.
We do not plot these baselines in Figures 2 and 3 so as not to
clutter them.

ARLR-RLR. This line indicates the result obtained by using
ARLR to select instances and RLR to rank the test set (these
are the results that appear in Silva et al. [2011]). Notice that
ARLR selects instances until it naturally converges and
stops selecting new instances. Thus, it is not possible to run
ARLR in a round-based fashion. We present this result as a
line for readability (because this result should actually be a
point in the extreme left of each plot).

Published LETOR 3.0 results for the considered
collections. As mentioned earlier, we also compared the
results of our method (ARLR-QBC) with all reported
LETOR 3.0 results in the considered collections. As we shall
see, when we consider the best results of all the 26 experi-
mental rounds, as well as the best results in the first 8 rounds,
ARLR-QBC is the best overall method for all data sets on
average and the best performer in three of six data sets.
These are some of the best results ever reported in the
literature for these collections.

Results

Notice that our method (ARLR-QBC), Donmez’s,
Random-QBC, ARLR-Random, and Random methods are
round-based active methods where an initial selection is
performed as explained earlier (round O or stage 1 of our
method); then at each new round, new instances are labeled
and inserted into the (growing) training sets (rounds 1-25 or
stage 2 of our method). For these three methods, at the end
of each round we run SVMRank using the current training
sets obtained by the active selection processes to rank the
test sets and obtain the results presented. As a consequence,
these three methods appear in the plots as curves containing
26 points each.

SVM Full and ARLR-RLR are not round based: The
results for SVM Full were obtained by running SVMRank
using the complete original training sets to rank the test sets,
whereas ARLR-RLR results were obtained by running RLR
with the sets selected by ARLR. Although SVM Full is a
fully supervised baseline, whereas ARLR-RLR is an active
learning baseline, neither is round based and both appear in
the plots as flat lines only to improve readability. If correctly
portrayed, ARLR-RLR would be a point in the extreme left
of each plot, whereas SVM Full would not even appear in
the plots because it uses 100% of the training sets and our
plots show on the x-axis only up to 15%.

Informational data sets. Figure 2 shows the performance
of our method against the chosen baselines on TD2003 and
TD2004. These are the most relevant data sets because they
are built using the more general TD queries (in contrast with
the more specific navigational queries used to build the HP
and NP data sets). The plots show on the y-axis the MAP
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(left) and NDCG @ 10 (right) obtained at each round for each
method. The x-axis indicates the percentage of the unlabeled
set selected at each of the 26 rounds. The first point on the
left of the plot for ARLR-QBC is the result obtained by
running SVMRank with the ARLR-only selected set (stage
1). The other 25 points correspond to the 25 rounds of the
stage 2 QBC method. ARLR, as explained in the Stage 1:
Active Sampling Using Association Rules section, naturally
converges; therefore, the amount of samples it selects for
labeling varies from one data set to another. Thus, the
ARLR-QBC lines start at 2.28% and 1.33% (x-axis) for
TD2003 and TD2004, respectively.

TD2003 is exceptional in our results, as the ARLR-
selected initial set performs very well in this data set using
both SVMRank and RLR (i.e., ARLR-QBC and ARLR-
RLR lines in the plots). Using only the initial data set,
SVMRank obtains a MAP of 0.2881 and ARLR-RLR a
MAP of 0.2728, surpassing not only SVMRank using the
full training set (SVM Full) but also (in the case of ARLR-
QBC) all supervised baselines published by the LETOR
producers (see more details in the Analysis section). With
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such a good initial result, it is hard to expect much improve-
ment. Although ARLR-QBC manages to obtain an even
higher MAP at round 4 (0.2908) and a peak NDCG of
0.3710 at round 5, what we see is the MAP descending and
stabilizing at around 0.265 and the NDCG staying mostly
close to 0.365. Donmez starts at lower values for both
metrics but eventually catches up (at round 4), obtaining
similar results to ARLR-QBC at later rounds (from 10 up),
specifically in terms of the MAP.

TD2004 shows a different picture, with our method also
surpassing Donmez in the initial rounds for both metrics, but
starting with a lower performance. We can see that ARLR
does not select such a good initial set as in the case of
TD2003, but the QBC selection performs very well, bring-
ing the metrics on par with SVMRank using the complete
training set (i.e., SVM Full) just after round 1 (1.84%
selected). The MAP keeps growing until reaching a peak of
0.2388 in round 22, whereas the NDCG reaches 0.3335 in
round 6 and then slowly declines to 0.32. These results are
not as exceptional as those for TD2003; still, the MAP for all
rounds (with the exception of rounds 0 and 2) beat 9 of the
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FIG.2. TD2003 and TD2004: ARLR-QBC and baselines comparison. MAP (left) and NDCG@10 (right) versus % of samples selected from unlabeled
set. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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FIG. 3. HP2003, HP2004, NP2003, and NP2004: ARLR-QBC and baselines comparison. MAP (left) and NDCG@ 10 (right) versus % of samples selected
from unlabeled set. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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12 supervised baselines published by the LETOR producers,
and the NDCG (with the exception of rounds 0, 1, and 20)
beat 8 of the 12 baselines. If we consider only the peak
results, then ARLR-QBC beats 11 of the 12 supervised base-
lines (losing only to RankBoost, the best baseline in this
collection).

Comparison with Random. Both ARLR-QBC and Donmez
surpass the Random baseline with 99% confidence level on
all rounds in both informational data sets.

ARLR-OBC versus Random-QBC. Figure 2 shows that
using QBC with random initial sets severely affects the
results in the initial rounds. With ARLR-selected initial sets,
the QBC round-based method is able to select highly effec-
tive training sets in the first few rounds, which, we believe,
is an important characteristic of a practical active learning
method. A paired Student’s ¢ test shows that ARLR-QBC is
better than Random-QBC with 99% confidence level in the
first eight rounds (0-7) on both TD2003 and TD2004. If we
consider all rounds, our method is significantly better with
95% confidence level on TD2003. It is also, on average,
better than Random-QBC on TD2004 (considering all
rounds), but not significantly so.

ARLR-QBC versus ARLR-Random. On TD2003, ARLR-
Random starts with the high-quality set from ARLR and as
random instances are added, the results steadily decline. A
paired ¢ test shows that, although ARLR-QBC is not signifi-
cantly better in the first eight rounds, it is better with 99%
confidence if we consider all rounds. TD2004 shows a dif-
ferent picture, with ARLR-QBC beating ARLR-Random
with 99% confidence if we consider either the first eight
rounds or all rounds. Together with Random-QBC, this
baseline shows that the combination of ARLR and QBC is
very effective.

ARLR-QBC versus Donmez. On TD2003, the ARLR-QBC
results are significantly better than Donmez’s with 95%
confidence level up to the fourth round for the MAP (4.32%
selected) and up to the fifth round for the NDCG (4.83%
selected). On TD2004, our method is significantly better
than Donmez’s with 95% confidence level up until the 13th
round (7.91% selected) for both metrics.

From these results we can see that ARLR-QBC selects
highly effective sets for the informational data sets with only
a few rounds (<6% selected). Depending on the metric used
and the data set, peak results are obtained in the initial or
later rounds, but in general, the results are quite good.
Although we run the experiments for 26 rounds, selecting
almost 15% of the unlabeled sets, Figure 2 shows that the
sets selected in the initial rounds (0-7) are usually quite
effective.

Navigational data sets. Figure 3 shows that our method
performs very well on HP2003, NP2003, and NP2004 when
compared with SVM Full. It surpasses this baseline on both

metrics in round 1 on HP2004 and NP2004, and in round 4
on HP2003 (MAP). NP2003 is the exception, as ARLR-
QBC never reaches the same level as both SVM Full and
ARLR-RLR. To better understand these results, let us first
take a look on how these results compare with the 12 super-
vised baselines published by the LETOR producers. In
HP2003, ARLR-QBC obtains a MAP of 0.7463 by round 5
(selecting only 3.77% of the unlabeled set), surpassing five
of these baselines (including SVMRank and RankBoost).
The NDCG results are a little worse, beating only three of
these baselines (Regression, SVMMAP, and FRank) by
round 5 (with a value of 0.8013). The results are much better
for HP2004, where by round 6 (4.95% selected) the MAP
obtained (0.7268) beats all 12 published supervised base-
lines. The NDCG@10 for round 5 (0.8241) is better than
that for all baselines with the exception of AdaRank-MAP.
On NP2003, although ARLR-QBC never reaches the same
performance level of SVM Full, by round 22 (12.14%
selected) the MAP of 0.6902 is still better that of 9 of the 12
supervised baselines. The NDCG fares a little worse, sur-
passing only 4 of these baselines by round 3. Our method
also obtains outstanding results on NP2004, beating all
supervised baselines by round 3 with a MAP of 0.6948 (and
reaching a peak of 0.7226 in round 14, which represents a
gain of 5.24% over the best baseline, Regression-Reg). The
NDCG@ 10 obtained at round 3, 0.8205, also surpasses all
12 baselines, achieving a peak value of 0.8419 inround 17 (a
gain of 3.58% over the best baseline, ListNet).

Comparison with Random. ARLR-QBC and Donmez are
significantly better in all 26 rounds with 99% confidence
level on HP2004 and NP2004 (both metrics). In HP2003,
ARLR-QBC is still significantly better with 95% confidence
level from rounds O to 18. In contrast, for the same confi-
dence level, Donmez is only better than Random up to the
third round. In NP2003, our method is better than Random
in all rounds with 95% confidence on both metrics, whereas
Donmez is better only in rounds O to 2 and 11 to 25 if we
consider the MAP.

ARLR-QOBC versus Random-QBC. Differently from the
informational data sets, here ARLR-QBC has a harder time
beating Random-QBC. It is still significantly better with
95% confidence in the first eight rounds (0-7) in HP2003
and NP2003 (both metrics). It is also better with 95% con-
fidence on all rounds in HP2004 and NP2003 (considering
the MAP only).

ARLR-QBC versus ARLR-Random. In contrast with
Random-QBC, ARLR-Random is easily beaten by ARLR-
QBC on all data sets, as shown in Figure 3. In fact, the
addition of randomly selected instances to the original
ARLR sets almost does not improve the results on the 2004
data sets. On the 2003 data sets, there is a small improve-
ment that mostly mirrors the curves for the Random base-
line. On all data sets, a ¢ test shows that ARLR-QBC is
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significantly better with 99% confidence if we consider the
first eight rounds or all rounds.

ARLR-QOBC versus Donmez. On a round-by-round basis,
ARLR-QBC beats Donmez with 90% confidence in HP2003
from rounds 4 to 11 for the MAP. In HP2004, our method
obtains a better MAP with 95% confidence on rounds 6 to 8
and 12 to 20, and a better NDCG on rounds O to 13. In
NP2003, with a confidence of 95%, the MAP is better on
rounds 5 to 10 and the NDCG on rounds 2 to 8 and 12 to 14.
In NP2004, there is a statistical tie on all rounds.

Gains obtained over Donmez and SVM Full. Table 1 sum-
marizes the gains obtained by our method compared with
Donmez and SVM Full. We calculate the gains for each
metric separately: MAP and NDCG@10. We also separate
the calculations into two partitions: the average and
maximum gains achieved in rounds O to 7 (columns AG7%
and MG7%, respectively) and the overall (i.e., considering
all rounds) average and maximum gains (AG% and MG%).
The reason for doing this partitioning is that, although we
run our method for 26 rounds, we believe that in most
real-world scenarios, only a few rounds should be run. One
of the advantages of an active learning method is exactly to
introduce less “noise” into the selected training sets, thus
allowing for the supervised L2R method to obtain better
effectiveness. This insight is corroborated by the gains
obtained in all data sets (except NP2003) by our method
over supervised baselines that use the complete training sets
(i.e., SVM Full and the published LETOR baselines) and by
the stable or falling results that we see in many data sets in
the final rounds. By providing the average and maximum
gains obtained at the first eight rounds (0-7), we want to

show that our method converges faster to good results as
compared with Donmez and also that it obtains competitive
results selecting less than 6% of the original training sets
when compared with a strong supervised method using the
complete sets (i.e., SVM Full).

Average and maximum gains over Donmez. From Table 1
we can see that ARLR-QBC obtains positive gains over
Donmez on all data sets with the exception of NP2004. The
improvement is more impressive on the informational data
sets, where ARLR-QBC has average results on rounds 0 to 7
that are over 10% better than Donmez on TD2003 (both
metrics) and more than 6% better on TD2004 (both metrics).
The overall average gains are also good, reaching more than
5% for the NDCG on TD2003. The results for the naviga-
tional data sets are more modest, but still quite reasonable,
with the average gain on rounds O to 7 reaching 3.4% on
HP2004 (NDCG). Observe from the MG% column that the
maximum gain is very often obtained in the initial rounds.

Average and maximum gains over SVM full. From the
average gain obtained over SVM Full in the first eight
rounds (Table 1, column AG7% to the right), we can see that
ARLR-QBC surpasses this strong supervised baseline in
four of six data sets for the MAP and half of the data sets for
the NDCG@10. This means that our method is able to
surpass this strong supervised baseline (which uses 100% of
the training sets) while selecting and labeling less than 6%
of the original training sets. Moreover, the overall average
gain (AG% to the right) is positive in five of the six data sets
for the MAP and four for the NDCG. The AG reaches more
than 5% for the MAP on HP2004 and NP2004, more than
6% for the NDCG on HP2004, and more than 4% for
TD2004.

TABLE 1. Gains obtained by ARLR-QBC over Donmez and SVM Full: MAP and NDCG@ 10.
ARLR-QBC vs. Donmez ARLR-QBC vs. SVM Full Peak values*

AG7% MG7% AG% MG% AG7% MG7% AG% MG% AQ LB
MAP
TD2003 10.54 26.32 (0) 3.93 26.32 (0) 5.39 10.65 (4) 227 10.65 (4) 2907 2753
TD2004 6.47 11.43 (1) 3.65 11.43 (1) 0.44 3.99 (6) 3.38 6.73 (22) 2388 2614
HP2003 1.69 2.31 (6) 1.55 2.31 (6) —0.37 0.75 (5) 0.44 1.25 (23) .7500 7710
HP2004 0.99 3.71 (0) 2.20 4.30 (19) 4.24 8.88 (6) 5.16 8.88 (6) 7267 7219
NP2003 222 3.64 (6) 1.89 3.64 (6) —.20 —2.53 (6) —2.38 —0.79 (22) .6902 7074
NP2004 —-1.80 1.71 (3) —0.69 322 (8) 1.49 5.46 (3) 5.24 9.68 (14) 7225 .6866
NDCG @10
TD2003 10.39 22.92 (0) 5.68 22.92 (0) 2.42 7.19 (5) 3.47 7.19 (5) 3710 3571
TD2004 6.31 8.93 (1) 2.17 8.93 (1) 4.12 8.34 (6) 4.71 8.34 (6) 3335 3504
HP2003 1.04 1.40 (4) 1.15 1.46 (23) -1.52 —0.78 (5) —0.67 0.26 (23) .8098 .8384
HP2004 3.40 5.15 (4) 1.66 5.15 4) 4.93 743 (7) 6.12 7.88 (11) .8293 .8328
NP2003 2.73 3.51 (3) 1.48 3.51 (3) -3.67 —2.24 (6) -2.79 -1.71 (22) .7866 .8068
NP2004 —-1.15 0.93 (7) —0.28 1.49 (12) —0.06 2.26 (7) 2.40 443 (17) .8419 .8128

Note. Average gain for rounds 0 to 7 (AG7%), maximum gain for rounds 0 to 7 (MG7%), average gain for all rounds (AG%), and maximum gain for all
rounds (MG%). Numbers in parentheses indicate in which round the maximum gain was obtained. Values in italics indicate negative gains, values in bold
indicate a gain greater than 5%, and values in italics and bold a gain greater than 10%.

*Peak value obtained by ARLR-QBC in all rounds (AQ) and the value obtained by the best supervised algorithm of the 12 results published by the LETOR

producers for that data set (LB).
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Peak values for ARLR-QBC and all LETOR 3.0 baselines.
The last two columns of Table 1 show the best MAP and
NDCG @10 obtained by ARLR-QBC in all rounds (column
AQ) and the best supervised result published by the LETOR
producers (column LB). The LETOR publishers encourage
researchers to submit results obtained by new algorithms
and methods, and have accrued so far results for 12 distinct
L2R algorithms.® As listed in Table 1, ARLR-QBC’s peak
results beat the best LETOR baseline in three data sets for
the MAP (obtaining a gain of more than 5% in TD2003 and
NP2004, and a gain of less than 5% in HP2004) and in two
for the NDCG@10 (namely, TD2003 and NP2004). The
best LETOR baselines for each data set are as follows (MAP,
NDCG@10): TD2003 ListNet, RankSVM-Primal; TD2004
RankBoost, RankBoost; HP2003 AdaRank-MAP, AdaRank-
MAP; HP2004 AdaRank-MAP, AdaRank-MAP; NP2003
RankBoost, RankBoost; and NP2004 Regression-REG,
ListNet. Observe that all of the 12 results for these baselines
were obtained using the complete (i.e., 100%) training sets
to rank the test sets. ARLR-QBC, being an active learning
method, uses 15% or less of the training sets.

Paired Student’s t test. 'We have also performed a paired
difference ¢ test using the MAP and NDCG differences for
all rounds of our method in comparison with Donmez’s
results. The tests show that our method is significantly better
with 95% confidence level in all data sets but NP2004 for the
NDCG@10 and on four data sets for the MAP (the excep-
tions are NP2003 and NP2004).

Analysis

Comparison with other LETOR 3.0 baselines and ARLR-
RLR. Figure 4 shows the comparison of the peak MAP
obtained by ARLR-QBC in the first eight rounds (i.e.,
rounds 0-7), ARLR-RLR (as presented by Silva etal.,
2011), and three published LETOR baselines (that use the
complete training sets): SVMRank, RankBoost, and
AdaRank-MAP. SVMRank (or SVM Full, as we have been
calling it) is an obvious choice. We chose RankBoost and
AdaRank-MAP because they are the only two algorithms
(out of the 12 baselines published by the LETOR producers)
that obtain the highest MAP scores in two data sets each:
RankBoost in TD2004 and NP2003, and AdaRank-MAP in
HP2003 and HP2004. The ARLR-QBC results shown are
the peak values obtained in rounds O to 7 (i.e., using less
than 6% of the original training sets).

As shown in Figure 4, ARLR-QBC obtains better results
than ARLR-RLR in all data sets, with the exception of
NP2003. ARLR-QBC obtains especially good results on the
data sets where ARLR-RLR did worse: HP2004 and
NP2004. On these data sets, ARLR-QBC obtains gains of
18% and 25% over the ARLR-RLR MAP results, respec-
tively. On the informational data sets, the gain is also

*http://research.microsoft.com/en-us/um/beijing/projects/letor/
letor3baseline.aspx
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FIG. 4. Comparison of ARLR-QBC, ARLR-RLR, and three LETOR
baselines: Best MAP was obtained in rounds O to 7. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

significant: 6.5% for both TD2003 and TD2004. On
HP2003, the gain is marginal (less than 1%), and in NP2003,
ARLR-QBC obtains a MAP that is 2.5% smaller than that
achieved by ARLR-RLR. These results show that, although
ARLR-RLR is able to select very small data sets with very
good effectiveness, expanding the selection using the QBC
second stage is very much worth the extra labeling cost.
Using only ARLR, we select from 1.12% to 2.28% of the
original sets; ARLR-QBC is able to obtain the gains listed
earlier by expanding the selection to less than 6% of the
original sets.

From Figure 4, we can also see that ARLR-QBC beats
the chosen LETOR baselines in TD2003, HP2004, and
NP2004.

Selection of relevant samples. As our final analysis, to
better understand the differences between the compared
methods and data sets, we look into how the selection of
relevant instances may be affecting the results. Two simple
metrics may help us gauge the influence of relevant
instances in the results: the proportion of relevant instances
in the selected sets and the fraction of all relevant instances
present in the unlabeled sets that were selected.

In Figure 5, the plot on the left shows, for each method,
how the proportion of relevant instances in the selected sets
evolves as we run the rounds of the methods. On the y-axis,
we have the percentage of relevant instances in the selected
sets for each round. On the x-axis, as before, we have the
percentage of the unlabeled sets selected at each round. The
plot to the right shows the fraction the selected relevant
samples represent of the fotal amount of relevant documents
present in the unlabeled sets.

We first notice how the informational (first row of
Figure 5) and navigational data sets (second and third rows)
differ in these metrics. For the TD data sets, the proportion
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FIG. 5. All data sets: proportion of relevant instances in the selected sets (left) and the percentage they represent of the total number of relevant samples
in the unlabeled sets (right). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

of relevant samples in the selected set grows in the first few  represent a minor proportion (1% to 12%) of all relevant
rounds, indicating that both QBC and Donmez are selecting samples in the sets, so both QBC and Donmez have room to
more relevant instances than nonrelevant. Then the propor- find more relevant samples. On the HP and NP data sets, on
tion gently slopes down, although by the 26th round itis still ~ the other hand, the Donmez initial selection method selects
higher (or the same) than in the initial round. Observe from almost all relevant samples available in the initial round
the plot on the right that the initial relevant samples selected ~ (plots on the right: from 76% to 91%), which means that as
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the rounds progress, the tendency is to select more nonrel-
evant samples, gradually reducing the proportion of relevant
documents in the selected sets (plot to the left). This happens
because the initial selection used by Donmez tries to start
with at least one relevant sample per query, and the naviga-
tional data sets usually have only one relevant document per
query (from 0.1% to 0.17% of the navigational sets are
relevant documents). The informational data sets have a
much higher proportion of relevant samples (2.92% in
TD2004 and 1.52% in TD2003).

On TD2004, ARLR-QBC starts with the highest propor-
tion of relevant samples in the selected set (Figure 5, left
plot, first row). Donmez also starts with a high proportion,
but ARLR-QBC selects many more relevant instances in the
first rounds, achieving a peak percentage of almost 11% of
relevant samples in the selected sets by round 3, whereas
Donmez never surpasses 7%. A similar trend is observable in
TD2003: Although Donmez starts with a higher proportion
of relevant samples, ARLR-QBC quickly surpasses it,
achieving a peak of more than 6% by round 4 (with Donmez
peaking at 5% on the third round). Another interesting
observation is that, although Random-QBC starts with a
very low proportion, the QBC method is able to select rel-
evant samples in a very fast rate, bringing the fraction to the
same level as ARLR-QBC by round 12 on both data sets.
Remember that ARLR-QBC is significantly better that
Random-QBC mainly in the initial rounds (0-7). It is tempt-
ing to attribute that advantage to the higher proportion of
relevant samples selected by ARLR-QBC in the initial
rounds, but notice that although Donmez starts with a higher
proportion of relevant samples in round O on TD2003,
ARLR-QBC obtains much higher MAP and NDCG@10
results in this round (26.32% higher MAP; see Table 1).
Thus, on the informational data sets, a combination of rel-
evant samples and informative (relevant or nonrelevant)
samples seems to be the key to ARLR-QBC’s better results
in the initial rounds. On the navigational data sets, ARLR-
QBC and Random-QBC start with much lower proportions
of relevant samples as compared with Donmez, quickly
achieving their peaks in the first two or three rounds and then
gently sloping down (Figure 5, left graphs). The graphs to
the right in Figure 5 show that QBC is very good at finding
the relevant samples in these data sets, whereas Donmez
starts with almost all relevant samples already selected and
does not have much room to grow. On these data sets, the
selection of more relevant documents in the initial rounds
may affect the results more markedly, because SVMRank
needs at least one relevant sample per query to be able to
generate pairwise comparisons. Nevertheless, Donmez’s
initial selection contains almost one relevant sample per
query, and that does not necessarily translate into better
results in the initial rounds. Interestingly, the data sets where
ARLR-QBC is not significantly better than Random-QBC in
the first eight rounds (HP2004 and NP2004) are those where
Random-QBC is able to select more relevant samples in
those rounds. Although ARLR-QBC beats Donmez and
Random-QBC (in the initial rounds) in two of the four

navigational data sets and practically ties in the other two, it
seems that devising some technique to increase the amount
of relevant samples selected in the initial round (i.e., the first
stage, ARLR) may be a simple way of improving our meth-
od’s results in navigational data sets. This hypothesis will be
tested in future work. Still, as we can clearly see in the
graphs for the navigational data sets, the combination of the
diversity and feature coverage provided by ARLR-QBC
compensate for the smaller proportion of relevant samples,
allowing our method to beat or at least tie with Donmez in
the initial rounds.

Adding Query-Level Selection

The two-stage method described earlier performs only
document-level selection: Both ARLR and QBC select
documents from all queries. QBC selects a fixed amount of
documents from each query per round, whereas ARLR
selects documents without taking the queries into consid-
eration. This is ideal for data sets with few queries and
many documents per query (like the LETOR 3.0 data sets).
If the unlabeled set contains many queries, it is necessary
to perform some query selection before document selection
to avoid selecting a huge amount of documents to be
labeled in the QBC stage. Because ARLR naturally con-
verges fast, selecting documents from many different
queries, it is usually not necessary to add query selection
to our method’s first stage. Therefore, we need to devise a
query selection mechanism only for the second stage,
namely, QBC.

Query selection can be easily added to our method by
defining a suitable committee disagreement metric that oper-
ates at query level. As stated earlier, a common query rank
correlation coefficient is Kendall’s 7, which is defined as

__2XA(R, R,)
(R, Ry) =1 KK 3)

where R, and R, are two distinct rankings of K documents,
and A(R;, R,) is a function that returns the number of
discordant pairs in the two rankings (Baeza-Yates &
Ribeiro-Neto, 2011). This value varies from —1 to 1, where
1 indicates two identical rankings (i.e., there are no discor-
dant pairs) and —1 indicates one ranking is the reverse of the
other (i.e., all pairs are discordant).

We modify the QBC stage so that at each round it first
calculates Kendall’s 7 between the three rankings of the
unlabeled set produced by the committee models [i.e., T(R;,
R»), T(R1, R3), T(R», R3)] and then averages these three values,
choosing the g queries with the lowest average values (i.e.,
higher rank disagreement). Then it proceeds as before, cal-
culating the CV for the documents of the chosen queries and
selecting from each chosen query the m documents with the
highest CV values.

Experiments using the LETOR 4.0 collection. To demon-
strate how our method can be easily adapted to perform
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query-level selection, we decided to conduct some experi-
ments using the LETOR 4.0 collection.*

There are two data sets in this collection: MQ2007 and
MQ2008. LETOR 4.0 is very different from the 3.0 version.
It is based on two informational query sets from the Million
Query Track® of TREC 2007 and TREC 2008. Instead of
many documents per query and few queries, these data sets
contain many queries and few documents per query.
MQ2007, contains a total of 1,692 queries and an average of
41 documents per query, for a total of 69,623 documents (if
we take into consideration the cross-validation evaluation
method, the training set has, on average, 41,774 documents
for 1,015 queries, and the test and validation sets 13,924
documents related to 338 queries). MQ2008 is much
smaller, with a total of 784 queries and 15,211 documents,
and an average of only 19 documents per query (average
training set size of 470 queries and 9,126 documents, and
test and validation sets with 157 queries and 3,042 docu-
ments). These data sets also use three relevance levels
instead of just two (i.e., O: not relevant, 1: relevant, 2: highly
relevant). One of the main differences between these data
sets and those in LETOR 3.0 is the amount of relevant
documents: On MQ2007, 20% of the documents have rel-
evance 1, and 5.5% of the documents have relevance 2. For
MQ2008, the numbers are 13% and 6%, respectively. In
LETOR 3.0, the data set with the highest percentage of
relevant documents is TD2004, with less than 3%. All navi-
gational data sets have less than 0.2% relevant documents.

The LETOR 4.0 data sets were built using a very different
document selection strategy. Whereas in LETOR 3.0 a fixed
number of documents was selected per query using the
BM25, in version 4.0 each query has 8, 16, 32, 64, or 128
documents selected according to two approaches: minimal
test collections and statistical sampling. In the first method,
documents are selected by a measure of how much they may
change the MAP, given all judgments made up to that point,
if they are considered relevant or nonrelevant (Carterette,
Allan, & Sitaraman, 2006). In the second approach, a spe-
cific random sample of documents is drawn and judged to
produce unbiased, low-variance estimates of average preci-
sion, R-precision, and precision at typical cutoffs. Addi-
tional documents may be included to improve the quality of
the estimates, if necessary (see Aslam & Pavlu, 2007).

If we were to run ARLR-QBC unmodified on these data
sets, each QBC round would select 5,075 documents from
the unlabeled (i.e., training) set on MQ2007 and 2,350
samples for MQ2008. That is around 12% and 26% of the
unlabeled sets per round, respectively. This would obviously
defeat the purpose of our method (remember that in LETOR
3.0, only 0.5% of the unlabeled set was selected per QBC
round). Thus, we need to introduce query-level selection: On
each round, we first select some queries and then select
documents from these queries.

*http://research.microsoft.com/en-us/um/beijing/projects/letor/
letor4dataset.aspx
*http://ir.cis.udel.edu/million/index.html

We call the modified method ARLR-QBC-QueryDoc, to
indicate that it performs query- and document-level selec-
tion. First, ARLR is run exactly as before on the full unla-
beled sets. Once ARLR converges, the obtained labeled set
is fed into the QBC stage as before. The three committee
models are generated from the current training set and
used to rank the unlabeled set. We then calculate average
Kendall’s 7 for the three rankings and select the g queries
that have the lowest average. g is chosen to keep the propor-
tion of documents selected in each QBC round at around the
same as for LETOR 3.0 (0.5%). After the queries are chosen,
the same m = 5 documents are selected per query using their
CV values as before. For MQ2007, the number g of chosen
queries used was 42 and 35 for MQ2008.

To better understand the impact of using query- and
document-level selection simultaneously, we also ran a
variation of the method that relies only on query-level selec-
tion. In this variation, which we call ARLR-QBC-Query,
once the queries are chosen, we select all documents from
each query in turn (ordered in ascending order of the average
Kendall’s 7), until we reach a number of documents similar
to the QueryDoc method. That is, we do not perform doc-
level selection, ignoring the CV and selecting all documents
from the first few ordered queries.

Baselines. The baselines were also adapted for this new
scenario. ARLR-Random-QueryDoc corresponds to ARLR-
Random: We start with the ARLR-selected sets and then
randomly select g queries and m documents per query. In
Random-QueryDoc, all instances are randomly selected,
including the initial set. As before, we randomly select some
queries and then some documents from each of the selected
queries. Both random baselines were run 10 times on each
Fold and the averages reported. Finally, we have SVM Full
and ARLR-RLR. As before, SVM Full is the result reported
by the LETOR producers.

Donmez. Donmez cannot be easily adapted to this new
scenario. Running the regular Donmez on these data sets
would produce initial data sets of more than 38% and 82%
of the unlabeled sets for MQ2007 and MQ2008, respec-
tively. Moreover, each QBC round would select an addi-
tional 12% and 26%. Adapting Donmez would require some
query selection mechanism. We could randomly select g
queries as with the random baselines described earlier; the
problem is that Donmez estimates the impact that each
document will have on the current model for each query
separately. Thus, each query has a separate SVM model and
the documents with the highest estimated impact on these
models are selected. If we start with an initial set containing
only a few queries, then we cannot proceed selecting docu-
ments from other queries, as there is no model for these
other queries. Thus, we would only select documents from
the same set of queries randomly chosen during the initial
set selection. Reducing the number of documents selected
per query would also not be very useful because we would
still end up with very big initial sets and choose too many
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documents per round. Thus, we have not run Donmez on
these data sets because it is not a competitive baseline in
terms of the effectiveness versus cost trade-off.

Results for the LETOR 4.0 data sets. Figure 6 shows the
results for ARLR-QBC-QueryDoc, ARLR-QBC-Query, and
the baselines on MQ2007 (top) and MQ2008 (bottom).
Notice that we show the NDCG @5 for MQ2008. The reason
is that many queries in this data set have less than 10 docu-
ments, causing the NDCG @10 calculated by the evaluation
script to be thrown off a bit. As shown in Figure 6, ARLR-
QBC-QueryDoc does not beat SVM Full in the 26 rounds we
ran on MQ2007, although both MAP and NDCG results
steadily increase as more queries and documents are selected.
On the other hand, in MQ2008, it is possible to achieve SVM
Full-like performance on the eighth round (around 8% of the
unlabeled set selected) and even beat it by the 19th round
(14% selected). We can also see that ARLR-QBC-QueryDoc
beats ARLR-QBC-Query in most rounds on both data sets. It
seems that using both query- and document-level selection is
a better strategy than choosing all documents from certain
queries in these data sets, given their characteristics.

MQ2007

Paired t test. Paired Student’s ¢ tests show that on
MQ2008, ARLR-QBC-QueryDoc is better than ARLR-
QBC-Query, ARLR-Random-QueryDoc, and Random-
QueryDoc  with 99% confidence. It also beats
ARLR-QBC-Query on MQ2007 with 99% confidence but
is statistically tied to ARLR-Random-QueryDoc and
Random-QueryDoc.

What is interesting in these results is the high MAP and
NDCG values obtained by the random baselines: Random
selection is as good as ARLR-QBC-QueryDoc on MQ2007,
although significantly worse on MQ2008. Although on
TD2003 the average random MAP is more than 22% lower
than the SVM Full MAP and on TD2004 it is around 9%
lower, on MQ2007 it is only 4.7% lower and on MQ2008
only 1.6% lower. This seems to be a reflection of the very
different natures of these informational data sets: In LETOR
3.0, there are 1,000 documents per query, with a low pro-
portion of relevant documents (1.5% on TD2003 and almost
3% on TD2004). In LETOR 4.0, there are only a few docu-
ments per query with a fraction of more than 20% (25% for
MQ2007) of relevant documents (considering two relevance
levels, 1 and 2). We can also see that the MAP and NDCG
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FIG. 6. MQ2007 and MQ2008: ARLR-QBC-QueryDoc and baselines comparison. MAP (left), NDCG @10 (MQ2007), and NDCG@5 (MQ2008) (right)
versus percentage of samples selected from the unlabeled set. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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results for these data sets are almost double those obtained
by the same (or similar) algorithms in the informational data
sets of version 3.0 of the collection. Thus, the selection of
only a few top documents per query has increased the overall
quality of the documents in the 4.0 data sets, seemingly
making it harder for an active method like ARLR-QBC to
sieve out “noisy” instances, and thus achieve better results in
the initial rounds (on MQ2008) and in general (on
MQ2007). Nonetheless, ARLR-QBC-QueryDoc performs
very well on MQ2008, showing that the combined query-
and document-level QBC selection strategy can be very
effective (top performance with a low percentage of the data
set selected).

Conclusions

The proposed two-stage active learning technique pro-
vides an effective and practical method to reduce the cost of
creating training sets for use with L2R techniques. The
method is practical in the sense that it selects highly effec-
tive yet very small training sets from very diverse data sets
and provides consistent quality results for small or bigger
labeling budgets. Our method, selecting less than 6% of the
unlabeled sets, achieves better MAP results than all 12
supervised baselines published by the LETOR 3.0 producers
(using the full training sets) in three of the six data sets
(TD2003 in round 0, HP2004 in round 6, and NP2004 in
round 3). It still beats at least 9 of the 12 baselines in
TD2004 and NP2003, and 5 in HP2003. Furthermore, it
performs significantly better than a strong active learning
baseline (Donmez) in five of the six data sets. We have also
shown how a simple modification allows our method to be
adapted for use with data sets with many queries (i.e., by
adding query-level selection to the QBC stage). The results
on the LETOR 4.0 data sets show that this variation can be
very effective.

The strength of the proposed method relies on its ability
to actively select documents without the need of an
initial labeled set. As we have seen, the association rule
active method (ARLR) is able to provide a very strong
initial set, allowing the QBC second-stage process to
expand the selection and obtain state-of-the-art results in
just a few rounds on most data sets. We performed exten-
sive experimentation that shows that the method is effec-
tive for very different data set types (i.e., data sets based
on informational or navigational queries) and that it beats
a very strong active learning method proposed in the
literature.

In the future, we plan to measure the effect of the chosen
committee algorithms by fine-tuning them or using other
algorithms and to evaluate how the selected sets perform
with other supervised methods such as RLR and RankBoost.
Another interesting aspect to evaluate would be to change
the measure of disagreement from the CV to the variance or
standard deviation to determine how this metric affects the
results.

References

Abe, N., & Mamitsuka, H. (1998). Query learning strategies using boosting
and bagging. In Proceedings of the 15th International Conference
on Machine Learning (pp. 1-9). Madison, WI: Morgan Kaufmann
Publishers Inc.

Agrawal, R., Imielifiski, T., & Swami, A. (1993, June). Mining association
rules between sets of items in large databases. In Proceedings of the 1993
ACM SIGMOD International Conference on Management of Data
(pp. 207-216). Washington, DC: ACM Press.

Aslam, J.A., & Pavlu, V. (2007). A practical sampling strategy for efficient
retrieval evaluation [working draft]. Retrieved from http://www.ccs
.neu.edu/home/jaa/tmp/statAP.pdf

Baeza-Yates, R., & Ribeiro-Neto, B. (2011). Modern information retrieval:
The concepts and technology behind search modern information
retrieval: The concepts and technology behind search. Harlow, England:
Addison Wesley.

Baum, E.B. (1991). Neural net algorithms that learn in polynomial time
from examples and queries. IEEE Transactions on Neural Networks,
2(1), 5-19.

Cai, P, Gao, W., Zhou, A., & Wong, K. (2011). Relevant knowledge helps
in choosing right teacher. In Proceedings of the 34th International ACM
SIGIR Conference on Research and Development in Information
Retrieval (pp. 115-124). Beijing, China: ACM Press.

Carterette, B., Allan, J., & Sitaraman, R. (2006). Minimal test collections
for retrieval evaluation. In Proceedings of the 29th Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval (pp. 268-275). Seattle, WA: ACM Press.

Dagan, I., & Engelson, S. (1995). Committee-based sampling for training
probabilistic classifiers. In Proceedings of the 12th International Confer-
ence on Machine Learning (pp. 150-157). Tahoe City, CA: Morgan
Kaufmann Publishers Inc.

Donmez, P., & Carbonell, J.G. (2008). Optimizing estimated loss reduction
for active sampling in rank learning. In Proceedings of the 25th Interna-
tional Conference on Machine Learning (pp. 248-255). Helsinki,
Finland: ACM Press.

Donmez, P., & Carbonell, J.G. (2009). Active sampling for rank learning
via optimizing the area under the ROC curve. In Proceedings of the 31th
European Conference on IR Research on Advances in Information
Retrieval (pp. 78-89). Toulouse, France: Springer-Verlag.

Donmez, P., Carbonell, J.G., & Bennett, PN. (2007). Dual strategy active
learning. In Proceedings of the 18th European Conference on Machine
Learning (pp. 116-127). Berlin, Heidelberg: Springer-Verlag.

Freund, Y., Iyer, R., Schapire, R.E., & Singer, Y. (2003, December). An
efficient boosting algorithm for combining preferences. Journal of
Machine Learning Research, 4, 933-969.

Geng, X., Qin, T., Liu, T., Cheng, X., & Li, H. (2011, September). Selecting
optimal training data for learning to rank. Information Processing and
Management, 47(5), 730-741.

Granka, L.A., Joachims, T., & Gay, G. (2004). Eye-tracking analysis of
user behavior in WWW search. In Proceedings of the 27th Annual
International ACM SIGIR Conference on Research and Development in
Information Retrieval (pp. 478-479). New York: ACM Press.

Joachims, T. (2002). Optimizing search engines using clickthrough data. In
Proceedings of the 8th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (pp. 133-142). San Jose, CA:
ACM Press.

Lewis, D.D., & Gale, W.A. (1994). A sequential algorithm for training text
classifiers. In Proceedings of the 17th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval
(pp- 3-12). Dublin, Ireland: Springer-Verlag.

Liu, T. (2009). Learning to rank for information retrieval. Foundations and
Trends in Information Retrieval, 3(3), 225-331.

Long, B., Chapelle, O., Zhang, Y., Chang, Y., Zheng, Z., & Tseng, B.
(2010). Active learning for ranking through expected loss optimization.
In Proceeding of the 33rd International ACM SIGIR Conference on
Research and Development in Information Retrieval (pp. 267-274).
Geneva, Switzerland: ACM Press.

JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—ee 2013 19

DOI: 10.1002/asi



Mccallum, A.K. (1998). Employing EM in pool-based active learning for
text classification. In Proceedings of the 15th International Conference
on Machine Learning (pp. 350-358). Madison, WI: Morgan Kaufmann
Publishers Inc.

Nguyen, H.T., & Smeulders, A. (2004). Active learning using pre-
clustering. In Proceedings of the 21st International Conference on
Machine Learning (pp. 623—-630). Banff, AB, Canada: ACM Press.

Qin, T., Liu, T., Xu, J., & Li, H. (2010, August). LETOR: A benchmark
collection for research on learning to rank for information retrieval.
Information Retrieval, 13, 346-374.

Radlinski, F., & Joachims, T. (2007). Active exploration for learning rank-
ings from clickthrough data. In Proceedings of the 13th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(pp- 570-579). San Jose, CA: ACM Press.

Robertson, S.E., Walker, S., & Hancock-Beaulieu, M.M. (1995, May). Large
test collection experiments on an operational, interactive system: Okapi at
TREC. Information Processing & Management, 31(3), 345-360.

Schapire, R.E. (1989). The strength of weak learnability. In Proceedings
of the 30th Annual Symposium on Foundations of Computer Science
(pp- 28-33). Washington, DC: IEEE Computer Society.

Schmidberger, G., & Frank, E. (2005). Unsupervised discretization using
tree-based density estimation. In Proceedings of the 9th European Con-
ference on Principles and Practice of Knowledge Discovery in Databases
(pp. 240-251). Berlin, Heidelberg: Springer-Verlag.

Schohn, G., & Cohn, D. (2000). Less is more: Active learning with support
vector machines. In Proceedings of the 17th International Conference on
Machine Learning (pp. 839-846). San Francisco: Morgan Kaufmann
Publishers Inc.

Settles, B. (2009). Active learning literature survey (Computer Sciences
Technical Report 1648). Madison, WI: University of Wisconsin-Madison.

Settles, B., Craven, M., & Ray, S. (2008). Multiple-instance active learning.
In Advances in neural information processing systems (Vol. 20,
pp. 1289-1296). Cambridge, MA: MIT Press.

Seung, H.S., Opper, M., & Sompolinsky, H. (1992). Query by committee.
In Proceedings of the 5th Annual Workshop on Computational Learning
Theory (pp. 287-294). Pittsburgh, PA: ACM Press.

Silva, R., Goncalves, M.A., & Veloso, A. (2011). Rule-based active sam-
pling for learning to rank. In Proceedings of the 2011 European Confer-
ence on Machine Learning and Knowledge Discovery in Databases
(pp- 240-255). Athens, Greece: Springer-Verlag.

Steck, H. (2007). Hinge rank loss and the area under the ROC curve. In
Proceedings of the 18th European Conference on Machine Learning
(pp. 347-358). Warsaw, Poland: Springer-Verlag.

Tian, A., & Lease, M. (2011). Active learning to maximize accuracy vs.
effort in interactive information retrieval. In Proceedings of the 34th
International ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval (pp. 145-154). Beijing, China: ACM
Press.

Tong, S., & Koller, D. (2002, March). Support vector machine active
learning with applications to text classification. Journal of Machine
Learning Research, 2, 45-66.

Veloso, A.A., Almeida, H.M., Gongalves, M.A., & Meira, W. Jr. (2008).
Learning to rank at query-time using association rules. In Proceedings of
the 31st Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (pp. 267-274). Singapore: ACM
Press.

Yu, H. (2005). SVM selective sampling for ranking with application to data
retrieval. In Proceedings of the 11th ACM SIGKDD International Con-
ference on Knowledge Discovery in Data Mining (pp. 354-363).
Chicago: ACM Press.

20 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—ee 2013

DOI: 10.1002/asi



