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Learning to rank (L2R) algorithms use a labeled training
set to generate a ranking model that can later be used to
rank new query results. These training sets are costly
and laborious to produce, requiring human annotators
to assess the relevance or order of the documents in
relation to a query. Active learning algorithms are able to
reduce the labeling effort by selectively sampling an
unlabeled set and choosing data instances that maxi-
mize a learning function’s effectiveness. In this article,
we propose a novel two-stage active learning method for
L2R that combines and exploits interesting properties of
its constituent parts, thus being effective and practical.
In the first stage, an association rule active sampling
algorithm is used to select a very small but effective
initial training set. In the second stage, a query-by-
committee strategy trained with the first-stage set is
used to iteratively select more examples until a preset
labeling budget is met or a target effectiveness is
achieved. We test our method with various LETOR
benchmarking data sets and compare it with several
baselines to show that it achieves good results using
only a small portion of the original training sets.

Introduction

Ranking is an essential feature of many applications:

From web search to product recommendation systems and

online advertising, results have to be ordered based on their

estimated relevance with respect to a query or based on a

user profile or personal preferences. Learning to rank (L2R)

algorithms, which deliver superior performance when com-

pared with more traditional approaches such as BM25

(Robertson, Walker, & Hancock-Beaulieu, 1995), rely on

labeled or ordered training sets to build ranking models that

are used to rank results at query time. To create these train-

ing sets, human annotators must evaluate a portion or all

documents returned by a set of queries. After selecting a

group of representative queries, a classic information

retrieval (IR) method (such as BM25) is used to retrieve and

rank the documents associated with each query and an

expert evaluates the first n documents, labeling each accord-

ing to its relevance to the given query. Depending on the

type of rank learning algorithm used, it may be necessary to

provide a binary relevance judgment (i.e., relevant, not

relevant) or a relevance level (e.g., somewhat relevant, very

relevant, extremely relevant), a pairwise ordering (e.g.,

document di is more relevant than document dj or di � dj),

or a complete or partial ordering of the documents returned

by a query (e.g., di � dj � [. . .] � dk). These different

relevance judgment types correlate to the three main

approaches used by L2R methods: pointwise, pairwise, and

listwise (Liu, 2009). Independently of how the training set is

constructed, it is costly and laborious to produce any amount

of it.

Active learning techniques have been proposed to help

deal with the labeling effort problem in L2R (Cai, Gao,

Zhou, & Wong, 2011; Donmez & Carbonell, 2009, 2008;

Long et al., 2010; Radlinski & Joachims, 2007; Silva,

Gonçalves, & Veloso, 2011; Yu, 2005). The motivation

behind active learning is that it may be possible to achieve

highly effective learned functions by carefully selecting and

labeling instances that are “informative” to the learning

algorithm. Using active learning, we can reduce the cost of

producing training sets for rank learning algorithms and

improve the effectiveness of the learned functions by avoid-

ing adding “noisy” or redundant instances to the training

sets. Furthermore, human annotators can spend more time

analyzing the relevance of each selected instance, which

produces better training sets (Geng, Qin, Liu, Cheng, & Li,

2011). Active learning can dramatically reduce the size of

the training sets created without affecting the quality of the

resulting learned models by carefully selecting the docu-

ments to be labeled.

In a typical active learning scenario, data instances are

selected from an unlabeled set one at a time and labeled by

a human expert. Every time a new sample is selected and
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labeled, a new learning model is produced and the active

learning algorithm again chooses a new instance from the

unlabeled set. This process is repeated as long as necessary

or until the labeling budget is exhausted. Several studies

propose active learning methods for classification tasks (see,

e.g., Donmez, Carbonell, & Bennett, 2007; Mccallum, 1998;

Nguyen & Smeulders, 2004; Schohn & Cohn, 2000; Tong &

Koller, 2002). Whereas classification functions output a dis-

tinct class for each data item, ranking functions must

produce partial orders of items either through some scoring

function, pairwise ordering, or listwise ordering of the

items. Most active sampling methods for classification try to

directly minimize the classification error, but it is not

straightforward to extend this approach to the ranking

problem because, as noted by Liu (2009), position-based

measures such as the mean average precision (MAP) and the

normalized discounted cumulative gain (NDCG) are usually

noncontinuous and nondifferentiable. In addition, in most

supervised classification learning settings, samples can be

treated as independent of each other, which is not the case

for L2R where each sample represents a document relative

to a query. In classification, two instances that have very

similar feature-values usually will be assigned the same

class. In L2R, most features characterize the document given

the query: Two documents returned by different queries can

have similar feature-values and yet appear at diverse points

of each query’s rankings (or be considered relevant in one

case and not relevant in the other). Thus, in L2R, instances

are conditionally independent given a query (see Long et al.,

2010).

Despite the differences between classification and L2R,

active learning methods proposed in both fields have

common general outlines or strategies. In some methods, the

most ambiguous, or those instances for which the learner is

most uncertain, are selected (Lewis & Gale, 1994; Tian &

Lease, 2011). In a related strategy, a query-by-committee

(QBC) strategy is used where competing learners vote on the

label of the candidate samples and the one selected for

labeling is the one about which the members of the commit-

tee most disagree in classifying (Cai et al., 2011; Seung,

Opper, & Sompolinsky, 1992). Some algorithms select

samples that would cause the greatest change to the current

learned function (Donmez & Carbonell, 2008; Settles,

Craven, & Ray, 2008). Other methods select instances that

would lead to the minimal expected future error or, similarly,

optimize some other metric such as precision or recall

(Donmez & Carbonell, 2009; Settles, 2009).

In this article, we propose a novel two-stage active learn-

ing technique for L2R. The first stage uses an association

rule-based strategy that selects nonredundant, informative

samples from a completely unlabeled set so that “noisy”

samples are avoided. The resulting data set, although very

small (yet effective), may be limited in its representative-

ness. Moreover, as the first stage has a clear stopping criteria

(it stops selecting new instances for labeling when it judges

that no other candidate has useful information to be incor-

porated into the training set), it does not provide a simple

way to select more instances (and possibly improve the

ranking quality), even if there is a labeling budget available.

Thus, in the second stage, we use a QBC procedure to

expand the selected set using a completely different selec-

tion criterion that prioritizes a better coverage of the sample

space. The result is still a very small, yet highly effective

training set.

To the best of our knowledge, all previously proposed

methods concerning active learning for L2R have assumed

that an initial labeled seed set is available to be used as a

base for further sample selection or use simple single-

feature and/or semirandom procedures to select initial sets.

Although some labeled samples may be available in certain

scenarios, we believe that in many other cases it is desirable

to create a new L2R training set from scratch. Unlabeled

samples are easily obtained from existing collections and

web crawling efforts. Thus, instead of using random sam-

pling or a classic retrieval method to obtain a small initial set

of documents, labeling them, and then using this seed set to

bootstrap the actual active learning process, our method

actively selects documents to be labeled from the start. This

characteristic allows the proposed method to obtain com-

petitive results right from the start, making it ideal for situ-

ations in which no previously labeled sets are available.

Another advantage of using the association rule-based first

stage to create the initial sets is the fact that it naturally

converges; thus, it is not necessary to arbitrarily choose a

number of documents per query that need to be labeled to

produce the seed sets (as is the case with the Donmez base-

line, as discussed in the Baselines section). These are impor-

tant characteristics of an active learning method because in

a real-world scenario, there is no simple way to evaluate the

quality of the selected training sets; only after reasonably

sized sets are actually selected and labeled (i.e., after a

reasonable part of the labeling budget is spent) can we use

cross-validation to evaluate their quality. We compare our

method against several baselines: random sampling

(Random), a QBC strategy using randomly selected initial

sets (Random-QBC), a combination of the first-stage

method and random second-stage selection (ARLR-

Random), the active learning method proposed by Donmez

and Carbonell (2008) (Donmez), the supervised (i.e., using

the complete training sets) SVMRank results published by

the LETOR producers (SVM Full), and the ARLR-RLR

active learning method presented by Silva et al. (2011).

Experiments were run on the six LETOR (LEarning To

Rank) 3.0 web data sets, iteratively selecting up to 15% of

each original training set for comparative purposes. As dis-

cussed later in the Experimental Evaluation section, our

method obtained excellent results, selecting as little as 6% of

the unlabeled sets. Moreover, its results surpass, in most

cases (on average, all cases), state-of-the-art supervised

algorithms that use the complete training sets, producing

some of the best results ever reported for these data sets

(e.g., considering all the reported LETOR 3.0 benchmark

baselines). We also extend our method to perform both

query- and document-level selections (see Adding Query-
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Level Selection section) and test this modified version on the

LETOR 4.0 collection. This modification allows the method

to be used on data sets that have many queries. We believe

this work is an original and important contribution as the

method is both practical and effective, advancing the state of

the art in active learning mechanisms for L2R.

In summary, the main contributions of this article are as

follows:

• A practical and effective active learning method that can be

used to produce training sets for L2R algorithms

• A method that does not rely on an initial labeled set: It can be

applied directly to select samples from unlabeled sets

• A method that is general and obtains state-of-the-art results

for data sets with very diverse characteristics, such as those

based on informational or navigational queries

The remainder of this article is organized as follows: The

Related Work section discusses related work. The Two-

Stage Active Learning for L2R section presents the two

stages of our proposed method and describes how the

two stages work together. The Experimental Evaluation

section describes our experimental evaluation along with

several analyses. Finally, the Conclusions section wraps up

the article.

Related Work

Some researchers have recently proposed active learning

schemes for L2R based on the optimization of approxima-

tions of position-based measures. Long et al. (2010), for

example, propose a general active learning framework

based on expected loss optimization. Their framework uses

function ensembles to select training examples that mini-

mize a chosen loss function. The authors approach the

unique challenges of active learning in L2R by separating

their selection algorithm into query- and document-level

parts. To approximate their chosen metric, namely, dis-

counted cumulative gain (DCG), they use ensembles of

learners to produce relevance scores and estimate predictive

distributions for the documents in the active learning set. To

produce the ensemble, they use a bootstrap technique that

relies on an initial labeled set. Thus, their technique requires

an initial labeled set to build the ensemble of learners,

which needs to be large enough for the learners in the

ensemble to be minimally effective. They evaluate their

method using a large commercial web search data set (500K

documents) and using initial (labeled) sets of 2K, 4K, and

8K documents.

An SVM-specific strategy is presented by Donmez and

Carbonell (2008). The method starts with a per-query

labeled seed set. It progresses in rounds, selecting a preset

number of new documents per query that are then labeled

and added to the training set. The basic idea is to estimate,

for each query, what is the capacity of an unlabeled example

to update the current model if it is labeled and added to the

training set. The top five samples for each query that have

the highest estimated impact in the current model are

selected and labeled. The idea is that those instances that

change the current learned model the most will accelerate

the model’s convergence to the true hypothesis. The authors

present results using this sampling technique adapted to

SVMRank and RankBoost. Their method achieves competi-

tive results with around 10% of the original training sets

selected. We have chosen to use this method as a baseline

because it is elegant, simple, and relatively easy to imple-

ment. It also produces results on par with those presented in

the authors’ more recent work, which is described later.

More details about this method are provided in the Baselines

section.

Donmez and Carbonell (2009) rely on the relationship

between the area under the receiver operating characteristic

curve and the hinge rank loss proposed by Steck (2007) to

develop a loss minimization framework for active learning

in ranking. Instead of testing each and every unlabeled

sample to determine the one that has the smallest expected

future error, the authors suggest selecting the examples that

have the largest contribution to the estimated current error.

These are the ones that, when labeled, will potentially bring

more benefit for the functions that will be trained in the next

rounds of the method. The proposed selection criterion is

based on the hinge rank loss calculated on a per-query basis

and depends on the determination of a rank threshold that

estimates the rank position that separates the lowest ranked

relevant element from the highest ranked nonrelevant

example. The algorithm starts with a small, semirandom

labeled per query set and proceeds selecting unlabeled

samples that have the highest uncertainty (as defined by the

rank threshold). These samples are then labeled and added to

the per-query labeled sets, and the process is repeated as

many times as necessary.

Some other studies apply active learning strategies in

association with other techniques such as transfer learning

or relevance feedback (RF). Cai et al. (2011), for instance,

propose a method that integrates domain adaptation and

active learning as a way to reduce labeling costs. They first

use a QBC scheme built on a mixture of source domain and

target domain data to select the most “informative” queries

from the target domain. Then these new labeled sets are used

to adjust the importance weights of source-domain queries

for boosting the transfer of prior ranking knowledge. Their

QBC strategy is based on the query-by-bagging concept

(Abe & Mamitsuka, 1998) where from the currently labeled

set a number of partitions is created by sampling uniformly

with replacement, and the same learning algorithm is trained

using these partitions to obtain different models to be used

as committee. Their method performs only query-level

selection, meaning that all the documents for the selected

queries have to be labeled. Although their method is not

directly comparable with ours (because it uses rank adapta-

tion on top of active learning), it must be noted that by using

query-level selection only, the amount of labeled documents

grows very fast for data sets such as those in LETOR 3.0

(which is used to evaluate their method). In contrast, our
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work uses an ensemble of learners approach to QBC and

performs document-level selection (although, as we discuss

later, it can be easily extended to use query-, document-, or

query-document–level selection), achieving better results

using 15% (usually much less) of the unlabeled sets than

those presented in their work using 100% of the training

sets.

Another work leverages active learning using RF. Tian

and Lease (2011) propose a method that iteractively

improves the rankings shown to the user based on feedback

on which link the user clicks at each round. The method uses

an SVM algorithm to classify the documents into relevant

and not relevant. Their active learning scheme uses two

approaches: In the Simple Margin version, those documents

lying closest to the decision hyperplane are considered the

ones the SVM is most uncertain about. They also propose a

variation, called Local Structure, that takes into account the

proximity of the unlabeled instances to those instances

already labeled. This variation chooses instances close to the

decision surface but also far from already labeled data and

close to more unlabeled samples in an attempt to maximize

the diversity of the selected set and improve the algorithm’s

learning curve. They evaluate their method using Robust041

and LETOR 3.0, comparing it with RF baselines. Their work

is not directly comparable with ours because we provide a

method for reducing the training set creation effort in which

the human annotators evaluate each document selected by

the system in turn until the (small) labeling budget is met.

Two-Stage Active Learning for L2R

Stage 1: Active Sampling Using Association Rules

To be able to explain how the active sampling technique

that constitutes the first stage (Silva et al., 2011) of our

two-stage approach works, we first briefly describe the

supervised algorithm it is based on and detailed by Veloso,

Almeida, Gonçalves, and Meira, Jr. (2008).

RLR. The rule-based learning to rank (RLR) algorithm is a

supervised pointwise method that uses association rules

(Agrawal, Imieliński, & Swami, 1993) to rank documents.

To use it, we need a labeled training set D composed of

records of the form <q, d, r>, where q is a query, d is a

document returned by the query and is represented as a list

of m feature-values or {f1, f2, . . . , fm}, and r is the relevance

of d to q. Features include BM25, PageRank, and many

other document and query-document properties that are dis-

cretized to reduce the feature space and allow for the enu-

meration of association rules. The relevance can be either

binary (i.e., 0: not relevant, 1: relevant) or a set of discrete

and ordered possibilities {r0, r1, . . . , rk} (e.g., 0: not rel-

evant, 1: somewhat relevant, 2: relevant, 3: very relevant).

The test set T consists of records <q, d, ?> for which only

the query q and the document d are known, whereas the

relevance of d to q is unknown. From the training set D, we

can derive a rule-set R composed of rules of the form

f f rj l i∧ ∧ ⎯ →⎯{ }…
θ

. These rules can contain any mixture

of the available features in the antecedent and a relevance

level in the consequent. The strength of the association

between antecedent and consequent is measured by a statis-

tic, q, which is known as confidence (Agrawal et al., 1993)

and is simply the conditional probability of the consequent

given the antecedent. The algorithm works by delaying rule

extraction until query time: When a set of documents is

retrieved for a given query from T , each individual docu-

ment d in Tq (i.e., the subset of T containing the documents

returned by query q) is used as a filter to remove irrelevant

features and examples from D. This process produces a

projected training set, Dd, which is obtained after removing

all feature-values not present in d. In other words, this pro-

jected training set contains only those instances that have

values in common with the document d that is being ranked

at this point. This process ensures that we can only derive

association rules from the projected training set that are

useful in ranking document d. Thus, a specific rule-set, Rd

extracted from Dd
, is produced for each document d in Tq.

It is necessary to combine all rules in Rd to estimate the

relevance of a document d. Rd is viewed as poll, in which

each rule X R
θ⎯ →⎯{ } ∈ri d

is a vote given by a set of fea-

tures X for relevance level ri. Votes have different weights,

depending on the strength of the association they represent

(i.e., q). The weighted votes for relevance level ri are

summed and then averaged (by the total number of rules in

Rd
that predict relevance level ri), forming the score asso-

ciated with relevance ri for document d, as shown in Equa-

tion 1, where θ( )X → ri
is the value q assumes for rule

{ }X → ri
, and Rd

ri is the set of rules derived for document d

that predict relevance level ri:

s d r
r

di

i

d
ri

( , )
( )

, .=
→

⊆
∑θ X

R
Xwhere (1)

Therefore, for a document d, the score associated with

relevance ri is given by the average q values of the rules in

Rd
predicting ri. The likelihood of d having a relevance level

ri is obtained by normalizing the scores, as expressed by
p̂ r di( ) , shown in Equation 2:

ˆ
( , )

( , )

.p r d
s d r

s d r

i
i

j

j

k
( ) =

=

∑
0

(2)

Finally, the relevance or score of document d is estimated

by a linear combination of the likelihoods associated with

each relevance level, as expressed by the ranking function

rank(d), which is shown in Equation 3:

rank d r p r di i

i

k

( ) = × ( )( )
=

∑ ˆ .
0

(3)
1http://trec.nist.gov/data/robust/04.guidelines.html
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The value of rank(d) is an estimate of the true relevance

of document d using p̂ r di( ). This estimate ranges from r0 to

rk, where r0 is the lowest relevance and rk is the highest one.

After rank(d) is calculated for all documents returned for the

query, we can sort the documents by this score in descending

order and obtain the final ranked list.

ARLR. The active learning variation of the rule-based

method briefly discussed earlier was introduced by Silva

et al. (2011). We call it ARLR (Active RLR) throughout this

article. The idea behind the method is that the number of

rules generated by the documents found in the unlabeled set

is an indication of how much information each document

shares with the current selected (and labeled) set.

More formally, from an unlabeled set U = { , , , }u u un1 2 … ,

we want to select highly informative documents to compose

a new labeled training set D such that D U≪ . Initially, D

is empty and the algorithm cannot extract any rules from it,

so it selects from U the document that shares the most

feature-values with the other unlabeled documents. This

document is labeled and put into D (but also remains in U ).

Then, at each round, the algorithm selects the document that

demands the fewest rules (i.e., the document in U for which

there are less matching rules) because it shares fewer

feature-values with the documents already selected. If only a

few rules are extracted for a document ui, then this is evi-

dence that D does not contain documents that are similar to

ui; thus, the information provided by document ui is not

redundant, and ui is a highly informative document given the

documents already in D. If ui ∈U is inserted into D, then

the number of rules for documents in U that share feature-

values with ui will increase. However, the number of

rules for those documents in U that do not share any

feature-values with ui will remain unchanged. Therefore, the

number of rules extracted for each document in U can be

used as an approximation of the amount of redundant infor-

mation between documents already in D and documents in

U . The result is a very small training set based on a diversity

criterion: The more diverse documents we have in the train-

ing set, the more we cover the feature space with the small-

est possible amount of documents.

The sampling function used by ARLR exploits this key

idea by selecting documents that contribute primarily with

nonredundant information: These informative documents

are those likely to demand the fewer number of rules from

D. More specifically, the sampling function γ ( )U returns a

document in U according to Equation 4:

γ ( ) : .U R R= ∀ <{ }u ui j u ui j
such that (4)

Each document returned by the sampling function is

labeled and inserted into D, but it also remains in U . In the

next round, the sampling function is executed again, but the

number of rules extracted from D for each document in U

is likely to change due to the document recently inserted into

D . After selecting the first document and at each of the

posterior rounds, ARLR executes the sampling function and

a new example is inserted into D. At iteration i, the selected

document is denoted as γ i ( )U , and it is likely to be as

dissimilar as possible from the documents already in

D U U U= − −{ ( ), ( ), ( )}γ γ γi i i1 2 … . All steps of ARLR are

shown in Algorithm 1: The loop (steps 1–12) runs until a

document already inserted into D is selected again (step

12). In each loop, for every document in U (2), a projection

of D is created (3) and rules useful for the document under

consideration are derived (4). Initially, D is empty, so we

select the document that shares the most feature-values with

the other unlabeled documents (7). Once D is nonempty, we

select the document that generates the smallest amount of

rules (9).

Algorithm 1 ARLR.

Require: Unlabeled data U , and smin (ª 0)

Ensure: The training data D

1: continue

2: for all document ui ∈U do

3: D Dui
⇐ projected according to ui

4: Rui
⇐ rules extracted from Dui

| minσ σ≥

5: end for

6: if D = /0 then

7: γ i iu( )U ⇐ such that ∀ ≥ }u j u ui j
: U U

8: else

9: γ i iu( )U ⇐ such that ∀ ≤ }u j u ui j
: R R

10: end if

11: if γ i ( )U D∈ then break

12: else append γ i ( )U to D

Natural stop condition. The algorithm stops when all

available documents in U are less informative than any

document already inserted into D. This occurs when ARLR

selects a document that is already in D. When this condition

is reached, ARLR will keep selecting the same document

over and over again, and there is no information gain with

the inclusion of these documents.

As explained earlier, ARLR tries to maximize diversity

by selecting documents to cover the feature space as best

and as fast as possible using the number of rules demanded

by each candidate document as a basis. This is in contrast

with other initial set selection strategies (such as the one

used by the Donmez method, as explained in more detail in

the Baselines section), which use the value of only one

feature and random sampling to build the initial sets. By

using ARLR to select our initial sets, we are trying to

provide the QBC stage with a representative and diverse set

of examples that will allow a faster convergence of the

learned model, thus obtaining better results right from the

beginning of the active selection process.

Stage 2: Expanding the Selection

QBC. Stage 1 of our method selects a very small initial set

that can be used as a training set for our query-by-committee

(QBC) iteractive active selection stage. The concept of using

a committee of learners to identify “interesting” data

instances is well known (Baum, 1991; Schapire, 1989;
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Seung et al., 1992). The basic idea is to use an ensemble of

learners or models to classify or rank an unlabeled set, and

those data instances that the various models most disagree

about are deemed the most “informative” and are selected

for labeling. In Seung et al. (1992), the authors call this

process “incremental learning,” where a training algorithm

is used to produce a committee of 2k learners and a query

algorithm selects a sample that is classified positive by half

of the committee and negative by the other half. They show

that, for the Gibbs training algorithm, in the k → • limit,

each query bisects the version space, maximizing the infor-

mation gain. More general methods have been proposed and

successfully used such as query-by-bagging and query-by-

boosting (Abe & Mamitsuka, 1998; Schapire, 1989). In the

bagging approach, different models are produced using the

same learning algorithm trained on partitions created by

uniformly sampling the current labeled set. Boosting uses a

more sophisticated, round-based resampling method where

the sampling distributions (or instances’ weights) are varied

at each round to focus the learned models on the parts of the

training data on which previous learners performed poorly.

The bagging concept is immediately applicable to active

learning, where the instances selected at each round are

those that the various models most disagree about. In an L2R

scenario, this measure of disagreement could be, for

instance, the Kendall’s t rank correlation coefficient or, as

proposed by Cai et al. (2011), a vote entropy (Dagan &

Engelson, 1995) variation adapted for pairwise ranking.

These metrics would allow the measurement of the disagree-

ment of the learners in ranking each query. This means we

would need to select whole queries (i.e., query-level selec-

tion) instead of sampling documents from the unlabeled set.

This may be fine for data sets that contain few documents

per query, but doing query-level selection on the LETOR 3.0

data sets would imply selecting at least 1,000 documents per

round, jeopardizing our goal of minimizing the size of the

training sets that need to be labeled.

Accordingly, our method uses an ensemble approach to

QBC where different algorithms are used to produce diverse

rankings at each round. Thus, we train three distinct algo-

rithms using the same training data (the labeled data avail-

able at each round) and rank the remainer of the unlabeled

set using these three learners. Then, for each document of

each query, we calculate a simple metric to determine which

documents of that query the three learners most disagree in

ranking. At each round, we select the first m documents from

each query that have the highest value for the disagreement

metric described later. To rank the unlabeled sets, we use

three algorithms as our committee: SVMRank (Joachims,

2002), RankBoost (Freund, Iyer, Schapire, & Singer, 2003),

and RLR (Veloso et al., 2008). These algorithms are trained

using the labeled set gathered so far and then used to rank

the remaining instances in the unlabeled set.

We chose to sample m = 5 documents per query per

round simply to be able to compare our results with our main

baseline (proposed by Donmez & Carbonell, 2008). As we

discuss in the Results section, this works fine for the LETOR

3.0 data sets, which have few queries and many documents

per query. However, our method can be easily adapted to

either (a) perform a query-level selection for data sets with

many queries and few documents per query (using Kendall’s

t as a measure of rank disagreement, for instance) or (b)

perform first a query-level selection and then a document-

level selection in data sets with many queries and many

documents per query. The latter option is probably the most

reasonable because selecting all documents of a query, even

in data sets with few documents per query, would likely

introduce noisy instances into the selected set, possibly

hurting the results. Furthermore, the second option provides

greater flexibility because we could tune the number of

queries selected per round, as well as the number of docu-

ments selected per query per round, adapting the number of

selected samples per round to a number compatible with the

characteristics of the data set at hand and the labeling

budget. We have implemented both variations (a and b) and

discuss the implementation and results from experiments

run on the LETOR 4.0 collection in the Adding Query-Level

Selection section.

Measuring rank disagreement. At each round, the unla-

beled documents of each query are ranked by the members

of the committee using models trained on the labeled sets

accrued so far. If we were performing query-level selection,

as in Cai et al. (2011), we would need to measure the dis-

agreement of each ranking on the query level. Instead, our

method works at the document level; that is, we want to

measure the disagreement among the learners about the

ranking of each document. We select those documents that

vary the most in their positions in each ranking. One simple

metric would be to calculate the variance or standard devia-

tion of each document’s positions. For example, if we have

three learners and document di is ranked in positions 10, 15,

and 20 of each ranking, this document would have a ranking

variance of 25 (or a standard deviation, s, of 5). The

problem of this approach is that it gives the same importance

to documents whether they appear at the top or at the bottom

of the rankings. For instance, document dj appearing in

positions 110, 115, and 120 would have the same variance of

25. In L2R, we are usually more concerned with the very top

of the ranking (Granka, Joachims, & Gay, 2004); thus, it

would seem preposterous to assign the same value of dis-

agreement to documents di and dj in the earlier example. A

simple solution is to use the coefficient of variation (CV),

which is a normalized measure of dispersion. The CV is

defined as s/m (standard deviation over the mean). Now,

documents far down the rank will need a much greater

variation in their rankings to be selected for labeling. For

example, a document dk with rankings 200, 300, and 400

will have the same CV as document di with rankings 10, 15,

and 20. Thus, this metric will prioritize the choice of docu-

ments with disagreeing rankings that are closer to the top in

all three rankings but will still sometimes select documents

that are farther from the top if they have a much bigger

divergence in the rankings produced by the three models.
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The Two Stages Together

Figure 1 shows how the two stages are combined to produce

a small yet effective training set. In the first stage (left),

ARLR is used to produce a training set from scratch. It does

this by inserting an initial document into the empty training

set D (1) (it chooses the document that shares the most

feature-values with all the other samples in the unlabeled

set, U ). Then it loops through each and every of the unla-

beled documents (2), creating a projection of the training set

accrued so far (2a) and deriving association rules from these

projected sets (2b). The document that produces the smallest

amount of rules is selected (3), labeled, and inserted into the

training set D, but not removed from U (5). This process (2,

3, 5) is repeated until a document already selected is chosen

again (4). Once ARLR converges and stops, the selected

training set D is passed on to the QBC stage. At this point,

the selected documents are removed from the unlabeled set

U , from which the QBC stage will select more samples.

In the second stage (QBC, to the right), the training set

produced by ARLR is initially used to train the committee

members (I). After ranking the unlabeled set (II), the CV is

calculated for all documents in U (III) and used to select

five documents from each query in the unlabeled set (IV).

After being labeled, these documents are inserted into the

training set D and removed from U . This ends one round of

the QBC stage. If more rounds are required, the process

is repeated using the augmented training set (transition from

V to I).

In our experiments, we ran the loop to the right (QBC) for

25 rounds for evaluation purposes. At each new round, the

training set composed of the ARLR-selected documents plus

the instances selected in all previous rounds is used to

produce the committee ranking models, rank the unlabeled

set, and select new documents based on the calculated CV

values.

Experimental Evaluation

Data Sets

To evaluate the effectiveness of our method, we per-

formed extensive experimentation on the L2R (LETOR)

benchmark data sets version 3.0. LETOR 3.0 is composed of

six web data sets plus the OHSUMED corpus. The web data

sets contain labeled instances selected from web pages

obtained from a 2002 crawl of the .gov top level domain

(TLD). These collections are separated in three search

FIG. 1. Diagram depicting the two-stage active learning method.
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tasks—topic distillation (TD), home-page finding (HP), and

named page finding (NP)—and contain two sets each

(namely, Text REtrieval Conference [TREC] 2003 and

2004). The TD data sets are basically composed of “infor-

mational” queries, that is, queries whose targets are docu-

ments containing information about a specific topic, theme,

or entity. The HP and NP data sets are focused on “naviga-

tional” queries whose target is usually a single, specific web

page.

These collections contain instances represented by 64

features for the top 1,000 documents returned for a specific

set of queries using the BM25 model (Qin, Liu, Xu, & Li,

2010). These data sets use a binary relevance judgment

indicating whether a document is relevant to a given query.

We evaluate our method on all the largest, most diverse

LETOR 3.0 web data sets. In all data sets, we have used the

query-based normalized versions as suggested by the pro-

ducers of the LETOR benchmarking data sets. We also use

five-fold cross validation for all results reported and the

evaluation script provided in the LETOR package to gener-

ate the final MAP and NDCG metrics (see Baeza-Yates &

Ribeiro-Neto [2011], for definitions of these metrics).

Experimental Setup

In our active learning scenario, we consider the original

training sets of each data set as unlabeled sets from which

we select instances to be labeled. The label for these

instances is not used until they are selected, and we assume

that a human annotator evaluates and labels each selected

document. The active learning process is done offline: After

the documents are selected and labeled, the selected sets are

used as training sets by an L2R algorithm to create a ranking

model that can then be used to rank the test sets (or new user

queries). Our active method, ARLR-QBC, is run on each

fold of each data set in the following manner.

First stage (ARLR). In the first stage, the unlabeled and test

sets are discretized using the Tree-based Unsupervised Bin

Estimator (TUBE) proposed by Schmidberger and Frank

(2005). TUBE is a greedy nonparametric density estimation

algorithm that uses the log-likelihood measure and a top-

down tree-building strategy to define varying-length bins for

each attribute in the data set. All sets are discretized using 10

varying-length bins. The discretization is necessary because

ARLR uses association rules with nominal values in the

antecedent. Then the unlabeled set is partitioned into five

vertical partitions as proposed by Silva et al. (2011). Each

partition contains all unlabeled instances, but only a group

of each instance’s features. ARLR is run on each partition,

selecting instances based on distinct feature sets. This

process is done to increase the number of selected instances,

because for each partition the algorithm will choose those

that are most informative given the features in that partition.

It also improves the diversity of the samples because they

are selected based on distinct characteristics. The final

product of this first stage of the method is a very small

labeled set that we use as an initial training set for stage 2.

Second stage (QBC). The first step in stage 2 is to determine

the best parameters for the algorithms used in the committee.

To do that, we split the tiny labeled sets produced in stage 1

into training (50%) and validation (50%) sets. We then run the

algorithms varying the parameters and choose the param-

eter(s) that gives us the best MAP. Stage 2 progresses in

rounds where, at each round, five instances are selected

per query. This number is used so that we can compare our

method with Donmez, one of our baselines.At the first round,

we use the labeled set produced in stage 1 to train our three

supervised algorithms: SVMRank, RLR, and RankBoost.

The models produced are used to rank the unlabeled sets

(which, at this point, are the original training sets minus the

instances selected in stage 1). Then, for each query, the

rankings are evaluated and the metric described in the Stage

2: Expanding the Selection section (CV) is calculated for each

document. The five documents with the highest CV value are

then selected to be labeled. At the end of the round, five times

the number of queries in the unlabeled set need to be labeled

by the human annotators (in TD2004, for instance,

5 ¥ 45 = 225 documents are selected per round; for all data

sets, the number of documents selected per round represents

0.5% of the unlabeled sets). Once these documents are

labeled, they are inserted into our labeled training set and

removed from the unlabeled set. As another round starts, the

augmented training sets are used to train the three committee

members and the process described earlier is repeated. This

procedure can be repeated as many times as desired or until

the labeling budget is exhausted.

We performed extensive comparison of our method with

the chosen baselines and provide the results of statistical

significance tests where appropriate.

Baselines

Donmez. Our main baseline, which we call “Donmez,” is

an implementation we did of the method described by

Donmez and Carbonell (2008). The Donmez method is

based on the assumption that those instances that change the

current model the most are more “interesting.” The rationale

behind this strategy is that the initial model is far from the

ideal hypothesis and that by selecting the instances that are

estimated to change the current model the most, it will

approach the best hypothesis faster. Instead of retraining the

learner on each and every unlabeled sample one by one,

Donmez and Carbonell propose calculations to estimate the

change in the current learner for SVMRank. The original

method starts with an initial labeled set composed of 15

randomly picked documents plus exactly one relevant docu-

ment per query. We have implemented this initial set selec-

tion (i.e., selecting an initial set containing 16 instances per

query before starting the round-based selection proposed by

Donmez) in the following manner: An “oracle” uses the

labeled set to determine which feature gives the best mean
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reciprocal rank (MRR; see Baeza-Yates & Ribeiro-Neto

[2011], for a definition of this metric) value by ranking all

instances using the values of each feature in turn. Then we

start selecting instances for each query in the order deter-

mined by this selected feature: If, before selecting 16

instances, one of them is found to be relevant, then the

remaining instances (up to 16) are randomly sampled. If a

relevant sample is not found in the first 16, then we keep

selecting in the order determined by the oracle until either 50

samples are selected or a relevant one is found. Thus, the

initial sets contain at least 1.6% of the original training sets

but are usually a little larger, because for some queries, a

relevant document is not found in the first 16 sampled docu-

ments. After gathering these initial sets, we proceed by using

Donmez’s method to select, at each round, five new docu-

ments per query (amounting to 0.5% of the original training

sets selected per round). To make the comparison easier, our

method also selects 5 documents per query per round, and

we also run our experiments for 25 rounds. Because

Donmez uses some randomly selected instances in the initial

sets, results reported are averages for 10 runs for each fold.

Random-QBC. To understand how our initial selection

method, ARLR, influences the second stage, we ran QBC

with randomly chosen initial sets (16 samples per query).

Results reported are averages for 10 runs on each fold.

ARLR-Random. Conversely, we also ran a random second

stage to show that QBC is an effective selection strategy. In

this baseline, we start with the ARLR-selected sets and then

run a random selection process where five instances are

selected per query per round. Results reported are averages

for 10 runs on each fold.

Random. In this baseline, all instances are randomly

selected. The amount of instances selected is the same as

Donmez’s original method: It starts with an initial random

set of 16 instances per query (1.6% of each set) and selects

5 random instances per query per round (or 0.5% of each

set). Results reported are averages for 10 runs on each fold.

SVM Full. These are the results provided by the LETOR

publishers for the SVMRank algorithm. This is a natural

baseline because SVMRank is used by Donmez and by us to

generate the final ranking in each round, thus allowing a

direct comparison regarding the active selection process.

SVMRank is also a popular L2R method2 and a strong

baseline in several LETOR data sets. We include this base-

line as a line in each plot as a reference to put our results and

the other baselines in perspective. Notice that these results

are for SVMRank using 100% of the training sets. In the

Results section, we also compare our method with the other

11 supervised baselines published by the LETOR producers.

We do not plot these baselines in Figures 2 and 3 so as not to

clutter them.

ARLR-RLR. This line indicates the result obtained by using

ARLR to select instances and RLR to rank the test set (these

are the results that appear in Silva et al. [2011]). Notice that

ARLR selects instances until it naturally converges and

stops selecting new instances. Thus, it is not possible to run

ARLR in a round-based fashion. We present this result as a

line for readability (because this result should actually be a

point in the extreme left of each plot).

Published LETOR 3.0 results for the considered

collections. As mentioned earlier, we also compared the

results of our method (ARLR-QBC) with all reported

LETOR 3.0 results in the considered collections. As we shall

see, when we consider the best results of all the 26 experi-

mental rounds, as well as the best results in the first 8 rounds,

ARLR-QBC is the best overall method for all data sets on

average and the best performer in three of six data sets.

These are some of the best results ever reported in the

literature for these collections.

Results

Notice that our method (ARLR-QBC), Donmez’s,

Random-QBC, ARLR-Random, and Random methods are

round-based active methods where an initial selection is

performed as explained earlier (round 0 or stage 1 of our

method); then at each new round, new instances are labeled

and inserted into the (growing) training sets (rounds 1–25 or

stage 2 of our method). For these three methods, at the end

of each round we run SVMRank using the current training

sets obtained by the active selection processes to rank the

test sets and obtain the results presented. As a consequence,

these three methods appear in the plots as curves containing

26 points each.

SVM Full and ARLR-RLR are not round based: The

results for SVM Full were obtained by running SVMRank

using the complete original training sets to rank the test sets,

whereas ARLR-RLR results were obtained by running RLR

with the sets selected by ARLR. Although SVM Full is a

fully supervised baseline, whereas ARLR-RLR is an active

learning baseline, neither is round based and both appear in

the plots as flat lines only to improve readability. If correctly

portrayed, ARLR-RLR would be a point in the extreme left

of each plot, whereas SVM Full would not even appear in

the plots because it uses 100% of the training sets and our

plots show on the x-axis only up to 15%.

Informational data sets. Figure 2 shows the performance

of our method against the chosen baselines on TD2003 and

TD2004. These are the most relevant data sets because they

are built using the more general TD queries (in contrast with

the more specific navigational queries used to build the HP

and NP data sets). The plots show on the y-axis the MAP

2Its code is freely available at http://www.cs.cornell.edu/people/tj/

svm_light/svm_rank.html.
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(left) and NDCG@10 (right) obtained at each round for each

method. The x-axis indicates the percentage of the unlabeled

set selected at each of the 26 rounds. The first point on the

left of the plot for ARLR-QBC is the result obtained by

running SVMRank with the ARLR-only selected set (stage

1). The other 25 points correspond to the 25 rounds of the

stage 2 QBC method. ARLR, as explained in the Stage 1:

Active Sampling Using Association Rules section, naturally

converges; therefore, the amount of samples it selects for

labeling varies from one data set to another. Thus, the

ARLR-QBC lines start at 2.28% and 1.33% (x-axis) for

TD2003 and TD2004, respectively.

TD2003 is exceptional in our results, as the ARLR-

selected initial set performs very well in this data set using

both SVMRank and RLR (i.e., ARLR-QBC and ARLR-

RLR lines in the plots). Using only the initial data set,

SVMRank obtains a MAP of 0.2881 and ARLR-RLR a

MAP of 0.2728, surpassing not only SVMRank using the

full training set (SVM Full) but also (in the case of ARLR-

QBC) all supervised baselines published by the LETOR

producers (see more details in the Analysis section). With

such a good initial result, it is hard to expect much improve-

ment. Although ARLR-QBC manages to obtain an even

higher MAP at round 4 (0.2908) and a peak NDCG of

0.3710 at round 5, what we see is the MAP descending and

stabilizing at around 0.265 and the NDCG staying mostly

close to 0.365. Donmez starts at lower values for both

metrics but eventually catches up (at round 4), obtaining

similar results to ARLR-QBC at later rounds (from 10 up),

specifically in terms of the MAP.

TD2004 shows a different picture, with our method also

surpassing Donmez in the initial rounds for both metrics, but

starting with a lower performance. We can see that ARLR

does not select such a good initial set as in the case of

TD2003, but the QBC selection performs very well, bring-

ing the metrics on par with SVMRank using the complete

training set (i.e., SVM Full) just after round 1 (1.84%

selected). The MAP keeps growing until reaching a peak of

0.2388 in round 22, whereas the NDCG reaches 0.3335 in

round 6 and then slowly declines to 0.32. These results are

not as exceptional as those for TD2003; still, the MAP for all

rounds (with the exception of rounds 0 and 2) beat 9 of the

FIG. 2. TD2003 and TD2004: ARLR-QBC and baselines comparison. MAP (left) and NDCG@10 (right) versus % of samples selected from unlabeled

set. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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FIG. 3. HP2003, HP2004, NP2003, and NP2004: ARLR-QBC and baselines comparison. MAP (left) and NDCG@10 (right) versus % of samples selected

from unlabeled set. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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12 supervised baselines published by the LETOR producers,

and the NDCG (with the exception of rounds 0, 1, and 20)

beat 8 of the 12 baselines. If we consider only the peak

results, then ARLR-QBC beats 11 of the 12 supervised base-

lines (losing only to RankBoost, the best baseline in this

collection).

Comparison with Random. Both ARLR-QBC and Donmez

surpass the Random baseline with 99% confidence level on

all rounds in both informational data sets.

ARLR-QBC versus Random-QBC. Figure 2 shows that

using QBC with random initial sets severely affects the

results in the initial rounds. With ARLR-selected initial sets,

the QBC round-based method is able to select highly effec-

tive training sets in the first few rounds, which, we believe,

is an important characteristic of a practical active learning

method. A paired Student’s t test shows that ARLR-QBC is

better than Random-QBC with 99% confidence level in the

first eight rounds (0–7) on both TD2003 and TD2004. If we

consider all rounds, our method is significantly better with

95% confidence level on TD2003. It is also, on average,

better than Random-QBC on TD2004 (considering all

rounds), but not significantly so.

ARLR-QBC versus ARLR-Random. On TD2003, ARLR-

Random starts with the high-quality set from ARLR and as

random instances are added, the results steadily decline. A

paired t test shows that, although ARLR-QBC is not signifi-

cantly better in the first eight rounds, it is better with 99%

confidence if we consider all rounds. TD2004 shows a dif-

ferent picture, with ARLR-QBC beating ARLR-Random

with 99% confidence if we consider either the first eight

rounds or all rounds. Together with Random-QBC, this

baseline shows that the combination of ARLR and QBC is

very effective.

ARLR-QBC versus Donmez. On TD2003, the ARLR-QBC

results are significantly better than Donmez’s with 95%

confidence level up to the fourth round for the MAP (4.32%

selected) and up to the fifth round for the NDCG (4.83%

selected). On TD2004, our method is significantly better

than Donmez’s with 95% confidence level up until the 13th

round (7.91% selected) for both metrics.

From these results we can see that ARLR-QBC selects

highly effective sets for the informational data sets with only

a few rounds (<6% selected). Depending on the metric used

and the data set, peak results are obtained in the initial or

later rounds, but in general, the results are quite good.

Although we run the experiments for 26 rounds, selecting

almost 15% of the unlabeled sets, Figure 2 shows that the

sets selected in the initial rounds (0–7) are usually quite

effective.

Navigational data sets. Figure 3 shows that our method

performs very well on HP2003, NP2003, and NP2004 when

compared with SVM Full. It surpasses this baseline on both

metrics in round 1 on HP2004 and NP2004, and in round 4

on HP2003 (MAP). NP2003 is the exception, as ARLR-

QBC never reaches the same level as both SVM Full and

ARLR-RLR. To better understand these results, let us first

take a look on how these results compare with the 12 super-

vised baselines published by the LETOR producers. In

HP2003, ARLR-QBC obtains a MAP of 0.7463 by round 5

(selecting only 3.77% of the unlabeled set), surpassing five

of these baselines (including SVMRank and RankBoost).

The NDCG results are a little worse, beating only three of

these baselines (Regression, SVMMAP, and FRank) by

round 5 (with a value of 0.8013). The results are much better

for HP2004, where by round 6 (4.95% selected) the MAP

obtained (0.7268) beats all 12 published supervised base-

lines. The NDCG@10 for round 5 (0.8241) is better than

that for all baselines with the exception of AdaRank-MAP.

On NP2003, although ARLR-QBC never reaches the same

performance level of SVM Full, by round 22 (12.14%

selected) the MAP of 0.6902 is still better that of 9 of the 12

supervised baselines. The NDCG fares a little worse, sur-

passing only 4 of these baselines by round 3. Our method

also obtains outstanding results on NP2004, beating all

supervised baselines by round 3 with a MAP of 0.6948 (and

reaching a peak of 0.7226 in round 14, which represents a

gain of 5.24% over the best baseline, Regression-Reg). The

NDCG@10 obtained at round 3, 0.8205, also surpasses all

12 baselines, achieving a peak value of 0.8419 in round 17 (a

gain of 3.58% over the best baseline, ListNet).

Comparison with Random. ARLR-QBC and Donmez are

significantly better in all 26 rounds with 99% confidence

level on HP2004 and NP2004 (both metrics). In HP2003,

ARLR-QBC is still significantly better with 95% confidence

level from rounds 0 to 18. In contrast, for the same confi-

dence level, Donmez is only better than Random up to the

third round. In NP2003, our method is better than Random

in all rounds with 95% confidence on both metrics, whereas

Donmez is better only in rounds 0 to 2 and 11 to 25 if we

consider the MAP.

ARLR-QBC versus Random-QBC. Differently from the

informational data sets, here ARLR-QBC has a harder time

beating Random-QBC. It is still significantly better with

95% confidence in the first eight rounds (0–7) in HP2003

and NP2003 (both metrics). It is also better with 95% con-

fidence on all rounds in HP2004 and NP2003 (considering

the MAP only).

ARLR-QBC versus ARLR-Random. In contrast with

Random-QBC, ARLR-Random is easily beaten by ARLR-

QBC on all data sets, as shown in Figure 3. In fact, the

addition of randomly selected instances to the original

ARLR sets almost does not improve the results on the 2004

data sets. On the 2003 data sets, there is a small improve-

ment that mostly mirrors the curves for the Random base-

line. On all data sets, a t test shows that ARLR-QBC is
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significantly better with 99% confidence if we consider the

first eight rounds or all rounds.

ARLR-QBC versus Donmez. On a round-by-round basis,

ARLR-QBC beats Donmez with 90% confidence in HP2003

from rounds 4 to 11 for the MAP. In HP2004, our method

obtains a better MAP with 95% confidence on rounds 6 to 8

and 12 to 20, and a better NDCG on rounds 0 to 13. In

NP2003, with a confidence of 95%, the MAP is better on

rounds 5 to 10 and the NDCG on rounds 2 to 8 and 12 to 14.

In NP2004, there is a statistical tie on all rounds.

Gains obtained over Donmez and SVM Full. Table 1 sum-

marizes the gains obtained by our method compared with

Donmez and SVM Full. We calculate the gains for each

metric separately: MAP and NDCG@10. We also separate

the calculations into two partitions: the average and

maximum gains achieved in rounds 0 to 7 (columns AG7%

and MG7%, respectively) and the overall (i.e., considering

all rounds) average and maximum gains (AG% and MG%).

The reason for doing this partitioning is that, although we

run our method for 26 rounds, we believe that in most

real-world scenarios, only a few rounds should be run. One

of the advantages of an active learning method is exactly to

introduce less “noise” into the selected training sets, thus

allowing for the supervised L2R method to obtain better

effectiveness. This insight is corroborated by the gains

obtained in all data sets (except NP2003) by our method

over supervised baselines that use the complete training sets

(i.e., SVM Full and the published LETOR baselines) and by

the stable or falling results that we see in many data sets in

the final rounds. By providing the average and maximum

gains obtained at the first eight rounds (0–7), we want to

show that our method converges faster to good results as

compared with Donmez and also that it obtains competitive

results selecting less than 6% of the original training sets

when compared with a strong supervised method using the

complete sets (i.e., SVM Full).

Average and maximum gains over Donmez. From Table 1

we can see that ARLR-QBC obtains positive gains over

Donmez on all data sets with the exception of NP2004. The

improvement is more impressive on the informational data

sets, where ARLR-QBC has average results on rounds 0 to 7

that are over 10% better than Donmez on TD2003 (both

metrics) and more than 6% better on TD2004 (both metrics).

The overall average gains are also good, reaching more than

5% for the NDCG on TD2003. The results for the naviga-

tional data sets are more modest, but still quite reasonable,

with the average gain on rounds 0 to 7 reaching 3.4% on

HP2004 (NDCG). Observe from the MG% column that the

maximum gain is very often obtained in the initial rounds.

Average and maximum gains over SVM full. From the

average gain obtained over SVM Full in the first eight

rounds (Table 1, column AG7% to the right), we can see that

ARLR-QBC surpasses this strong supervised baseline in

four of six data sets for the MAP and half of the data sets for

the NDCG@10. This means that our method is able to

surpass this strong supervised baseline (which uses 100% of

the training sets) while selecting and labeling less than 6%

of the original training sets. Moreover, the overall average

gain (AG% to the right) is positive in five of the six data sets

for the MAP and four for the NDCG. The AG reaches more

than 5% for the MAP on HP2004 and NP2004, more than

6% for the NDCG on HP2004, and more than 4% for

TD2004.

TABLE 1. Gains obtained by ARLR-QBC over Donmez and SVM Full: MAP and NDCG@10.

ARLR-QBC vs. Donmez ARLR-QBC vs. SVM Full Peak values*

AG7% MG7% AG% MG% AG7% MG7% AG% MG% AQ LB

MAP

TD2003 10.54 26.32 (0) 3.93 26.32 (0) 5.39 10.65 (4) 2.27 10.65 (4) .2907 .2753

TD2004 6.47 11.43 (1) 3.65 11.43 (1) 0.44 3.99 (6) 3.38 6.73 (22) .2388 .2614

HP2003 1.69 2.31 (6) 1.55 2.31 (6) -0.37 0.75 (5) 0.44 1.25 (23) .7500 .7710

HP2004 0.99 3.71 (0) 2.20 4.30 (19) 4.24 8.88 (6) 5.16 8.88 (6) .7267 .7219

NP2003 2.22 3.64 (6) 1.89 3.64 (6) -4.20 -2.53 (6) -2.38 -0.79 (22) .6902 .7074

NP2004 -1.80 1.71 (3) -0.69 3.22 (8) 1.49 5.46 (3) 5.24 9.68 (14) .7225 .6866

NDCG@10

TD2003 10.39 22.92 (0) 5.68 22.92 (0) 2.42 7.19 (5) 3.47 7.19 (5) .3710 .3571

TD2004 6.31 8.93 (1) 2.17 8.93 (1) 4.12 8.34 (6) 4.71 8.34 (6) .3335 .3504

HP2003 1.04 1.40 (4) 1.15 1.46 (23) -1.52 -0.78 (5) -0.67 0.26 (23) .8098 .8384

HP2004 3.40 5.15 (4) 1.66 5.15 (4) 4.93 7.43 (7) 6.12 7.88 (11) .8293 .8328

NP2003 2.73 3.51 (3) 1.48 3.51 (3) -3.67 -2.24 (6) -2.79 -1.71 (22) .7866 .8068

NP2004 -1.15 0.93 (7) -0.28 1.49 (12) -0.06 2.26 (7) 2.40 4.43 (17) .8419 .8128

Note. Average gain for rounds 0 to 7 (AG7%), maximum gain for rounds 0 to 7 (MG7%), average gain for all rounds (AG%), and maximum gain for all

rounds (MG%). Numbers in parentheses indicate in which round the maximum gain was obtained. Values in italics indicate negative gains, values in bold

indicate a gain greater than 5%, and values in italics and bold a gain greater than 10%.

*Peak value obtained by ARLR-QBC in all rounds (AQ) and the value obtained by the best supervised algorithm of the 12 results published by the LETOR

producers for that data set (LB).
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Peak values for ARLR-QBC and all LETOR 3.0 baselines.

The last two columns of Table 1 show the best MAP and

NDCG@10 obtained by ARLR-QBC in all rounds (column

AQ) and the best supervised result published by the LETOR

producers (column LB). The LETOR publishers encourage

researchers to submit results obtained by new algorithms

and methods, and have accrued so far results for 12 distinct

L2R algorithms.3 As listed in Table 1, ARLR-QBC’s peak

results beat the best LETOR baseline in three data sets for

the MAP (obtaining a gain of more than 5% in TD2003 and

NP2004, and a gain of less than 5% in HP2004) and in two

for the NDCG@10 (namely, TD2003 and NP2004). The

best LETOR baselines for each data set are as follows (MAP,

NDCG@10): TD2003 ListNet, RankSVM-Primal; TD2004

RankBoost, RankBoost; HP2003 AdaRank-MAP, AdaRank-

MAP; HP2004 AdaRank-MAP, AdaRank-MAP; NP2003

RankBoost, RankBoost; and NP2004 Regression-REG,

ListNet. Observe that all of the 12 results for these baselines

were obtained using the complete (i.e., 100%) training sets

to rank the test sets. ARLR-QBC, being an active learning

method, uses 15% or less of the training sets.

Paired Student’s t test. We have also performed a paired

difference t test using the MAP and NDCG differences for

all rounds of our method in comparison with Donmez’s

results. The tests show that our method is significantly better

with 95% confidence level in all data sets but NP2004 for the

NDCG@10 and on four data sets for the MAP (the excep-

tions are NP2003 and NP2004).

Analysis

Comparison with other LETOR 3.0 baselines and ARLR-

RLR. Figure 4 shows the comparison of the peak MAP

obtained by ARLR-QBC in the first eight rounds (i.e.,

rounds 0–7), ARLR-RLR (as presented by Silva et al.,

2011), and three published LETOR baselines (that use the

complete training sets): SVMRank, RankBoost, and

AdaRank-MAP. SVMRank (or SVM Full, as we have been

calling it) is an obvious choice. We chose RankBoost and

AdaRank-MAP because they are the only two algorithms

(out of the 12 baselines published by the LETOR producers)

that obtain the highest MAP scores in two data sets each:

RankBoost in TD2004 and NP2003, and AdaRank-MAP in

HP2003 and HP2004. The ARLR-QBC results shown are

the peak values obtained in rounds 0 to 7 (i.e., using less

than 6% of the original training sets).

As shown in Figure 4, ARLR-QBC obtains better results

than ARLR-RLR in all data sets, with the exception of

NP2003. ARLR-QBC obtains especially good results on the

data sets where ARLR-RLR did worse: HP2004 and

NP2004. On these data sets, ARLR-QBC obtains gains of

18% and 25% over the ARLR-RLR MAP results, respec-

tively. On the informational data sets, the gain is also

significant: 6.5% for both TD2003 and TD2004. On

HP2003, the gain is marginal (less than 1%), and in NP2003,

ARLR-QBC obtains a MAP that is 2.5% smaller than that

achieved by ARLR-RLR. These results show that, although

ARLR-RLR is able to select very small data sets with very

good effectiveness, expanding the selection using the QBC

second stage is very much worth the extra labeling cost.

Using only ARLR, we select from 1.12% to 2.28% of the

original sets; ARLR-QBC is able to obtain the gains listed

earlier by expanding the selection to less than 6% of the

original sets.

From Figure 4, we can also see that ARLR-QBC beats

the chosen LETOR baselines in TD2003, HP2004, and

NP2004.

Selection of relevant samples. As our final analysis, to

better understand the differences between the compared

methods and data sets, we look into how the selection of

relevant instances may be affecting the results. Two simple

metrics may help us gauge the influence of relevant

instances in the results: the proportion of relevant instances

in the selected sets and the fraction of all relevant instances

present in the unlabeled sets that were selected.

In Figure 5, the plot on the left shows, for each method,

how the proportion of relevant instances in the selected sets

evolves as we run the rounds of the methods. On the y-axis,

we have the percentage of relevant instances in the selected

sets for each round. On the x-axis, as before, we have the

percentage of the unlabeled sets selected at each round. The

plot to the right shows the fraction the selected relevant

samples represent of the total amount of relevant documents

present in the unlabeled sets.

We first notice how the informational (first row of

Figure 5) and navigational data sets (second and third rows)

differ in these metrics. For the TD data sets, the proportion

3http://research.microsoft.com/en-us/um/beijing/projects/letor/

letor3baseline.aspx

FIG. 4. Comparison of ARLR-QBC, ARLR-RLR, and three LETOR

baselines: Best MAP was obtained in rounds 0 to 7. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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of relevant samples in the selected set grows in the first few

rounds, indicating that both QBC and Donmez are selecting

more relevant instances than nonrelevant. Then the propor-

tion gently slopes down, although by the 26th round it is still

higher (or the same) than in the initial round. Observe from

the plot on the right that the initial relevant samples selected

represent a minor proportion (1% to 12%) of all relevant

samples in the sets, so both QBC and Donmez have room to

find more relevant samples. On the HP and NP data sets, on

the other hand, the Donmez initial selection method selects

almost all relevant samples available in the initial round

(plots on the right: from 76% to 91%), which means that as

FIG. 5. All data sets: proportion of relevant instances in the selected sets (left) and the percentage they represent of the total number of relevant samples

in the unlabeled sets (right). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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the rounds progress, the tendency is to select more nonrel-

evant samples, gradually reducing the proportion of relevant

documents in the selected sets (plot to the left). This happens

because the initial selection used by Donmez tries to start

with at least one relevant sample per query, and the naviga-

tional data sets usually have only one relevant document per

query (from 0.1% to 0.17% of the navigational sets are

relevant documents). The informational data sets have a

much higher proportion of relevant samples (2.92% in

TD2004 and 1.52% in TD2003).

On TD2004, ARLR-QBC starts with the highest propor-

tion of relevant samples in the selected set (Figure 5, left

plot, first row). Donmez also starts with a high proportion,

but ARLR-QBC selects many more relevant instances in the

first rounds, achieving a peak percentage of almost 11% of

relevant samples in the selected sets by round 3, whereas

Donmez never surpasses 7%. A similar trend is observable in

TD2003: Although Donmez starts with a higher proportion

of relevant samples, ARLR-QBC quickly surpasses it,

achieving a peak of more than 6% by round 4 (with Donmez

peaking at 5% on the third round). Another interesting

observation is that, although Random-QBC starts with a

very low proportion, the QBC method is able to select rel-

evant samples in a very fast rate, bringing the fraction to the

same level as ARLR-QBC by round 12 on both data sets.

Remember that ARLR-QBC is significantly better that

Random-QBC mainly in the initial rounds (0–7). It is tempt-

ing to attribute that advantage to the higher proportion of

relevant samples selected by ARLR-QBC in the initial

rounds, but notice that although Donmez starts with a higher

proportion of relevant samples in round 0 on TD2003,

ARLR-QBC obtains much higher MAP and NDCG@10

results in this round (26.32% higher MAP; see Table 1).

Thus, on the informational data sets, a combination of rel-

evant samples and informative (relevant or nonrelevant)

samples seems to be the key to ARLR-QBC’s better results

in the initial rounds. On the navigational data sets, ARLR-

QBC and Random-QBC start with much lower proportions

of relevant samples as compared with Donmez, quickly

achieving their peaks in the first two or three rounds and then

gently sloping down (Figure 5, left graphs). The graphs to

the right in Figure 5 show that QBC is very good at finding

the relevant samples in these data sets, whereas Donmez

starts with almost all relevant samples already selected and

does not have much room to grow. On these data sets, the

selection of more relevant documents in the initial rounds

may affect the results more markedly, because SVMRank

needs at least one relevant sample per query to be able to

generate pairwise comparisons. Nevertheless, Donmez’s

initial selection contains almost one relevant sample per

query, and that does not necessarily translate into better

results in the initial rounds. Interestingly, the data sets where

ARLR-QBC is not significantly better than Random-QBC in

the first eight rounds (HP2004 and NP2004) are those where

Random-QBC is able to select more relevant samples in

those rounds. Although ARLR-QBC beats Donmez and

Random-QBC (in the initial rounds) in two of the four

navigational data sets and practically ties in the other two, it

seems that devising some technique to increase the amount

of relevant samples selected in the initial round (i.e., the first

stage, ARLR) may be a simple way of improving our meth-

od’s results in navigational data sets. This hypothesis will be

tested in future work. Still, as we can clearly see in the

graphs for the navigational data sets, the combination of the

diversity and feature coverage provided by ARLR-QBC

compensate for the smaller proportion of relevant samples,

allowing our method to beat or at least tie with Donmez in

the initial rounds.

Adding Query-Level Selection

The two-stage method described earlier performs only

document-level selection: Both ARLR and QBC select

documents from all queries. QBC selects a fixed amount of

documents from each query per round, whereas ARLR

selects documents without taking the queries into consid-

eration. This is ideal for data sets with few queries and

many documents per query (like the LETOR 3.0 data sets).

If the unlabeled set contains many queries, it is necessary

to perform some query selection before document selection

to avoid selecting a huge amount of documents to be

labeled in the QBC stage. Because ARLR naturally con-

verges fast, selecting documents from many different

queries, it is usually not necessary to add query selection

to our method’s first stage. Therefore, we need to devise a

query selection mechanism only for the second stage,

namely, QBC.

Query selection can be easily added to our method by

defining a suitable committee disagreement metric that oper-

ates at query level. As stated earlier, a common query rank

correlation coefficient is Kendall’s t, which is defined as

τ( , )
( , )
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R R

K K
1 2

1 2
1

2
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×
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Δ
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where R1 and R2 are two distinct rankings of K documents,

and D(R1, R2) is a function that returns the number of

discordant pairs in the two rankings (Baeza-Yates &

Ribeiro-Neto, 2011). This value varies from -1 to 1, where

1 indicates two identical rankings (i.e., there are no discor-

dant pairs) and -1 indicates one ranking is the reverse of the

other (i.e., all pairs are discordant).

We modify the QBC stage so that at each round it first

calculates Kendall’s t between the three rankings of the

unlabeled set produced by the committee models [i.e., t(R1,

R2), t(R1, R3), t(R2, R3)] and then averages these three values,

choosing the q queries with the lowest average values (i.e.,

higher rank disagreement). Then it proceeds as before, cal-

culating the CV for the documents of the chosen queries and

selecting from each chosen query the m documents with the

highest CV values.

Experiments using the LETOR 4.0 collection. To demon-

strate how our method can be easily adapted to perform
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query-level selection, we decided to conduct some experi-

ments using the LETOR 4.0 collection.4

There are two data sets in this collection: MQ2007 and

MQ2008. LETOR 4.0 is very different from the 3.0 version.

It is based on two informational query sets from the Million

Query Track5 of TREC 2007 and TREC 2008. Instead of

many documents per query and few queries, these data sets

contain many queries and few documents per query.

MQ2007, contains a total of 1,692 queries and an average of

41 documents per query, for a total of 69,623 documents (if

we take into consideration the cross-validation evaluation

method, the training set has, on average, 41,774 documents

for 1,015 queries, and the test and validation sets 13,924

documents related to 338 queries). MQ2008 is much

smaller, with a total of 784 queries and 15,211 documents,

and an average of only 19 documents per query (average

training set size of 470 queries and 9,126 documents, and

test and validation sets with 157 queries and 3,042 docu-

ments). These data sets also use three relevance levels

instead of just two (i.e., 0: not relevant, 1: relevant, 2: highly

relevant). One of the main differences between these data

sets and those in LETOR 3.0 is the amount of relevant

documents: On MQ2007, 20% of the documents have rel-

evance 1, and 5.5% of the documents have relevance 2. For

MQ2008, the numbers are 13% and 6%, respectively. In

LETOR 3.0, the data set with the highest percentage of

relevant documents is TD2004, with less than 3%. All navi-

gational data sets have less than 0.2% relevant documents.

The LETOR 4.0 data sets were built using a very different

document selection strategy. Whereas in LETOR 3.0 a fixed

number of documents was selected per query using the

BM25, in version 4.0 each query has 8, 16, 32, 64, or 128

documents selected according to two approaches: minimal

test collections and statistical sampling. In the first method,

documents are selected by a measure of how much they may

change the MAP, given all judgments made up to that point,

if they are considered relevant or nonrelevant (Carterette,

Allan, & Sitaraman, 2006). In the second approach, a spe-

cific random sample of documents is drawn and judged to

produce unbiased, low-variance estimates of average preci-

sion, R-precision, and precision at typical cutoffs. Addi-

tional documents may be included to improve the quality of

the estimates, if necessary (see Aslam & Pavlu, 2007).

If we were to run ARLR-QBC unmodified on these data

sets, each QBC round would select 5,075 documents from

the unlabeled (i.e., training) set on MQ2007 and 2,350

samples for MQ2008. That is around 12% and 26% of the

unlabeled sets per round, respectively. This would obviously

defeat the purpose of our method (remember that in LETOR

3.0, only 0.5% of the unlabeled set was selected per QBC

round). Thus, we need to introduce query-level selection: On

each round, we first select some queries and then select

documents from these queries.

We call the modified method ARLR-QBC-QueryDoc, to

indicate that it performs query- and document-level selec-

tion. First, ARLR is run exactly as before on the full unla-

beled sets. Once ARLR converges, the obtained labeled set

is fed into the QBC stage as before. The three committee

models are generated from the current training set and

used to rank the unlabeled set. We then calculate average

Kendall’s t for the three rankings and select the q queries

that have the lowest average. q is chosen to keep the propor-

tion of documents selected in each QBC round at around the

same as for LETOR 3.0 (0.5%). After the queries are chosen,

the same m = 5 documents are selected per query using their

CV values as before. For MQ2007, the number q of chosen

queries used was 42 and 35 for MQ2008.

To better understand the impact of using query- and

document-level selection simultaneously, we also ran a

variation of the method that relies only on query-level selec-

tion. In this variation, which we call ARLR-QBC-Query,

once the queries are chosen, we select all documents from

each query in turn (ordered in ascending order of the average

Kendall’s t), until we reach a number of documents similar

to the QueryDoc method. That is, we do not perform doc-

level selection, ignoring the CV and selecting all documents

from the first few ordered queries.

Baselines. The baselines were also adapted for this new

scenario. ARLR-Random-QueryDoc corresponds to ARLR-

Random: We start with the ARLR-selected sets and then

randomly select q queries and m documents per query. In

Random-QueryDoc, all instances are randomly selected,

including the initial set. As before, we randomly select some

queries and then some documents from each of the selected

queries. Both random baselines were run 10 times on each

Fold and the averages reported. Finally, we have SVM Full

and ARLR-RLR. As before, SVM Full is the result reported

by the LETOR producers.

Donmez. Donmez cannot be easily adapted to this new

scenario. Running the regular Donmez on these data sets

would produce initial data sets of more than 38% and 82%

of the unlabeled sets for MQ2007 and MQ2008, respec-

tively. Moreover, each QBC round would select an addi-

tional 12% and 26%. Adapting Donmez would require some

query selection mechanism. We could randomly select q

queries as with the random baselines described earlier; the

problem is that Donmez estimates the impact that each

document will have on the current model for each query

separately. Thus, each query has a separate SVM model and

the documents with the highest estimated impact on these

models are selected. If we start with an initial set containing

only a few queries, then we cannot proceed selecting docu-

ments from other queries, as there is no model for these

other queries. Thus, we would only select documents from

the same set of queries randomly chosen during the initial

set selection. Reducing the number of documents selected

per query would also not be very useful because we would

still end up with very big initial sets and choose too many

4http://research.microsoft.com/en-us/um/beijing/projects/letor/

letor4dataset.aspx
5http://ir.cis.udel.edu/million/index.html
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documents per round. Thus, we have not run Donmez on

these data sets because it is not a competitive baseline in

terms of the effectiveness versus cost trade-off.

Results for the LETOR 4.0 data sets. Figure 6 shows the

results for ARLR-QBC-QueryDoc, ARLR-QBC-Query, and

the baselines on MQ2007 (top) and MQ2008 (bottom).

Notice that we show the NDCG@5 for MQ2008. The reason

is that many queries in this data set have less than 10 docu-

ments, causing the NDCG@10 calculated by the evaluation

script to be thrown off a bit. As shown in Figure 6, ARLR-

QBC-QueryDoc does not beat SVM Full in the 26 rounds we

ran on MQ2007, although both MAP and NDCG results

steadily increase as more queries and documents are selected.

On the other hand, in MQ2008, it is possible to achieve SVM

Full-like performance on the eighth round (around 8% of the

unlabeled set selected) and even beat it by the 19th round

(14% selected). We can also see that ARLR-QBC-QueryDoc

beats ARLR-QBC-Query in most rounds on both data sets. It

seems that using both query- and document-level selection is

a better strategy than choosing all documents from certain

queries in these data sets, given their characteristics.

Paired t test. Paired Student’s t tests show that on

MQ2008, ARLR-QBC-QueryDoc is better than ARLR-

QBC-Query, ARLR-Random-QueryDoc, and Random-

QueryDoc with 99% confidence. It also beats

ARLR-QBC-Query on MQ2007 with 99% confidence but

is statistically tied to ARLR-Random-QueryDoc and

Random-QueryDoc.

What is interesting in these results is the high MAP and

NDCG values obtained by the random baselines: Random

selection is as good as ARLR-QBC-QueryDoc on MQ2007,

although significantly worse on MQ2008. Although on

TD2003 the average random MAP is more than 22% lower

than the SVM Full MAP and on TD2004 it is around 9%

lower, on MQ2007 it is only 4.7% lower and on MQ2008

only 1.6% lower. This seems to be a reflection of the very

different natures of these informational data sets: In LETOR

3.0, there are 1,000 documents per query, with a low pro-

portion of relevant documents (1.5% on TD2003 and almost

3% on TD2004). In LETOR 4.0, there are only a few docu-

ments per query with a fraction of more than 20% (25% for

MQ2007) of relevant documents (considering two relevance

levels, 1 and 2). We can also see that the MAP and NDCG

FIG. 6. MQ2007 and MQ2008: ARLR-QBC-QueryDoc and baselines comparison. MAP (left), NDCG@10 (MQ2007), and NDCG@5 (MQ2008) (right)

versus percentage of samples selected from the unlabeled set. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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results for these data sets are almost double those obtained

by the same (or similar) algorithms in the informational data

sets of version 3.0 of the collection. Thus, the selection of

only a few top documents per query has increased the overall

quality of the documents in the 4.0 data sets, seemingly

making it harder for an active method like ARLR-QBC to

sieve out “noisy” instances, and thus achieve better results in

the initial rounds (on MQ2008) and in general (on

MQ2007). Nonetheless, ARLR-QBC-QueryDoc performs

very well on MQ2008, showing that the combined query-

and document-level QBC selection strategy can be very

effective (top performance with a low percentage of the data

set selected).

Conclusions

The proposed two-stage active learning technique pro-

vides an effective and practical method to reduce the cost of

creating training sets for use with L2R techniques. The

method is practical in the sense that it selects highly effec-

tive yet very small training sets from very diverse data sets

and provides consistent quality results for small or bigger

labeling budgets. Our method, selecting less than 6% of the

unlabeled sets, achieves better MAP results than all 12

supervised baselines published by the LETOR 3.0 producers

(using the full training sets) in three of the six data sets

(TD2003 in round 0, HP2004 in round 6, and NP2004 in

round 3). It still beats at least 9 of the 12 baselines in

TD2004 and NP2003, and 5 in HP2003. Furthermore, it

performs significantly better than a strong active learning

baseline (Donmez) in five of the six data sets. We have also

shown how a simple modification allows our method to be

adapted for use with data sets with many queries (i.e., by

adding query-level selection to the QBC stage). The results

on the LETOR 4.0 data sets show that this variation can be

very effective.

The strength of the proposed method relies on its ability

to actively select documents without the need of an

initial labeled set. As we have seen, the association rule

active method (ARLR) is able to provide a very strong

initial set, allowing the QBC second-stage process to

expand the selection and obtain state-of-the-art results in

just a few rounds on most data sets. We performed exten-

sive experimentation that shows that the method is effec-

tive for very different data set types (i.e., data sets based

on informational or navigational queries) and that it beats

a very strong active learning method proposed in the

literature.

In the future, we plan to measure the effect of the chosen

committee algorithms by fine-tuning them or using other

algorithms and to evaluate how the selected sets perform

with other supervised methods such as RLR and RankBoost.

Another interesting aspect to evaluate would be to change

the measure of disagreement from the CV to the variance or

standard deviation to determine how this metric affects the

results.
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