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Abstract

The classification performance of an associative classifieris
strongly dependent on the statistic measure or metric that is
used to quantify the strength of the association between fea-
tures and classes (i.e., confidence, correlation etc.). Previ-
ous studies have shown that classifiers produced by different
metrics may provide conflicting predictions, and that the best
metric to use is data-dependent and rarely known while de-
signing the classifier. This uncertainty concerning the opti-
mal match between metrics and problems is a dilemma, and
prevents associative classifiers to achieve their maximal per-
formance. This dilemma is the focus of this paper.

A possible solution to this dilemma is to learn the
competence, expertise, or assertiveness of metrics. The
basic idea is that each metric has a specific sub-domain for
which it is most competent (i.e., it consistently produces
more accurate classifiers than the ones produced by other
metrics). Particularly, we investigate stacking-based meta-
learning methods, which use the training data to find the
domain of competence of each metric. The meta-classifier
describes the domains of competence (or areas of expertise)
of each metric, enabling a more sensible use of these metrics
so that competence-conscious classifiers can be produced
(i.e., a metric is only used to produce classifiers for test
instances that belong to its domain of competence). We
conducted a systematic and comprehensive evaluation, using
different datasets and evaluation measures, of classifiers
produced by different metrics. The result is that, while no
metric is always superior than all others, the selection of
appropriate metrics according to their competence/expertise
(i.e., competence-conscious associative classifiers) seems
very effective, showing gains that range from 1.2% to 26.3%
when compared to the baselines (SVMs and an existing
ensemble method).

1 Introduction

One strategy for devising a classifier is to exploit relation-
ships, dependencies and associations between features and
classes. Such associations are usually hidden in the training

examples, and when uncovered, they may reveal important
aspects concerning the underlying phenomenon that gener-
ated these examples. These aspects can be expressed us-
ing rules of the formX −→ c, which indicate that a set
of featuresX is associated with classc. The use of such
rules for the sake of prediction has led to a new family of
classifiers, that are often referred to as associative classi-
fiers [4,8–10,21,22,26,27,29,33,37]. These classifiers have
shown to be valuable in many applications, including gene
functional analysis [35], document categorization [34, 39],
Web ranking [36] etc.

An obvious difference between various associative clas-
sifiers resides in the metric used to capture dependencies be-
tween features and classes (i.e., confidence, correlation etc.).
It has been observed that many such metrics provide conflict-
ing information about feature-class dependencies, resulting
in associative classifiers with different classification perfor-
mances [34]. In fact, different metrics have different intrinsic
properties [28] (i.e., symmetric/asymmetric metrics, scaling
variant/invariant metrics etc.), and this may lead to very dif-
ferent associative classifiers. Some of these classifiers may
be well suited for some classification problems, but not for
others (that is, each metric has a particular domain for which
it is more competent). Competent metrics are rarely known
while devising the classifier, and this dilemma concerning
the best match between metrics and problems prevents the
full potential of associative classifiers.

Obviously, one possible solution to the metric dilemma
is to find the domain of competence (or areas of expertise)
for each metric, that is, subsets of examples for which a cer-
tain metric produces better classifiers than the others. Hav-
ing this information would enable the assignment of com-
petent associative classifiers to specific problems according
to their competence/expertise [12, 23]. Hopefully, classifi-
cation performance would be drastically boosted by taking
advantage of consciously assigning metrics to specific sub-
sets of instances (i.e., a domain of competence). This would
be great, except that there are several metrics, and numer-
ous (unknown) characteristics affecting their corresponding
competence, and finding such an invariant domain of com-



petence for metrics seems to be practically unfeasible.
As an alternate approach to the metric dilemma, we

propose to automatically extract the competence of each
metric. Taking as a starting point a set ofq accurate1 and
diverse2 metrics, m1, m2, . . ., mq, a stacking-like meta-
learning strategy [30, 38], which is a procedure based on
the idea that different classifiers may provide different but
complementary explanations of the data, is used to extract,
from the training data, information regarding the competence
of each metric. This information is then used to produce the
meta-data. Specifically, it is explicitly indicated the metrics
that correctly classify each example in the training data (i.e.,
using a cross-validation procedure).

The meta-data is used to produce a meta-classifier which
has the ability to consciously decide the appropriate match
between metrics and examples (i.e., the meta-classifier is
a function mapping features to competent metrics). Then,
for each test instancet, the meta-classifier is used to decide
which is the most competent metric to be applied, according
to their expertise. A specific classifier,Ct

mi
, is finally pro-

duced, so thatmi is expected to be the most competent met-
ric to classify instancet (i.e.,t belongs to the domain of com-
petence of metricmi). The classifiers that are produced fol-
lowing this strategy are regarded ascompetence-conscious
classifiers. We propose two competence-conscious classi-
fiers, with the difference between them residing in the way
they perform the analysis of the domains of competence (or
areas of expertise). The first classifier performs a class-
centric analysis, in which the domain of competence of a
metric is composed ofclassesfor which it produces accurate
classifiers. The other classifier performs a different analysis,
in which the domain of competence of a metric is composed
of examplesfor which it produces accurate classifiers.

To evaluate the effectiveness of competence-conscious
associative classifiers, we performed a systematic set of ex-
periments using the UCI datasets, as well as more complex
datasets obtained from other real applications, such as digi-
tal libraries, Web directories and Web spam detection. Our
results suggest that the finer-grained the analysis of the do-
mains of competence (i.e., from classes to instances), the
more effective is the final associative classifier. The results
also show that the proposed competence-conscious associa-
tive classifiers are able to outperform the baselines (SVMs
and existing ensemble methods), providing gains ranging
from 1.2% to 26.3%. In sum, the specific contributions of
this paper are:

• We present a comprehensive study of the competence
of associative classifiers produced by different statistic

1An accurate metric is one that produces a classifier that has an error rate
of better than random guessing

2Two metrics are diverse if they produce classifiers that misclassify
different instances

metrics. We show that no metric is consistently better
than the others for all problems. Further, we also
show that traditional metrics, such as confidence, are
just moderately competent for most of the problems
investigated.

• We propose competence-conscious classifiers, which
effectively combine classifiers produced by different
metrics (an ensemble) using their domains of compe-
tence. All constituent classifiers are produced using the
same rule set. The only difference between the base
classifiers is the way they interpret the rules (each clas-
sifier employes a different metric).

• We used several complex datasets to present a deep
evaluation of the proposed competence-conscious clas-
sifiers, and we show that they are able to provide ex-
pressive gains in classification performance. Our anal-
ysis include a study about how the diversity and the ac-
curacy of the base classifiers affect the performance of
competence-conscious associative classifiers.

The remaining of this paper is organized as follows.
In Section 2 we discuss related work. Then, in Section
3, we introduce our associative classification technique.
The metric dilemma, and competence-conscious associative
classifiers (i.e., the ensemble of classifiers produced by
different metrics), are presented in Section 4. In Section 5we
evaluate the proposed competence-conscious classifiers, and
compare them against state-of-the-art SVMs and existing
ensemble techniques. Finally, in Section 6 we conclude the
paper.

2 Related Work

The ultimate goal of a classifier is to achieve the best possible
classification performance for the problem at hand. An
ensemble is a collection of classifiers whose predictions are
combined with the goal of achieving better performance
than the constituent classifiers. There is a body of evidence
suggesting that ensembles offer substantial advantages in
enough situations to be regarded as a major advance in
machine learning [14]. Also, there is a body of theory
explaining why ensembles work. In this section we will
discuss approaches used to produce ensembles, and how they
relate to the approaches presented in this paper.

A variety of ensemble methods has already been pro-
posed. Well known methods include bagging [6], boost-
ing [24], and stacking [38]. Bagging is the acronym for
bootstrap aggregating. It generates bootstrap replicatesof
the training data by sampling examples from the original
training data uniformly and with replacement (that is, an ex-
ample may appear repeated times or not at all in any par-
ticular replicate). A classification model is produced from
each replicate, and then they are combined using approaches



such as averaging or voting [19]. Boosting combines sev-
eral weak classifiers (those that are only slightly correlated
with the true classification) in order to produce a single and
much stronger one. Combination approaches include aver-
aging [18] and majority [13]. In the following, we will focus
our attention on stacking methods, since the techniques pro-
posed in this paper are mostly related to them. Stacking is
based on the idea that different classifiers may provide dif-
ferent but complementary explanations of the data. Thus,
the predictions of these different (base) classifiers can poten-
tially produce novel information that can be used as meta-
features to form a new training data. Then, a meta-classifier
is built using this new training data, but instead of predicting
the correct class for a given test instance, the meta-classifier
predictcs the base classifier that is most likely to correctly
predict the class for such instance. The obvious advantage,
in this case, is that the errors of a base classifier can be coun-
terbalanced by the hits of others.

In this paper we are interested in associative classifica-
tion. We exploit stacking based meta-learning approaches
to address an important issue in associative classification:
the metric dilemma. Several statistic metrics can be used
to estimatefeature-classassociations [16, 20, 28], but the
most competent one is rarely known in advance. Thus, we
propose to explore the diversity among classifiers that are
produced using different statistic metrics to maximize the
performance of the final classifier (which will be refereed
as a competence-conscious associative classifier). The met-
ric dilemma is challenging, and, as far as we know, this is
the first attempt to integrate classifiers produced by different
statistic metrics, in the context of associative classification.

The integration of classifiers using strategies related to
stacking was largely explored [2, 12, 15, 23, 32]. In [2], the
authors use a neural network to learn, from predefined meta-
features (e.g., maximum confidence, average confidence,
number of applicable rules etc.), how to weigh the rules
using a single association metric (i.e., confidence). We
believe that the work of Ortega et. al [23] is the closest
to ours. They used a referee (which in our case is a meta-
classifier) to indicate the best classifier to be applied for
each example.In our experiments we performed a direct
comparison between the competence-conscious classifiers
proposed in this paper and the ensemble approach proposed
in [23].

Self-delegation [12] is another strategy for combining
the predictions of different base classifiers, and thus it is
also related to our work. The idea is that each base classi-
fier chooses by itself which instances it can safely classify.
This choice is based on the confidence in its prediction. A
base classifier delegates the difficult or uncertain predictions
to other classifiers. Clearly, this strategy produces classi-
fiers which are exclusively defined in terms of the original
features (no meta-features are generated). This simplicity

may be desirable, but it may neglect important information
associated with meta-features.We show this by performing
a direct comparison between self-delegating classifiers and
competence-conscious classifiers. We concluded that sensi-
tive information regarding the competence of metrics leads
to associative classifiers that provide substantial improve-
ments in classification performance.

3 Associative Classification

The classification problem is defined as follows. We have
an input dataset called thetraining data (denoted asD)
which consists of instances composed of a set ofl attribute-
values (a1, a2, . . . , al) along with a special variable called
theclass. The set of all possible attribute-values is denoted
asA, while the class variable draws its value from a discrete
set of classes (c1, c2, . . . , cn). The training data is used to
build a classifier that relates features (or attribute values) to
the class variable. Thetest instancesare a set of instances
for which only the features are known while the class value
is unknown. The classifier, which is a function fromA to
{c1, c2, . . . , cn}, is used to predict the class value for test
instances (i.e., the classifier is a function which maps a setof
features to one of the classes).

Associative classifiers exploit the fact that, frequently,
there are strong associations between features and classes.
Typically, such associations are expressed using rules of the
form X −→ ci, whereX ⊆ A andci is one of the classes.
These rules are usually hidden in the training data, and
when uncovered they can be combined in order to accurately
map features to classes (i.e., the classification function is
obtained by combining the information provided by these
rules). In the following we will denote asR an arbitrary
rule set extracted fromD. Similarly, we will denote asRci

an arbitrary rule set composed of rules of the formX −→ ci,
such thatRci

⊆ R.
Naturally, some rules inR represent stronger associa-

tions than others. A set of statistic metrics that quantify the
strength of the association betweenX and ci are used to
compare the rules. Associative classifiers usually learn the
classification function in two broad steps:

1. generate a rule set,R, fromD

2. estimate the likelihood of class membership for each
test instance, by combining the information provided
by rules inR

The main challenge associated with the first step is
to avoid the rule explosion problem, which may make the
rule extraction process unfeasible in practice (or at least
time-consuming). An approach to deal with this challenge
(the pruning dilemma) was proposed in [33]. In this paper
we follow this approach [33], which generates rules on a
demand-driven basis according to each test instance. This



strategy drastically reduces the number of extracted rules,
while at the same time, it reduces the chance of missing
important rules.

In this paper our focus is on an important challenge
associated with step 2: provide an accurate estimate of
the likelihood of class membership. Specifically, given an
instancet, we want to estimate the likelihood̂p(ci|t) that t
belongs to classci. Only rulesX −→ {c1, c2 . . . cn} ∈ R,
such thatX ⊆ t are used to estimatêp(c1|t), . . . p̂(cn|t).
Such rules are said to matcht, and they form the rule setRt.
Obviously,Rt ⊆ R.

The likelihood of membership of an instancet is esti-
mated by combining rules inRt={Rt

c1
∪Rt

c2
∪ . . .∪Rt

cn
}.

A simple (yet effective) probabilistic strategy is to interpret
Rt as a poll, in which ruleX −→ ci ∈ Rt

ci
is a vote given by

X for classci. The weight of a voteX
m
−→ ci depends on the

strength of the association betweenX andci, which is given
by an association metricm. Weighted votes for classci are
summed and then averaged by the total number of votes for
this class, as expressed by functions(ci, t), shown in Equa-
tion 3.1 (wherem(r) is the metric value for ruler). As will
be discussed in the next section, there are cases in which
m(r) < 0, and thus a valuez (which is the lowest score, that
is, z=s(cj, t)|s(cj , t) ≤ s(ci, t)∀ci), is used to ensure that all
scores are greater than or equal to 0.

(3.1) s(ci, t) =

∑

r∈Rt
ci

m(r)

| Rt
ci

|
− z

The likelihood of membership oft to classci is ex-
pressed by the function̂p(ci|t), shown in Equation 3.2 (thus,
votes with high weights increase the likelihood of the corre-
sponding class being the correct one, while votes with low
weights reduce the likelihood of the corresponding class be-
ing the correct one). A higher value of̂p(ci|t) indicates a
higher likelihood oft to belong to classci. The class as-
sociated with the highest likelihood is finally predicted. As
will be shown in Section 5, association metrics play a fun-
damental role in estimating the likelihood of class member-
ship. However, the best-quality, most competent metric is
data-dependent, and rarely known while devising the classi-
fier3.

(3.2) p̂(ci|t) =
s(ci, t)

n
∑

j

s(cj , t)

3We denote asCmj
an associative classifier which appliesmj as the

association metric in Equation 3.1

4 The Metric Dilemma

Selecting an appropriate association metric is a major is-
sue while designing an associative classifier. Classifiers pro-
duced by different metrics often present different classifica-
tion performance. Depending on the characteristics of the
problem, some metrics may be more suitable than others.
That is, a sub-domain may present properties that make a
metric more suitable than others. This suggests that clas-
sifiers produced by a certain metric are only able to make
reliable predictions over a subset of the entire domain space,
which is the area of expertise, or domain of competence, of
such metric. In this section we exploit the training data to
learn the competence, or expertise of each metric. Then,
a specific metric is used to produce a classifier for sub-
problems that belong to its domain of competence.

4.1 Association Metrics Next we present several metrics
for measuring the strength of association between a set of
features (X ) and classes (c1, c2, . . . , cn). Some of these met-
rics are popular ones in routine use [1,28], while others were
recently used in the context of associative classification [3].
Naturally, there is nothing to gain by combining similar clas-
sifiers (i.e., those that perform almost the same predictions),
and thus we selected metrics that are sufficiently different
(these metrics have different properties according to [28])
to indicate that the corresponding classifiers (Cm1

, . . . , Cm8
)

may present some diversity.

• Confidence (m1) [1]: This metric measures the fraction
of instances inD containingX that belong toci. It is the
conditional probability ofci being the correct class of
instancet given thatX ⊆ t, as shown in Equation 4.3.
Its value ranges from 0 to 1.

(4.3) m1 = p(ci|X )

• Added Value (m2) [16]: This metric measures the
gain in accuracy obtained by using ruleX−→ci instead
of always predictingci, as shown in Equation 4.4.
Negative values indicate that always predictingci is
better than using the rule. Its value ranges from -1 to
1.

(4.4) m2 = p(ci|X ) − p(ci)

• Certainty (m3) [20]: This metric measures the increase
in accuracy between ruleX −→ ci and always predicting
ci, as shown in Equation 4.5. It assumes values smaller
than 1.

(4.5) m3 =
p(ci|X ) − p(ci)

p(ci)



• Yules’Q (m4) and Yules’Y (m5) [40]: These metrics are
based on odds value, as shown in Equations 4.6 and 4.7,
respectively. Their values range from -1 to 1. The value
1 implies perfect positive association betweenX and
ci, value 0 implies no association, and value -1 implies
perfect negative association.

(4.6)

m4 =
p(X ∪ ci)p(X ∪ ci) − p(X ∪ ci)p(X ∪ ci)

p(X ∪ ci)p(X ∪ ci) + p(X ∪ ci)p(X ∪ ci)

(4.7)

m5 =

√

p(X ∪ ci)p(X ∪ ci) −
√

p(X ∪ ci)p(X ∪ ci)
√

p(X ∪ ci)p(X ∪ ci) +
√

p(X ∪ ci)p(X ∪ ci)

• Strength Score (m6) [3]: This metric measures the
correlation betweenX and ci, but it also takes into
account howX is correlated with the complement of
ci (i.e., ci), as shown in Equation 4.8. Its value ranges
from 0 to∞.

(4.8) m6 =
p(X|ci)p(ci|X )

p(X|ci)

• Support (m7) [1]: This metric measures the fraction of
instances inD covered by the ruleX −→ ci, as shown in
Equation 4.9. Its value ranges from 0 to 1.

(4.9) m7 = p(X ∪ ci)

• Weighted Relative Confidence (m8) [20]: This metric
trades off accuracy and generality, as shown in Equa-
tion 4.10. The first component is the accuracy gain that
is obtained by using ruleX −→ ci instead of always
predictingci. The second component incorporates gen-
erality.

(4.10) m8 = (p(ci|X ) − p(ci))p(X )

Although we focus our analysis only on these eight
metrics, the approaches to be introduced here are general and
able to exploit any number of metrics transparently.

Associative classifiers produced by different metrics
may perform different predictions. Table 1 shows a simple
example containing a training data from which different
associative classifiers may be produced in order to predict
the class for instance 11. For simplicity, we will consider
only attributesa1, a2 and al. In this case, according to
Equation 3.2, classifierC11

m1
predictsc3, classifiersC11

m2
, C11

m3
,

and C11

m8
predict c1, and classifiersC11

m4
, C11

m5
, C11

m6
, and

C11
m7

predict c2. Next we will discuss a simple approach
to boost classification performance by exploiting associative
classifiers produced by the aforementioned metrics.

Attribute-Values
Id Class a1 a2 . . . al

1 c1 1 3 . . . 6
2 c1 1 3 . . . 7
3 c1 2 4 . . . 6
4 c2 2 4 . . . 7
5 c2 2 5 . . . 8
6 c2 2 4 . . . 6
7 c3 1 3 . . . 9
8 c3 2 5 . . . 9
9 c3 2 4 . . . 8
10 c3 2 4 . . . 9

11 c2 2 3 . . . 8

Table 1: Training data,D (first 10 instances), and test set,T
(instance 11).

Self-Delegating Classifier (SDC)Equation 3.2 can be
used to estimate the reliability of a prediction, and this infor-
mation can be used to select the most reliable prediction from
all involved classifiers [12]. The process is illustrated inAl-
gorithm 1. For a given test instancet, the selected class is the
one which is associated with the highest likelihoodp̂(ci|t)
amongst all classifiersCt

m1
, Ct

m2
, . . . , Ct

mq
. The basic idea

is to use the most reliable prediction (among the predictions
performed by all classifiers) to select the class for instance t.

Although simple, SDC does not exploit the competence
of each metric. In fact, each base classifier simply decides
by itself the instances it will classify, not meaning that the
select instances belong to its domain of competence.

Algorithm 1 Classifier based on self delegation of metrics.
Require: The training dataD, and a test instancet
Ensure: The class for instancet

1: Rt ⇐ rulesX −→ ci (with 1 ≤ i ≤ n) extracted fromD
such thatX ⊆ t

2: produce different classifiersCt
m1

, Ct
m2

, . . . , Ct
mq

, for in-
stancet, using rules inRt

3: return the class associated with the highest likelihood of
membership fort (i.e., Eq. 3.2), amongst all classifiers

4.2 Learning the Metric CompetenceThe optimal
match between metrics and problems is valuable informa-
tion. In this section we present an approach to estimate such
matching. The proposed approach may be viewed as an ap-
plication of Wolpert’s stacked generalization [38]. From a
general point of view, stacking can be considered a meta-
learning method, as it refers to the induction of classifiers
over inputs that are, in turn, the predictions of other classi-
fiers induced from the training data (i.e., meta-data). Specif-



Attribute-Values Competent Most Competent
Id Class a1 a2 . . . al Metric(s) (per instance) Metric(s) (per class)

1 c1 1 3 . . . 6 m2

2 c1 1 3 . . . 7 m1 m3 m1

3 c1 2 4 . . . 6 m1

4 c2 2 4 . . . 7 m1 m2

5 c2 2 5 . . . 8 m1 m2 m3 m1

6 c2 2 4 . . . 6 m1

7 c3 1 3 . . . 9 m2

8 c3 2 5 . . . 9 m2 m3 m2

9 c3 2 4 . . . 8 m1 m2 m3

10 c3 2 4 . . . 9 m2

Table 2: Enhanced training data,De.

ically, in the stacking strategy an algorithm is applied on
meta-data, which can contain properties of the original data,
properties of different classification algorithms, or patterns
previously derived from the original data. The meta-data is
used to select, alter, or combine different classifiers, which,
in our case, are classifiers produced by different metrics

Algorithm 2 Enhancing the training data with the compe-
tence of each metric.
Require: The original training dataD, and a cross-

validation parameterk
Ensure: The enhanced training dataDe

1: splitD into k partitions, so thatD={d1 ∪ d2 ∪ . . . ∪ dk}
2: De ⇐ ∅
3: for eachpartitiondi do
4: for each instancet ∈ di do
5: m ⇐ ∅
6: Rt ⇐ rulesX −→ cy (with 1 ≤ y ≤ n) extracted

from {D-di} such thatX ⊆ t

7: produce different classifiers,Ct
m1

, Ct
m2

, . . . , Ct
mq

,
using rules inRt

8: for eachclassifierCt
mj

do
9: if Ct

mj
correctly predicts the class for tthen

10: m ⇐ m ∪ mj

11: end if
12: end for
13: De ⇐ De ∪ {t ∪ m}
14: end for
15: end for

The process starts by enhancing the original training
data (i.e., producing the meta-data) using the outputs of the
base classifiers,Ct

m1
, Ct

m2
. . . Ct

mq
. Algorithm 2 shows the

basic steps involved in the process. Initially, the enhanced
training data,De is empty. An examplet, along with the
competence of each metric with regard tot (i.e., which
metric correctly predicted the class fort), is inserted into

De. The process continues until all examples are processed.
In the end, for each examplet ∈ De we have a list of
metrics that produced a competent classifier fort, and this
information enables learning the domains of competence of
each metric, as will be discussed in the next section.

To illustrate this process, please consider the example
shown in Tables 1 and 2. Table 1 shows the original training
data,D. Using the process described in Algorithm 2, the
competence of each metric to each instance is appended to
D, resulting in the enhanced training data,De, which is
shown in Table 2. In this case, for a given examplet, metric
mi is shown if the corresponding classifierCt

mi
has correctly

classifiedt using the stacking procedure (i.e., metricmi is
competent with regard to examplet). The enhanced training
data,De, can be exploited in several ways. In particular, we
will useDe to produce competence-conscious classifiers, as
will be discussed next.

4.3 Competence-Conscious ClassifiersIn this section
we present strategies for exploitingDe in order to produce
competence-consciousassociative classifiers. The challenge,
in this case, is to properly select a competent metric for a spe-
cific test instance. The competence-conscious classifiers to
be presented differ in how they perform the analysis of the
domains of competence of metrics.

Class-Centric Competence-Conscious Classifier (C5)
The competence of a metric is often associated with certain
classes. Some metrics, for instance, produce classifiers
which show preference for more frequent classes, while
others produce classifiers which show preference for less
frequent ones. As an illustrative example, please consider
Table 2. Metricm1 is extremely competent for classifying
instances that belong to classesc1 and c2. On the other
hand, if we consider instances belonging toc3, metric m2

perfectly classifies all instances. This information (which is
shown in the last column of Table 2) may be used to produce
class-centric competence-conscious classifiers. The process



is depicted in Algorithm 3. It starts with a meta-classifier,
M, which learns the most competent metric for a given class.
Any classifier can be used to build the meta-classifier. For
simplicity we choose an associative classifier that weights
the votes given by rules using the confidence metric. In this
case, instead of generating rulesX −→ ci, the meta-classifier
generates rulesX −→ mi, which maps features (i.e., in the
third column of Table 2) to metrics (i.e., in the fifth column
of Table 2). Then, for each test instancet, the meta-classifier
indicates the most competent metric,mj , that is then used
to produce the final classifier,Ct

mj
, which is finally used to

predict the class for instancet.

Algorithm 3 Class-centric meta classifier.
Require: The enhanced training dataDe (i.e.,

the 3rd and 5th columns of Table 2), and a test in-
stancet

Ensure: The most competent metric for instancet

1: for eachmetricmi do
2: Rt

mi
⇐ rulesX −→ mi extracted fromDe such that

X ⊆ t

3: Estimatep̂(mi|t), according to Equation 3.2 (using
confidence to weigh the votes)

4: end for
5: return metricmj such that̂p(mj |t) > p̂(mi|t)∀i 6= j

Instance-Centric Competence-Conscious Classifier
(IC4) Although the competence of some metrics are asso-
ciated with certain classes, specific instances may be better
classified using other metrics. In such cases, a finer-grained
analysis of competence is desired. As an illustrative exam-
ple, please consider again Table 2. Although metricm1 is the
most competent one to classify instances belonging to class
c1, metricm2 is the only one which competently classifies
instance 1 (which belongs toc1). Again, a meta-classifier,
M, is used to explore such cases. The process is depicted in
algorithm 4. In this case, the meta-classifier learns the most
competent metric by generating rules of the formX −→ mi,
which maps features (i.e., the third column of Table 2) to
metrics (i.e., in the fourth column of Table 2). Then, for each
test instancet, the meta-classifier indicates the most compe-
tent metric,mj , which is used to produce the final classifier,
Ct

mj
.
The main advantage of C5 and IC4 is that, in practice,

multiple metrics produce competent classifiers for a partic-
ular instancet, but M needs to predict only one of them
(competent metrics are not mutually exclusive, and thus, in
practice, multiple metrics produce competent classifiers for
instancet). We will show in Section 5 that this redundancy in
competence that exists when different metrics are taken into
account, may increase the chance of selecting a competent
metric.

Algorithm 4 Instance-centric meta classifier.
Require: The enhanced training dataDe (i.e.,

the 3rd and 4th columns of Table 2), and a test in-
stancet

Ensure: The most competent metric for instancet

1: for eachmetricmi do
2: Rt

mi
⇐ rulesX −→ mi extracted fromDe such that

X ⊆ t

3: Estimatep̂(mi|t), according to Equation 3.2 (using
confidence to weigh the votes)

4: end for
5: return metricmj such that̂p(mj |t) > p̂(mi|t)∀i 6= j

Algorithm 5 summarizes the basic steps of the
competence-conscious associative classifiers. The algorithm
receives a test-instancet and a meta-classifier (either C5 or
IC4) as input, and returns as output the class associated with
t.

Algorithm 5 Competence-conscious classifiers.
Require: The training dataD, the meta-classifierM, and a

test instancet
Ensure: The class for instancet

1: for eachclassci do
2: Rt

ci
⇐ rulesX −→ ci extracted fromD such that

X ⊆ t

3: end for
4: select the most competent classifier fort, Ct

mx
, usingM

5: Estimate p̂(ci|t) (with 1≤i≤n), according to Equa-
tion 3.2 (using metricmx to weigh the votes)

6: return classcj such that̂p(cj |t) > p̂(ci|t)∀i 6= j

Bounds for Competence-Conscious ClassifiersWe
derived lower and upper bounds for the classification per-
formance of the proposed competence-conscious associative
classifiers. The lower bound is the performance that is ob-
tained by randomly selecting a competent metric. Clearly,
this lower bound increases with the redundancy between the
base classifiers,Ct

m1
, . . .Ct

mq
. The upper bound is the clas-

sification performance that would be obtained by an oracle
which always predicts a competent metric (note that perfect
performance is not always possible, since it may not exist
a competent metric for some instances). Clearly, this upper
bound increases with the accuracy and diversity associated
with base classifiers.

Diversity between Base ClassifiersWe use the plain
disagreement [31] as a measure of diversity between two
base associative classifiers,Cmi

andCmj
, as shown in Equa-

tion 4.11, whereCmi
(t) is the class predicted by classifier

Cmi
for instancet, and diff(Cmi

(t), Cmj
(t)) returns 1 if the

two arguments are different (and 0 otherwise). The diversity



of the ensemble is finally given by averaging PD(Cmi
, Cmj

)
over allq base classifiers.

(4.11) PD(Cmi
, Cmj

) =
1

|T |

|T |
∑

t=1

diff(Cmi
(t), Cmj

(t))

5 Experimental Evaluation

In this section we will empirically analyze the proposed clas-
sifiers, SDC, C5, and IC4. In our experiments, we used
26 datasets from the UCI Machine Learning Repository [5]
and three datasets obtained from more complex applications.
These datasets cover a wide range of properties. We com-
pare the proposed classifiers against SVM [17] baselines4

(we used the LibSVM tool [7] in order to select appropri-
ate parameters, which are discussed in each experiment),
and against the ensemble approach proposed in [23], called
ER (standing for External Referee) in which the ensem-
ble is composed of the base classifiersCm1

, . . . , Cm8
, but

the best classifier for each test instance is selected using a
decision tree referee. For associative classifiers, continu-
ous attributes in the training data were discretized using the
entropy-minimization method [11], and the attribute-values
in the test set were simply mapped to the corresponding in-
tervals (in this way, the discretization process did not use
class information in the test set). Experiments that compare
classification performance report results for the standard10-
fold cross-validation procedure. In all experiments, param-
eterk for Algorithm 2 was set to 2 (i.e., each training data,
D, was split in two disjoint partitions,d1 andd2, in order to
obtain the enhanced training data,De). In order to ensure
that the domain of competence of each metric is independent
of a particular data configuration, C5 and IC4 were executed
a certain number of times employing different data configu-
rations (i.e., training data is randomly partitioned), andthe
final result is averaged by the number of executions (which
was set to 10). To perform a fair comparison, the same pro-
cedure was adopted to evaluate the other classifiers, that is,
SDC, ER and SVM were also executed multiple times with
different data configurations. Best results, including statis-
tical ties, are emphasized. A bold face indicates that the
corresponding result was found statistically significant at the
95% confidence level when tested with the two-tailed paired
t-test. Experiments were run on 1.8 MHz Intel processors
1GB RAM under Linux.

5.1 Digital Library The first dataset was extracted from
the first level of the ACM Computing Classification System

4In most of the experiments, SVM baselines take as input the original
training data (and not the enhanced one). However, in some ofour
experiments, we also employed SVMs as a meta-classifier, as will be
detailed.

(http://portal.acm.org/dl.cfm/). The dataset
contains 6,682 documents labeled using the 8 first level cat-
egories of ACM, namely Hardware (C1), Computer Sys-
tems Organization (C2), Software (C3), Computing Method-
ologies (C4), Mathematics of Computing (C5), Information
Systems (C6), Theory of Computation (C7), Computing Mi-
lieux (C8). Citations and words in title/abstract compose the
set of features. The dataset has a vocabulary of 9,840 unique
words, and a total of 51,897 citations. Please, refer to [34]
for a detailed description of this dataset.

Using the rules extracted from this dataset, we can an-
alyze the relationship between the widely used confidence
metric (m1) with other metrics, as shown in Figure 1 (to ease
the observation of this relationship, we also include, in each
graph, a thicker line which indicates the corresponding con-
fidence value). Each point in the graphs corresponds to a
rule, for which it is shown the values of some metrics (i.e.,
confidence in the x-axis and another metric in the y-axis).
Clearly, each metric has its particular behavior with vary-
ing values of confidence. For lower values of confidence,
Added Value (m2) has a preference for less frequent classes,
but, after a certain confidence value, the preference is for
more frequent classes. Certainty (m3) always prefer less fre-
quent classes, but linearly approaches confidence as its value
increases. Yules’Q (m4) and Yules’Y (m5) have a similar
behavior, showing preference for less frequent classes and
hardly penalizing associations with low confidence values.
Strength Score (m6) and Weighted Relative Confidence (m3)
both prefer less frequent classes, but Strength Score showsa
non-proportional preference for associations with higherval-
ues of confidence. The relationship between confidence and
support (m7) is omitted, but, by definition, support shows
a preference for more frequent classes. We will use these
relationships to explain some of the results reported in the
following.

Table 3 shows the classification performance obtained
by different classifiers using the ACM dataset (for this ap-
plication, performance is computed through the traditional
accuracy). We will first analyze the performance associated
with each category, and then the final classification perfor-
mance, which is shown in the last line of the table. Classi-
fiers produced by confidence (Cm1

) and support (Cm7
) per-

formed very well in the most frequent categories (Software,
Inf. Systems and Theory of CS). On the other hand, instances
belonging to less frequent categories (Comp. Methodolo-
gies, Mathematics of CS, and CS Organization) were better
classified using Yules’Q (Cm4

) and Yules’Y (Cm5
). This is

expected, and is in agreement with the behaviors depicted in
Figure 1 (Yules’Y and Yules’Q show a preference for less
frequent categories). The best metric is the one that better
balances its performance over all categories. Although the
classifier produced by Yules’Y was not the best one for any
specific category of ACM, it was the best overall classifier
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Figure 1: Relationship between confidence and other metricsusing the ACM dataset.

Lower Upper
Cm1

Cm2
Cm3

Cm4
Cm5

Cm6
Cm7

Cm8
Div. Bound SDC C5 IC4 Bound ER SVM

C1 0.808 0.847 0.827 0.835 0.833 0.846 0.184 0.629 0.235 0.714 0.816 0.809 0.818 0.889 0.799 0.726
C2 0.718 0.790 0.760 0.776 0.798 0.753 0.316 0.789 0.114 0.727 0.727 0.737 0.768 0.878 0.719 0.877
C3 0.915 0.852 0.887 0.866 0.862 0.752 0.960 0.876 0.124 0.872 0.880 0.889 0.921 0.981 0.875 0.665
C4 0.568 0.690 0.626 0.655 0.664 0.678 0.095 0.551 0.228 0.561 0.581 0.618 0.621 0.800 0.605 0.516
C5 0.550 0.625 0.588 0.680 0.678 0.668 0.007 0.325 0.269 0.567 0.570 0.625 0.653 0.750 0.612 0.909
C6 0.952 0.930 0.946 0.942 0.926 0.896 0.690 0.766 0.081 0.881 0.919 0.913 0.928 0.968 0.899 0.868
C7 0.924 0.894 0.892 0.891 0.891 0.887 0.505 0.682 0.133 0.833 0.902 0.897 0.899 0.924 0.879 0.668
C8 0.643 0.716 0.687 0.722 0.729 0.756 0.069 0.478 0.282 0.587 0.658 0.693 0.697 0.824 0.674 0.770

Total 0.841 0.847 0.852 0.854 0.854 0.812 0.566 0.733 0.143 0.797 0.849 0.858 0.882 0.923 0.812 0.825
Wins 1 1 0 0 0 0 1 0 - - 0 0 0 - 0 2
Ties 1 1 1 1 0 2 0 0 - - 0 0 0 - 0 1

Table 3: Classification performance associated with each category of the ACM dataset.

(amongst classifiers produced by other metrics in isolation).
SDC shows a performance that is similar to the per-

formance obtained by most of the base classifiers (the im-
provement, when it exists, is only marginal). Competence-
conscious classifiers C5 and IC4 showed the best perfor-
mances, although they were not the best performer for any

individual category. Overall, IC4 outperformed all other
classifiers, providing gains of more than 7%, when compared
against SVM (using polynomial kernels of degree 6), and
gains of more than 8.5% when compared against ER. IC4 is
always far superior than the corresponding lower bound, but
it is also relatively far from the corresponding upper bound.



It seems that the improvements provided by C5 and IC4

are somehow related to how accurate and diverse are the
base classifiers (we assume that the lower bound is a suitable
approximation of the accuracy of the base classifiers, since
it tends to increase with the accuracy of the base classifiers).
Thus, we relate the harmonic mean between the lower bound

and the diversity (i.e.,2 ×
Diversity×Lower Bound
Diversity+Lower Bound), with

the gains relative to the lower bound. Figure 2 shows
this relationship. Each point is associated with a category
of the ACM dataset. Clearly, for the ACM dataset, the
improvements provided by C5 and IC4 increase with the
diversity and the accuracy of the base classifiers.

We also performed an analysis on how the different
metrics were used by C5 and IC4, as can be seen in Figure 3
(Left). C5 utilized only few metrics, speciallym2, m3 and
m7. Metric m4 was used to produce classifiers to only one
category, and metricsm5 and m8 were not used (this is
because these two metrics were not the most competent in
any category of ACM, and therefore are not considered by
C5). IC4, on the other hand, utilized all metrics, specially
m1, m2 andm3. Both C5 and IC4 make large utilization
of metricsm2 andm3. For C5, some areas of expertise can
be easily detected. Metricm2 is considered competent for
categories Hardware and CS Organization, while metricm3

is considered competent for category Information Systems.
For IC4, areas of expertise are finer grained, but with manual
inspection we detected thatm1 is considered competent for
category CS Organization, andm3 is considered competent
for category Milieux.

Next we analyze one of the reasons of the good perfor-
mance showed by IC4. Figure 3 (Right) shows the accu-
racy associated with scenarios for which a different number
of metrics are competent. The frequency of occurrence of
each scenario is also shown (note that both accuracy and
frequency values are shown in the y-axis). As it can be
seen, for more than 7% of the instances no metric is compe-
tent, and, obviously, these instances were misclassified (this
means that the inclusion of other metrics may improve clas-
sification performance in this dataset). As expected, accu-
racy increases with the number of competent metrics. For
almost half of the instances all 8 metrics are competent. In
these scenarios, there is no risk of misclassification, since
a classifier produced by any metric will perform a correct
prediction. The accuracy associated with scenarios where
only 7 and only 6 of the metrics are competent, is also ex-
tremely high (respectively, 99% and 96%). These three sce-
narios (i.e., 8, only 7, and only 6 metrics are simultaneously
competent) correspond to 86% of the instances, and the aver-
age accuracy associated with these three scenarios is almost
98% for IC4. Further, IC4 shows to be more robust that C5,
providing superior accuracy (relative to the accuracy of C5)
in scenarios where there are only few competent metrics.

We also employed SVMs as meta-classifiers, that is,

we used SVMs to select competent metrics for each test in-
stance, and compare the classification performance with the
performance obtained by IC4 and C5. Our results indicate
that the SVM-based meta-learning strategies (i.e., instance-
centric and class-centric) lead to classification performances
that are (statistically) similar to the classification perfor-
mances obtained by IC4 and C5 counterparts.

5.2 Web Directory Next we investigate the classification
performance of competence-conscious associative classifiers
using another dataset, which is composed by 2,911 randomly
selected articles published in the Slashdot online forum
(http://slashdot.org). Each article is a document
with an author, a title and the story content. Each document
is labeled under one of the 16 categories of Slashdot, namely
Apple (A1), Ask Slashdot (A2), Backslash (A3), Books
(A4), Developers (A5), Entertainment (A6), Games (A7),
Hardware (A8), Interviews (A9), Information Technology
(A10), Linux (A11), News (A12), Politics (A13), Science
(A14), Technology (A15), Your Rights Online (A16). More
than a forum for publishing stories, Slashdot constitutes a
large social network, where users may interact with each
other. Consequently, a particular author may acquire friends
and enemies throughout her/his enrollment as a participant
of Slashdot. This information about the social relationship
of the author (i.e., her/his set of friends and enemies) is
explicitly informed in Slashdot and may represent relevant
information for the sake of classification.

Classification performance associated with each cate-
gory is shown in Table 4. Classifiers produced by Strength
Score, Support and Relative Confidence achieved the worst
performance in most of the categories. SDC did not achieve
good performance numbers. IC4, on the other hand, was the
best performer in most of the categories, showing the ad-
vantages of competence-conscious classifiers. C5 achieved
a classification performance which was usually close to the
performence achieved by ER. In most of the categories,
SVM was very competitive with IC4, but IC4 was the best
overall performer.

Figure 4 shows the relationship between the accuracy
and the diversity of the base classifiers, with the improve-
ments provided by C5 and IC4. Each point is associated with
a category of the Slashdot dataset. As can be seem, the im-
provements over the lower bound slightly increase with the
harmonic mean between the accuracy and the diversity of the
base classifiers.

We also investigated the improvements relative to the
base classifiers provided by C5 and IC4 using simple linear
models (a similar approach was used in [25]). Specifically,
we are interested in modeling the accuracy of competence-
conscious associative classifiers using the best results ob-
tained by the base classifiers. Thus, we assumed a linear
relationship between the accuracy obtained by the best base
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Figure 2: Left− Relationship between diversity and accuracy of the base classifiers, and the improvements provided by IC4

using the ACM dataset. Right− Relationship between diversity and accuracy of the base classifiers, and the improvements
provided by C5 using the ACM dataset.
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Figure 4: Left− Relationship between diversity and accuracy of the base classifiers, and the improvements provided
by IC4 using the Slashdot dataset. Right− Relationship between diversity and accuracy of the base classifiers, and the
improvements provided by C5 using the Slashdot dataset.

Lower Upper
Cm1

Cm2
Cm3

Cm4
Cm5

Cm6
Cm7

Cm8
Div. Bound SDC C5 IC4 Bound ER SVM

A1 0.581 0.573 0.596 0.623 0.614 0.600 0.535 0.577 0.168 0.600 0.621 0.622 0.624 0.664 0.618 0.631
A2 0.886 0.891 0.891 0.893 0.888 0.862 0.849 0.870 0.121 0.882 0.889 0.892 0.903 0.925 0.896 0.899
A3 0.723 0.704 0.723 0.703 0.700 0.689 0.659 0.678 0.097 0.723 0.721 0.732 0.738 0.801 0.734 0.736
A4 0.481 0.489 0.500 0.503 0.508 0.472 0.434 0.474 0.214 0.498 0.501 0.510 0.515 0.679 0.513 0.513
A5 0.591 0.590 0.591 0.610 0.598 0.547 0.538 0.558 0.306 0.595 0.604 0.606 0.612 0.683 0.601 0.611
A6 0.550 0.547 0.575 0.560 0.568 0.542 0.522 0.551 0.143 0.556 0.558 0.570 0.577 0.684 0.572 0.567
A7 0.929 0.901 0.906 0.915 0.920 0.873 0.845 0.877 0.103 0.805 0.912 0.921 0.916 0.975 0.917 0.900
A8 0.843 0.856 0.870 0.871 0.870 0.837 0.815 0.836 0.080 0.864 0.889 0.889 0.885 0.941 0.885 0.894
A9 0.801 0.806 0.805 0.803 0.809 0.783 0.781 0.778 0.099 0.806 0.811 0.823 0.836 0.896 0.828 0.825
A10 0.525 0.521 0.550 0.568 0.565 0.508 0.500 0.506 0.167 0.547 0.558 0.582 0.590 0.683 0.582 0.580
A11 0.901 0.909 0.909 0.908 0.905 0.886 0.877 0.886 0.047 0.906 0.916 0.918 0.918 0.983 0.913 0.902
A12 0.630 0.633 0.646 0.639 0.645 0.623 0.619 0.629 0.212 0.622 0.649 0.651 0.669 0.707 0.653 0.671
A13 0.680 0.685 0.689 0.688 0.691 0.658 0.684 0.665 0.230 0.680 0.692 0.695 0.708 0.791 0.701 0.696
A14 0.865 0.854 0.867 0.863 0.860 0.856 0.846 0.849 0.114 0.837 0.865 0.875 0.877 0.934 0.872 0.876
A15 0.748 0.757 0.761 0.751 0.753 0.742 0.744 0.746 0.077 0.750 0.763 0.761 0.757 0.802 0.765 0.757
A16 0.733 0.735 0.735 0.731 0.725 0.730 0.701 0.726 0.124 0.722 0.737 0.747 0.762 0.829 0.760 0.748

Total 0.729 0.721 0.756 0.765 0.762 0.700 0.684 0.704 0.220 0.735 0.765 0.785 0.827 0.964 0.791 0.815
Wins 1 0 0 0 0 0 0 0 - - 0 0 2 - 0 0
Ties 0 0 0 0 0 0 0 0 - - 2 7 12 - 8 11

Table 4: Classification performance associated with each category of the Slashdot dataset.

classifier in each category, and the corresponding accuracy
obtained by either C5 or IC4. We characterized this relation
using statistical correlation coefficients (CC).

The associated regression lines were built using the 16
categories of Slashdot (i.e., each point corresponds to one
of the 16 categories). Regression lines for C5 and IC4 are
shown in Figure 5, and both have very high correlation co-
efficients (which are shown between parenthesis). Further,
their regression gradients are higher than one, possibly in-
dicating that, in the limit, competence-conscious associative
classifiers are indeed more accurate than the best base asso-
ciative classifier.

5.3 Web Spam DetectionIn this application the objective
is to detect malicious actions aimed at the ranking functions
used by search engines. We used a dataset obtained from
the Web Spam Challenge (http://webspam.lip6.
fr/wiki/pmwiki.php). The dataset is very skewed
(only 6% of the examples are spam pages). Each example
is composed of direct features (i.e., number of pages in the
host, number of characters in the host name etc.) link-based
features (i.e., in-degree, out-degree, PageRank etc.) and
content-based features (i.e., number of words in the page,
average word length etc.).

Table 5 shows the classification performance obtained



Lower Upper
Cm1

Cm2
Cm3

Cm4
Cm5

Cm6
Cm7

Cm8
Bound SDC C5 IC4 Bound ER SVM

Acc. 0.945 0.705 0.703 0.895 0.900 0.946 0.945 0.881 0.854 0.861 0.872 0.897 0.988 0.864 0.954
F1 0.484 0.525 0.525 0.585 0.592 0.591 0.487 0.589 0.590 0.593 0.611 0.622 0.946 0.587 0.502
AUC 0.500 0.755 0.758 0.608 0.605 0.559 0.498 0.632 0.662 0.727 0.715 0.790 0.911 0.728 0.514

Table 5: Classification performance for Web spam detection.
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Figure 5: Accuracy model for competence-conscious asso-
ciative classifiers using the Slashdot dataset.

by different classifiers (for this application, performance is
computed through accuracy, F1 measure5, and the area under
the curve).Cm1

andCm7
showed impressive performance in

terms of accuracy. This is expected, because the vast ma-
jority of examples are legitimate pages, and confidence (m1)
and support (m7) have preference for more frequent classes.
On the other hand,Cm1

andCm7
showed poor performance in

terms of F1 and AUC (i.e., no spam pages were actually de-
tected). The remaining base associative classifiers were able
to detect some spam pages, speciallyCm6

, which also shows
impressive performance in terms of accuracy. In terms of
AUC, Cm2

andCm3
showed the best performance, amongst

base classifiers. Thus, different metrics show distinct perfor-
mance depending to the evaluation target (i.e., accuracy, F1

or AUC).
Now we evaluate C5 and IC4, which are the best per-

formers in terms of F1. Although IC4 showed to be far from
the optimal performance, it showed impressive gains when
compared against SVM (using linear kernels with parameter
C set to 5.00), and ER, in terms of F1 and AUC.

Results obtained by detection methods that were
specifically designed for Web spam detection are shown
in http://webspam.lip6.fr/wiki/pmwiki.

5A combination of precision (p) and recall (r) defined as theirharmonic
mean 2pr

p+r
.

php?n=Main.PhaseIIIResults. These methods
use specific heuristics that are particularly suitable for
Web spam detection. The first six competitors achieved
detection performances that range from 0.731 to 0.848 in
terms of AUC. IC4 shows to be very competitive, achieving
a detection performance which is (statistically) similar to
the performance obtained by the 4th place.

5.4 UCI Datasets In the last set of experiments, we used
26 datasets obtained from the UCI Machine Learning Repos-
itory [5]. Table 7 shows the performance obtained by each
classifier using these datasets (for this application, perfor-
mance is computed through the traditional accuracy).Cm4

andCm5
showed poor performance in skewed datasets where

few classes are much more frequent than the others (i.e.,
anneal, lymph, auto, hypo). This is because Yules’Y and
Yules’Q have preference for less frequent classes (as shown
in Figure 1). For these skewed datasets,Cm7

(support)
showed its best performance, since the likelihood of predict-
ing most frequent classes is higher in such datasets (this is
expected, due to the definition of support). For most of the
datasets,Cm1

, Cm2
andCm3

are in close rivalry (Cm1
shows

a slightly better average performance, butCm3
shows better

performance more often).Cm6
(strength score) shows the

best average performance, amongst all base classifiers.
On average, C5 shows superior classification perfor-

mance than SDC. Also, the performance of C5 is, on average,
slightly superior than the performance obtained by SVM (pa-
rameters for each dataset are shown in Table 6) and ER base-
lines. Again, IC4 is the best performer, and for some datasets
it reaches a performance that is close to optimal (i.e., anneal,
breast, hypo, iris, labor, sick, wave and wine), suggesting
that the more fine-grained the analysis of competence, the
more effectively the metrics are combined. Interestingly,the
performance of C5 approaches the performance of IC4 for
datasets containing more classes (i.e., glass, led7, lymph, ve-
hicle, and zoo), since in this case the competence analysis
performed by C5 becomes finer grained.

Some datasets deserve special attention. IC4 showed
very good performance in the anneal dataset. Figure 6(left)
shows the frequency distribution of competent metrics for
this dataset. Almost 70% of the instances have more than five
competent metrics, and in such scenarios accuracy reaches
100%. The accuracy obtained in such scenarios guaran-
tees a final classification performance that is already superior
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Figure 6: Distribution of Competent Metrics for IC4 in the anneal (left) , and auto (right) Datasets.

Kernel C degree γ

anneal polynomial - 6 -
austra linear 1.50 - -
auto RBF - - 0.0003
breast linear 3.00 - -
cleve linear 3.00 - -
crx linear 0.10 - -
diabet linear 1.00 - -
germa linear 1.00 - -
glass RBF - - 0.0012
heart linear 5.00 - -
hepati linear 0.10 - -
horse linear 1.00 - -
hypo linear 3.00 - -
iono linear 0.50 - -
iris polynomial - 4 -
labor linear 0.50 - -
led7 RBF - - 0.0012
lymph polynomial - 5 -
pima linear 0.10 - -
sick linear 5.00 - -
sonar linear 5.00 - -
tic-tac linear 0.50 - -
vehicle polynomial - 6 -
wave polynomial - 5 -
wine polynomial - 5 -
zoo RBF - - 0.0012

Table 6: SVM parameters for each UCI dataset.

than the performance ofCm2
, Cm4

, Cm5
andCm8

. Similar
trends also happens in datasets austra, breast, cleve, german,
heart, hypo, iono, iris, sick and wine. In the auto dataset
IC4 showed poor performance, being worse than base classi-
fiersCm1

, Cm2
, Cm3

andCm6
. Figure 6(right) shows the fre-

quency/accuracy distribution of competent metrics for this

dataset. As can be seem, the accuracy associated with al-
most 40% of the instances falls below 58%, which are the
scenarios with less than 5 competent metrics. Also, we be-
lieve that, for such datasets, the meta-classifier was not able
to correctly distinguish the domains of competence. Similar
trend also happens for datasets hepati, tic-tac, and wave.

Figure 7 shows the relationship between the diversity
and the accuracy (i.e., the lower bound) of the base classifiers

(i.e., 2 ×
Diversity×Lower Bound
Diversity+Lower Bound) and the improvements

provided by C5 and IC4 over the lower bound. Each
point is associated with an UCI dataset. In general, the
improvements increase with the harmonic mean between
the diversity and the accuracy of the base classifiers. This
suggests the importance of the diversity and the accuracy of
the base classifiers, in order to produce effective ensembles.

We finish our evaluation with simple linear models that
are used to assess the improvements provided by C5 and IC4,
relative to the base classifiers. Again, we are interested in
modeling the accuracy of competence-conscious associative
classifiers using the best results obtained by the base classi-
fiers.

The associated regression lines were built using the 26
UCI datasets (i.e., each point corresponds to one of the 26
datasets). Regression lines for C5 and IC4 are shown in
Figure 8, and both have very high correlation coefficients.
Further, their regression gradients are higher than one (note
that this makes the estimated accuracy higher than one when
x=1.00), possibly indicating that, in the limit, competence-
conscious associative classifiers are indeed more accurate
than the best base associative classifier.

We also employed SVMs as meta-classifiers, that is,
we used SVMs to select competent metrics for each test
instance, and compare the classification performance with
the performance obtained by IC4 and C5. The results we
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Figure 7: Left− Relationship between diversity and accuracy of the base classifiers, and the improvements provided by IC4

using the UCI datasets. Right− Relationship between diversity and accuracy of the base classifiers, and the improvements
provided by C5 using the UCI datasets.

Cm1
Cm2

Cm3
Cm4

Cm5
Cm6

Cm7
Cm8

Div. LB SDC C5 IC4 UB ER SVM

anneal 0.761 0.694 0.864 0.115 0.229 0.926 0.763 0.616 0.374 0.623 0.926 0.935 0.958 0.993 0.921 0.946
austra 0.861 0.855 0.852 0.861 0.849 0.856 0.833 0.864 0.084 0.859 0.869 0.868 0.880 0.921 0.848 0.855
auto 0.715 0.752 0.759 0.043 0.105 0.782 0.404 0.513 0.280 0.534 0.684 0.705 0.698 0.895 0.674 0.725
breast 0.940 0.971 0.969 0.967 0.972 0.971 0.934 0.972 0.017 0.950 0.955 0.961 0.970 0.989 0.973 0.973
cleve 0.843 0.832 0.826 0.839 0.832 0.816 0.835 0.824 0.069 0.839 0.842 0.836 0.853 0.900 0.839 0.836
crx 0.835 0.850 0.853 0.849 0.841 0.860 0.843 0.864 0.091 0.847 0.855 0.865 0.873 0.926 0.862 0.855
diabet 0.783 0.745 0.739 0.749 0.752 0.779 0.698 0.738 0.188 0.741 0.750 0.783 0.782 0.937 0.776 0.766
germa 0.702 0.694 0.693 0.692 0.693 0.748 0.698 0.723 0.226 0.717 0.727 0.734 0.748 0.953 0.738 0.712
glass 0.713 0.657 0.672 0.640 0.648 0.709 0.565 0.646 0.286 0.633 0.657 0.701 0.682 0.865 0.672 0.705
heart 0.814 0.840 0.835 0.822 0.830 0.829 0.827 0.830 0.121 0.828 0.832 0.840 0.861 0.901 0.848 0.838
hepati 0.798 0.778 0.781 0.841 0.829 0.848 0.797 0.850 0.161 0.797 0.805 0.837 0.835 0.989 0.818 0.810
horse 0.710 0.731 0.732 0.702 0.685 0.747 0.773 0.720 0.192 0.743 0.756 0.771 0.813 0.890 0.777 0.822
hypo 0.951 0.879 0.881 0.126 0.129 0.971 0.957 0.932 0.084 0.730 0.883 0.937 0.992 1.000 0.953 0.988
iono 0.901 0.896 0.888 0.875 0.870 0.929 0.688 0.840 0.145 0.858 0.898 0.910 0.942 0.980 0.918 0.917
iris 0.940 0.950 0.948 0.946 0.951 0.936 0.944 0.942 0.021 0.937 0.948 0.947 0.949 0.956 0.947 0.959
labor 1.000 0.948 0.930 0.758 0.890 0.951 0.627 0.924 0.095 0.965 0.969 1.000 0.997 1.000 0.973 0.782
led7 0.740 0.741 0.739 0.737 0.743 0.711 0.743 0.741 0.222 0.733 0.746 0.774 0.758 0.806 0.745 0.748
lymph 0.862 0.758 0.812 0.064 0.143 0.780 0.747 0.781 0.299 0.579 0.798 0.844 0.846 0.948 0.849 0.802
pima 0.733 0.746 0.748 0.749 0.749 0.777 0.692 0.745 0.212 0.740 0.750 0.770 0.798 0.936 0.771 0.768
sick 0.936 0.640 0.648 0.128 0.139 0.967 0.934 0.677 0.315 0.623 0.928 0.946 0.983 0.997 0.969 0.965
sonar 0.813 0.866 0.862 0.854 0.865 0.834 0.770 0.864 0.072 0.821 0.855 0.867 0.868 0.952 0.865 0.841
tic-tac 0.649 0.918 0.814 0.928 0.927 0.816 0.410 0.530 0.105 0.766 0.836 0.880 0.926 1.000 0.876 0.830
vehicle 0.658 0.670 0.664 0.668 0.648 0.701 0.534 0.623 0.134 0.655 0.665 0.728 0.734 0.765 0.700 0.722
wave 0.809 0.808 0.807 0.814 0.813 0.813 0.787 0.788 0.097 0.802 0.814 0.814 0.834 0.836 0.821 0.871
wine 0.913 0.934 0.932 0.818 0.826 1.000 0.687 0.745 0.068 0.831 0.885 1.000 0.990 1.000 0.941 0.975
zoo 0.845 0.849 0.876 0.856 0.781 0.912 0.708 0.698 0.133 0.826 0.894 0.942 0.952 0.973 0.956 0.928

Avg. 0.816 0.808 0.812 0.671 0.682 0.845 0.738 0.769 0.157 0.768 0.828 0.854 0.866 0.935 0.847 0.844
Wins 0 0 0 0 0 1 0 1 - - 0 0 4 - 0 1
Ties 6 4 3 3 4 7 1 4 - - 3 14 19 - 8 6

Table 7: Classification performance of classifiers in the UCIdatasets.

obtained indicate that, again, the SVM-based meta-learning
strategies (i.e., instance-centric and class-centric) lead to
classification performances that are (statistically) similar to
the classification performances obtained by IC4 and C5

counterparts.



 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 0.7  0.75  0.8  0.85  0.9  0.95  1

E
s
ti
m

a
te

d
 A

c
c
u

ra
c
y
 f
o

r 
C

5
/I
C

4

Accuracy of the Best Base Classifier

Acc(C5)=1.01*x+0.017 (CC=0.969)
Acc(IC4)=1.05*x−0.013 (CC=0.982)

Figure 8: Accuracy model for competence-conscious asso-
ciative classifiers using the UCI datasets.

6 Conclusions

This paper focused on an important problem in associative
classification, themetric dilemma. We have shown that the
performance of associative classifiers are strongly dependent
on the metric that is used to quantify the strenght of the
association between features and classes. There is no perfect
metric, and no metric is consistently superior than all others,
in the sense that it can be safely used in isolation. In fact,
each metric has a particular domain of competence, or area
of expertise, for which it is able to produce the most accurate
classifier. We investigate meta-learning methods, which
use the training data to learn the domain of competence
of each metric. Finally, the competence of metrics are
exploited to decide which is the best metric to be applied
in each scenario, resulting in a combination or ensemble of
classifiers produced by different metrics, which maximizes
the performance of the final classifier, that we denoted as
competence-consciousassociative classifiers.

For effective metric combination, the corresponding
classifiers must cover different portions of the training data
(i.e., the metrics must show some diversity), and the training
data must have features that are able to distinguish those
portions of the training data. If these favorable conditions are
met, our method reaches full potential of the base classifiers
(i.e., the performance is close to the upper bound). On the
other hand, a performance penalty may result.

We proposed competence-conscious classifiers, where
the difference between them resides in how they perform the
analysis of the domains of competence. The coarse-grained
analysis, performed by the class-centric approach (C5) pro-
vides lower gains when compared to the fine-grained analy-
sis, performed by the instance-centric approach (IC4), which
outperforms all the evaluated classifiers, including a simple

delegation approach (SDC), an existing ensemble method
(ER), and SVMs. As future work, we intend to move for-
ward by investigating other application scenarios and eval-
uating other association metrics. We are currently studying
the correlation between metrics and the effectiveness of the
corresponding associative classifiers.
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