Competence-Conscious Associative Classification

Adriano Velosd, Mohammed Zaki Wagner Meira Jt.and Marcos Gongalvés
@ Computer Science Dept, Federal University of Minas GeBuxiazil
{adrianov,meira,mgoncaj@dcc.ufmg.br
b Computer Science Dept, Rensselaer Polytechnic Instifuty, USA
zaki@cs.rpi.edu

Abstract examples, and when uncovered, they may reveal important

The classification performance of an associative classifieRSPects concerning the underlying phenomenon that gener-
strongly dependent on the statistic measure or metric ¢haied these examples. These aspects can be expressed us-
used to quantify the strength of the association between ) rules of the form¥” — ¢, which indicate that a set
tures and classes (i.e., confidence, correlation etc.)vi-Pr@f features’ is associated with class The use of such

ous studies have shown that classifiers produced by differéfies for the sake of prediction has led to a new family of
metrics may provide conflicting predictions, and that thetb&lassifiers, that are often referred to as associative iclass
metric to use is data-dependent and rarely known while diérs [4,8-10,21,22,26,27,29,33,37]. These classifiers ha
signing the classifier. This uncertainty concerning the-opthown to be valuable in many applications, including gene
mal match between metrics and problems is a dilemma, dHgctional analysis [35], document categorization [34, 39

prevents associative classifiers to achieve their maxieal p/Véb ranking [36] etc. _ o
formance. This dilemma is the focus of this paper. An obvious difference between various associative clas-

A possible solution to this dilemma is to learn théifiers resides in the metric used to capture dependencies be

competence, expertise, or assertiveness of metrics. #gen features and classes (i.e., confidence, correlation e
basic idea is that each metric has a specific sub-domain dras been observed that many such metrics provide conflict-
which it is most competent (i.e., it consistently producé@g information about feature-class dependencies, iagult
more accurate classifiers than the ones produced by olRegssociative classifiers with different classificatiomfpe
metrics). Particularly, we investigate stacking-basedameMances [34]. Infact, different metrics have differentimsic
learning methods, which use the training data to find tREOPerties [28] (i.e., symmetric/asymmetric metrics lisca
domain of competence of each metric. The meta-classiff@fiant/invariant metrics etc.), and this may lead to vafy d
describes the domains of competence (or areas of expertﬁ%éf)nt associative classifiers. Some of these classifieys ma
of each metric, enabling a more sensible use of these metf@dvell suited for some classification problems, but not for
so that competence-conscious classifiers can be produiggrs (thatis, each metric has a particular domain for whic
(i.e., a metric is only used to produce classifiers for tdiS more competent). Competent metrics are rarely known
instances that belong to its domain of competence). While devising the classifier, and this dilemma concerning
conducted a systematic and comprehensive evaluatiory u§fl§ best match between metrics and problems prevents the
different datasets and evaluation measures, of classiffgdspotential of associative classifiers.

produced by different metrics. The result is that, while no Obviously, one possible solution to the metric dilemma
metric is always superior than all others, the selection igfto find the domain of competence (or areas of expertise)
appropriate metrics according to their competence/equerfor each metric, that is, subsets of examples for which a cer-
(i.e., competence-conscious associative C|assifier3)1$e@in metric produces better classifiers than the others- Hav
very effective, showing gains that range from 1.2% to 26.3% this information would enable the assignment of com-
when compared to the baselines (SVMs and an existi?@{ent associative classifiers to specific problems aacgrdi

ensemble method). to their competence/expertise [12, 23]. Hopefully, classi
cation performance would be drastically boosted by taking
1 Introduction advantage of consciously assigning metrics to specific sub-

. e : ._sets of instances (i.e., a domain of competence). This would
One strategy for devising a classifier is to exploit relatio )
. . o e great, except that there are several metrics, and numer-
ships, dependencies and associations between features_an o . . .
L . . .ous (unknown) characteristics affecting their correspgmd
classes. Such associations are usually hidden in thertgaini o . . .
competence, and finding such an invariant domain of com-



petence for metrics seems to be practically unfeasible. metrics. We show that no metric is consistently better
As an alternate approach to the metric dilemma, we than the others for all problems. Further, we also

propose to automatically extract the competence of each show that traditional metrics, such as confidence, are

metric. Taking as a starting point a setgfccuraté and just moderately competent for most of the problems

diversé metrics, m1, ma, ..., m,, a stacking-like meta- investigated.

learning strategy [30, 38], which is a procedure based on

the idea that different classifiers may provide different bu ® We propose competence-conscious classifiers, which

complementary explanations of the data, is used to extract, effectively combine classifiers produced by different

from the training data, information regarding the compegen ~ Metrics (an ensemble) using their domains of compe-

of each metric. This information is then used to produce the tence. All constituent classifiers are produced using the

meta-data. Specifically, it is explicitly indicated the miext same rule set. The only difference between the base
that correctly classify each example in the training dag,(i classifiers is the way they interpret the rules (each clas-
using a cross-validation procedure). sifier employes a different metric).

The meta-data is used to produce a meta-classifier which
has the ability to consciously decide the appropriate match’
between metrics and examples (i.e., the meta-classifier is
a function mapping features to competent metrics). Then,
for each test instande the meta-classifier is used to decide
which is the most competent metric to be applied, according
to their expertise. A specific classifigt}, , is finally pro-
duced, so thatn; is expected to be the most competent met-

ric to classify instance(i.e.,t belongs to the domainofcom-  The remaining of this paper is organized as follows.
petence of metrien;). The classifiers that are produced foly, section 2 we discuss related work. Then, in Section
lowing this strategy are regarded e@smpetence-consciouy we introduce our associative classification technique.
classifiers. We propose two competence-conscious clag$je metric dilemma, and competence-conscious associative
fiers, with the difference between them residing in the wayssifiers (i.e., the ensemble of classifiers produced by
they perform the analysis of the domains of competence (ffferent metrics), are presented in Section 4. In Sectioe 5
areas of expertise). The first classifier performs a claggy|yate the proposed competence-conscious classifiets, a
centric analysis, in which the domain of competence Ofcémpare them against state-of-the-art SVMs and existing
metric is composed aflassesor which it produces accurategnsemple techniques. Finally, in Section 6 we conclude the
classifiers. The other classifier performs a different asisly paper,

in which the domain of competence of a metric is composed

of examplegor which it produces accurate classifiers. 2  Related Work

To evaluate the effectiveness of competence-consm%sé ultimate goal of a classifier is to achieve the best ptessib

associative classifiers, we performed a systematic set-of ex ...~

. . assification performance for the problem at hand. An
periments using the UCI datasets, as well as more compleX : . o -
erisemble is a collection of classifiers whose predictioas ar

datasets obtained from other real applications, such as di mbined with the goal of achieving better performance

tal libraries, Web directories and Web spam detection. Qur : o . .
. . ; than the constituent classifiers. There is a body of evidence
results suggest that the finer-grained the analysis of the do

mains of competence (i.e., from classes to instances), ?Hggestmg that ensembles offer substantial advantages in

o . L o ?nough situations to be regarded as a major advance in
more effective is the final associative classifier. The tasu - : .
machine learning [14]. Also, there is a body of theory

also show that the proposed competence-conscious associa:

tive classifiers are able to outperform the baselines (Svﬁxsplammg why ensembles work. In this section we wil
discuss approaches used to produce ensembles, and how they

and existing ensemble methods), providing gains rangirn?gl|ate to the aporoaches presented in this paper
from 1.2% to 26.3%. In sum, the specific contributions o € app b baper.
A variety of ensemble methods has already been pro-

this paper are: posed. Well known methods include bagging [6], boost-

e We present a comprehensive study of the competeffe@ [24], and stacking [38]. Bagging is the acronym for
of associative classifiers produced by different statisotstrap aggregating. It generates bootstrap replictes
the training data by sampling examples from the original
—_— . . training data uniformly and with replacement (that is, an ex
An accurate metric is one that produces a classifier thatrheser rate | ted ti tatalli
of better than random guessing ample may appear repeated times or not at all in any par-
2Two metrics are diverse if they produce classifiers that kmssify ticular replicate). A classification model is produced from
different instances each replicate, and then they are combined using approaches

We used several complex datasets to present a deep
evaluation of the proposed competence-conscious clas-
sifiers, and we show that they are able to provide ex-
pressive gains in classification performance. Our anal-
ysis include a study about how the diversity and the ac-
curacy of the base classifiers affect the performance of
competence-conscious associative classifiers.



such as averaging or voting [19]. Boosting combines semay be desirable, but it may neglect important information
eral weak classifiers (those that are only slightly coreslatassociated with meta-featuredle show this by performing
with the true classification) in order to produce a single aaddirect comparison between self-delegating classifiers an
much stronger one. Combination approaches include avampetence-conscious classifie¥de concluded that sensi-
aging [18] and majority [13]. In the following, we will focustive information regarding the competence of metrics leads
our attention on stacking methods, since the techniques gmassociative classifiers that provide substantial imgrov
posed in this paper are mostly related to them. Stackingnignts in classification performance.
based on the idea that different classifiers may provide dif-
ferent but complementary explanations of the data. Th@s, Associative Classification
the predictions of these different (base) classifiers c#rpo The classification problem is defined as follows. We have
tially produce novel information that can be used as mefgy input dataset called thieaining data (denoted asD)
features to form a new training data. Then, a meta-classifi@fich consists of instances composed of a sétatfribute-
is built using this new training data, but instead of préd@t yajyes ¢, as, ..., q;) along with a special variable called
the correct class for a given test instance, the meta-i&fssihe class The set of all possible attribute-values is denoted
predictcs the base classifier that is most likely to coryecis 4, while the class variable draws its value from a discrete
predict the class for such instance. The obvious advantag, of classesc(, cs, . . ., ¢,,). The training data is used to
inthis case, is that the errors of a base classifier can be cayflid a classifier that relates features (or attribute \g)itie
terbalanced by the hits of others. the class variable. Theest instancesre a set of instances
In this paper we are interested in associative classifiggr which only the features are known while the class value
tion. We exploit stacking based meta-learning approacheginknown. The classifier, which is a function frato
to address an important issue in associative classification ., ... .1, is used to predict the class value for test

the metric dilemma Several statistic metrics can be usgstances (i.e., the classifier is a function which maps afset
to estimatefeature-classassociations [16, 20, 28], but thgeatyres to one of the classes).
most competent one is rarely known in advance. Thus, we agsociative classifiers exploit the fact that, frequently,
propose to explore the diversity among classifiers that gf@re are strong associations between features and classes
produced using different statistic metrics to maximize t pically, such associations are expressed using ruleseof t
performance of the final classifier (which will be refereeghym v —, c;, whereX C A andc; is one of the classes.
as a competence-conscious associative classifier). The migkse rules are usually hidden in the training data, and
ric dilemma is challenging, and, as far as we know, this {en uncovered they can be combined in order to accurately
the first attempt to integrate classifiers produced by difier map features to classes (i.e., the classification functon i
statistic metrics, in the context of associative clasdiica  gpiained by combining the information provided by these
The integration of classifiers using strategies relatedrmes)_ In the following we will denote a® an arbitrary
stacking was largely explored [2,12,15,23,32]. In [2], thg|le set extracted fror®. Similarly, we will denote aRR..,
authors use a neural network to learn, from predefined Me&{A-arbitrary rule set composed of rules of the fotm-— 67
features (e.g., maximum confidence, average confidenggh thatR,, C R.
number of applicable rules etc.), how to weigh the rules Natyrally, some rules iR represent stronger associa-
using a single association metric (i.e., confidence). Wgns than others. A set of statistic metrics that quantify t
believe that the work of Ortega et. al [23] is the closegfrength of the association betweghand ¢; are used to

to ours. They used a referee (which in our case is a m&i@mpare the rules. Associative classifiers usually leaen th
classifier) to indicate the best classifier to be applied f@ssification function in two broad steps:

each example.In our experiments we performed a direct

comparison between the competence-conscious classifiets generate a rule se®, from D

proposed in this paper and the ensemble approach proposed

in [23]. 2. estimate the likelihood of class membership for each
Self-delegation [12] is another strategy for combining ~t€st instance, by combining the information provided

the predictions of different base classifiers, and thus it is DY rulesink

also related to our work. The idea is that each base classi-

fier chooses by itself which instances it can safely classi%

ru

This choice is based on the confidence in its prediction. . Lo .
- e SRR e extraction process unfeasible in practice (or at least
base classifier delegates the difficult or uncertain prextist .. : . .
time-consuming). An approach to deal with this challenge

to other classifiers. Clearly, this strategy produces Elas, he pruning dilemma) was proposed in [33]. In this paper

fiers which are exclusively defined in terms of the origin . ;
features (no meta-features are generated). This :~3irrypli(\:Nte follow this approach [33], which generates rules on a
' demand-driven basis according to each test instance. This

The main challenge associated with the first step is
avoid the rule explosion problem, which may make the



strategy drastically reduces the number of extracted rul
while at the same time, it reduces the chance of missi
important rules.

lés The Metric Dilemma

8@lecting an appropriate association metric is a major is-
sue while designing an associative classifier. Classifiers p

In this paper our focus is on an important challengg,ced by different metrics often present different classifi

associated with step 2: provide an accurate estimate

tigh performance. Depending on the characteristics of the

instancet, we want to estimate the likelihoqilc;|t) thatt
belongs to class;. Only rulesX — {ci,ca...ch}t € R,
such thatY C ¢ are used to estimatg(cit), ... p(cy|t).
Such rules are said to matthand they form the rule s®!.
Obviously,R! C R.

The likelihood of membership of an instantés esti-
mated by combining rules iR*={R., UR! U...UR! }.
A simple (yet effective) probabilistic strategy is to irpiest
R' as a poll, in which rulet — ¢; € R, is a vote given by
X for classc;. The weight of a votet' ™ ¢; depends on the
strength of the association betwe&randc;, which is given
by an association metrie.. Weighted votes for class are
summed and then averaged by the total number of votes
this class, as expressed by functign;, ¢t), shown in Equa-
tion 3.1 (wheren(r) is the metric value for rule). As will

That is, a sub-domain may present properties that make a
metric more suitable than others. This suggests that clas-
sifiers produced by a certain metric are only able to make
reliable predictions over a subset of the entire domainespac
which is the area of expertise, or domain of competence, of
such metric. In this section we exploit the training data to
learn the competence, or expertise of each metric. Then,
a specific metric is used to produce a classifier for sub-
problems that belong to its domain of competence.

4.1 Association Metrics Next we present several metrics
for measuring the strength of association between a set of
fisrtures &) and classes(, ca, . . ., ¢,). Some of these met-
rics are popular ones in routine use [1, 28], while othersewer
recently used in the context of associative classificatijn [

be discussed in the next section, there are cases in wiNzurally, there is nothing to gain by combining similarsla
m(r) < 0, and thus a value (which is the lowest score, thatsifiers (i.e., those that perform almost the same predig}jon

is, z=s(c;, )]
scores are greater than or equal to O.

Z m(r)

reRL,

A _
(31) R

s(ei,t) = —z

The likelihood of membership of to classc; is ex-
pressed by the functigi(c;|t), shown in Equation 3.2 (thus,
votes with high weights increase the likelihood of the corr

sponding class being the correct one, while votes with low

s(cj,t) < s(ci, t)Ve;), is used to ensure that alland thus we selected metrics that are sufficiently different

(these metrics have different properties according to)[28]
to indicate that the corresponding classifi&ts ;. . ., Cny)
may present some diversity.

e Confidencefn) [1]: This metric measures the fraction
of instances irD containingX that belong te;. Itis the
conditional probability ofc; being the correct class of
instancet given thatt C ¢, as shown in Equation 4.3.
Its value ranges from 0 to 1.

e

(4.3) my = p(Ci|X)

weights reduce the likelihood of the corresponding class be

ing the correct one). A higher value ¢fc;|t) indicates a
higher likelihood oft to belong to clasg;. The class as-

Added Value {r3) [16]: This metric measures the
gain in accuracy obtained by using rute—c; instead

sociated with the highest likelihood is finally predicteds A
will be shown in Section 5, association metrics play a fun-
damental role in estimating the likelihood of class member-
ship. However, the best-quality, most competent metric is
data-dependent, and rarely known while devising the classi
fiers.

(3.2)

3We denote a¥m; an associative classifier which applies; as the
association metric in Equation 3.1

of always predictingc;, as shown in Equation 4.4.
Negative values indicate that always predictingis
better than using the rule. Its value ranges from -1 to
1.

(4.4) ma = p(ci|X) — p(ci)

Certainty (n3) [20]: This metric measures the increase
in accuracy between rul€ — ¢; and always predicting

¢;, as shown in Equation 4.5. It assumes values smaller
than 1.

N p(cilX) — p(ci)

(45) m3 =

p(©)



e Yules'Q (m4) and Yules'Y (ns) [40]: These metrics are Attribute-Values
based on odds value, as shown in Equations 4.6 and 4.7, Id | Class| ajaz...q
respectively. Their values range from -1 to 1. The value 1 c1 13...6
1 implies perfect positive association betwe¥nand 2 c1 13...7
¢;, value 0 implies no association, and value -1 implies 3 1 24 ...6
perfect negative association. 4 o 24 ... 7

5 Co 25...8
(4.6) 6 Co 24...6
g — p(X Uc)p(XUc) —p(XUg)p(XUc) 7 c3 13...9
p(X Uc)p(XUc)+p(XUG)p(X Uc) 8 c3 25...9
9 C3 24...8
4.7 10 c3 24...9
VP(X Uep(XUer) — \fp(X UE)p(F Uer) (1] e | 283..8 ]
ms =

5 \/p(X D@0 + \/p(X UE)p(X Uc;) Table1: Training dataD (first 10 instances), and test sgt,
(instance 11).

e Strength Scorerfg) [3]: This metric measures the
correlation betwee¥’ and ¢;, but it also takes into
account how? is correlated with the complement of
¢; (i.e.,¢;), as shown in Equation 4.8. Its value rang

Self-Delegating Classifier (SDC)Equation 3.2 can be
ed to estimate the reliability of a prediction, and thfstin
mation can be used to select the most reliable prediction fro

from 0 tocc.
> all involved classifiers [12]. The process is illustratedhin
gorithm 1. For a given test instantdhe selected class is the
(4.8) e = PXlei)p(eilX) one which is associated with the highest likelihgi(d; )
' 6 p(X|c) amongst all classifiers!, ,C!, ,...,Cl, . The basic idea

) ) . is to use the most reliable prediction (aqmong the predistion
* Support {n7) [1]: This metric measures the fraction 0ferformed by all classifiers) to select the class for ingtanc
instances irD covered by the rule’ — ¢;, as shown in Although simple, SDC does not exploit the competence
Equation 4.9. Its value ranges from O to 1. of each metric. In fact, each base classifier simply decides
(4.9) mr = p(X Uc¢) by itself the instances it will classify, not meaning thag th
select instances belong to its domain of competence.
e Weighted Relative Confidenceng) [20]: This metric
trades off accuracy and generality, as shown in Equagorithm 1 Classifier based on self delegation of metrics.

tion 4.10. The first component is the accuracy gain thREquire: The training dat&, and a test instanae
is obtained by using rulét — ¢; instead of always gnsure: The class for instance

predictingc;. The second component incorporates gen-

erality. 1: Rt <rulesX — ¢; (with 1 <4 < n) extracted fronD
such thatt’ C ¢
(4.10) ms = (p(ci|X) — p(ci))p(X) 2: produce different classifie, ,Ct,,, ....CL, , for in-

Although we focus our analysis only on these eight stance, using rules irk!
. g inaty y 9 3. return the class associated with the highest likelihood of
metrics, the approachesto be introduced here are genéral an ; ; o
) : membership fot (i.e., Eq. 3.2), amongst all classifiers

able to exploit any number of metrics transparently.

Associative classifiers produced by different metrics
may perform different predictions. Table 1 shows a simple
example containing a training data from which differedt2 Learning the Metric Competence The optimal
associative classifiers may be produced in order to prediwtch between metrics and problems is valuable informa-
the class for instance 11. For simplicity, we will considdion. In this section we present an approach to estimate such
only attributesa;, a2 andq;. In this case, according tomatching. The proposed approach may be viewed as an ap-
Equation 3.2, classifigt'! predictscs, classifier€!! 1l | plication of Wolpert’s stacked generalization [38]. From a

mi meo? Yms?
Cll

and C!! predictc;, and classifierg!! cll - and general point of view, stacking can be considered a meta-

ms may? ms? me!

CLl predictca. Next we will discuss a simple approactearning method, as it refers to the induction of classifiers

7

to boost classification performance by exploiting assasat over inputs that are, in turn, the predictions of other dlass
classifiers produced by the aforementioned metrics. fiers induced from the training data (i.e., meta-data). Bpec




Attribute-Values Competent Most Competent
Id | Class ayas...a Metric(s) (per instance) Metric(s) (per class
1 c1 13...6 mo
2 C1 13...7 mi ms mq
3 C1 24...6 mq
4 Co 24...7 mi1 mo
5 Co 25...8 mi1 mo M3 mi
6 Co 24...6 mq
7 C3 13...9 mo
8 C3 25...9 mo Mg mo
9 C3 24...8 miy mg M3
10 C3 24...9 mao

Table 2: Enhanced training da@,.

ically, in the stacking strategy an algorithm is applied dB.. The process continues until all examples are processed.
meta-data, which can contain properties of the origina daln the end, for each example € D. we have a list of
properties of different classification algorithms, or pats metrics that produced a competent classifiertfaand this
previously derived from the original data. The meta-datairformation enables learning the domains of competence of
used to select, alter, or combine different classifiers civhi each metric, as will be discussed in the next section.

in our case, are classifiers produced by different metrics To illustrate this process, please consider the example
shown in Tables 1 and 2. Table 1 shows the original training
Algorithm 2 Enhancing the training data with the compedata, D. Using the process described in Algorithm 2, the

tence of each metric. competence of each metric to each instance is appended to

Require: The original training dataD, and a cross- D, resulting in the enhanced training da®,, which is
validation parametek shown in Table 2. In this case, for a given examplmetric

Ensure: The enhanced training daf. m; is shown if the corresponding classifi&,, has correctly

classifiedt using the stacking procedure (i.e., metnig is
competent with regard to exampgle The enhanced training
data,D., can be exploited in several ways. In particular, we
will use D, to produce competence-conscious classifiers, as
will be discussed next.

1: split D into k partitions, so thaD={d; Udz U ... Ud}}

2D, <=0

3. for each partitiond; do

4. for eachinstance € d; do

5: m< 0

6 R! < rulesX — ¢, (with1 < y < n) extracted
from {D-d;} such that¥ C ¢

7: produce different classifiers!, ,C},., ..
using rules irR!

: for eachclassifierC;, do
9 if Ct, ; correctly predicts the class fothien

4.3 Competence-Conscious Classifiersn this section

ct we present strategies for exploitifigt in order to produce
©77™ma’ - competence-conscious associative classifiers. The olgalle
in this case, is to properly select a competent metric foea sp
cific test instance. The competence-conscious classifiers t
. be presented differ in how they perform the analysis of the
10: m <= mUm; domains of competence of metrics.

L end if Class-Centric Competence-Conscious Classifier i

12: end for The competence of a metric is often associated with certain
13 De <D U{tUm} classes. Some metrics, for instance, produce classifiers
14: end for which show preference for more frequent classes, while
15: end for

others produce classifiers which show preference for less
frequent ones. As an illustrative example, please consider
The process starts by enhancing the original trainingple 2. Metricm; is extremely competent for classifying
data (i.e., producing the meta-data) using the outputsef {istances that belong to classesand ¢c,. On the other
base classifiers;;, , Cy,, ...Cy, . Algorithm 2 shows the hand, if we consider instances belongingcto metric m.
basic steps involved in the process. Initially, the enhelnggerfectly classifies all instances. This information (whis
training data,D. is empty. An example, along with the shown in the last column of Table 2) may be used to produce

competence of each metric with regard #di.e., which class-centric competence-conscious classifiers. Theepsoc
metric correctly predicted the class fo, is inserted into




is depicted in Algorithm 3. It starts with a meta-classifieAlgorithm 4 Instance-centric meta classifier.

M, which learns the most competent metric for a given clag&quire: The enhanced training dataD. (i.e.,

Any classifier can be used to build the meta-classifier. For the 3¢ and 4" columns of Table® and a test in-
simplicity we choose an associative classifier that weights stance

the votes given by rules using the confidence metric. In tlE#sure: The most competent metric for instance

case, instead of generating rul&s— ¢;, the meta-classifier

generates rule&’ — m,;, which maps features (i.e., in the
third column of Table 2) to metrics (i.e., in the fifth column 2
of Table 2). Then, for each test instaricéhe meta-classifier
indicates the most competent metrig,, that is then used
to produce the final classifie@ni, which is finally used to
predict the class for instan¢e

1: for eachmetricm,; do

RE, < rulesX — m,; extracted fronD, such that
XCt

Estimatep(m;|t), according to Equation 3.2 (using
confidence to weigh the votes)

4: end for

5: return metricm; such thap(m;[t) > p(m;|t)Vi # j

Algorithm 3 Class-centric meta classifier.

Require: The enhanced training dataD. (i.e.,
the 3¢ and 3" columns of Table and a test
stance

Ensure: The most competent metric for instance

Algorithm 5 summarizes the basic steps of the
in- competence-conscious associative classifiers. The digori
receives a test-instan¢eand a meta-classifier (eitheP ©r
IC%) as input, and returns as output the class associated with

1: for eachmetricm; do t.
22 Rt <«<rulesX — m; extracted fronmD, such that - - —
Py é . Algorithm 5 Competence-conscious classifiers.
3. Estimatep(m|t), according to Equation 3.2 (usngeqwre The training dat&, the meta-classifief, and a
confidence to weigh the votes) test instance _
2: end for Ensure: The class for instance
5: return metriij such tha’ﬁ(mﬂt) > ﬁ(mAt)Vz 7&] 1: for each C|aSSC7; do
22 RL <« rulesX — ¢; extracted fromD such that
Instance-Centric Competence-Conscious Classifier fj(fgrt

(IC%) Although the competence of some metrics are assg: © .
ciated with certain classes, specific instances may berbettt select the most competent classifierfat, , usingM
classified using other metrics. In such cases, a finer-glain&’ Estimate p(c;t) (with 1<i<n), accordlng to Equa-
analysis of competence is desired. As an illustrative exam tion 3.2 (using metrien, to weigh the votes)
ple, please consider again Table 2. Although metrigs the o "€tum classc; such thap(c;[t) > pleilt)Vi # j
most competent one to classify instances belonging to class
c1, metricmy is the only one which competently classifies  Bounds for Competence-Conscious Classifiersve
instance 1 (which belongs t@). Again, a meta-classifier,derived lower and upper bounds for the classification per-
M, is used to explore such cases. The process is depictefdifhance of the proposed competence-conscious asseciativ
algorithm 4. In this case, the meta-classifier learns thet meRissifiers. The lower bound is the performance that is ob-
competent metric by generating rules of the fokim— m;, tained by randomly selecting a competent metric. Clearly,
which maps features (i.e., the third column of Table 2) this lower bound increases with the redundancy between the
metrics (i.e., in the fourth column of Table 2). Then, forleadgase classifiers}’, ,...C% . The upper bound is the clas-
test instance, the meta-classifier indicates the most compsification performance that would be obtained by an oracle
tent metric,m;, which is used to produce the final classifiefyhich always predicts a competent metric (note that perfect
Cfnj- performance is not always possible, since it may not exist
The main advantage of’Cand IC! is that, in practice, a competent metric for some instances). Clearly, this upper
multiple metrics produce competent classifiers for a partlsound increases with the accuracy and diversity associated
ular instancet, but M needs to predict only one of thenwith base classifiers.
(competent metrics are not mutually exclusive, and thus, in Diversity between Base ClassifierdVe use the plain
practice, multiple metrics produce competent classifiers flisagreement [31] as a measure of diversity between two
instance). We will show in Section 5 that this redundancy ithase associative classifie€s,, andC,,;, as shown in Equa-
competence that exists when different metrics are taken ition 4.11, whereC,,, (¢) is the class predicted by classifier
account, may increase the chance of selecting a compeggntfor instancef, and diff(C,,, (), C,,, (t)) returns 1 if the
metric. two arguments are different (and 0 otherW|se) The diversit




of the ensemble is finally given by averaging®R,,C,,,;) (http://portal.acmorg/dl.cfnl). The dataset
over allq base classifiers. contains 6,682 documents labeled using the 8 first level cat-
egories of ACM, namely Hardware (C1), Computer Sys-
tems Organization (C2), Software (C3), Computing Method-
1 ) ologies (C4), Mathematics of Computing (C5), Information
(4.11)  POCp;;Cim;) = m Z diff (Cn; (t), Cm; (1)) Systems (C6), Theory of Computation (C7), Computing Mi-
=1 lieux (C8). Citations and words in title/abstract compdee t
5 Experimental Evaluation set of features. The dataset ha_s a_vocabulary of 9,840 unique
Inthi i i iricall vze th el words, and a total of 51,897 citations. Please, refer to [34]
n this section we will empirically analyz€ the proposecse aJor a detailed description of this dataset.

sifiers, SDC, €, and IC. In our experiments, we use Using the rules extracted from this dataset, we can an-

26 datasets from the UQI Machine Learning Reposn_ory_[g ze the relationship between the widely used confidence
and three datasets obtame_d from more comple>_< apphcaucm tric (m1) with other metrics, as shown in Figure 1 (to ease
Thes?hdatasets cc(;velr a Y\]f.'de range Otf g\r/ohﬁerltlfsb W;.C? ' observation of this relationship, we also include, ichea
pare edp:]c’pﬁ.sssv?vlass' I|er75 ggalr(ljs I[ ] bas 'nfj?aph, a thicker line which indicates the corresponding con
(we used the Li tool [7] in order to select appmp”ﬁdgnce value). Each point in the graphs corresponds to a

7]

ate parameters, which are discussed in each_ experimefy , for which it is shown the values of some metrics (i.e.,
and against the ensemble approach proposed in [23], ca Gfifidence in the x-axis and another metric in the y-axis).

ER (standing for External Referee) in which the enser&Tearly, each metric has its particular behavior with vary-

ble is compos_gd of the base c|g35|f|€;§1,'. -+ Cmg, but ing values of confidence. For lower values of confidence,
the best classifier for each test instance is selected using Req Value {n5) has a preference for less frequent classes
decision tree referee. For associative classifiers, conti 2 ’

. ; _ ) . . ut, after a certain confidence value, the preference is for
ous attrlbu_te_s n the training data were dlscret|z_ed usieg tnore frequent classes. Certainty4) always prefer less fre-
gntropy—m|n|m|zat|on_method [11], and the attnbute—‘@u uent classes, but linearly approaches confidence asiits val
in the te;t seF were S|mply_map|.oed'to the correspondmgi creases. Yules’Qngs) and Yules'Y (ns) have a similar
terval§ (in th|s_ way, the discretization process did not uB’Shavior, showing preference for less frequent classes and
class information in the test set). Experiments that comp

lassificati ¢ ‘ its for the stand@rd Wardly penalizing associations with low confidence values.
classilication performance report resufts for the stanfid Strength Scorefg) and Weighted Relative Confidenae)
fold cross-validation procedure.

terk: for Algorithm 2 Pt I2n _all expeETent_s, FTZ’r?both prefer less frequent classes, but Strength Score shows
eterk for Algorithm 2 was set to 2 (i.e., each training da %on—proportionalpreference for associations with higladr

Dk;twastﬁpllt mhtwo d(ljs![omt.part(;tmnsjl ?nddé' mtorder to ues of confidence. The relationship between confidence and
obtain the enhanced training da@,). In order to ensure support {n7) is omitted, but, by definition, support shows

that the domain of competence of each metric is independg reference for more frequent classes. We will use these

X ! e
ofa pa_rtlcular data C(_)nﬁguranon, Qnd !Cl were execute(_j relationships to explain some of the results reported in the
a certain number of times employing different data Conf'gfb'llowing

rgnons (|.e.', training data is randomly parﬂUonepI), dnd . Table 3 shows the classification performance obtained
final result is averaged by the number Of. executions (Wh'B different classifiers using the ACM dataset (for this ap-
was set to 10). To perform a fair comparison, the same p fication, performance is computed through the traditiona

g%dg reE\llqvas ngsrjd to evelxluate the tot:er riltgslsn‘tl_ers, th . é%uracy). We will first analyze the performance associated
' an were also executed mulliple Umes Witfy, oach category, and then the final classification perfor-

different data configurations. Best results, includingista ance, which is shown in the last line of the table. Classi-

tical ties, are emphasized. A bOId. f?‘ce ino_licqtgs that the produced by confidencé,f,) and supportd,,,) per-
corresponding result was found statistically significarha formed very well in the most frequent categories (Software
95% confidence level when tested with the two-tailed pair Systems and Theory of CS). On the other hand instancés
tl-gété:aperg]erll_t_s were run on 1.8 MHz Intel process%glonging to less frequent categories (Comp. Methodolo-
under Linux. gies, Mathematics of CS, and CS Organization) were better
- . ) classified using Yules’Q{,,,) and Yules'Y (C,,,). This is
o1 , Digital Library The first dat'aset was gxtrgcted fronélxpected, and is in agreement with the behaviors depicted in
the first level of the ACM Computing Classification SySterIBigure 1 (Yules'Y and Yules'Q show a preference for less
frequent categories). The best metric is the one that better
7In most of the experiments, SVM baselines take as input thgnat  balances its performance over all categories. Although the
training data (and not the enhanced one). However, in someuof classifier produced by Yules'Y was not the best one for any

experiments, we also employed SVMs as a meta-classifier, lasbav  gnacific category of ACM, it was the best overall classifier
detailed. )
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Figure 1: Relationship between confidence and other metsicgy the ACM dataset.
Lower Upper
Cmy | Cms | Cos | Cons | Cons | Cmg | Comw | Comg Div. | Bound| SDC | C° IC* | Bound| ER | SVM
Cl | 0.808| 0.847| 0.827| 0.835| 0.833| 0.846| 0.184| 0.629| 0.235| 0.714 | 0.816| 0.809 | 0.818| 0.889 | 0.799| 0.726
C2 | 0.718| 0.790| 0.760| 0.776| 0.798| 0.753| 0.316| 0.789| 0.114| 0.727 | 0.727| 0.737| 0.768| 0.878 | 0.719| 0.877
C3 | 0.915| 0.852| 0.887| 0.866| 0.862| 0.752| 0.960| 0.876| 0.124| 0.872 | 0.880| 0.889| 0.921| 0.981 | 0.875| 0.665
C4 | 0.568| 0.690| 0.626| 0.655| 0.664 | 0.678| 0.095| 0.551| 0.228| 0.561 | 0.581| 0.618 | 0.621| 0.800 | 0.605| 0.516
C5 | 0.550| 0.625| 0.588| 0.680| 0.678| 0.668| 0.007 | 0.325| 0.269| 0.567 | 0.570| 0.625| 0.653| 0.750 | 0.612| 0.909
C6 | 0.952| 0.930| 0.946| 0.942| 0.926| 0.896 | 0.690| 0.766| 0.081| 0.881 | 0.919| 0.913| 0.928| 0.968 | 0.899 | 0.868
C7 | 0.924| 0.894| 0.892| 0.891| 0.891| 0.887| 0.505| 0.682| 0.133| 0.833 | 0.902| 0.897| 0.899| 0.924 | 0.879| 0.668
C8 | 0.643| 0.716| 0.687| 0.722| 0.729| 0.756 | 0.069| 0.478| 0.282| 0.587 | 0.658 | 0.693| 0.697| 0.824 | 0.674| 0.770
Total | 0.841| 0.847| 0.852| 0.854| 0.854 | 0.812| 0.566| 0.733| 0.143| 0.797 | 0.849| 0.858| 0.882| 0.923 | 0.812| 0.825
Wins 1 1 0 0 0 0 1 0 - - 0 0 0 - 0 2
Ties 1 1 1 1 0 2 0 0 - - 0 0 0 - 0 1

Table 3: Classification performance associated with eatefyoay of the ACM dataset.

(amongst classifiers produced by other metrics in isoljtiomndividual category. Overall, 1€ outperformed all other
SDC shows a performance that is similar to the pestassifiers, providing gains of more than 7%, when compared
formance obtained by most of the base classifiers (the iagainst SVM (using polynomial kernels of degree 6), and
provement, when it exists, is only marginal). Competenagains of more than 8.5% when compared against ERi4C
conscious classifiers °Cand IC' showed the best perfor-always far superior than the corresponding lower bound, but
mances, although they were not the best performer for anig also relatively far from the corresponding upper bound



It seems that the improvements provided bya@d IC'  we used SVMs to select competent metrics for each test in-
are somehow related to how accurate and diverse are stence, and compare the classification performance with the
base classifiers (we assume that the lower bound is a suit@alformance obtained by fGand C. Our results indicate
approximation of the accuracy of the base classifiers, sinbat the SVM-based meta-learning strategies (i.e., itstan
it tends to increase with the accuracy of the base classifiecgentric and class-centric) lead to classification perforces
Thus, we relate the harmonic mean between the lower botlnat are (statistically) similar to the classification peff

versity (i DiversityxLower Bound ... mances obtained by fGand C counterparts.
and the diversity (i.e.2 x Diversity+Lower Boun(é’ with y p

the gains relative to the lower bound. Figure 2 sho
this relationship. Each point is associated with a categ
of the ACM dataset. Clearly, for the ACM dataset, th
improvements provided by "Cand IC' increase with the
diversity and the accuracy of the base classifiers.

gs Web Directory Next we investigate the classification

R rformance of competence-conscious associative ckssifi
using another dataset, which is composed by 2,911 randomly
selected articles published in the Slashdot online forum

We also performed an analysis on how the diﬁ‘eremt tp:/ /sl ashdot. org). Each article is a document

metrics were used by*Gand IC!, as can be seen in Figure :}N ||thbar|1 Zutt:\zr, ra tr']tle ??: tg% stotry ccr)inten;.SIIEacr? dd(tjcrl:n::r}t
(Left). C° utilized only few metrics, speciallynz, ms and s abeted Uunder one o1 tne 16 categories of Slashdot, hamely

m7. Metric m4 was used to produce classifiers to only o ple (A1), Ask Slashdot (A2), Backslash (A3), Books

category, and metricens and mg were not used (this isH 421’ Develg‘gersl (tAS).’ Ente;tgmrlne]:cnt (A?)’ GTamﬁs $A7)’
because these two metrics were not the most competen faware (A8), Interviews (A9), In ormation fechnology
any category of ACM, and therefore are not considered XlO), Linux (A11), News (A12)3 POI'“CS.(A13)’ Science
C%). IC*, on the other hand, utilized all metrics, speciall 14), Technology (A1.5)’. Your R'|ghts Online (A16). _More
ma, ms andms. Both C and IC! make large utilization an a forum for publishing stories, Slashdot cons.tltutes a
large social network, where users may interact with each

of metricsms, andms. For C°, some areas of expertise car

be easily detected. Metrig; is considered competent forOther' Consequently, a particular author may acquire disen

categories Hardware and CS Organization, while meiric and enemies throughout her/his enrollment as a participant

is considered competent for category Information Systerﬁi Slashdot. This information about the social relatiopshi
I

For IC!, areas of expertise are finer grained, but with man the author (i.e., herhis set of friends and enemies) is

inspection we detected that; is considered competent forf3XplICItIy informed in Slashdot and may represent relevant

for category Milieux. P

Next we analyze one of the reasons of the good perf ory is shown in Table 4. Classifiers produced by Strength
mance showed by IC Figure 3 (Right) shows the accus core, Support and Relative Confidence achieved the worst

racy associated with scenarios for which a different numdaeegrfgrm?fnifnmnmoit (:Tf]éhf cz'g)%otrr:es. tﬁDrchdlr? dns\} acthhleve
of metrics are competent. The frequency of occurrence periormance numMbers. i € othérhand, was the

each scenario is also shown (note that both accuracy Qﬁﬁ:apigo(;?:;#}n ::gr?ée?ié?]icﬁghigglg:ifizrgzvcl:g?e\t/zz ad-
frequency values are shown in the y-axis). As it can o} g b

. . lassification performance which wi lly cl h
seen, for more than 7% of the instances no metric is com eq"’lSS cation performance ch was usually close to the

tent, and, obviously, these instances were misclassifies ( erformence achieved by ER. In most of the categories,

means that the inclusion of other metrics may improve cla&}\{g\rﬂa;’lvgzr}/:r%gfmpet't've with 16 but IC* was the best
sification performance in this dataset). As expected, accu-"_. : . .
b ) P Figure 4 shows the relationship between the accuracy

racy increases with the number of competent metrics. Ford the diversity of the base classifiers. with the imorove.
almost half of the instances all 8 metrics are competent. aH Ats or I\\//id éi’) £and ICL. Each ' Iint i' wi : tl d?/vitx
these scenarios, there is no risk of misclassiﬁcation,&sir@:e s provided by ~.a - =ach pointis assoclate

a classifier produced by any metric will perform a corre category of the Slashdot dataset. As can be seem, the im-

prediction. The accuracy associated with scenarios wh ngem(_ants over the lower bound slightly Increase V.V'th the
only 7 and only 6 of the metrics are competent, is also larmonic mean between the accuracy and the diversity of the

tremely high (respectively, 99% and 96%). These three :E)g_sci,vclaslﬂﬁeirns\} tinated the improvements relative to th
narios (i.e., 8, only 7, and only 6 metrics are simultangou%l ¢ aiso Investigated the Improvements relative 1o the

competent) correspond to 86% of the instances, and the av oy classifiers provided by @nd IC' using simple linear

age accuracy associated with these three scenarios istalrwgsdds.(a similar gpproach_ was used in [25]). Specifically,
98% for IC*. Further. IC shows to be more robust that c V€ aré interested in modeling the accuracy of competence-

providing superior accuracy (relative to the accuracy o cconscious associative classifiers using the best resuits ob

in scenarios where there are only few competent metrics.ia'lnzdnbiiths tt)\zse nclt?]ssmeri Thuts)i \il\r/1€ ;f)sut?e% a tllgear
We also employed SVMs as meta-classifiers, that |§,a onship between the accuracy obtained by the best base
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Cm 1

Cm 2

Cm 3

Cm 4

Cm 5

Cm6

Cm7

Cm 8

Div.

Lower
Bound

SDC

Ict

Upper
Bound

ER

SVM

Al
A2
A3
A4
A5
A6
A7
A8
A9
A10
All
Al12
A13
Al4
Al15
Al16

0.581
0.886
0.723
0.481
0.591
0.550
0.929
0.843
0.801
0.525
0.901
0.630
0.680
0.865
0.748
0.733

0.573
0.891
0.704
0.489
0.590
0.547
0.901
0.856
0.806
0.521
0.909
0.633
0.685
0.854
0.757
0.735

0.596
0.891
0.723
0.500
0.591
0.575
0.906
0.870
0.805
0.550
0.909
0.646
0.689
0.867
0.761
0.735

0.623
0.893
0.703
0.503
0.610
0.560
0.915
0.871
0.803
0.568
0.908
0.639
0.688
0.863
0.751
0.731

0.614
0.888
0.700
0.508
0.598
0.568
0.920
0.870
0.809
0.565
0.905
0.645
0.691
0.860
0.753
0.725

0.600
0.862
0.689
0.472
0.547
0.542
0.873
0.837
0.783
0.508
0.886
0.623
0.658
0.856
0.742
0.730

0.535
0.849
0.659
0.434
0.538
0.522
0.845
0.815
0.781
0.500
0.877
0.619
0.684
0.846
0.744
0.701

0.577
0.870
0.678
0.474
0.558
0.551
0.877
0.836
0.778
0.506
0.886
0.629
0.665
0.849
0.746
0.726

0.168
0.121
0.097
0.214
0.306
0.143
0.103
0.080
0.099
0.167
0.047
0.212
0.230
0.114
0.077
0.124

0.600
0.882
0.723
0.498
0.595
0.556
0.805
0.864
0.806
0.547
0.906
0.622
0.680
0.837
0.750
0.722

0.621
0.889
0.721
0.501
0.604
0.558
0.912
0.889
0.811
0.558
0.916
0.649
0.692
0.865
0.763
0.737

0.622
0.892
0.732
0.510
0.606
0.570
0.921
0.889
0.823
0.582
0.918
0.651
0.695
0.875
0.761
0.747

0.624
0.903
0.738
0.515
0.612
0.577
0.916
0.885
0.836
0.590
0.918
0.669
0.708
0.877
0.757
0.762

0.664
0.925
0.801
0.679
0.683
0.684
0.975
0.941
0.896
0.683
0.983
0.707
0.791
0.934
0.802
0.829

0.618
0.896
0.734
0.513
0.601
0.572
0.917
0.885
0.828
0.582
0.913
0.653
0.701
0.872
0.765
0.760

0.631
0.899
0.736
0.513
0.611
0.567
0.900
0.894
0.825
0.580
0.902
0.671
0.696
0.876
0.757
0.748

Total
Wins
Ties

0.729
1
0

0.721
0
0

0.756
0
0

0.765
0
0

0.762
0
0

0.700
0
0

0.684
0
0

0.704
0
0

0.220

0.735

0.765
0
2

0.785
0
7

0.827
2
12

0.964

0.791

0.815
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Table 4: Classification performance associated with eatdyosay of the Slashdot dataset.

classifier in each category, and the corresponding accuracy Web Spam Detectionin this application the objective
obtained by either Tor IC*. We characterized this relationis to detect malicious actions aimed at the ranking funstion
using statistical correlation coefficients (CC). used by search engines. We used a dataset obtained from
The associated regression lines were built using thetheé Web Spam Challengeht(t p: / / webspam | i p6.
categories of Slashdot (i.e., each point corresponds to émé wi ki / pmni ki . php). The dataset is very skewed
of the 16 categories). Regression lines fora&hd IC' are (only 6% of the examples are spam pages). Each example
shown in Figure 5, and both have very high correlation cis-composed of direct features (i.e., number of pages in the
efficients (which are shown between parenthesis). Furthesst, number of characters in the host name etc.) link-based
their regression gradients are higher than one, possibly fisatures (i.e., in-degree, out-degree, PageRank etc.) and
dicating that, in the limit, competence-conscious assiwveia content-based features (i.e., number of words in the page,
classifiers are indeed more accurate than the best base assrage word length etc.).
ciative classifier. Table 5 shows the classification performance obtained



Lower Upper
Cim, Cin, Cing [ Cins Cing Cins Cms | Bound| SDC | C5 IC* | Bound| ER | SVM
Acc. | 0.945| 0.705| 0.703| 0.895| 0.900| 0.946| 0.945| 0.881| 0.854 | 0.861| 0.872| 0.897| 0.988 | 0.864 | 0.954
F1 0.484| 0.525| 0.525| 0.585| 0.592| 0.591| 0.487| 0.589| 0.590 | 0.593| 0.611| 0.622| 0.946 | 0.587 | 0.502
AUC | 0.500| 0.755| 0.758| 0.608| 0.605| 0.559| 0.498| 0.632| 0.662 | 0.727| 0.715| 0.790| 0.911 | 0.728| 0.514

Table 5: Classification performance for Web spam detection.

php?n=Mai n. Phasel I | Results. These methods

%L 09 ¥ use specific heuristics that are particularly suitable for
= Web spam detection. The first six competitors achieved
) M detection performances that range from 0.731 to 0.848 in
S 0.8 i,,i”' terms of AUC. IC shows to be very competitive, achieving
> ?,/i a detection performance which is (statistically) similar t
% 0.7 = the performance obtained by th# place.
3] el
fj 0.6 E - 5.4 UCI Datasets|n the last set of experiments, we used
f-g - - 26 datasets obtained from the UCI Machine Learning Repos-
E 05 itory [5]. Table 7 shows the performance obtained by each
E Acc(Ci):l.OOS*x+0.018 (CC=0.910) ——=-- classifier using these datasets (for this application,gperf
0.4 PceIC)=1.009x+0.012 (CC=0.935) mance is computed through the traditional accuracy),
0.5 055 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 andcC,,, showed poor performance in skewed datasets where
Accuracy of the Best Base Classifier few classes are much more frequent than the others (i.e.,

anneal, lymph, auto, hypo). This is because Yules'Y and

Figure 5: Accuracy model for competence-conscious as¥&les'Q have preference for less frequent classes (as shown

ciative classifiers using the Slashdot dataset. in Figure 1). For these skewed datasets,, (support)
showed its best performance, since the likelihood of ptedic

ing most frequent classes is higher in such datasets (this is
by different classifiers (for this application, performaris expected, due to the definition of support). For most of the
computed through accuracy, feasurg, and the area underdatasetscml, Cm, andC,,, are in close rivalry,,, shows
the curve)C,,, andC,,. showed impressive performance im slightly better average performance, But, shows better
terms of accuracy. This is expected, because the vast p&formance more often)C,,, (strength score) shows the
jority of examples are legitimate pages, and confidentg ( best average performance, amongst all base classifiers.
and supportre7) have preference for more frequent classes. On average, € shows superior classification perfor-
Onthe other hand;,,, andC,,, showed poor performance inmance than SDC. Also, the performance 6f§; on average,
terms of i and AUC (i.e., no spam pages were actually dglightly superior than the performance obtained by SVM (pa-
tected). The remaining base associative classifiers wége aimeters for each dataset are shown in Table 6) and ER base-
to detect some spam pages, specidlly, which also shows lines. Again, IC is the best performer, and for some datasets
impressive performance in terms of accuracy. In termsipfeaches a performance that is close to optimal (i.e.,anne
AUC, C,,, andC,,, showed the best performance, amongsteast, hypo, iris, labor, sick, wave and wine), suggesting
base classifiers. Thus, different metrics show distindioper that the more fine-grained the analysis of competence, the
mance depending to the evaluation target (i.e., accuracynfore effectively the metrics are combined. Interestinigig,
or AUC). performance of € approaches the performance of*l@r
Now we evaluate €and IC!, which are the best per-datasets containing more classes (i.e., glass, led7, lyvesh
formers in terms of F. Although IC' showed to be far from hicle, and zoo), since in this case the competence analysis
the optimal performance, it showed impressive gains whggrformed by € becomes finer grained.
compared against SVM (using linear kernels with parameter Some datasets deserve special attention® di@bwed
C set t0 5.00), and ER, in terms of Bnd AUC. very good performance in the anneal dataset. Figure 6(left)
Results obtained by detection methods that wesRows the frequency distribution of competent metrics for
specifically designed for Web spam detection are show¥iis dataset. Almost 70% of the instances have more than five
in http://webspam |'i p6. fr/wi ki/pmwiKi. competent metrics, and in such scenarios accuracy reaches
100%. The accuracy obtained in such scenarios guaran-

SA combination of precision (p) and recall (r) defined as theirmonic tees a final classification performance that is already super

2pr
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\ | Kernel | C [degree] ~» |
anneal | polynomial | - 6 -
austra linear 1.50 - -
auto RBF - - 0.0003
breast linear 3.00 - -
cleve linear 3.00 - -
crx linear 0.10 - -
diabet linear 1.00 - -
germa linear 1.00 - -
glass RBF - - 0.0012
heart linear 5.00 - -
hepati linear 0.10 - -
horse linear 1.00 - -
hypo linear 3.00 - -
iono linear 0.50 - -
iris polynomial | - 4 -
labor linear 0.50 - -
led7 RBF - - 0.0012
lymph | polynomial | - 5 -
pima linear 0.10 - -
sick linear 5.00 - -
sonar linear 5.00 - -
tic-tac linear 0.50 - -
vehicle | polynomial | - 6 -
wave polynomial | - 5 -
wine polynomial | - 5 -
zoo RBF - - 0.0012

Table 6: SVM parameters for each UCI dataset.

dataset. As can be seem, the accuracy associated with al-
most 40% of the instances falls below 58%, which are the
scenarios with less than 5 competent metrics. Also, we be-
lieve that, for such datasets, the meta-classifier was ret ab
to correctly distinguish the domains of competence. Simila
trend also happens for datasets hepati, tic-tac, and wave.
Figure 7 shows the relationship between the diversity
and the accuracy (i.e., the lower bound) of the base classifie

. DiversityxLower Boun .
(i.e., 2 x Diversity+Lower Boun(é and the improvements
Each

provided by C and IC' over the lower bound.
point is associated with an UCI dataset. In general, the
improvements increase with the harmonic mean between
the diversity and the accuracy of the base classifiers. This
suggests the importance of the diversity and the accuracy of
the base classifiers, in order to produce effective ensenble

We finish our evaluation with simple linear models that
are used to assess the improvements provided'an@ IC!,
relative to the base classifiers. Again, we are interested in
modeling the accuracy of competence-conscious assagiativ
classifiers using the best results obtained by the basa-class
fiers.

The associated regression lines were built using the 26
UCI datasets (i.e., each point corresponds to one of the 26
datasets). Regression lines fof @nd IC' are shown in
Figure 8, and both have very high correlation coefficients.
Further, their regression gradients are higher than one (no
that this makes the estimated accuracy higher than one when
£=1.00), possibly indicating that, in the limit, competence

than the performance d,,,, C,,,, Cmn; andC,,,. Similar conscious associative classifiers are indeed more accurate
trends also happens in datasets austra, breast, cleveamgerthan the best base associative classifier.

heart, hypo, iono, iris, sick and wine. In the auto dataset We also employed SVMs as meta-classifiers, that is,
IC* showed poor performance, being worse than base clags- used SVMs to select competent metrics for each test
fiersCp,, Ciny s Cmy @ndCo,,. Figure 6(right) shows the fre-instance, and compare the classification performance with
quency/accuracy distribution of competent metrics fos ththe performance obtained by 1Gnd C. The results we
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| [ Coi [ Cos | Cos 1 Cos | Covs | Cog | Cow | Cove [ DV. [ LB [ SDC| © [ 1C" [ UB | ER [ SUM |
anneal | 0.761] 0.694] 0.864] 0.115] 0.229] 0.926] 0.763| 0.616] 0.374| 0.623| 0.926| 0.935| 0.958| 0.993| 0.921| 0.946
austra | 0.861| 0.855| 0.852| 0.861| 0.849| 0.856| 0.833| 0.864| 0.084| 0.859| 0.869 | 0.868| 0.880| 0.921| 0.848 | 0.855
auto | 0.715| 0.752| 0.759| 0.043| 0.105| 0.782| 0.404| 0.513| 0.280| 0.534| 0.684 | 0.705| 0.698| 0.895| 0.674 | 0.725
breast | 0.940| 0.971| 0.969| 0.967| 0.972| 0.971| 0.934| 0.972| 0.017| 0.950| 0.955| 0.961 | 0.970| 0.989| 0.973| 0.973
cleve | 0.843| 0.832| 0.826| 0.839| 0.832| 0.816| 0.835| 0.824| 0.069 | 0.839| 0.842 | 0.836| 0.853| 0.900| 0.839 | 0.836
crx 0.835| 0.850| 0.853| 0.849| 0.841| 0.860| 0.843| 0.864| 0.091| 0.847| 0.855| 0.865| 0.873| 0.926| 0.862 0.855
diabet | 0.783| 0.745| 0.739| 0.749| 0.752| 0.779| 0.698| 0.738| 0.188| 0.741| 0.750 | 0.783| 0.782| 0.937| 0.776 | 0.766
germa | 0.702| 0.694| 0.693| 0.692| 0.693| 0.748| 0.698| 0.723| 0.226| 0.717| 0.727| 0.734| 0.748| 0.953| 0.738| 0.712
glass | 0.713| 0.657| 0.672| 0.640| 0.648| 0.709| 0.565| 0.646| 0.286 | 0.633| 0.657 | 0.701| 0.682| 0.865| 0.672| 0.705
heart | 0.814| 0.840| 0.835| 0.822| 0.830| 0.829| 0.827| 0.830| 0.121| 0.828| 0.832| 0.840| 0.861| 0.901| 0.848 | 0.838
hepati | 0.798| 0.778| 0.781| 0.841| 0.829 | 0.848| 0.797| 0.850| 0.161| 0.797 | 0.805| 0.837 | 0.835| 0.989| 0.818 | 0.810
horse | 0.710| 0.731| 0.732| 0.702| 0.685| 0.747| 0.773| 0.720| 0.192| 0.743| 0.756| 0.771| 0.813| 0.890| 0.777 | 0.822
hypo | 0.951| 0.879| 0.881| 0.126| 0.129| 0.971| 0.957| 0.932| 0.084| 0.730| 0.883| 0.937 | 0.992| 1.000| 0.953 | 0.988
iono | 0.901| 0.896| 0.888| 0.875| 0.870| 0.929| 0.688| 0.840| 0.145| 0.858| 0.898| 0.910| 0.942| 0.980| 0.918 | 0.917
iris 0.940| 0.950| 0.948| 0.946| 0.951| 0.936| 0.944| 0.942| 0.021| 0.937| 0.948| 0.947| 0.949| 0.956 | 0.947 | 0.959
labor | 1.000| 0.948| 0.930| 0.758| 0.890| 0.951| 0.627 | 0.924| 0.095| 0.965| 0.969 | 1.000| 0.997 | 1.000| 0.973| 0.782
led7 | 0.740| 0.741| 0.739| 0.737| 0.743| 0.711| 0.743| 0.741]| 0.222| 0.733| 0.746| 0.774| 0.758| 0.806 | 0.745 | 0.748
lymph | 0.862| 0.758| 0.812| 0.064| 0.143| 0.780| 0.747| 0.781| 0.299| 0.579| 0.798| 0.844 | 0.846| 0.948| 0.849  0.802
pima | 0.733| 0.746 | 0.748| 0.749| 0.749| 0.777| 0.692| 0.745| 0.212| 0.740| 0.750| 0.770| 0.798| 0.936| 0.771| 0.768
sick | 0.936| 0.640| 0.648| 0.128| 0.139| 0.967| 0.934| 0.677| 0.315| 0.623| 0.928 | 0.946| 0.983| 0.997| 0.969 | 0.965
sonar | 0.813| 0.866| 0.862| 0.854| 0.865| 0.834| 0.770| 0.864| 0.072| 0.821| 0.855 | 0.867| 0.868| 0.952| 0.865 | 0.841
tic-tac | 0.649| 0.918| 0.814| 0.928| 0.927| 0.816| 0.410| 0.530| 0.105| 0.766 | 0.836| 0.880| 0.926| 1.000| 0.876 | 0.830
vehicle | 0.658| 0.670| 0.664 | 0.668| 0.648| 0.701| 0.534| 0.623| 0.134| 0.655| 0.665 | 0.728| 0.734| 0.765| 0.700| 0.722
wave | 0.809| 0.808| 0.807| 0.814| 0.813| 0.813| 0.787| 0.788| 0.097 | 0.802 | 0.814| 0.814 | 0.834| 0.836| 0.821| 0.871
wine | 0.913| 0.934| 0.932| 0.818| 0.826| 1.000| 0.687 | 0.745| 0.068 | 0.831| 0.885| 1.000| 0.990 | 1.000| 0.941 | 0.975
z00 | 0.845| 0.849| 0.876| 0.856| 0.781| 0.912| 0.708| 0.698| 0.133| 0.826| 0.894 | 0.942| 0.952| 0.973| 0.956 | 0.928
Avg. | 0.816] 0.808] 0.812] 0.671| 0.682] 0.845] 0.738] 0.769| 0.157| 0.768] 0.828| 0.854| 0.866] 0.935] 0.847 | 0.844
Wins 0 0 0 0 0 1 0 1 - - 0 0 4 - 0 1

Ties 6 4 3 3 4 7 1 4 - - 3 14 | 19 - 8 6

Table 7: Classification performance of classifiers in the d&hsets.

obtained indicate that, again, the SVM-based meta-legrnaounterparts.
strategies (i.e., instance-centric and class-centriajl [
classification performances that are (statistically) kimio
the classification performances obtained by lend C
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delegation approach (SDC), an existing ensemble method
(ER), and SVMs. As future work, we intend to move for-
ward by investigating other application scenarios and-eval
uating other association metrics. We are currently stuglyin
the correlation between metrics and the effectivenesseof th
corresponding associative classifiers.
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Figure 8: Accuracy model for competence-conscious asso-
ciative classifiers using the UCI datasets.

6 Conclusions 1]

This paper focused on an important problem in associative
classification, thenetric dilemma We have shown that the
performance of associative classifiers are strongly degr@nd [2
on the metric that is used to quantify the strenght of the
association between features and classes. There is nmperf[%]
metric, and no metric is consistently superior than all the

in the sense that it can be safely used in isolation. In fact,
each metric has a particular domain of competence, or areg
of expertise, for which it is able to produce the most acaurat
classifier. We investigate meta-learning methods, whicfb]
use the training data to learn the domain of competence
of each metric. Finally, the competence of metrics ar¢fl
exploited to decide which is the best metric to be applied
in each scenario, resulting in a combination or ensemble &fl
classifiers produced by different metrics, which maximizes
the performance of the final classifier, that we denoted 38
competence-conscioassociative classifiers.

For effective metric combination, the corresponding
classifiers must cover different portions of the trainingeda [gj
(i.e., the metrics must show some diversity), and the tngini
data must have features that are able to distinguish those
portions of the training data. If these favorable condiiare [10]
met, our method reaches full potential of the base classifier
(i.e., the performance is close to the upper bound). On the
other hand, a performance penalty may result.

We proposed competence-conscious classifiers, wherd
the difference between them resides in how they perform the

analysis of the domains of competence. The coarse—graiflfﬁl C. Ferri

analysis, performed by the class-centric approach (o-
vides lower gains when compared to the fine-grained anglys)
sis, performed by the instance-centric approach)|@hich
outperforms all the evaluated classifiers, including a ##mg14]

] M. Antonie, O. Zaiane, and R. Holte.
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