
Automated Software Engineering (2020) 27:369–392

https://doi.org/10.1007/s10515-020-00277-4

Understandingmachine learning software defect
predictions

Geanderson Esteves1 · Eduardo Figueiredo2 · Adriano Veloso2 ·

Markos Viggiato3 · Nivio Ziviani1

Received: 4 August 2019 / Accepted: 14 September 2020 / Published online: 12 October 2020

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract

Software defects are well-known in software development and might cause several

problems for users and developers aside. As a result, researches employed distinct

techniques to mitigate the impacts of these defects in the source code. One of the most

notable techniques focuses on defect prediction using machine learning methods,

which could support developers in handling these defects before they are introduced

in the production environment. These studies provide alternative approaches to pre-

dict the likelihood of defects. However, most of these works concentrate on predicting

defects from a vast set of software features. Another key issue with the current liter-

ature is the lack of a satisfactory explanation of the reasons that drive the software

to a defective state. Specifically, we use a tree boosting algorithm (XGBoost) that

receives as input a training set comprising records of easy-to-compute characteris-

tics of each module and outputs whether the corresponding module is defect-prone.

To exploit the link between predictive power and model explainability, we propose a

simple model sampling approach that finds accurate models with the minimum set of

features. Our principal idea is that features not contributing to increasing the predictive

power should not be included in the model. Interestingly, the reduced set of features

helps to increase model explainability, which is important to provide information to

developers on features related to each module of the code which is more defect-prone.

We evaluate our models on diverse projects within Jureczko datasets, and we show that

(i) features that contribute most for finding best models may vary depending on the

project and (ii) it is possible to find effective models that use few features leading to

better understandability. We believe our results are useful to developers as we provide

the specific software features that influence the defectiveness of selected projects.

Keywords Software defects · Explainable models · Jureczko datasets · SHAP values

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10515-020-00277-4&domain=pdf
http://orcid.org/0000-0002-7571-6578
http://orcid.org/0000-0002-6004-2718
http://orcid.org/0000-0002-9177-4954
http://orcid.org/0000-0002-8500-3723
http://orcid.org/0000-0002-7079-2010

370 Automated Software Engineering (2020) 27:369–392

1 Introduction

Software defect prediction is a field of interest in both academic literature and the soft-

ware industry (Nagappan and Ball 2005; Jiang et al. 2013; Agrawal and Menzies 2018).

Defect prediction models are based on learned features from either (i) source code and

metadata information (Menzies et al. 2007; Turhan et al. 2009; Jiang et al. 2013; Jing

et al. 2014; Fukushima et al. 2014; Tantithamthavorn et al. 2015; Tantithamthavorn

and Hassan 2018) or (ii) metrics used to specify software design complexity (Wang

et al. 2016; Xu et al. 2018). Studies on features learned from software source code and

metadata information usually use approaches based on deep neural networks (Wang

et al. 2016; Xu et al. 2018). Studies that rely on software metrics use either code

inspections and unit testing (Fukushima et al. 2014) or machine learning approaches,

such as support vector machines (Elish and Elish 2008; Gray et al. 2009), decision

trees (Knab et al. 2006; Jiang et al. 2013; Jing et al. 2014), naïve bayes (Turhan and

Bener 2009; Wang and Li 2010), neural networks (Thwin and Quah 2005; Jing et al.

2014; Yang et al. 2016), or dictionary learning-based prediction (Jing et al. 2014).

Despite the considerable accuracy usually achieved by machine learning models

(Menzies et al. 2010; Wang and Li 2010; Jiang et al. 2013; Fukushima et al. 2014;

Wang et al. 2016), they are often overly complex and hinder the understandability of

the model. In most cases, we usually cannot explain the prediction, and we still need

investigation regarding the explanation of model decisions that could help developers

to better understand the rationale behind the defect model (Jiang et al. 2013; Lewis

et al. 2013; Jing et al. 2014). Further, explaining model decisions is also beneficial,

as it enables the proper understanding of the effects in software development costs

and efforts during development. Furthermore, understanding these machine learning

models is especially important for software development, as assuring software system

quality is expensive, and defect-fixing processes require a laborious effort from a

company (Zhang et al. 2017). Therefore, predicting defects while understanding the

predictors help organizations to reduce development and maintenance costs and to

concentrate efforts on the most defect-prone parts of the system (Nagappan et al.

2006; Agrawal and Menzies 2018).

Motivated by the benefits of predicting software defects for developers and com-

panies apart, the goal of this study is to explore software features that can help

practitioners to understand software defects affecting code quality. Further, we also

want to investigate the power of these features to predict software defects. Guided by

this goal, our study investigates the following research questions.

RQ1: Do optimized XGBoost using random search outperforms the state-of-the-art

machine learning classifiers for defect prediction?

RQ2: How does the number of features impact the performance of defect models?

RQ3: How comparable is the predictive accuracy and variability of features in defect

prediction models?

Differently from previous studies that tune a single defect prediction model (Elish

and Elish 2008; Wang and Li 2010; Fukushima et al. 2014), we perform an extensive

exploration of the model space, which results in hundreds of thousands of candidate

models. Specifically, we learned models considering distinct combinations of Object-

123

Automated Software Engineering (2020) 27:369–392 371

Table 1 Baseline methods used in previous works about the defect prediction task

ML methods Literature source

Logistic Regression Nagappan et al. (2006), Jiang et al. (2013),

Tantithamthavorn and Hassan (2018)

Naive Bayes Jiang et al. (2013), Jing et al. (2014), Xuan et al. (2015),

Sun et al. (2018)

K-Nearest Neighbor Turhan et al. (2009), Jing et al. (2014), Xuan et al. (2015)

Neural Network Stites et al. (1991), Jing et al. (2014), Yang et al. (2016)

Support Vector Machine Elish and Elish (2008), Shuai et al. (2013), Jing et al. (2014)

Decision Trees Knab et al. (2006), Jiang et al. (2013), Jing et al. (2014),

Ferenc et al. (2018)

Random Forest Fukushima et al. (2014), Tantithamthavorn et al. (2015),

Tantithamthavorn and Hassan (2018)

Oriented features (Chidamber and Kemerer 1994; Gyimothy et al. 2005; D’Ambros

et al. 2010; Couto et al. 2012; Jiang et al. 2013; Herbold and Crosspare 2015) applied

to eight Java projects. The data used in this research is publicly available under the

PROMISE Software Engineering Repository (Sayyad Shirabad and Menzies 2005).

Hence, we compose each sampled model of a specific set of features. As a result,

the learned models correspond to a myriad of explanations for the software defect

phenomenon.

To evaluate our modeling approach, we compared the effectiveness of our models

with other machine learning methods typically employed in software defect prediction

(Table 1). For seven out of the eight projects, we could learn models that achieved

similar or superior effectiveness when compared with baseline models. Our accuracy

numbers range from nearly 67 to 86%. Besides the seven machine learning methods,

we also added XGBoost as a baseline method (Lundberg and Lee 2017a). Differently

from our approach, all baseline algorithms employ the full set of features while learning

their models (Nagappan et al. 2006; Jiang et al. 2013; Jing et al. 2014; Fukushima

et al. 2014; Tantithamthavorn and Hassan 2018; Tantithamthavorn et al. 2015). We

found hyper-parameters using an automated parameter optimization technique (Kuhn

2015). The baseline served as a metric for comparing the target dataset.

Our findings also show that random exploration of the model space results in effec-

tive models. In the Jureczko dataset, on average, 3.5% of the randomly generated

models (in a space of 1,997,287 models) are superior when compared to baseline

methods. Additionally, we showed that some features are more important for defect

prediction, but the importance of these features varies within distinct projects. For

instance, for the JEDIT project, our model explained the prediction using only the

MAX CC (Maximum McCabe’s Complexity) feature (McCabe 1976; McCabe and

Butler 1989). This means that for the JEDIT project, classes with high McCabe’s

complexity have more chance of being defective than classes with low complexity.

Finally, we compare the predictive accuracy and variability of the software features.

We organize the rest of this paper as follows. Section 2 presents related works

regarding the task of learning from source code and metadata information and learning

123

372 Automated Software Engineering (2020) 27:369–392

from software metrics using machine learning. In Sect. 3, we model the problem to

predict software defects based on the Jureczko datasets. We then present and discuss

our results and their implications in Sect. 4. In Sect. 5, we present the threats to validity

in detail. Finally, in Sect. 6, we conclude our paper and present directions for future

work.

2 Related work

Two main approaches tackle the defect prediction task (Nagappan and Ball 2005;

Nagappan et al. 2006; Wang et al. 2016; Xu et al. 2018). The first approach aims at

the use of source code metrics as the input of a model that learns the behavior of

the software system (Nagappan and Ball 2005; Nagappan et al. 2006; Menzies et al.

2007; Jiang et al. 2013; Tantithamthavorn and Hassan 2018). The current literature

applied this approach for several decades in different contexts of defective prediction.

The second type comprises efforts to develop models that learn from the source code

and metadata information (D’Ambros et al. 2010; Wang et al. 2016; Xu et al. 2018).

In this effort, the number of possibilities is massive, and so the effort and difficulty

of designing models from these metrics. This section discusses significant studies

into both approaches. Furthermore, we also analyzed the distinct types of datasets we

can use for the defect prediction task. Then, we discuss different algorithms used to

predict defects. Finally, we present a discussion over the understandability of a defect

prediction model as a recent trend into this task.

2.1 Learning from source codemetrics

Machine Learning (ML) approaches have received extensive attention in the software

engineering (SE) community for a considerable period. One of the efforts to create

effective ML models valuable for the SE community is the classification/regression

using source code metrics. Even though these efforts share the fundamentals of ana-

lyzing code metrics, they also vary in terms of accuracy, complexity, and the input data

they require to predict a defect. As an example, Nagappan and Ball (2005) present a

technique for the prediction of software defect density managing a collection of appli-

cable code churn patterns. Using regression models, the authors show that absolute

software measures of code churn are poor predictors of defect density. At that moment,

the authors proposed a recent set of relative measures capable of predicting defect den-

sity. In a similar approach, Nagappan et al. (2006) also conducted an empirical study

of the post-release defect history of five Microsoft systems. They found failure-prone

software entities are statistically correlated with code complexity measures. Using

Principal Component Analysis (PCA), they built regression models that accurately

predict the likelihood of post-release defects for current entities.

In another direction, Jiang et al. (2013) proposed a personalized defect prediction

approach, in which prediction models were built for each developer to predict soft-

ware defects at the file level. They compose the features of attributes extracted from

a commit describing characteristics of the source code, such as Lines of Code (LOC).

123

Automated Software Engineering (2020) 27:369–392 373

The work used three categories of software features, namely characteristic vectors,

bag-of-words, and metadata. In a broader discussion, Tantithamthavorn and Hassan

(2018) documented pitfalls and challenges in applying the defect modeling for ML

models aiming to accurately predict defects. This model is divided into seven different

steps: hypothesis formulation, designing metrics, data preparation, model specifica-

tion, model construction, model validation, and model interpretation. The authors

discussed pitfalls for each step of the defect modeling.

In another study in this direction, Jing et al. (2014) used the dictionary learning

technique to predict software defects by using characteristics of software metrics mined

from open-source software. They used datasets from NASA projects as test data to

evaluate the proposed method, which achieved a recall value of 0.79, improving the

baseline literature recall by 0.15. Similarly, Turhan et al. (2009) used cross-company

data for building localized defect predictors. They used principles of analogy-based

learning to cross-company data to fine-tune these models for localization. The authors

used static code features extracted from code, such as complexity features and Halstead

metrics. The paper concludes that cross-company data are useful in extreme cases and

should be used only when within-company data are not available.

As we can notice, the above-mentioned works applied machine learning to predict

software defects in unique circumstances. Moreover, they use ML algorithms to pre-

dict defects using various techniques and metrics. The main difference in our work

compared to these previous studies is that we are interested in the understandability

of ML models. Aiming that goal, we employed an innovative technique identified as

SHapley Addictive exPlanation (SHAP) values that allowed the explanation of the

features that may affect the defect prediction of selected projects. Further, we also

discuss the power of these features based on their accuracy and variability for the

defect prediction task.

2.2 Learning from source code andmetadata information

The prediction of software defects prevails a complex task by definition. In some

cases, the source code metrics, as the ones mentioned in the previous section, are not

sufficient and efficient for the defect prediction task. For these reasons, many papers

adopted models employing the code metadata information. As an example, Wang et al.

(2016) examined the impact of using a system’s semantic as the prediction model’s

features. The authors used deep belief networks to automatically learn these features

from token vectors collected from abstract syntax trees. Then, they evaluated the

model on ten open-source projects and improved the F1 score for both within-project

defect prediction by 14.2% and cross-project defect prediction by 8.9%. Similarly,

the works of Xu et al. (2018) employed a non-linear mapping method to extract

representative features by embedding the initial data into a high-dimension space.

Their results achieved average F-measure, g-mean, and balance of 0.480, 0.592, and

0.580, respectively, and outperformed nearly all baseline methods.

Our study, on the other hand, takes into consideration metadata information along-

side source code metrics. The Jureczko datasets (Jureczko and Spinellis 2010; Jureczko

and Madeyski 2010) employed in this research are well-known in the defect prediction

123

374 Automated Software Engineering (2020) 27:369–392

literature (Sun et al. 2018; Ferenc et al. 2018). For instance, Sun et al. (2018) compared

the effectiveness of predicting software defects from the Jureczko datasets. They con-

clude that the results are more dependable on the machine learning process, as in the

case of adequate data cleaning. Similarly, Ferenc et al. (2018) gathered a wide variety

of defect prediction datasets, including Jurescko, and studied the accuracy of decision

trees. However, to the best of our knowledge, none of the studies using this dataset

has applied explainability concepts aiming to understand the source code metrics and

code metadata information guiding these projects to a defective state.

2.3 Datasets for defect prediction

In the current literature, at least two data sources are used to predict software defects.

First, a set of defective modules described in the NASA data program (Menzies

et al. 2007, 2010) relies on metrics from Halstead‘s operator-operand counts (Hal-

stead 1977) and McCabe‘s dependencies and complexity (McCabe and Butler 1989;

McCabe 1976). Even though research studies consider these data noisy and problem-

atic (Gray et al. 2011; Ghotra et al. 2015; Petrić et al. 2016), many studies in the

software defect prediction literature applied these data sources. The second widely

used dataset relates to the CK metrics. These metrics demonstrated their effectiveness

for defect prediction (Jureczko and Spinellis 2010; Jureczko and Madeyski 2010).

As a result, the current literature gathers an impressive collection about the CK met-

rics under the Jureczko dataset publicly available under the PROMISE repositories1

(Jureczko and Madeyski 2010; Jureczko and Spinellis 2010).

NASA datasets have been an object of study for a considerable period of time in the

software engineering community. One of the first studies into these data, Menzies et al.

(2007) presented defect predictors using static code attributes defined by McCabe and

Halstead features. According to the authors, these metrics are “useful, easy to use, and

widely used”. They concluded that the choice of the learning method is more important

than which subset of the available data is used for learning (Menzies et al. 2007).

Despite the use of the NASA datasets in the current literature, many studies consider

these data as being noisy and problematic to predict defects (Gray et al. 2011; Ghotra

et al. 2015; Petrić et al. 2016). One of the first criticism about the NASA datasets

come from Gray et al. (2011). The authors argue that the data presented in the NASA

datasets are problematic. They derive this conclusion from the fact that many data

points are duplicated in the public dataset (Gray et al. 2011). Likewise, Ghotra et al.

(2015) discuss other problems with the NASA datasets. They conclude that the data is

not only erroneous as previously detected by the literature but also biased. For the first

conclusion (erroneous data), they show that many entries in the dataset are not correct

about the software modules. Then, they also discuss the bias nature in the dataset, as

they show it collects the data from only one software setting. Therefore, the authors

show that distinct cleaning steps could transform the result achieved by the classifiers

(Ghotra et al. 2015). Conclusively, Petrić et al. (2016) discuss how problematic the

NASA dataset is for executing any software task. The authors applied an extensive

data cleaning process that did not significantly improve the noise included in the data.

1 http://promise.site.uottawa.ca/SERepository/.

123

http://promise.site.uottawa.ca/SERepository/

Automated Software Engineering (2020) 27:369–392 375

The authors conclude that erroneous data points are unavoidable for the dataset. As a

result, they do not suggest using the NASA dataset for defect prediction.

The arguments against NASA datasets are enough to not use the data in our study

(Gray et al. 2011; Ghotra et al. 2015; Petrić et al. 2016). Considerably, the static nature

of the dataset does not allow the feature engineering process, which could be used to

compose other features from the existing ones. Opportunely, the literature shows other

alternatives for exploring software defect prediction.

Besides the use of NASA datasets to predict defects, one notable solution is the CK

metrics related to Object-Oriented Programming (OOP). The works of Jureczko and

Madeyski (2010) described an analysis of several open-source projects. The authors

used software metrics to generate clusters that could join projects that have similar

defect causes. They found at least six clusters in the dataset, but statistically, only two

of them demonstrated to be true. Then, the authors analyzed the clusters with the state-

of-art about defect prediction. Along those lines, Jureczko and Spinellis (2010) also

proposed a new tool to collect software metrics from Object-Oriented Programming

systems. They discuss the inefficiency of current methods of extracting these metrics

from existing software projects. Then, the authors developed a model able to find 80%

of defective classes within the investigated software projects. They report that two of

the CK metrics are class size factors: Weighted Methods per Class (WMC) and Lines

of Code (LOC). Despite the high effectiveness to predict defective classes presented

in these papers (Jureczko and Madeyski 2010; Jureczko and Spinellis 2010), none of

these papers applied explainability techniques aiming at identifying which CK metrics

are important for the prediction. We know, for instance, that LOC and WMC are class

size factors. However, we could not draw any conclusion about the real impact of each

CK metric. In this work, we take into consideration this subject about the CK metrics

for defect prediction.

Table 1 presents relevant studies that applied classic machine learning methods for

defect prediction in distinct datasets. As we can notice, at least seven algorithms are

employed to predict the likelihood of software defects.

2.4 Explaining software defects

The explainability of software defects is a relatively recent topic (Mori and Uchi-

hira 2018; Jiarpakdee et al. 2020). Mori and Uchihira (2018) analyzed the trade-off

between accuracy and interpretability of different classifiers. The experimentation

displays a comparison between the balanced output that satisfies both accuracy and

interpretability criteria. Jiarpakdee et al. (2020) empirically evaluated three model-

agnostic procedures: Local Interpretability Model-agnostic Explanations (LIME), and

BreakDown techniques. They improve the results found with LIME using hyperpa-

rameter optimization, which they called LIME-HPO. This work concludes that (i)

model-agnostic techniques are necessary to explain individual predictions of defect

models; (ii) instance explanations generated by model-agnostic techniques are mostly

overlapping with the global explanation; (iii) model-agnostic techniques take less than

a minute to generate instance explanations, and (iv) more than half of the practitioners

achieved a contractive explanation for the defect models.

123

376 Automated Software Engineering (2020) 27:369–392

Unlike these papers, we apply another state-of-the-art technique for interpretability

and prediction explanation (Wang et al. 2019) known as SHAP values. This technique

allows us to understand the predictions made by our models. Furthermore, the current

literature employed solely parameter optimization to support the interpretability of

these models (Mori and Uchihira 2018; Jiarpakdee et al. 2020). In this work, we apply

a novel algorithm to select the most performant features from the power-set of software

features, i.e., software metrics.

3 Learning to predict software defects

The task of learning to predict software defects is defined as follows. We have as

input the training set (referred to as D), which consists of a set of records in the form

< x, y >, where x is a module represented as a vector of features x = {x1, x2, . . . , xn},

in which each xi encodes a particular characteristic of the module, and y is the cor-

responding outcome, i.e., whether the corresponding module is defective or not. The

training set is used to construct a model that relates features of the modules to the cor-

responding outcome. The test set (referred to as T) consists of records < x, ? > for

which only the module x is available, while the corresponding outcome y is unknown.

The model learned from D is used to predict the outcomes for modules in T .

3.1 Sampling themodel space

Finding the optimal machine learning model, i.e., the subset of features for which we

achieve the best prediction accuracy, would require the exhaustive enumeration of all

combinations of features. Alternatively, we sampled the model space to obtain a model

for each combination of features. Specifically, we sample the model space by randomly

selecting a set of features to compose the model. We enumerate models composed of

a single feature and generate models of increasing size until we achieve a significant

sample size. We chose evenly at random features that compose each module. Thus,

our approach differs from the classic implementation of the XGBoost algorithm. We

describe the main steps of our sampling approach in Algorithm 1.

To better understand our algorithm approach, Algorithm 1 shows the basic structure

of our strategy to model selection. Lines 2 to 7 perform the main loop responsible for

going through each set of features from the dataset. As Algorithm 1 displays in the

main loop, we search the entire feature space combining all possible sequences of

features. Here, we guarantee that the entire set of features is tested with all others.

After this process, in Line 8, we stored the highest predictive accurate model for each

project.

The features we consider may have a variety of complex nonlinear interactions.

Capturing these interactions requires a classification algorithm with significant flexi-

bility, and thus we chose the gradient boosting machines algorithm (Chen et al. 2016).

XGBoost belongs to a family of machine learning boosting algorithms. This model

uses the gradient boosting (GBM) framework at its core. The boosting technique is a

sequential technique that works on the principle of an ensemble. Then, it combines

123

Automated Software Engineering (2020) 27:369–392 377

Algorithm 1 Sampling the Model Space

Require: training set D

Require: pool of features F

Require: number of candidate models n

Ensure: the most performant model m(f ∗)

1: i ← 0

2: while i < n do

3: i ← i + 1

4: k ← random integer between 1 and |F |

5: f ← k distinct features randomly selected from F

6: compute the predictive performance of m(f) in D

7: end while

8: m(f ∗) ← model with the highest predictive performance

a set of weak learners and delivers improved prediction accuracy. More specifically,

models are iteratively trained so that each model is trained on errors of previous mod-

els, thus giving more importance to the difficult cases. At each iteration, errors are

computed and a model is fitted to these errors. Finally, the contribution of each base

model to the final one is found by minimizing the overall error of the final model.

Fitting the base models is computationally challenging and, so, we use XGBoost, a

recent fast implementation of gradient boosting machines (Lundberg and Lee 2017a).

3.2 Features

Estimating software defects is a task related to learning from either source code metrics

or code metadata. In this section, we present an overview of the features used to predict

the defects in the source code. All features contained in the Jureczko datasets relate to

class-level metrics (D’Ambros et al. 2010; Couto et al. 2012; Herbold and Crosspare

2015). We then introduce these metrics before presenting a complete description of

the features.

Several relevant features are present for each project class included in the Jureczko

dataset (Jureczko and Spinellis 2010). These features comprise two distinct groups,

CK and Object-Oriented metrics (D’Ambros et al. 2010; Couto et al. 2012; Herbold

and Crosspare 2015). Notably, the current literature considers Lines of Code (LOC)

as one of the most important features for the defect prediction in distinct datasets

(Gyimothy et al. 2005).

Jureczko datasets are CK metrics extracted from software projects (Jureczko and

Spinellis 2010; Jureczko and Madeyski 2010). These metrics are related to Object-

Oriented Programming (OOP) and are ultimately based on several features that may

impact on the defectiveness of target source code. The datasets used in this research

for CK metrics are all obtained from Java code. Next, we explain each feature used in

this study about the CK metrics.

1. Weighted methods per class (WMC): complexity of methods in the class.

2. Depth of Inheritance Tree (DIT): each class has a measure of the inheritance levels

from the object hierarchy top.

3. Number of Children (NOC): the number of immediate descendants of the class.

123

378 Automated Software Engineering (2020) 27:369–392

4. Coupling between object classes (CBO): the number of classes coupled to a

given class (efferent couplings and afferent couplings). These couplings can occur

through method calls or field accesses.

5. Response for a Class (RFC): number of different methods that can be executed

when an object of that class receives a message.

6. Lack of cohesion in methods (LCOM): counts the sets of methods from a class

that are not related across the sharing of some of the class fields.

7. Lack of cohesion in methods (LCOM3): divided into three aspects.

(a) m: number of methods in a class.

(b) a: number of attributes in a class.

(c) µ(A): number of methods that access the attribute A.

8. Number of Public Methods (NPM): counts all the methods in a class that are

declared as public.

9. Data Access Metric (DAM): the ratio of the number of private (or protected)

attributes to the total number of attributes declared in target class.

10. Measure of Aggregation (MOA): count of the number of class fields whose types

are user defined classes.

11. Measure of Functional Abstraction (MFA): the ratio of the number of methods

inherited by a class to the total number of methods accessible by the member

methods of the class.

12. Cohesion Among Methods of Class (CAM): computes the relatedness among

methods of a class based on the parameter list of the methods. The metric is

computed using the summation of the number of different types of method param-

eters in every method divided by multiplication of the number of different method

parameter types in the whole class and number of methods.

13. Inheritance Coupling (IC): the number of parent classes in which a given class is

coupled. A class considered coupled if one of the following conditions is satisfied:

(a) One of its inherited methods uses an attribute that is defined in a new/redefined

method.

(b) One of its inherited methods calls a redefined method.

(c) One of its inherited methods is called by a redefined method and uses a param-

eter that is defined in the redefined method.

14. Coupling Between Methods (CBM): total number of new/redefined methods to

which all the inherited methods are coupled.

15. Average Method Complexity (AMC): measures the average method size for each

class. The size is measured as the number of lines of code in the method.

16. Afferent couplings (Ca): the number of classes that depend upon the measured

class.

17. Efferent couplings (Ce): the number of classes that the measured class is dependent

upon.

18. McCabe’s cyclomatic complexity (CC): the greatest value of CC among methods

of the investigated class.

19. McCabe’s cyclomatic complexity (CC): the arithmetic mean of the CC value in

the investigated class.

123

Automated Software Engineering (2020) 27:369–392 379

20. Lines of Code (LOC): total number of lines of code in the target class.

3.3 Data and setup

Table 2 shows the data for eight projects and the 20 features described in Sect. 3.2.

For each Java module, there is a value attached to each feature and the average value

is the sum of values referred to each module divided by the number of Java modules

in the project. These average values differ between projects, e.g., the feature lcom

(lack of cohesion of methods) for project jedit is 233.00 and for project log4j is

only 37.17. Table 2 also reveals the percent of defective modules in each project and

the imbalanced nature of the data. It is also important to note that the proportion of

defective modules varies in the dataset. The lowest number of defects is only 8.87%

from the tomcat project, while we find the highest number of defects in the log4j

project, where 57.90% of the modules had defects.

We tested the effectiveness of the considered models applying the standard Area

Under the Curve (AUC) and the F1 score, as adopted by Caret: Classification and

Regression Training (Kuhn 2015). The AUC is an assessment of the probability that

a prediction model ranks a randomly chosen positive instance higher than a randomly

chosen negative instance. While the F1 score is the harmonic mean of precision and

recall (Sokolova et al. 2006). The AUC is important for our study as both datasets are

imbalanced. We used ten-fold cross-validation and relevant hyper-parameters were

found using a validation set during training. The results reported are the average of

the ten runs, and to ensure their relevance we assess the statistical significance of our

measurements using the Scott-Knott Effect Difference test Tantithamthavorn et al.

(2017, 2018). This test represents the mean comparison that leverages a hierarchical

clustering to partition the set of treatment means into statistically distinct groups with

a non-negligible difference.

3.4 Feature importance and shapley additive explanations

Effective models generate predictions that are often hard to explain. A key challenge

in software defect prediction is to understand the reason why a model has made a

specific prediction because it provides insight into potential solutions by focusing on

the features of the code that are more associated with the defect (Jiang et al. 2013;

Lewis et al. 2013). For instance, a developing team may be able to focus on modifying

a specific module if they know that the complexity of that module is contributing to

the likelihood that the module presents with a defect.

The typical approach to explain the predictions of a model involves calculating the

impact each feature has on the prediction. Feature importance can be defined as the

increase in the model prediction error after feature values undergo permutation. This

operation breaks the relationship between the feature and the outcome. Therefore, a

feature is important if changing its values increases the model error. The increase in

model error shows that the model relied on that feature for the prediction. On the other

hand, a feature is not important if changing its values does not result in a change in

123

3
8
0

A
u
to
m
ated

So
ftw

are
En
g
in
eerin

g
(2
0
2
0
)
2
7
:3
6
9
–
3
9
2

Table 2 Jureczko dataset

Projects TOMCAT ANT LOG4J PROP XALAN CAMEL JEDIT LUCENE

Programming Language Java Java Java Java Java Java Java Java

Number of Modules 835 745 449 69653 3320 2784 1749 782

Defective Modules 8.97% 22.28% 57.90% 12.28% 54.39% 20.18% 17.32% 56.01%

1 wmc 12.95 11.07 7.72 5.22 11.15 8.43 12.78 9.78

2 dit 1.68 2.52 1.67 3.02 2.54 1.95 2.61 1.78

3 noc 0.36 0.73 0.26 0.59 0.55 0.52 0.45 0.65

4 cbo 7.65 11.04 7.20 15.03 12.76 10.68 13.33 10.25

5 rfc 33.47 34.36 23.58 24.65 29.52 20.87 39.48 23.96

6 lcom 176.27 89.14 37.17 37.59 127.51 70.40 233.00 51.22

7 ca 3.86 5.65 3.93 2.82 6.07 5.13 8.10 5.75

8 ce 0.0 5.74 3.61 12.27 7.39 6.13 6.77 4.99

9 npm 10.77 8.36 5.22 3.46 9.08 6.84 7.75 6.69

10 lcom3 1.08 1.01 1.00 1.35 1.14 1.08 1.03 0.95

11 loc 350.43 280.07 177.45 170.23 412.72 111.76 457.30 277.52

12 dam 0.57 0.64 0.22 0.19 0.43 0.61 0.52 0.50

13 moa 0.94 0.72 0.81 0.091 0.80 0.65 1.05 1.18

14 mfa 0.29 0.50 0.29 0.61 0.54 0.39 0.49 0.33

15 cam 0.48 0.47 0.43 0.55 0.47 0.49 0.45 0.43

16 ic 0.27 0.72 0.34 1.08 0.80 0.37 0.64 0.52

17 cbm 0.59 1.31 0.66 1.71 2.87 0.71 1.53 1.14

18 amc 25.57 23.64 20.25 30.27 57.36 10.94 30.64 22.78

19 max_cc 4.27 4.66 3.43 3.30 4.35 2.17 6.72 4.68

20 avg_cc 1.25 1.36 1.34 1.28 1.32 0.94 1.83 1.28

1
23

Automated Software Engineering (2020) 27:369–392 381

the model error. The lack of a significant change in the model error confirms that the

feature was not a factor in the prediction.

Features often interact with each other in many complex ways to create models that

provide accurate predictions. Thus, the feature importance is also given as a function

of the interplay between the features. In this case, Shapley values (Shapley 1953) can

be used to find a fair division scheme that defines how the total importance should be

distributed among features. More specifically, samples are transformed into a space of

simplified binary features. Explanation models are restricted to the so-called additive

feature attributions methods, which means that values predicted by the explanation

model are linear combinations of these binary input vectors. Formally, the explanation

model g is a linear function of binary variables:

g(z) = φ0 +

m∑

i=1

φi × zi , (1)

where φi for i = 0, 1, . . . , m are parameters called Shapley values, m is the number of

simplified input features, zi = {z1, z2, . . . , zm} is a binary vector in simplified input

space where z ∈ {0, 1}m . Shapley values measure how each feature contributes to

the prediction. Shapley values are theoretically optimal and are unique consistent and

locally accurate attribution values. In this work, we use SHAP (SHapley Addictive

exPlanation) values Lundberg and Lee (2017b) as an approximation of Shapley values

to compute the importance of each feature in the prediction.

Differently from previous papers, we use SHAP values to understand the CK metrics

that influence the defectiveness of the classes. Then, we build models using the tree

boosting algorithm (Chen et al. 2016). We compare the effectiveness of XGBoost

against seven well-known machine learning models that have performed well on the

defect prediction task. Our XGBoost implementation differs from the usual use case

of the algorithm because we focus on the random search of the models. Furthermore,

this mechanism allows the development of accurate models using fewer features from

the datasets. We went beyond the aforementioned works by using SHAP (SHapley

Addictive exPlanation) values (Lundberg and Lee 2017b) to compute the importance

of each feature in the prediction.

SHAP assigns an importance value (positive or negative) to each feature in a par-

ticular prediction. The output value comprises the sum of the base value (average

prediction over the validation set) and these dominant values. Otherwise, SHAP allows

us to summarize important features, and to associate low and high feature values to an

increase/decrease in output values (i.e., prediction). As a result, SHAP applies a color-

coded violin plot built from all predictions. The color red shows significant numbers

and blue insignificant numbers.

4 Results

In the next sections, we present our results and discuss each research question presented

in Sect. 1 of this paper.

123

382 Automated Software Engineering (2020) 27:369–392

4.1 Competitiveness of randommodels

We devote the first set of experiments to answering the research question RQ1: “Do

optimize XGBoost using random search outperforms the state-of-the-art ML classifiers

for defect prediction?”. To answer this question, we applied seven baseline algorithms

described in Table 1. We find these base models in the literature in prominent works

about the defect prediction task. Note that the literature considers the Random For-

est algorithm as a relevant model for defect prediction in many datasets (Fukushima

et al. 2014; Tantithamthavorn et al. 2015; Tantithamthavorn and Hassan 2018). As we

discuss next, this algorithm was not the best performing model for the defect predic-

tion in the Jurescko datasets. Hereafter, we refer to our approach as US−XGBoost

(US−XGB), standing for Unbiased Search for XGBoost models.

Tables 3 and 4 show the results of the experiments. Our unbiased search found

efficient models for the defective prediction task. Results suggest that both AUC and

F1 numbers are higher when fewer features have been used to create the model. For both

evaluation metrics (AUC and F1 score), we did not find better results using the unbiased

search for only one project (LUCENE). In that case, the Logistic Regression was fairly

superior in both metrics. Thus, in approximately 85% of the projects, US-XGB was

the best model for the prediction. For the remaining six projects, our approach could

increase the AUC numbers by a large margin. Out of all the possibilities of features,

our model could overcome the baseline models in around 3.5% of the cases.

To statistically test the soundness of the baseline results, we applied a Scott-Knott

Effect Size Difference (ESD) test (Tantithamthavorn et al. 2017, 2018). Figure 1

shows that US-XGB has the lowest treatment means compared to the seven baseline

algorithms for both metrics (i.e., AUC and F1). Out of the eight predictors used in

this experiment, we find seven clusters for the AUC metric and five clusters with the

F1 score using the target test. The best performing model (US-XGB) was an isolated

cluster, separated from the other models in both cases.

RQ1. We conclude that our optimized version of XGBoost (US-XGB) usually

outperforms classic baseline models in the defect prediction task.

4.2 Model interpretability

This section focuses on answering RQ2: “How does the number of features impact

the performance of defect models?”. To answer this question, we use SHAP values

to explain our prediction. SHAP values are generated from global models to generate

local explanations. These explanations are used to assign importance values to each

feature. The SHAP value is relevant because we could provide satisfactory accuracy

numbers (i.e., AUC) for our algorithm as discussed in the previous sections (Sect. 4.1).

Figure 2 shows SHAP summary plots associated with the most superior models for

the selected projects (tomcat, ant, log4j, prop, xalan, camel, jedit, and lucene). A

vertical line shows that points emerging along the right are contributing to increase the

likelihood of a defect. Additionally, points appearing on the left side lead to decreasing

123

A
u
to
m
ated

So
ftw

are
En
g
in
eerin

g
(2
0
2
0
)
2
7
:3
6
9
–
3
9
2

3
8
3

Table 3 AUC numbers for different prediction models

ML methods TOMCAT ANT LOG4J PROP XALAN CAMEL JEDIT LUCENE

1 Logistic Regression 0.785 0.722 0.722 0.706 0.668 0.665 0.807 0.732

2 Naive Bayes 0.781 0.704 0.704 0.677 0.648 0.607 0.771 0.705

3 K-Nearest Neighbor 0.689 0.584 0.584 0.698 0.620 0.633 0.711 0.669

4 Neural Network 0.788 0.657 0.601 0.744 0.655 0.613 0.561 0.688

5 Support Vector Machine 0.775 0.487 0.487 0.523 0.561 0.662 0.761 0.585

6 Decision Trees 0.602 0.566 0.558 0.635 0.570 0.639 0.630 0.570

7 Random Forest 0.766 0.592 0.595 0.739 0.611 0.723 0.753 0.647

8 XGBoost 0.776 0.636 0.626 0.777 0.662 0.762 0.821 0.670

US−XGBoost 0.859 0.731 0.715 0.889 0.665 0.802 0.836 0.677

Numbers in bold indicate the best models for each Jureczko dataset

1
23

3
8
4

A
u
to
m
ated

So
ftw

are
En
g
in
eerin

g
(2
0
2
0
)
2
7
:3
6
9
–
3
9
2

Table 4 F1 numbers for different prediction models

ML methods TOMCAT ANT LOG4J PROP XALAN CAMEL JEDIT LUCENE

1 Logistic Regression 0.237 0.642 0.642 0.511 0.622 0.316 0.288 0.703

2 Naive Bayes 0.296 0.556 0.556 0.254 0.411 0.473 0.381 0.467

3 K-Nearest Neighbor 0.170 0.568 0.568 0.216 0.601 0.436 0.296 0.671

4 Neural Network 0.541 0.625 0.547 0.516 0.591 0.519 0.541 0.603

5 Support Vector Machine 0.022 0.625 0.625 0.151 0.625 0.167 0.102 0.615

6 Decision Trees 0.224 0.585 0.591 0.298 0.583 0.498 0.379 0.588

7 Random Forest 0.253 0.625 0.626 0.288 0.614 0.459 0.452 0.632

8 XGBoost 0.328 0.631 0.631 0.433 0.674 0.414 0.612 0.662

US−XGBoost 0.687 0.667 0.692 0.655 0.669 0.601 0.693 0.696

Numbers in bold indicate the best models for each Jureczko dataset

1
23

Automated Software Engineering (2020) 27:369–392 385

Groups

M
e
a
n
s

0
.5

0
.6

0
.7

0
.8

US.XGB LR XGB NB RF NN KNN SVM CARTUS.XGB LR XGB NB RF NN KNN SVM CART

Means grouped by color(s)

Groups

M
e
a
n
s

0
.1

0
.2

0
.4

0
.5

0
.7

US.XGB NN XGB LR RF CART KNN NB SVMUS.XGB NN XGB LR RF CART KNN NB SVM

Means grouped by color(s)

Fig. 1 Scott-Knott ESD test for the Jureczko dataset. AUC Numbers (On the Left) and F1 Score (On the

Right)

the probability of a defect. Hence, this reveals that for the tomcat project (Fig. 2a),

higher Lines of Code (LOC) values increase the chance of our model predicting defects

in that specific project.

Machine learning decisions for the TOMCAT, JEDIT, and PROP projects are

explained with solely one feature. Four of the selected projects used only two fea-

tures (LOG4J, XALAN, ANT, and LUCENE), and the remaining project used three

features (CAMEL). We also remark that important features may vary depending on

the project. Some of the most relevant features derived were LOC, AMC (Average

Method Complexity), Data Access Metric (DAM), Response for a Class (RFC), and

Number of Public Methods (NPM).

These results indicate that our approach (US-XGB) to search the feature space

is relevant to improve the AUC numbers as discussed in Sect. 4.1. Moreover, this

algorithm also contributed to the generation of explainable models (Fig. 2). The models

that we create are composed of up to only three features. Therefore, these models are

simpler than models generated for the exploration of the entire feature space. We argue

that models composed of fewer features are more explainable because if a developer

received the model explanation derived from Fig. 2, it would be easier for them to work

on the features that are producing more defects in the specific project. For example,

a camel developer could use our results to acknowledge that the number of public

methods (i.e., NPM feature) (Fig. 2) may contribute to defects in that project. Also,

the SHAP graph indicates that higher numbers of NPM are the main cause of defects.

With this information, the developer could use these insights to work on the reduction

of public methods for the camel project.

RQ2. We conclude that the optimal number of features to predict software

defects is never the full pool of features. The best-performing models were

composed by up to 3 features.

123

386 Automated Software Engineering (2020) 27:369–392

a TOMCAT Features. b JEDIT Features.

c PROP Features. d LOG4J Features.

e XALAN Features. f ANT Features.

g LUCENE Features. h CAMEL Features.

Fig. 2 Best overall performing models for each dataset

4.3 Accuracy and variability of software features

In this section, we explore the following RQ3: “How comparable is the predictive

accuracy and variability of features in defect prediction models?”. To determine the

predictive accuracy of software features, we quantified all models that included the

target feature. In this case, the predictive accuracy represents the average AUC number

of all models that included the target feature. Similarly, the variability accounts for the

average Mean Absolute Deviation (MAD) value of all models that incorporate the soft-

ware feature. Again, our implementation (US−XGB) generated millions of models.

Figure 3 shows the predictive accuracy and variability of the target software features.

Specifically, around 3.5% of the features are part of models in which the average AUC

numbers are higher than 82%. Our approach to feature selection associated most of

the features with significantly lower average AUC numbers (only around 77%). We

observe a similar leaning while investigating the distribution of features taking into

consideration the model variability. In this case, around 3% of the features associate

to models with low variability.

From the best-performing models in terms of accuracy (AUC numbers), 73% of

features relate to the Object-Oriented metrics, the remaining 27% relates to CK met-

rics. In terms of individual features, Measure Functional Abstraction (MFA) feature

appeared in around 14% of the best models. Completing the top-3, Lines of Code

123

Automated Software Engineering (2020) 27:369–392 387

Fig. 3 Distribution of features in the models. Left—Predictive accuracy (AUC numbers). Right—Variability

(MAD)

(LOC) feature appeared in about 12% of the models, while the Cohesion Among

Methods of a Class (CAM) feature was in nearly 11% of the models.

In terms of feature variability, we take the models with the lowest variability. We

note that around 67% of these models are composed of Object-Oriented features like

the ones described in Table 2. The remaining 33% of the software features relate to

the CK metrics (Table 2). Among those features, the most significant occurrence was

the Number of Children of a class (NOC) feature. This feature appeared in around

13% of the top 10% models. Closing the top-3 features from the generated models,

the Measure of Aggregation (MOA) feature appeared in around 12% of the models,

and the Inheritance Coupling (IC) features appeared in 10% of the models. Note that

even though the CK metrics represented only 33% of the total features in the lowest

variability models, the NOC feature, which is a CK metric, is the top feature in these

models.

The experiments with predictive accuracy and variability confirmed two important

characteristics of our approach to model selection. First, a small set of features pro-

duces accurate models based on AUC numbers. Second, the software metrics vary

greatly among the most accurate models. Features related to Object-Oriented are

prominent in the top-performing models, and they produce almost 68% of the impor-

tant models for the variability and almost 75% for the accuracy numbers.

RQ3. We conclude that the accuracy and variability of software features vary

greatly among the best-performing models.

5 Threats to validity

The study presented in this paper has some limitations that could potentially threaten

our results, as we discuss next. First, we present the external threats to validity. Then,

we review the internal threats. And finally, we examine the construct threats to validity

and the conclusion validity.

123

388 Automated Software Engineering (2020) 27:369–392

5.1 External Validity

Threats to external validity are conditions that limit our ability to generalize the results

of our paper (Wohlin et al. 2012). In our study, a threat to the external validity of our

research is related to the limited number of projects we analyzed. Furthermore, all

projects are related to the Java programming language. As a result, the results may not

generalize to other projects especially when they are developed in other programming

languages. Furthermore, our results depend on defects within the project context. Thus,

we could not draw any conclusion about cross-project defects. As a future step of this

paper, we would like to apply our approach to model selection to distinct scenarios.

Furthermore, we applied a limited number of baseline algorithms to classify a

software module as defective. Hence, we are not able to guarantee that our results

are generalized in all existing classification algorithms. For this reason, we may study

other classification algorithms in future steps of this paper.

5.2 Internal validity

Threats to internal validity are influences that can affect the independent variable to

causality (Wohlin et al. 2012). In our context, this threat refers to the chosen datasets,

we naively applied the data reported in (Jureczko and Madeyski 2010; Jureczko and

Spinellis 2010). However, we could not validate the data in terms of how it was obtained

by the authors. For example, the data may be incomplete or even wrongly collected.

We follow machine learning techniques to mitigate the effects of imbalanced data, as

in the case of cross-validation, but we cannot guarantee that the data reflects the actual

nature of the eight Java projects applied in our study.

5.3 Construct validity

Construct validity concerns inferring the result of the experiments to the concept

or theory (Wohlin et al. 2012). The current literature accepts SHAP values as an

agnostic method to explain machine learning models (Lundberg et al. 2018). However,

other methods in the literature may have different explanations based on a series of

characteristics. For instance, LIME and BreakDown have already been discussed in

the current literature about software defect prediction (Jiarpakdee et al. 2020). At this

moment, we could not guarantee that the results are replicable using these tools (i.e.,

LIME and BreakDown). Again, we may use these tools in the future works of this

paper.

5.4 Conclusion validity

Threats to the conclusion validity are concerned with issues that affect the ability to

draw the correct conclusion between the treatment and the outcome (Wohlin et al.

2012). In our study, this threat also relates to SHAP values. Our explanations provided

by SHAP depend upon the defect labels of the Jureczko datasets (Jureczko and Spinellis

123

Automated Software Engineering (2020) 27:369–392 389

2010; Jureczko and Madeyski 2010). Other studies (Yatish et al. 2019) discovered that

many datasets rely on the six months post-release window period to predict a defect

effectively when compared to the use of affected releases of issue reports, like the ones

used in Jureczko datasets.

6 Conclusions and future work

We explored the space for software defect prediction models using an efficient imple-

mentation of the XGBoost algorithm, named US−XGBoost, which resulted in millions

of random models. We evaluated these models considering their accuracy and inter-

pretability. We found that 3.5% of the models (out of 1 997 287) are superior to the

seven classic baseline models in the Jureczko datasets.

Our findings also indicate that software defect prediction is a project-specific task,

i.e., features composing the best performing models may vary greatly depending on

the project. Thus, it is particularly important to understand the factor contributing to

model decisions. We used SHAP values to explain model decisions, and we found

that best performing models are very simple to understand, being composed of few

features and well-distributed values. Thus, model explanations may provide insight

on which features of the code are more prone to defect.

As future work, we want to mine data from public repositories on Github. These

data could be labeled and then analyzed using the same models applied in this research.

Thus, we would provide to the community additional case studies of the model pro-

posed in this paper. Another case study to validate the present research would be a

qualitative research with developers searching for how the explanations provided in

this paper would support real projects. The output of this study could even be used

to propose a tool for developers to analyze their projects and check which features

may indicate defective classes. Furthermore, the public data available on Github may

be analyzed from many different perspectives in terms of predicting software defects

using machine learning. For instance, we would like to classify commits in order to

generate a temporal analysis concerned not only to the defects but also to the bugs and

the inclusion of test cases on public source code.

Acknowledgements We thank the support given by the Project: Models, Algorithms and Systems for

the Web (Grant by FAPEMIG/PRONEX/MASWeb APQ-01400- 14) and authors’ individual grants and

scholarships from CNPq and Fapemig.

References

Agrawal, A., Menzies, T.: Is better data better than better data miners? On the benefits of tuning smote

for defect prediction. In: International Conference of Software Engineering (ICSE), pp. 1050–1061

(2018)

Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: International Conference on Knowledge

Discovery and Data Mining (SIGKDD), pp. 785–794 (2016)

Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE Trans. Softw. Eng. 20(6),

476–493 (1994)

123

390 Automated Software Engineering (2020) 27:369–392

Couto, C., Silva. C., Valente, M.T., Bigonha, R., Anquetil, N.: Uncovering causal relationships between

software metrics and bugs. In: 2012 16th European Conference on Software Maintenance and Reengi-

neering (2012)

D’Ambros, M., Lanza, M., Robbes, R.: An extensive comparison of bug prediction approaches. In: 2010

7th IEEE Working Conference on Mining Software Repositories (MSR 2010) (2010)

Elish, K.O., Elish, M.O.: Predicting defect-prone software modules using support vector machines. J. Syst.

Softw. 81(5), 649–660 (2008)

Ferenc, R., Tóth, Z., Ladányi, G., Siket, I., Gyimóthy, T.: A public unified bug dataset for java. In: Pro-

ceedings of the 14th International Conference on Predictive Models and Data Analytics in Software

Engineering, PROMISE, pp. 12–21 (2018)

Fukushima, T., Kamei, Y., McIntosh, S., Yamashita, K., Ubayashi, N.: An empirical study of just-in-time

defect prediction using cross-project models. In: Working Conference on Mining Software Reposito-

ries (MSR), pp. 172–181 (2014)

Ghotra, B., McIntosh, S., Hassan, A.E.: Revisiting the impact of classification techniques on the perfor-

mance of defect prediction models. In: IEEE/ACM 37th IEEE International Conference on Software

Engineering (ICSE), vol 1, pp. 789–800 (2015)

Gray, D., Bowes, D., Davey, N., Sun, Y., Christianson, B.: Using the support vector machine as a classifi-

cation method for software defect prediction with static code metrics. In: International Conference on

Engineering Applications of Neural Networks (EANN), pp. 223–234 (2009)

Gray, D., Bowes, D., Davey, N., Sun, Y., Christianson, B.: The misuse of the nasa metrics data program data

sets for automated software defect prediction. In: 15th Annual Conference on Evaluation Assessment

in Software Engineering (EASE 2011), pp. 96–103 (2011)

Halstead, M.H.: Elements of Software Science (Operating and Programming Systems Series). Elsevier

Science Inc, Amsterdam (1977)

Herbold, S.: Crosspare: a tool for benchmarking cross-project defect predictions. In: 30th IEEE/ACM

International Conference on Automated Software Engineering Workshop (ASEW) (2015)

Jiang, T., Tan, L., Kim, S.: Personalized defect prediction. In: IEEE/ACM International Conference on

Automated Software Engineering (ASE), pp. 279–289 (2013)

Jiarpakdee, J., Tantithamthavorn, C., Dam, H.K., Grundy, J.: An empirical study of model-agnostic tech-

niques for defect prediction models. IEEE Trans. Softw. Eng. pp 1–1 (2020)

Jing, X.Y., Ying, S., Zhang, Z.W., Wu, S.S., Liu, J.: Dictionary learning based software defect prediction.

In: International Conference of Software Engineering (ICSE), pp. 414–423 (2014)

Jureczko, M., Madeyski, L.: Towards identifying software project clusters with regard to defect prediction.

In: Proceedings of the 6th International Conference on Predictive Models in Software Engineering,

pp. 9:1–9:10 (2010)

Jureczko, M., Spinellis, D.D.: Using object-oriented design metrics to predict software defects. In: In Models

and Methods of System Dependability. Oficyna Wydawnicza Politechniki Wrocławskiej, pp. 69–81

(2010)

Knab, P., Pinzger, M., Bernstein, A.: Predicting defect densities in source code files with decision tree

learners. In: Proceedings of the International Workshop on Mining Software Repositories (MSR),

MSR, pp. 119–125 (2006)

Kuhn, M.: Caret: Classification and regression training. http://topepo.github.io/caret/index.html (2015)

Lewis, C., Lin, Z., Sadowski, C., Zhu, X., Ou, R., Whitehead Jr, EJ.: Does bug prediction support human

developers? findings from a google case study. In: International Conference of Software Engineering

(ICSE), pp. 372–381 (2013)

Lundberg, S.M., Lee, S.: Consistent feature attribution for tree ensembles. arXiv:1706.06060 (2017a)

Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Annual Conference on

Neural Information Processing Systems (NIPS) (2017b)

Lundberg, S.M., Erion, G.G., Lee, S.: Consistent individualized feature attribution for tree ensembles.

arXiv:1802.03888 (2018)

McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. 4, 308–320 (1976)

McCabe, T.J., Butler, C.W.: Design complexity measurement and testing. Commun. ACM 32(12), 1415–

1425 (1989)

Menzies, T., Greenwald, J., Frank, A.: Data mining static code attributes to learn defect predictors. IEEE

Trans. Softw. Eng. 1, 2–13 (2007)

Menzies, T., Milton, Z., Turhan, B., Cukic, B., Jiang, Y., Bener, A.: Defect prediction from static code

features: current results, limitations, new approaches. Automated Softw. Eng. 17(4), 375–407 (2010)

123

http://topepo.github.io/caret/index.html
http://arxiv.org/abs/1706.06060
http://arxiv.org/abs/1802.03888

Automated Software Engineering (2020) 27:369–392 391

Mori, T., Uchihira, N.: Balancing the trade-off between accuracy and interpretability in software defect

prediction. Empir. Softw. Eng. 24, 779–825 (2018)

Nagappan, N., Ball, T.: Use of relative code churn measures to predict system defect density. In: Proceedings

of the 27th International Conference on Software Engineering (ICSE), pp. 284–292 (2005)

Nagappan, N., Ball, T., Zeller, A.: Mining metrics to predict component failures. In: Proceedings of the

28th International Conference on Software Engineering, pp. 452–461 (2006)

Petrić, J., Bowes, D., Hall, T., Christianson, B., Baddoo, N.: The jinx on the nasa software defect data

sets. In: Proceedings of the 20th International Conference on Evaluation and Assessment in Software

Engineering, EASE (2016)

Sayyad Shirabad, J., Menzies, T.: The PROMISE Repository of Software Engineering Databases. University

of Ottawa, Canada, School of Information Technology and Engineering (2005)

Shapley, L.S.: A value for n-person games. In: Kuhn, H.W., Tucker, A.W. (eds.) Annals of Mathematical

Studies, pp. 307–317. Princeton University Press, Princeton (1953)

Shuai, B., Li, H., Li, M., Zhang, Q., Tang, C.: Software defect prediction using dynamic support vector

machine. In: Ninth International Conference on Computational Intelligence and Security, pp. 260–263

(2013)

Sokolova, M., Japkowicz, N., Szpakowicz, S.: Beyond accuracy, f-score and roc: A family of discriminant

measures for performance evaluation. AI 2006: Advances in Artificial Intelligence pp. 1015–1021

(2006)

Stites, R.L., Ward, B., Walters, R.V.: Defect prediction with neural networks. In: Proceedings of the Con-

ference on Analysis of Neural Network Applications, ANNA, pp. 199-206 (1991)

Sun, Z., Li, J., Sun, H.: An empirical study of public data quality problems in cross project defect prediction.

Computing Research Repository (CoRR) (2018)

Gyimothy, T., Ferenc, R., Siket, I.: Empirical validation of object-oriented metrics on open source software

for fault prediction. IEEE Trans. Softw. Eng. 31(10), 897–910 (2005)

Tantithamthavorn, C., Hassan, A.E.: An experience report on defect modelling in practice: pitfalls and

challenges. In: International Conference on Software Engineering: Software Engineering in Practice

(ICSE-SEIP), pp. 286–295 (2018)

Tantithamthavorn, C., McIntosh, S., Hassan, AE., Ihara, A., Matsumoto, K.: The impact of mislabelling

on the performance and interpretation of defect prediction models. In: International Conference on

Software Engineering (ICSE), pp. 812–823 (2015)

Tantithamthavorn, C., McIntosh, S., Hassan, A.E., Matsumoto, K.: An empirical comparison of model

validation techniques for defect prediction models (2017)

Tantithamthavorn, C., McIntosh, S., Hassan, AE., Matsumoto, K.: The impact of automated parameter

optimization for defect prediction models (2018)

Thwin, M.M.T., Quah, T.S.: Application of neural networks for software quality prediction using object-

oriented metrics. J. Syst. Softw. 76(2), 147–156 (2005)

Turhan, B., Bener, A.: Analysis of naive bayes’ assumptions on software fault data: an empirical study.

Data Knowl. Eng. 68(2), 278–290 (2009)

Turhan, B., Menzies, T., Bener, A.B., Di Stefano, J.: On the relative value of cross-company and within-

company data for defect prediction. Empir. Softw. Eng. 14(5), 540–578 (2009)

Wang, D., Yang, Q., Abdul, A., Lim, B.Y.: Designing theory-driven user-centric explainable ai. In: Pro-

ceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI ’19, pp. 1–15

(2019)

Wang, S., Liu, T., Tan, L.: Automatically learning semantic features for defect prediction. In: International

Conference of Software Engineering (ICSE), pp. 297–308 (2016)

Wang, T., Li, W.H.: Naive bayes software defect prediction model. In: International Conference on Com-

putational Intelligence and Software Engineering (CiSE), pp. 1–4 (2010)

Wohlin, C., Runeson, P., Hst, M., Ohlsson, M.C., Regnell, B., Wessln, A.: Experimentation in Software

Engineering. Springer, Berlin (2012)

Xu, Z., Liu, J., Luo, X., Zhang, T.: Cross-version defect prediction via hybrid active learning with ker-

nel principal component analysis. In: International Conference on Software Analysis, Evolution and

Reengineering (SANER), pp. 209–220 (2018)

Xuan, X., Lo, D., Xia, X., Tian, Y.: Evaluating defect prediction approaches using a massive set of metrics:

An empirical study. In: Proceedings of the 30th Annual ACM Symposium on Applied Computing,

SAC (2015)

123

392 Automated Software Engineering (2020) 27:369–392

Yang, Y., Zhou, Y., Liu, J,. Zhao, Y., Lu, H., Xu, L., Xu, B., Leung, H.: Effort-aware just-in-time defect

prediction: Simple unsupervised models could be better than supervised models. In: Proceedings of

the 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, FSE,

pp. 157–168 (2016)

Yatish, S., Jiarpakdee, J., Thongtanunam, P., Tantithamthavorn, C.: Mining software defects: Should we con-

sider affected releases? In: 2019 IEEE/ACM 41st International Conference on Software Engineering

(ICSE), pp. 654–665 (2019)

Zhang, F., Hassan, A.E., McIntosh, S., Zou, Y.: The use of summation to aggregate software metrics hinders

the performance of defect prediction models. IEEE Trans. Softw. Eng. 43(5), 476–491 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

Affiliations

Geanderson Esteves1 · Eduardo Figueiredo2 · Adriano Veloso2 ·

Markos Viggiato3 · Nivio Ziviani1

B Geanderson Esteves

geanderson@dcc.ufmg.br

Eduardo Figueiredo

figueiredo@dcc.ufmg.br

Adriano Veloso

adrianov@dcc.ufmg.br

Markos Viggiato

viggiato@ualberta.ca

Nivio Ziviani

nivio@dcc.ufmg.br

1 Department of Computer Science, Universidade Federal de Minas Gerais and Kunumi, Belo

Horizonte, Brazil

2 Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil

3 Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada

123

http://orcid.org/0000-0002-7571-6578
http://orcid.org/0000-0002-6004-2718
http://orcid.org/0000-0002-9177-4954
http://orcid.org/0000-0002-8500-3723
http://orcid.org/0000-0002-7079-2010

	Understanding machine learning software defect predictions
	Abstract
	1 Introduction
	2 Related work
	2.1 Learning from source code metrics
	2.2 Learning from source code and metadata information
	2.3 Datasets for defect prediction
	2.4 Explaining software defects

	3 Learning to predict software defects
	3.1 Sampling the model space
	3.2 Features
	3.3 Data and setup
	3.4 Feature importance and shapley additive explanations

	4 Results
	4.1 Competitiveness of random models
	4.2 Model interpretability
	4.3 Accuracy and variability of software features

	5 Threats to validity
	5.1 External Validity
	5.2 Internal validity
	5.3 Construct validity
	5.4 Conclusion validity

	6 Conclusions and future work
	Acknowledgements
	References

