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Abstract In this paper, we present effective algorithms to automatically an-
notate clothes from social media data, such as Facebook and Instagram. Cloth-
ing annotation can be informally stated as recognizing, as accurately as pos-
sible, the garment items appearing in the query photo. This task brings huge
opportunities for recommender and e-commerce systems, such as capturing
new fashion trends based on which clothes have been used more recently. It
also poses interesting challenges for existing vision and recognition algorithms,
such as distinguishing between similar but different types of clothes or identify-
ing a pattern of a cloth even if it has different colors and shapes. We formulate
the annotation task as a multi-label and multi-modal classification problem:
(i) both image and textual content (i.e., tags about the image) are available for
learning classifiers, (ii) the classifiers must recognize a set of labels (i.e., a set
of garment items), and (iii) the decision on which labels to assign to the query
photo comes from a set of instances that is used to build a function, which
separates labels that should be assigned to the query photo, from those that
should not be assigned. Using this configuration, we propose two approaches:
(i) the pointwise one, called MMCA, which receives a single image as input,
and (ii) a multi-instance classification, called M3CA, also known as pairwise
approach, which uses pair of images to create the classifiers. We conducted a
systematic evaluation of the proposed algorithms using everyday photos col-
lected from two major fashion-related social media, namely pose.com and
chictopia.com. Our results show that the proposed approaches provide im-
provements when compared to popular first choice multi-label, multi-modal,
multi-instance algorithms that range from 20% to 30% in terms of accuracy.
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1 Introduction

Full image understanding, the main goal of visual recognition field, is still an
open task composed by the tripod: annotation, segmentation and classification
of an image. The first two tasks complement each other, since the former one
recognizes objects of a scene, while the other recognizes and also locates them.
Further, both tasks can be helpful to image classification. In this paper, we
focus on the image annotation task, given its versatility and applicability in
several applications or task, such as classification. Moreover, we focus on a
specific application, in this case, the clothing annotation one.

Image annotation plays important roles in human pose estimation [70], ac-
tion recognition, person search [68, 18], surveillance [72], cloth retrieval [28]
and have applications in fashion industry [70]. Considering the last one, appli-
cations with fashion images gained a lot of visibility with the increase of social
networks and the faster propagation of information, since these networks allow
their members to express themselves in different ways, by creating and sharing
content, making, for example, a new trend more successful or not. A partic-
ular way of expression being increasingly adopted is to post photos showing
their latest looks/clothes and receive feedbacks about them. There are even
specific networks for this, such as pose.com and chictopia.com. These social
media channels carry a lot of information, such as tags and comments, that
is propitious (and fundamental) to a better understanding of an image. When
analyzed, this information may help retailers and e-commerce systems to cap-
ture new trends, helping to define new products and sales. To achieve this, it is
essential to find out the most popular clothes and in which segment they have
been used more. Recommendation systems could also use this information to
suggest new clothes based on searches already realized or in the wardrobe of
the users.

Although interesting, to reach suitable results for clothing applications it
is necessary to extract all feasible information from the data, and this is only
achieved with images entirely prepared, i.e., images fully annotated. However,
only a very small percentage of images collected from social media has been
associated with its clothing content [25], and manual methods, using expert
or non-expert [51], are too expensive and maybe impracticable given the total
amount of images. So, automatic annotation techniques appear as a very ap-
pealing alternative to reduce costs, but with difficult challenges to overcome,
such as: (i) differ similar types of garment items (discern between a shirt and
a coat, for example), (ii) different appearance characteristics (cut, color, ma-
terial and pattern) for a same cloth, (iii) occlusions, (iv) viewing angle and,
(v) cluttered background.

In this paper, we are particularly interested in the clothing annotation
task, that may be described as assigning short textual descriptors or keywords

pose.com
chictopia.com
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(called tags) to images. These tags are related to specific garment items, such
as shirts, trousers and shoes, and multiple tags may be associated with an
arbitrary image. We formulate this task as a supervised classification prob-
lem: a process that automatically builds a classifier from a set of previously
labelled/annotated examples (i.e., the training-set). Then, given an arbitrary
image (i.e., an image in the test-set), the classifier recognizes the labels/tags
that are more likely to be associated with it.

First, we propose a Multi-modal and Multi-label Clothing Annotation algo-
rithm, or simply MMCA, that uses the pointwise approach [29], i.e., a feature
vector of each single image as an instance. Second, we propose a Multi-label,
Multi-modal and Multi-instance Clothing Annotation method, or just M3CA,
based on the pairwise approach, which is usually defined as an input space that
represents instances as being a pair of images (called, in this paper, query and
base images), both represented as feature vectors [29] (in this case, composed
of distances between the images). Hence, each data instance, in the training
and test set, is a pair of images and the only difference between them is that
the query labels (labels of the query image) are only known in the former set.
Is it important to emphasize that both methods intend to exploit the similar-
ity between images, since similar ones are likely to share common labels, and
thus small distances are expected to increase the membership probabilities
associated with the correct labels. As introduced, looking for improvements of
the annotation results, the instances of both methods are composed of visual
and textual features. To allow the methods to get all feasible information from
the data, visual features were coded using different image content descriptors
(global [24, 53, 39, 31, 57, 55, 23, 75, 63] and local [30, 6, 11, 26, 43, 2]), while
textual ones were described with TF-IDF vectors.

Our classifiers are composed of association rules [1], which are essentially
local mappings X → y relating a combination of features in instance X to a
label y. These rules are used collectively, resulting in a membership probability
for each label. In order to provide fast learning times, the proposed algorithm
extracts rules on a demand-driven basis − instead of learning a single and
potentially large classifier which could be applicable to all instances in the
test-set, our algorithm builds multiple small classifiers, one for each instance in
the test-set. Instead of relying on top-k approaches [65] to select the labels that
should be assigned to the query image, we propose an entropy-minimization
multi-instance approach which finds a different cut point for each instance in
the test-set.

The main contribution of this paper is the proposed framework for au-
tomatic clothing annotation. To the best of authors’ knowledge, there is no
framework capable to annotate clothes in so many different scenarios, such as
multi-instance, multi-label and multi-modal. Also, it is not known a framework
to annotate clothes using pairs of images, which allows the method to capture
semantic information (difference between the images) related to each pair. In
practice, we may observe the following detailed contributions of this work:
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– Novel multi-instance, multi-label, multi-modal clothing annotation algo-
rithms with the aggregation of different types of descriptors.

– Two different methods for clothing annotation that exploit association rules
to create the classifiers: the MMCA (which follows a pointwise strategy)
and the M3CA (which follows a pairwise strategy) approaches.

– A comparison between all proposed approaches which leads us to define
the best one for our annotation task.

– An extensive set of experiments was conducted to evaluate different visual
feature representation and to analyze the best configuration for each type
in the context of clothing annotation.

– A systematic set of experiments, using a collection of everyday photos
crawled from popular fashion-related social networks, reveals that our al-
gorithm improves upon first choice learning algorithms [35], by a factor
that ranges from 20% to 30% in terms of standard accuracy measures.

We organized the remainder of this paper in seven sections. Section 2
presents related work. Section 3 presents the background concepts necessary
for the understanding of this work. Section 4 shows the details of the pro-
posed approaches for the clothing annotation task. The evaluation protocol is
detailed in Section 5. Experimental evaluation, as well as the effectiveness of
the proposed algorithms, is discussed in Section 6. Finally, Section 7 concludes
and points out future research directions.

2 Related Work

This section presents a review of the literature surrounding clothing annota-
tion, as well as some works of image annotation, since the former is a sub-
problem of the latter. It is worth to mention that the focus of this work is the
clothing annotation task, i.e, clothing parsing [48] and other clothing applica-
tions, such as fashionability [49], were not covered.

There has been a great effort in the last few years on the clothing recog-
nition task, with some works focusing on the clothing annotation. This re-
cent interest is, perhaps, boosted by fresh advances in pose estimation [74],
which caused a lot of works to emerge [78]. Amongst these, the most popular
works [77] combine supervised machine learning algorithms and visual feature
extraction methods. However, there are approaches [37] that learn the annota-
tions using the users feedback, also called implicit crowdsourcing. Considering
this technique, some approaches towards automatic image annotation exploit
multi-label models [27, 66], others employ multi-modal strategy to improve re-
sults [69] and few works have modelled the problem as a multi-instance prob-
lem [35]. Furthermore, there are works that combine these strategies looking
for a better performance [35, 36].

As introduced, typically, in these applications, an image has more than
one label associated with it. Thus, classifiers for this task considered as multi-
label ones. Accordingly to [60], multi-label classification algorithms can be
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categorized into two different groups: (i) problem transformation methods and,
(ii) algorithm adaptation methods.

The first group includes methods that are algorithm independent, i.e., they
transform the multi-label problem into one or more single-label problems. Usu-
ally, methods from this group tend to exploit probabilistic models, such as
Bayesian or Gaussian ones, to generate adapted algorithms capable to handle
and annotate different images. There is a lot of works in this group, which
includes binary relevance method [32], binary pairwise classification [34] and
label combination methods [42].

The second group includes methods that extend specific learning algo-
rithms in order to handle multi-label data directly. Well-known approaches
include Adaboost [27], decision trees [66], lazy methods [65, 71] and, more
recently, neural networks [52]. The proposed approaches may be categorized
in this group, since an adaptation of the learning algorithm was realized to
allow the prediction of multiple labels.

In addition to multi-label classification, the multi-modal fusion, which is
a new scenario created by combining multiple media data and their associ-
ated features, has gained a lot of attention recently [3] due to the benefit this
aforementioned combination provides. Usually, this fusion of multiple modal-
ities can provide complementary information and increase the overall accu-
racy of the task. There is a lot of feasible fusions, such as audio/video or
video/textual, though the most common fusion, when working with images, is
the visual/textual one. This fusion takes leverage of: (i) visual features, that
come from the images (usually obtained with descriptors) and, (ii) textual
ones, which may be simplified by the tags/comments associated with each im-
age. Given the increasing amount of images that are currently available on
the web with poor accuracy annotation, this fusion has become really popu-
lar since it is interesting to use this data to learn more accurate recognition
models.

Accordingly to [3], multi-modal fusion algorithms can be categorized into
three different groups: (i) feature level or early fusion [69], which combines
the features extracted from the input data and then send as input to the
classifiers, (ii) decision level or late fusion [21, 22], which isolates the features
to create different combinations of classifiers using some criterion, and (iii)
hybrid approach [35], which is a combination of both feature and decision
level strategies, taking advantages of both.

Considering the early fusion method, Xie et al. [69] uses images weakly
tagged to improve the image classification performance using statistical ap-
proaches. Using the late fusion strategy, Guillaumin et al. [21] proposed a work
that combines visual and textual features, where the textual ones are repre-
sented by labels/tags associated with images crawled in social networks. Also,
Guillaumin et al. [22] use image tags to improve the performance of the clas-
sifiers, but they do not assume their availability for test images. Considering
the hybrid approach, Nguyen et al. [35] proposed a method where the fusion of
multi-modalities may be performed in both decision level (labels) and feature
level (visual/textual) by using different models. The proposed approaches are
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classified into the late fusion strategy, since they combine visual and textual
features from each images and deliver them to the learning algorithm, that
uses this combination to create classifiers.

Aside the aforementioned types of classifiers, the multiple-instance learning
is a variation of supervised learning, which is the task of learning classifiers
from bags of instances [33] that may contain as many instances as possible.
Recently, this kind of approach has become very popular for some specific
problems because of the good results achieved. Between these works, [56] pro-
posed a method that exploits a unified learning framework which combines
the multiple-instance and single-instance representations for image annota-
tion. Specifically, they use an integrated graph-based semi-supervised learning
that associate these types of representations simultaneously. [17] proposed an
improved Transductive Multi-Instance Multi-Label (TMIML) learning, which
aims at taking full advantage of both labeled and unlabeled data to address
the annotation problem. Both of these works also use the Corel5K dataset on
their experiments.

More recently, [35] proposed a multi-label, multi-modal and multi-instance
approach using Latent Dirichlet Allocation (M3LDA). Specifically, they build
the gist of a scene using [38] algorithm and then, they consider each patch of
image as an instance, what generated a myriad of items. Each instance may
be represented by a bag of prototypes, which are obtained by clustering visual
features of the patch [79]. Associating instances and tags, they built a learning
algorithm based on Latent Dirichlet Allocation (LDA). With this approach,
they can not only annotate the images as a whole but can also annotate its
region, if possible.

Considering the fashion scenario, several works exploit one or more afore-
mentioned techniques. [58] proposed a system, named “Virtual Stylist”, which
aims to help users to find out outfits that might fit them well. [54] proposed a
multi-label clothing annotation approach that enables users to efficiently up-
date the metadata interactively and incrementally. [46] introduced the recom-
mendation of outfits for specific occasions based on textual input that defines
the occasion and how the user wants to look like. More recently, the work
of [67] described the recommendation of clothes based on the similarity be-
tween users and models appearing in fashion magazines while [25] presented a
scalable approach to automatically suggest relevant clothing products, given
a single image without metadata. They, actually, formulated the problem as
cross-scenario retrieval where the query is a real-world image, while the prod-
ucts from online shopping catalogues are usually presented in a clean environ-
ment.

In this work, we propose clothing annotation techniques associating all
aforementioned concepts. As mentioned, our methods combine textual features
with visual ones, in a later fusion mode, looking for improvements. Further-
more, while most works [35] treat each region (keypoint) of an image as a
instance to create a multi-instance classifier resulting in a myriad of features,
our proposed pairwise method creates a classifier by pairing images and cal-
culating the visual distance between them, which make the approach more
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sparse and robust. A combination of local and global visual features allows
the proposed method to leverage from both of them, exploiting the best of
each one in our application. In addition, different from other works [56, 17],
instead of using less realistic scenarios, our experiments were on full realistic
ones using dataset crawled from the web with tags generated by users from
around the globe.

3 Background Concepts

This section presents background techniques used in this work. The proposed
clothing annotation methods exploit the traditional combination of machine
learning methods and visual image features. Thus, to extract the visual ele-
ments of the images, we used feature extraction algorithms (descriptors), which
are categorized in low-level and mid-level ones.

Descriptors from the low-level work at extracting visual properties from the
image via pixel-level operations, being crucial for any image analysis proce-
dure. Two groups [47] of descriptors may be distinguished in this level: global
and local. Global descriptors usually are simple and cheap to obtain since
they rely on computing a representation that encodes global aspects of im-
ages. Local descriptors, in the other way, are more powerful to present object
properties and are very precise, but more expensive to compute and compare,
since a larger feature vector is produced. A local feature is an image pattern
that differs (in some property) from its immediate neighborhood [62], such as
points, edges or small patches. Typically, two types of patch-based approaches
can be distinguished to extract local features [61]: (i) interest points, which
are corners and blobs, and (ii) dense sampling, which are patches of fixed size
over the whole image.

To extract all feasible information from the descriptors, mid-level feature
extraction were created, which aims at transforming low-level descriptors into
a global and richer image representation of intermediate complexity [9]. Ac-
cording to [9], in order to get the mid-level representation, the standard pro-
cessing follows three steps: (i) low-level local feature extraction, (ii) (hard [41]
or soft [20]) coding, which performs a transformation of the descriptors into
a representation better adapted to the task, and (iii) (max or mean) pool-
ing, which summarizes the coded features. Classification algorithms are then
trained on the mid-level vectors obtained. Bag of Visual Words (BoVW) [50]
and BossaNova [4] (special coding/pooling stage) are good examples of mid-
level representations and were exploited in this work.

Considering these visual features, a myriad of machine learning methods
could be exploited to create the classifiers, such as Support Vector Machines
(SVM) and association rules. Despite all options, a machine learning method
that could support multi-label, multi-modal and multi-instances strategies was
desirable. Thus, Lazy Association Classifiers (LAC) [64] was chosen given its
natural adaptation to multi-modal approaches, accepting visual and textual
features without too much effort, and also because it permits the scalability



8 Keiller Nogueira∗ et al.

of the instances without increasing the processing time, since the number of
classes is more relevant to the algorithm than the number of instances. In
addition to this, the method easily allows the use of multi-label strategy since
its output consists of a ranking with the classes and respectively probabilities.

LAC uses association rules [1] to produce classifiers that, depending on
the task, may predict labels of an image or relevance related to a document.

These rules are patterns describing implications of the form X
θ−→ yi, where

X is known as the antecedent of the rule while yi is the consequent. The an-
tecedent may be any combination of features, depending on the task, while the
consequent may be any label or class. The rule does not express a classical log-
ical application where X necessarily entails yi. Instead it denotes the tendency
of observing yi when X is observed. Each rule has a size, which defines how
many terms, considering antecedent and consequent, it has. Although the con-
sequent always has one term (since each rule predicts exactly one class/label),
the antecedent may have more than one term. For instance, a rule with size
two has only one term in the antecedent and consequent while one with size
three may have two elements in the antecedent and one in the consequent.
The strength of the association between the antecedent and the consequent is
measured by a statistic θ, which is known as confidence [1] and is simply the
conditional probability of the consequent given the antecedent.

From a labelled training-set D, the algorithm extracts all possible rules
creating a set R of rules composed of rules used to predict classes/labels
LX that approximates as accurately as possible L∗X , which represents the
ground-truth of the instance. It is important to emphasize that different sets
may be generated from different labelled training-sets, i.e., if a training-set
has different labels, different rules are generated. However, in this paper, the
training-set has basically the same labels, thus the same rules are generated
and there is no better or worse training-set. Each {X → yi} ∈ R is a vote
given for label/class yi. Thus, given an instance Z in test-set T , a rule is a
valid vote if it is applicable to Z, i.e., a rule {X → yi} is said to be applicable
to instance Z ∈ T if all intervals in X are in Z. From these applicable rules,
a subset RyiZ may be create. It corresponds to rules applicable to a specific
instance Z predicting specific class/label yi. Thus, a score for yi is given by
averaging the votes (weighted by confidence θ) in RyiZ , as shown in Equation 1.
The likelihood p̂(yi|Z) of an instance Z being associated with class/label yi
is obtained by normalizing the scores (to restrict the sum to exactly one). At
the end, for each instance, LAC generates a ranking with all the classes/labels
associated with its likelihood (probability).

s(Z, yi) =

∑
θ(X → yi)

|RyiZ |
(1)

where X ⊆ Z and |R| represents the set size.
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4 Machine Learning Approaches for Clothing Annotation
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Fig. 1: An overview of the proposed methods.

In this section, we present the proposed algorithms for automatic clothing
annotation. Figure 1 presents an overview of the proposed pipeline, which can
be basically described in three steps: (i) visual and textual feature extraction,
(ii) learning process, which is responsible to create the membership probability
for each label, and (iii) labels selection, which uses an entropy-minimization
algorithm to select labels to be assigned to the image.

Specifically, visual features were extracted using several types of descrip-
tors, while textual ones were generated from tags and comments by using
TF-IDF, which presents successful results in multi-modal approaches in the
literature [14]. After extracting the features, there are two possible approaches
based on Lazy Associative Classifiers (LAC) algorithm, presented in Section 3,
which was chosen as learning algorithm given its natural adaptation to multi-
modal, multi-label and multi-instance approaches: (i) pointwise, presented in
Section 4.1 and, (ii) pairwise, presented in Section 4.2. Some methods proposed
to combine the pointwise approach results are presented in Section 4.1.2. Fig-
ure 2 shows an overview of the former one, where an input consists of a single
image, while Figure 3 presents the latter approach, where pairs of images
are used as input. To create classifiers capable of associating similar clothes
and then annotate images, both methods exploit usual similarities of social
networks, such as images sharing common garment items are likely to share
similar visual elements (e.g., color, texture and shape) or people tend to use
similar tags/comments with images that share common garment items. As
introduced, both algorithms build classifiers on a demand-driven basis using
LAC and each classifier returns membership probabilities for each label. Fi-
nally, a set of predicted labels is generated by minimizing the entropy of the
membership probabilities returned by LAC. The Minimum Description Length
(MDL) algorithm is used to define which labels should be assigned to the query
image and is presented in Section 4.1.1. Although being used in both proposed
methods, to simplify its complexity, the formalism of the MDL algorithm is
introduced considering only the pointwise method.
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Fig. 2: The proposed pointwise approach. Predicted labels in blue represent
right labels while red ones represent wrong predictions.
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Fig. 3: The proposed pairwise approach. In this case, the classifiers are already
trained with paired images as well. Predicted labels in blue represent right
labels while red ones represent wrong predictions.

4.1 Pointwise Approach

In this approach, the pointwise method for automatic clothing annotation,
named Multi-modal/Multi-Label Clothing Annotation (MMCA), is presented.
In this case, a set of single image features (visual and textual) is provided as
input [29]. Formally, Definition 1 describes the input of the MMCA approach.

Definition 1 A pointwise instance is composed by an image q associated
with its visual and textual features. Specifically, a pointwise instance is rep-
resented by a feature vector (q̃) = {f1, f2, · · · , fm, v1, v2, · · · , vn}, where f
represents the visual feature vector (of size m) and v represents the n textual
features (labels).

As introduced, the proposed method uses association rules [1], which are
called, in this case, garment rules, since each rule predict garment items. These
rules are composed of an antecedent and a consequent, as presented in Sec-
tion 3, which are represented, in this case, by any mixture of visual and textual
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features and a label li (i.e., a garment item), respectively. Definition 2 formally
presents a generic garment rule.

Definition 2 A garment rule has the following form:

Distance intervals︷ ︸︸ ︷
{ fj ∧ . . . ∧ fz ∧ vt ∧ . . . ∧ vu } θ−→ li


“trousers”,

“skirt”,
“handbag”,

etc.

where j ≥ 1 and z ≤ m, and t ≥ 1 and u ≤ n. f represents the visual feature
vector while v represents the textual ones. li is label assigned to this rule while
θ is the confidence, as aforementioned. The operator “∧” represents that the
antecedent of a rule is formed with the simple presence of a determined com-
bination of features and labels. These combinations work like a signature to
the rule.

The algorithm receives as input a labelled training-set D composed of
pointwise instances, as in Definition 1. Distances between these instances are
discretized [16] and then assigned to distance intervals1, in order to allow for
the enumeration of garment rules. The test-set T also consists of records of the
same form, except that labels are unknown. As presented, from each point-
wise instance q̃ ∈ D, the algorithm extracts a rule-set R composed of garment
rules used to predict labels Lq, which approximates, as accurately as possible,
the ground-truth L∗q of the instance q̃, i.e., the garment items associated with
image q. As introduced, considering {q̃ → li} ∈ R, it is possible to extract
a subset Rliz̃ composed of rules applicable to z̃ ∈ T (all intervals in q̃ are in

z̃) predicting label li. This subset Rliz̃ may be averaged generating a score for
label li, as shown in Equation 1. Finally, the likelihood p̂(li|z̃) of an instance z̃
being associated with label li is obtained by normalizing the scores generating
a ranking with the labels and its probability for each instance.

4.1.1 Minimum Description Length

The Minimum Description Length approach, or simply MDL, is used to in-
duce two partitions, for each instance, over the space of membership proba-
bilities returned from the classifier. Based on the entropy, a partition is se-
lected and, then, assigned to the instance. This approach is more robust and
adaptable when compared to the top-k method, typically used on multi-label
problems [65], since it may vary the number of assigned labels based on the
training instances. More specifically, given an instance q̃ and a set of candidate
labels Lq̃ provided by the classifier,2 we must find a cut point cq̃ which delimits
labels that are likely to be associated with the query image from those that

1 Hereafter we refer each fi as the corresponding interval.
2 Labels for which p̂(li|q̃) > 0.
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are not. In other words, we must find a threshold cq̃, so that only labels in Lq̃
for which p̂(li|q̃) > cq̃ are finally predicted.

As introduced, MDL searches for a threshold cq̃ that provides the best
entropy cut in the space induced by probabilities p̂(li|q̃) ∀ li ∈ Lq̃. Figure 4
illustrates the method. In the figure, symbol � indicates that the corresponding
label li is associated with query image q. Similarly, symbol � indicates that the
corresponding label li is not associated with query image q. Therefore, in the
example, labels {l4, l5, l6} are associated with q (i.e., �), while labels {l1, l2, l3}
are not (i.e., �). The figure shows three possible cut points for the instance,
and the best entropy cut is exactly the one which minimizes the overall entropy
in the probability space. Obviously, there are more difficult cases, for which it
is not possible to obtain a perfect separation in the probability space, but the
approach is general enough to handle such harder cases.

p̂
(l1 |q̃

)

p̂
(l2 |q̃

)

p̂
(l3 |q̃

)

p̂
(l4 |q̃

)

p̂
(l5 |q̃

)

p̂
(l6 |q̃

)

0.00 1.00
� � � � � �

low
entropy

high
entropy

0.00 1.00
� � � � � �

high
entropy

low
entropy

0.00 1.00
� � � � � �

low
entropy

low
entropy

best entropy cut

0.00

Fig. 4: Looking for the minimum entropy cut for a specific instance q̃.

Specifically, the idea is that any value of cq̃ induces two partitions over
the space of values for p̂(li|q̃), i.e., one partition with probabilities that are
lower than cq̃, and another partition with probabilities higher than cq̃. MDL
seeks cq̃ that minimizes the average entropy of these two partitions. Formally,
consider a list O = {(x1, y1), (x2, y2), . . . , (xn, yn)} where xj ∈ {�,�} and yj
is a membership probability p̂(li|q̃). This list is sorted such that yj ≤ yj+1.
Also consider c as a candidate value for cq̃. In this case, Oc(≤) is a sublist of O
for which the condition yj ≤ c holds for all (xj , yj) ∈ Oc(≤). Similarly, Oc(>)
is a sublist of O for which the condition yj > c holds for all (xj , yj) ∈ Oc(>).
In other words, both Oc(≤) and Oc(>) are partitions of O induced by c.

Firstly, the approach calculates the entropy in O, as shown in Equation 2.
Then, it calculates the sum of the entropies in each partition induced by c,
according to Equation 3. Finally, it sets cq̃ to the value of c that minimizes
E(O)−E(Oc).
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E(O) = −
(

N�(O)

|O| × log
N�(O)

|O|

)
−
(

N�(O)

|O| × log
N�(O)

|O|

)
(2)

where N� gives the number of labels in Lq̃ but not in L∗q̃ , and N� gives the
number of labels in Lq̃ and also in L∗q̃ .

E(Oc) =
|Oc(≤)|
|O| × E(Oc(≤)) +

|Oc(>)|
|O| × E(Oc(>)) (3)

To use the MDL approach, we employ a validation-set V composed of
several instances q̃, so that both the true labels L∗q̃ and the predicted labels
Lq̃ are previously known for all instances in this set. Our goal is to build a
function γ(Lq̃) which receives as inputs a set of candidate labels Lq̃ and returns
the best entropy cut for these labels, predicting the labels. Thus, the function
γ(Lq̃) gives the mean of the best entropy cuts associated with instances q̃ ∈ V
having Lq̃ as candidate labels. Equation 4 presents this mean. If there is no
instances q̃ ∈ V having specifically the candidate labels, then the function
returns a mean of best cuts of all instances in the validation set.

γ(Lq̃) =

∑
c
Lq̃

q̃

NLq̃

(4)

where c
Lq̃

q̃ are best entropy cuts associated with the candidate labels Lq̃ and
NLq̃ is the number of validation instances associated with these labels.

4.1.2 Combination Methods Using MMCA

The combination methods proposed in this work join classifiers that use dif-
ferent visual features looking for improvements in the overall accuracy. The
proposed algorithms may appear very similar to some ensemble methods in the
literature, like bootstrap aggregating or bagging, but they are different since:
(i) the classifiers are trained with different features (ii) the training set used
is always the same for every classifiers (only the features used are different),
and (iii) the misclassification of a classifier is never used again.

First combination method, called Majority Voting (MV), gives each candi-
date label the same weight when voting. More specifically, for each pointwise
instance a classifier generates, as presented, a ranking with the labels and its
probability. This ranking is pruned using a top-k approach, and then, each re-
maining label (the ones with higher probability) gives an equal vote, creating
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Fig. 5: Illustration of a proposed combination of the MMCA approach consid-
ering only BIC and CCV descriptors: the majority voting consider each class,
with probability more than zero, as a vote with equal weight. A top-k defines
which labels should be assigned.

a final ranking ordered by the votes. This final ranking is pruned again (also
using a top-k strategy), resulting in the final set of labels that is assigned to
the image. Figure 5 presents an example of this method considering classifiers
trained using BIC and CCV visual descriptors.

The second proposed combination method, called Majority Probability
(MP), gives each candidate label a weight (equal its probability) when voting.
Specifically, for an instance, the method generates a final ranking by calculat-
ing the mean probability of each label from all rankings. Then, the final rank is
pruned in top-k way. Figure 6 presents an example of this method considering
classifiers trained using BIC and CCV visual descriptors.

4.2 Pairwise Approach

In this approach, the pairwise method for automatic clothing annotation,
named Multi-Modal/Multi-Label/Multi-Instance Clothing Annotation (M3CA),
is presented. In traditional supervised learning, such as the proposed MMCA,
an object is represented by an instance (usually, features) and associated with
a class label. Although successful, some problems may not fit very well to
this model, such as problems where the object may be associated with a
multiple number of instances simultaneously, as for example, an image rep-
resented by a myriad of patches (feature vectors). To deal with this kind of
problem, arise the multi-instance learning [29]. In this framework, an object
is described by multiple instances. Formally, X represent the instance space
and Y the set class labels. The task is to learn a function f : X → Y from
a given dataset (X1, Y1), (X2, Y2), ..., (Xn, Yn), where Xi ∈ X is a set of in-

stances x
(i)
1 , x

(i)
2 , ..., x

(i)
mi , x

(i)
j ∈ X (j = 1, 2, ...,mi), and Yi ∈ Y is the set of
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Fig. 6: Illustration of a proposed combination of the MMCA approach con-
sidering only BIC and CCV descriptors: the majority probability calculates
the mean of all labels and a top-k is used to define which labels should be
assigned.

labels y
(i)
1 , y

(i)
2 , ..., y

(i)
li

, y
(i)
k ∈ Y(k = 1, 2, ..., li). In this case, we are also con-

sidering that a object may have more the one label. mi represent the number
of instances in Xi and li the number of labels in Yi.

Therefore, this approach may be considered as a multi-instance one, since
pairs of images are provided as input to our classification algorithm. In this
case, a pair of images is denoted as an instance, as described in Definition 3.

Definition 3 A pairwise instance (q̃b) = (q, b) is composed by a base
image b and a query image q. Labels associated with the base image b are
called base labels and are always known in advance. Labels associated with
the query image q must be predicted. This instance is represented by a set
of (visual and textual) distances between q and b, along with the base la-

bels. Specifically, a pairwise instance is represented as a list (q̃b) = (q, b) =
{f1, f2, . . . , fm, v1, v2, . . . , vn}, where f represents the distances between the
visual feature vector (of size m) and v represents the n base labels.

It is important to highlight that the L1 distance function3 was used to
calculate the similarity between two images, since it is suitable for generate
sparse vectors due to its property in producing results with zero or very small
values.

The algorithm receives as input a labelled training-set D composed of
records of the form < q,B >, where q is a query image and B is a bag of
base images. The bag B is partitioned into multiple instances of the form
(q̃b,L∗q) = ((q, b),L∗q), where b ∈ B, (q, b) is an instance as in Definition 3 and

3 L1 distance function calculates the difference between two feature vectors by summing

the absolute value of each keyword: L1(P,Q) =
∑N

i=1
|pi − qi|
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L∗q is a set of labels associated with the query image q (i.e., the garment items
appearing in image q). Hence, in this case, it is known in advance the base and
query labels, in addition to the feature distances between q and b. The test-set
T also consists of records of the form < q,B >. Again, the bag B is parti-
tioned into multiple instances (q̃b, ?) = ((q, b), ?). In this case, however, only
the distances between images q and b and the base labels are known, whereas
labels L∗q are unknown and must be predicted. Hence, each data instance, in
the training and test set, is a pair of images and the only difference between
them is that the query labels are only known in the former set.

Just like the pointwise approach, the algorithm extracts a rule-set R com-
posed of garment rules (as in Definition 2) from each pairwise instance q̃b ∈ D.
As introduced, it is possible to extract, fromR, a subsetRli

q̃b
that contains rules

applicable to specific pairwise instance q̃b predicting label li. As in Equation 1,
a score for each label s(q̃b, li) is calculated using the confidence as weight. Fi-

nally, the likelihood p̂(li|q̃b) of an instance q̃b being associated with label li is
obtained by normalizing the scores generating a ranking with the labels and
its probability for each instance.

Analogously to the MMCA aproach, the M3CA algorithm also needs to
build the function γ(L

(q̃b)
) to select the labels that should be assigned to

the query image q. However, instead of using the function to directly predict
the labels, as the MMCA approach, the M3CA needs to aggregate different
pairwise instances related to a same query image q to, finally, predict the labels
using the MDL algorithm. More specifically, a query image q may appear
within several (i.e., n) pairwise instances (q̃bi) = (q, bi) ∈ T . For each instance

(q̃bi) = (q, bi) ∈ T a specific set of labels L
(q̃bi)

is associated with q. The final

set of predicted labels is given as Lq = {L
(q̃b1)

∪ L
(q̃b2)

∪ . . . ∪ L
(q̃bn)
}. After

aggregating the labels, we use the best entropy cut to predict the labels that
should be associated with q.

5 Experimental Protocol

In this section, we present the experimental setup used in this work. Two
scenarios were experimented:

1. Ideal scenario: consists of a small and manually segmented dataset, com-
posed of 100 images, used to evaluate the visual descriptors and their best
configuration (for example, the size of the visual dictionary). In this sce-
nario, there is single-class classification (only one class should be assigned
to each image) with 10 images per class. Therefore, the MMCA approach
was used considering that the label with higher probability is assigned to
the image.

2. Realistic scenario: consists of two datasets crawled from social networks
used to analyze the proposed algorithms (MMCA and M3CA) and the
baseline. Each image may have more than one label (garment items), which
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Table 1: Datasets.

pose.com chictopia.com

Number of photos 2,306 1,579
Number of tags 7,501 5,093
Tags per photo 3.25 3.23

makes this scenario a multi-label classification. The segmentation was re-
alized automatically using a pose estimation algorithm, proposed by [74].

In this section, we distinguish some differences between the aforementioned
scenarios. Section 5.1 presents some statistics of the datasets. The visual fea-
tures are presented in Section 5.2 while Section 5.3 presents the textual ones.
Section 5.4 presents the baselines used in this work. The experimental protocol
used are presented in Section 5.5. Finally, Section 5.6 presents the measures
used to evaluate the experiments.

5.1 Datasets

As introduced, the ideal scenario was designed to study the impact of the
visual features over the overall accuracy in an attempt to avoid any external
or unadvised error. This scenario consists of a dataset of 100 images (10 classes
with 10 images per class) crawled from instagram.com between October 11
and November 10, 2013.

The realistic scenario was developed to evaluate the performance of the
methods in a more real situation. Thus, we have crawled images and associated
tags/comments from two fashion-related social networks, namely pose.com

and chictopia.com. Basic information about the resulting datasets is pre-
sented in Table 1. The pose.com dataset was crawled from January 15, 2014
to January 25, 2014, which resulted in more than three thousand images.
The chictopia.com dataset was crawled from January 25, 2014 to Febru-
ary 5, 2014 resulting in more than two thousands images. At the end, the
whole dataset 4 for the realistic scenario is composed of, approximately, five
thousands images. Combining labels from both datasets leads us to a set
of 31 discrete possibilities: “bag”, “bathing suit”, “belt”, “booties”, “cape”,
“coat”, “dress”, “glass”, “gloves”, “hat”, “headband”, “jacket”, “jewelry”,
“jumpsuit”, “pants”, “pumps”, “sandals”, “scarf”, “shirt”, “shoes”, “shorts”,
“skirt”, “sneakers”, “socks”, “suit”, “sweater”, “tights”, “umbrella”, “under-
wear”, “vest” and “wallet”.

Figure 8 shows the frequency of each label. As expected, some labels occur
frequently (e.g., “coat”, “pants”, and “shirt”), while others occur only few
times (e.g., “jumpsuit”, “suit” and “wallet”). Figure 7 shows the cumulative

4 Both, Chictopia and Pose, datasets used in this paper are available for download
at: http://www.patreo.dcc.ufmg.br/downloads/fashion-datasets/

pose.com
chictopia.com
instagram.com
pose.com
chictopia.com
pose.com
chictopia.com
http://www.patreo.dcc.ufmg.br/downloads/fashion-datasets/
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distribution function for labels in both datasets. The probability for an arbi-
trary image having at least x labels decreases almost linearly in both cases.
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Fig. 8: Frequency distribution related to the dataset: (a)-(b) for Chictopia and
Pose, respectively.

When working with visual image descriptors, a pose estimation and image
segmentation is needed since the background may make features more noise.
Thus, in order to avoid the effect of background pixels over the description of
the image, we have created a mask to separate relevant pixels, i.e., a mask
to delineate the human body. For the ideal scenario, the mask creation
was realized manually for each image. Figure 9 shows the original image and
relevant pixels.

For the realistic scenario, we ran an human pose estimation algorithm [74]
and then, create a mask based on the generated skeleton. Specifically, using the
skeleton that estimates the human pose, we employ a factor of proportionality
in order to enlarge each line of this estimation encompassing the entire pose
and delineating the human body. So, we separate the pixels and obtain the
final set of relevant pixels (i.e., non-background pixels). Figure 10 shows the
original image, a pose estimation skeleton [74] and relevant pixels.

To exploit the benefits of this mask, an adaptation was necessary in visual
descriptor algorithms to extract features only inside the region of interest
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(a) (b)

Fig. 9: Example of manual segmentation: (a) Original image (b) Pixels of
interest in white.

(mask). For the mid-level approaches, the mask was used as an intermediate
step to select only relevant points before creating the visual dictionary, since
a dense sampling was used.

(a) (b) (c)

Fig. 10: Example of automatic segmentation: (a) Original image (b) Skeleton
generated by [74] (c) Pixels of interest in white.

We discarded images according to the proportion of background/non-background
pixels. Specifically, we discarded all images for which the proportion of rele-
vant pixels (non-background pixels) is lower than a fixed threshold αmin. We
evaluate the impact of this parameter over the results in Section 6. Table 2
shows the number of remaining images (i.e., the final dataset) for different
values of αmin.

5.2 Visual Descriptors

As presented in Section 3, there is a myriad of descriptors available in the
literature [76] and choosing the most appropriate ones for a specific problem
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Table 2: Images with enough relevant pixels.

αmin # images pose.com # images chictopia.com

0.05 1,308 1,257
0.10 969 937
0.15 578 421

is a hard task, since different descriptors may produce different results. In this
paper, one contribution is to define the most interesting descriptors to solve the
clothing annotation task. Ten global descriptors were selected and evaluated.
This selection was based on extensive experiments performed in [44, 45, 40],
which pointed out to some of the most interesting image descriptors in the
current computer vision literature:

1. Color descriptors:
(a) Auto-Correlogram Color (ACC) [24]
(b) Border/Interior Pixel Classification (BIC) [53]
(c) Color Coherence Vector (CCV) [39]
(d) Global Color Histogram (GCH) [55]
(e) Local Color Histogram (LCH) [55]

2. Texture descriptors:
(a) Quantized Compound Change Hist. (QCCH) [23]
(b) Local Activity Spectrum (LAS) [57]
(c) Steerable Pyramid Decomposition (SID) [75]
(d) Unser [63]

3. Shape descriptors:
(a) Edge orientation auto-correlogram (EOAC) [31]

Six different feature extraction techniques were evaluated in order to select
the best low-level descriptors to be used in the visual dictionary creation. These
descriptors were chosen based on extensive experiments performed in [7]:

1. Scale-Invariant Feature Transform (SIFT) [30]
2. Speeded Up Robust Features (SURF) [6]
3. Binary Robust Independent Elementary Features (BRIEF) [11]
4. Binary Robust Invariant Scalable Keypoints (BRISK) [26]
5. Oriented FAST and Rotated BRIEF (ORB) [43]
6. Fast Retina KeyPoint (FREAK) [2]

For the BoVW approach, hard assignment followed by max polling were
chosen at the coding and polling stage, respectively. This choices were made
in order to get a more sparse histogram, that tends to be easier to learn with.

For BossaNova [4], localized soft assignment followed by BossaNova pool-
ing were chosen at the coding and pooling stage, respectively. After creat-
ing the visual features, a two-step signature normalization (power-law and
`2-normalization) is realized in order to get a more reliable histogram. It is
important to highlight that, for all this techniques, we used a dense sampling
to get the patches.

pose.com
chictopia.com
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5.3 Textual Features

Textual features are represented by the tags and comments associated with
an image, which may bring useful information of photos that, associated with
visual features, could help create a more robust application for clothing anno-
tation. For the realistic scenario, we created a vocabulary containing relevant
terms related to different garments items using the tags and comments crawled
with the images.

After filtering out all terms not in the vocabulary, the remaining textual
content is described with TF-IDF vectors, which presents successful results
in multi-modal approaches in the literature [14]. The TF-IDF transformation
weights each term according to its discriminative capacity. Textual similarity
between two images is assessed using the standard cosine and BM25 mea-
sures [5]. It is important to highlight that textual features are pre-processed
separately and independently of the visual ones. After the pre-processing, these
features are combined and used as input for the learning algorithm.

5.4 Baseline

The M3LDA algorithm [35] was used as baseline in this work. This method is
a representative of the state-of-the-art in multi-label, multi-modal and multi-
instance image annotation. It uses Latent Dirichlet Allocation (LDA) to create
a rank with the most likely labels of each test image. This method provides su-
perior mean Average Precision (mAP) numbers when compared against pop-
ular algorithms such as two MIML models (RankLoss [10] and DBA [73])
and two annotation models that allow region annotation (TM [13] and Corr-
LDA [8]).

5.5 Cross Validation

For both scenarios, we conducted k-fold cross-validation in order to evaluate
the algorithms. According to this protocol, a dataset is randomly split into k
mutually exclusive subset (folds) of almost the same size. For the ideal scenario,
the k− 1 subsets are chosen as training set, and the remaining one is the test
set. To work with all the dataset, the cross-validation process is repeated k
times, and each time a subset is chosen to be the test set (without repetition).
For the realistic scenario, k − 2 subsets are chosen as training set, one fold is
used as test-set, and the remaining one is the validation-set (in order to build
the MDL function, as presented in 4.1.1). This last set is only used in the latter
scenario, because in the former one we predict only one class per image, i.e.,
there is no need to build the MDL function. The process is repeated k times,
and each time a subset is chosen to be the validation set while other subset
is chosen to be the test one (without repetition), working with all dataset. At
the end, the cross-validation estimate the arithmetic mean of all runs and the
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Table 3: Cross-validation in different scenarios.

Ideal Scenario
(single-class)

Realistic Scenario
(multi-label)

MMCA Yes Yes (MDL)
M3CA No Yes (MDL)

standard deviation between each one. The reported result is the average of the
five runs.

Table 3 presents the cross-validation strategy used in both scenarios and
proposed methods. For the ideal scenario, we used cross-validation without
the validation-set when working with the MMCA method, since this scenario
is composed of single-class classification. No experiments were conducted com-
bining the ideal scenario and the M3CA approach. For the realistic scenario,
we used cross-validation with the validation-set when working with both ap-
proaches, since this is a multi-label scenario and then the MDL function need
to be built in order to define which labels should be assigned to the query
image.

5.6 Evaluation Measures

To evaluate the experiments in the ideal scenario, the overall accuracy was
used. For the realistic scenario, which may be categorized into a multi-label
classification, we used the Jaccard distance as evaluation measure. Specifically,
given the correct set of labels L∗q and the predicted set of labels Lq for each
query image q in the test-set T , the Jaccard distance J is given as shown in
Equation 5. It is important to highlight that Jaccard distance is considered as
accuracy in multi-label tasks [59]. Moveover, this metric is the most similar
to human perception as it considers all true positives, true negatives and false
positives. Nowadays, it is a standard measure to evaluate image segmentation
and annotation [15, 19, 12].

J =

∑ |{L∗q ∩ Lq}|
|{L∗q ∪ Lq}|

Nq
(5)

where Nq is the number of distinct query images in T .

6 Results and Discussion

In this section, we present the experimental results to evaluate: (i) visual fea-
tures, and (ii) proposed methods. When evaluating the visual features, we
build the experiments in order to investigate how clothing annotation is im-
pacted by different types of visual features. The second set of experiments,
to evaluate the proposed methods, were devised to investigate: (i) the most
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suitable approaches for the clothing annotation task, (ii) how each method
is impacted by the proportion of relevant pixels, and (iii) how the proposed
algorithms perform relatively to the baseline.

For investigating the presented items, we tested and varied some param-
eters to achieve more robust results. Concerning global descriptors, we have
considered only the size of the association rule used on the classifier as a pa-
rameter. For BoVW [50], the observed parameters were the size of the rule (ex-
plained in Section 3) as well as the size of the visual dictionary K (the number
of keywords generated by the mid-level representation). Regarding BossaNova
approach [4], in addition to the parameters evaluated for the BoVW, we have
observed the number of bins β used in the quantization step to encode the
distances from one local descriptor to clusters. The default values for the size
of the dictionary and the number of bins β were selected using a parameter
evaluation made by [4].

In Section 6.1, we present the experimental evaluation of the visual feature
descriptors followed by the evaluation of the proposed methods and baseline,
presented in Section 6.2. For each evaluation process, we computed the mean
processing time5, in seconds, and the standard deviation based on five execu-
tions of each procedure.

6.1 Visual Features Evaluation

In this section, we present the experimental results carried out for evaluating
the visual descriptors. As introduced in Section 5, we use the overall accuracy
and the ideal scenario for these experiments.

Figure 11 shows the overall accuracy for the global descriptors followed by
the mean processing time, in seconds, for each descriptor. Each plot groups
descriptors of the same type: color, texture and shape. Between the global
descriptors presented in Section 3, the best ones yield overall accuracy around
25%, which includes BIC, CCV, GCH and LCH descriptors. ACC, EOAC,
and LAS achieved lower accuracy (around 15%) and are good candidates to
be discarded on our next experiments.

Figure 12 shows the overall accuracy for the BoVW using different types of
local descriptors and the mean processing time of each one. The plot represents
the results varying the size of the visual dictionary (or feature vector) K,
which was chosen based on a parameter study made by [4]. Through the plot,
it is possible to see that SIFT descriptors yields a good accuracy with any
configuration of K. It is also possible to observe that when K = 1024 the
proposed approach spends much less time if compare with the others.

Figure 13 shows the overall accuracy for the BoVW using SIFT descriptor
and its processing time. The plot represents the results varying the size of the
visual dictionary (or histogram of a image) K. According to the plot, one can
see that K = 1024 yields a good accuracy (27%) if compared with the others.

5 The processing time computed is only the time spent by the classification algorithm.
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Fig. 11: The overall accuracy (left) and the processing time (right), in seconds,
obtained using global descriptors. First row shows accuracy numbers for color
descriptors. Second one shows the accuracy for texture descriptors. Last row
shows accuracy numbers for shape descriptor.

It is also the most stable, with is virtually the same accuracy for all values of
rule size. However, the best results, around 36%, were achieved with K = 2048
and rule size 2, but with the increasing of the rule size, the accuracy tends to
decrease.

Figure 14 shows the overall accuracy of BossaNova using different types of
local descriptors, followed by the mean processing time of each one. The plot
represents the results varying the size of the visual dictionary (or histogram of
a image) K, which was chosen based on a parameter study made by [4], and
preserving the number of bins used in the quantization step in β = 2.

Note that, according to these results, SIFT descriptor is the most consistent
one, since it yields good results practically independent of the configuration
of K. ORB descriptor, for example, yields good results when K = 1024 and
K = 4096, but lower accuracy when K = 2048. Another example is the SURF
descriptor, that yields good results when K = 2048 and K = 4096, but not so
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Fig. 12: The overall accuracy (left) and the processing time (right), in sec-
onds, obtained with BoVW using hard assignment coding and max pooling in
different local descriptors. First row shows the results with K = 1024. Second
one shows the results with K = 2048, and the third shows the overall accuracy
with K = 4096.
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Fig. 13: The overall accuracy (left) and the processing time (right), in seconds,
obtained with BoVW+SIFT, using hard assignment coding and max pooling.
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Fig. 14: The overall accuracy and the processing time, in seconds, obtained
with BossaNova using different local descriptors. First row shows the results
with K = 1024. Second one shows the results with K = 2048, and the third
shows the overall accuracy with K = 4096. For all results, the numbers of bins
β used in the quantization step was fixed in 2.

good with K = 1024. It is also possible to observe that when K = 1024 the
processing time spends much less time if compare with the others.

Figure 15 shows the accuracy for the BossaNova approach using only SIFT
descriptor, with different dictionary sizes K and the numbers of bins β used in
the quantization step. The values were defined based on a parameter evalua-
tion study conducted by [4]. For the parameter β, three different values were
evaluated: 2, 3 and 4. However, the results were very similar for all these values.
This happens due to a normalization made by the BossaNova approach while
creating the histogram, since with the increase β the numbers of codewords
with high value tends to decrease and the normalization tries to maintain only
the codewords with higher value. Thus, we report only the results for β = 2.
Through the plots, it is possible to see that K = 1024 yields the best results.
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Fig. 15: The overall accuracy (left) and processing time (right) obtained for
BossaNova using SIFT descriptor. The experiments were conducted using
number of bins β with three different values: 2, 3 and 4. However, the re-
sults were very similar for all the values.

6.2 Proposed Methods Evaluation

For the experiments in realistic scenario, we have selected seven descriptors
based on the experimental results presented in Section 6.1. The selected ones
are those that yield at least 21% of accuracy: BIC, CCV, GCH, LCH, QCCH,
SID and UNSER. For BoVW and BossaNova approaches, we chose only the
best local descriptor: the SIFT one. In addition to this, we choose to create
visual dictionaries with K = 1024 since they achieve best and stable results.

It is also important to emphasize that based on the results in the ideal
scenario, we could observe that smaller the size rule smaller the processing
time and, in most cases, the accuracy tends to be very close for all variations
of size rule. This allows us to conclude that the lowest value of size rule tends
to be the best choice, since we capture the best benefit, i.e., we achieve good
results in less processing time if compare with others size rules. Thus, all
experiments in this section were made using size rule 2.

The results of the MMCA approach using each one of the visual descrip-
tors are presented in Section 6.2.1. Section 6.2.2 presents the results of com-
binations of the MMCA method. Finally, a comparison between the proposed
methods and the baseline are presented in Section 6.2.3.

6.2.1 MMCA Evaluation with Different Visual Descriptors

Figure 16 shows all the results for the evaluation of the methods. For each
realistic scenario, we ran all feature descriptors using the MMCA approach
and the results are shown in terms of Jaccard distance and standard deviation
between the folds. It is possible to observe that, for most cases, SID descriptor
is the best one amongst all of them. The BossaNova (BN) approach (using
SIFT descriptor) is in second place in some cases, however, in general, mid-
level approaches were not so effective, differing from the results observed from
in the ideal scenario, where mid-level approaches were better than the global
descriptors. This can be explained by the fact that, how the keypoints of the
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mid-level strategies were extracted using dense sampling, when using a perfect
segmentation mask, as in the ideal scenario, there is no effect of the background
pixels in the codewords. However, if the mask do not perfectly adjust, wrong
codewords may be created, interfering in the final result.
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Fig. 16: Results for the MMCA method for Chictopia (left) and Pose (right).

6.2.2 Visual Descriptors Combination with MMCA

Figure 17 shows a comparison between the different combinations of the MMCA
approach. In addition to the two combinations proposed in Section 4.1.2, we
use two traditional ones: Condorcet Method (CM) and Borda Counting (BC).
All combinations were evaluated using top-5, top-6 and top-7 approach. As
expected, the combination of MMCA results yields better accuracy than the
MMCA approach. The results were very similar, with Borda Counting be-
ing better, in most cases, for the Chictopia dataset, and Majority Probability
being better, in most cases, for the Pose dataset.
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Fig. 17: The results of the combination of outputs of the MMCA for Chictopia
(left) and Pose (right). Four combinations methods were compared: Majority
Voting (MV), Majority Probability (MP), Condorcet Method (CM) and Borda
Counting (BC).
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6.2.3 Comparison with the Proposed Methods with the Baseline

Figure 18 shows a comparison between the proposed M3CA and the baseline
(M3LDA). We also included the best results yielded using MMCA as well as
using combination algorithm. As expected, accuracy increases with the number
of features available. For both dataset, M3CA provides accuracy improvements
that vary from 20% (M3LDA top-3) to 30% (M3LDA top-7). Through the
figure, it is also possible to see that with the increasing of the mask α, the
accuracy tends to increase. This reveal that small mask discard important
visual features that may be used by the learning algorithm.
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Fig. 18: The results of the M3CA and the baseline for Chictopia (left) and
Pose (right). We also considered the best MMCA using SID, and the best
combination algorithm for each dataset.

The combination of MMCA yields better accuracy than the M3CA ap-
proach, however, the MMCA approach, without combination, was not capable
to achieve accuracy close to the M3CA method. Despite of achieving best re-
sults, the accuracy of the M3CA are almost as good as the combinations, but
with much less processing time, since to get the combination, we need to get
all results from each descriptor.

Table 4 presents some examples of annotation of our proposed M3CA and
the original annotations. First example shows a case when the algorithm could
distinguish between several garment items but could not separate the sneakers
from the ground, since both are very similar. Second example shows when the
method could not distinguish the clothes, since all the garment items have
the same color. Thus, the algorithm considered all the clothes (pants, shirt,
sweater) as a single garment item, and predicted a romper. The last case is a
perfect match of the predicted labels and the original ones. This case is only
achieved when the function generated by the MDL suggested the perfect cut,
predicting only good labels.
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Table 4: Example of output of our proposed M3CA compared with the original
annotations. In the third image, the predicted annotations are identical to the
original ones.

Images

Original
Annotation

bag, hat, shorts, sneak-
ers, sweater

bag, hat, heels, pants,
shirt, sweater

bag, skirt, shoes,
sweater

Automatic
Annotation

shorts (0.12), sweater
(0,09), shoes (0,08)

hat (0.10), romper
(0.09)

skirt (0.11), bag (0.09),
shoes, (0.08) sweater
(0.08)

7 Final Remarks and Future Work

This paper presented a pointwise and a pairwise approach for clothing anno-
tation. The first one, called MMCA, takes advantages from the multi-modal
method resulting in a robust multi-label classification. The latter one, called
M3CA, takes advantage of being multi-instance/multi-modal resulting also in
a multi-label classification. It also exploits the benefits from different types of
visual features. We also proposed two methods of combination of the pointwise
results.

The novelty of this work relies on a multi-instance method that is capable of
use the information from an image creating a sparse classifier. The performed
experiments demonstrate the benefit of it, since it yields good results with less
processing time when compared with state-of-the-art algorithm.

Considering the descriptors, SID descriptor is the best one amongst all of
them. The BossaNova approach (using SIFT descriptor) is in second place in
some cases, however, in general, mid-level approaches were not so effective
for the realistic scenario, differing from the results observed from in the ideal
scenario. This can be explained by the fact that, if the mask do not perfectly
adjust, wrong codewords may be created, interfering in the final result of the
mid-level strategies. Because SID descriptors analyze the image as a whole,
this problem is softened.

In three cases, the best result for the investigated problem were achieved
using combinations for the output of the MMCA approach: Majority Proba-
bility yields best results for Pose dataset in two cases, while Majority Voting
achieves best results for Chictopia in one configuration. For the remain cases,
Borda Counting achieves the best results in the last two configurations of the
Chictopia dataset while Condorcet Method achieves the best results in the last



Title Suppressed Due to Excessive Length 31

case for the Pose Dataset. However, in the cases where the proposed combi-
nation methods loses, it generally stays close to the best results, which makes
this an advantage, since they are easier to implement than the traditional ones.

Though, the combination of MMCA results yields better accuracy than the
M3CA approach, the MMCA approach, without combination, was not capable
to achieve accuracy similar to the M3CA method. Despite of achieving best
results, the accuracy of the M3CA are almost as good as the combinations,
but with much less processing time spent, since to get the combination, we
need to get all results from each descriptor.

Although M3CA is designed for clothing annotation, it is possible to be
applied to others tasks. In the future, we plan to adapt the proposed M3CA
for clothing parsing and also using M3CA with different learning techniques.

Acknowledgements The authors would like to acknowledge grants from CNPq (grant
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68. Weber M, Bäuml M, Stiefelhagen R (2011) Part-based clothing segmenta-
tion for person retrieval. In: International Conference on Advanced Video
and Signal-Based Surveillance, pp 361–366

69. Xie L, Pan P, Lu Y (2015) Markov random field based fusion for supervised
and semi-supervised multi-modal image classification. Multimedia Tools
and Applications pp 613–634

70. Yamaguchi K, Kiapour MH, Ortiz LE, Berg TL (2012) Parsing clothing
in fashion photographs. In: Conference on Computer Vision and Pattern
Recognition, pp 3570–3577

71. Yamaguchi K, Kiapour MH, Berg TL (2013) Paper doll parsing: Retriev-
ing similar styles to parse clothing items. In: International Conference on
Computer Vision, pp 3519–3526

72. Yang M, Yu K (2011) Real-time clothing recognition in surveillance videos.
In: International Conference on Image Processing, pp 2937–2940

73. Yang S, Zha H, Hu B (2009) Dirichlet-bernoulli alignment: A generative
model for multi-class multi-label multi-instance corpora. In: Neural Infor-
mation Processing Systems, pp 2143–2150

74. Yang Y, Ramanan D (2011) Articulated pose estimation with flexible
mixtures-of-parts. In: Conference on Computer Vision and Pattern Recog-
nition, pp 1385–1392



36 Keiller Nogueira∗ et al.

75. Zegarra J, Leite N, Torres R (2008) Wavelet-based feature extraction for
fingerprint image retrieval. Journal of Computational and Applied Math-
ematics

76. Zhang D, Lu G (2004) Review of shape representation and description
techniques. Pattern Recognition 37(1):1–19

77. Zhang D, Islam MM, Lu G (2012) A review on automatic image annotation
techniques. Pattern Recognition 45(1):346–362

78. Zhaolao L, Zhou M, Wang X, Fu Y, Tan X (2013) Semantic annota-
tion method of clothing image. In: International Conference on Human-
Computer Interaction, pp 289–298

79. Zhou Z, Zhang M, Huang S, Li Y (2012) Multi-instance multi-label learn-
ing. Artificial Intelligence 176(1):2291–2320

View publication stats

https://www.researchgate.net/publication/286413689

	Introduction
	Related Work
	Background Concepts
	Machine Learning Approaches for Clothing Annotation
	Experimental Protocol
	Results and Discussion
	Final Remarks and Future Work

