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In this article we study the extent to which the interplay
between recommended items affect recommendation
effectiveness. We introduce and formalize the concept
of co-utility as the property that any pair of recom-
mended items has of being useful to a user, and exploit
it to improve collaborative filtering recommendations.
We present different techniques to estimate co-utility
probabilities, all of them independent of content infor-
mation, and compare them with each other. We use
these probabilities, as well as normalized predicted rat-
ings, in an instance of an A/P-hard problem termed the
Max-Sum Dispersion Problem (MSDP). A solution to
MSDP hence corresponds to a set of items for recom-
mendation. We study one heuristic and one exact solu-
tion to MSDP and perform comparisons among them.
We also contrast our solutions (the best heuristic to
MSDP) to different baselines by comparing the ratings
users give to different recommendations. We obtain
expressive gains in the utility of recommendations and
our solutions also recommend higher-rated items to the
majority of users. Finally, we show that our co-utility sol-
utions are scalable in practice and do not harm recom-
mendations’ diversity.
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Introduction

People from widely varying backgrounds are inundated
with options that lead to a situation known as information
overload, where the presence of too much information inter-
feres with decision-making processes. To circumvent it, con-
tent providers and electronic retailers have to identify a
small yet effective amount of information that matches
users’ expectations. In this scenario, recommender systems
have become tools of paramount importance, providing per-
sonalized recommendations that intend to suit user needs in
a satisfactory way.

The dominant type of recommender systems is known as
collaborative filtering. It makes predictions about the inter-
ests of a user by gathering taste information from many
other users, and works as follows: 1) prediction step—keeps
track of users’ known preferences and processes them to pre-
dict items that may be interesting to other users; ii) recom-
mendation step—selects predicted items, optionally ranks
them, and recommends them to users (Adomavicius & Tuz-
hilin, 2005). In the prediction step, scores are independently
assigned to items by taking users’ historical data into
account (Ricci, Rokach, Shapira, & Kantor, 2011). The
higher the score, the higher the estimated compatibility
between the item and the user. It is thus intuitive that recom-
mending the highest scored items should result in the highest
accuracy. Nonetheless, accurate recommendations are not
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necessarily useful ones, because other dimensions or proper-
ties associated with the recommended items may affect rec-
ommendation effectiveness. Examples of dimensions or
properties that are typically taken into account during the
recommendation step include diversity or competition
(Xiong, Wang, Wenkui Ding, & Liu, 2012; Zhang & Hur-
ley, 2008).

In this article we focus on the co-utility property, which is
the property that any pair of items has of being useful to a
user—two items are co-useful with respect to a user if s/he
considers both of them useful. The motivation behind using
this property comes from the Theory of Choice, which indi-
cates that preference among items depends not only on the
items’ specific features, but also on the presented alterna-
tives (Tversky, 1972). In our case, the selection of an item is
based not only on its independently predicted rating, but also
on how likely it is to be co-useful with other selected items.
More specifically, for each pair of items we compute their
probabilities of being co-useful and use this information in
methods designed to generate recommendations. Some of
the contributions of this work include: 1) a definition of co-
utility and methods to estimate co-utility probabilities; ii) an
objective function that combines predicted values and co-
utility probabilities, its reduction to a popular Facility Loca-
tion Analysis problem (Borodin, Lee, & Ye, 2012), and algo-
rithms to tackle it; iii) a comparison between the usefulness
of our method and different baselines; and iv) an analysis of
the scalability, diversity, and optimality of recommendations
produced by our method.

In the remainder of this article, “Background and Related
Work™ section positions this work in the related literature.
“Combining Individual and Pairwise Scores” section intro-
duces our approach to estimate co-utility probabilities,
whereas “Algorithms” section presents algorithms to tackle
the optimization problem involved in exploiting co-utility.
“Experimental Setup” and “Experimental Results” sections
discuss the setup and results of the empirical evaluation of
our approach. Lastly, “Conclusions and Future Work™ sec-
tion concludes the article.

Background and Related Work

Collaborative filtering is traditionally concerned with pre-
dicting the feedback a user would give to an item. Several
predictors have been studied for collaborative filtering, which
can be broadly grouped into two classes: memory-based and
model-based (Breese, Heckerman, & Kadie, 1998). Memory-
based predictors operate over the entire database to compute
similarities between users or items, usually by applying dis-
tance metrics such as the cosine distance, and then they pro-
duce predictions. In contrast, model-based predictors use the
database to learn models, and then use the learned models for
predictions. Instead of producing a numeric prediction for a
given user-item pair, collaborative filtering can be tackled as
a ranking task, often referred to as Top-n recommendation
(Cremonesi, Koren, & Turrin, 2010), in which the goal is to
produce a list of items to be recommended for a given user.

Dependency-Agnostic Recommendation

Traditionally, the items included in a recommendation
list are selected independently from one another, for exam-
ple, based on their individually estimated recommendation
scores. When explicit feedback is available, the state-of-the-
art dependency-agnostic approaches for Top-n recommenda-
tion are NNCosNgbr (Non-normalized Cosine Neighbor-
hood) and PureSVD (Pure Singular Value Decomposition)
(Cremonesi et al., 2010). The NNCosNgbr algorithm is
memory-based and works on the concept of neighborhood,
computing predictions according to the feedback given to
similar items or users—in this article, we focus on similar
items. The algorithm computes similarities between items
with the adjusted cosine similarity, and also takes biases into
consideration, which are related to how users rate items.
Item biases include the fact that certain items tend to receive
better feedback than others. Similarly, user biases include
the tendency that certain users have of giving better feed-
back than others. In contrast, the PureSVD algorithm is
model-based and works on latent factors, that is, users and
items are modeled as vectors in the same space (Cremonesi
et al., 2010). PureSVD factorizes a matrix filled up with
numerical feedback given by users to items, and then pre-
dicts the score of user u# for item i via the inner-product
between their corresponding vectors.

In this article, competitive dependency-agnostic Top-n rec-
ommenders are important for two reasons. First, the optimiza-
tion problem we tackle uses individual item scores that
correspond to the predictions generated by such recommen-
ders. Second, our approach extends Top-n recommendations
by addressing dependencies among items—that is, by employ-
ing dependency-aware algorithms—and thus we use the stud-
ied predictors for Top-n recommendations as baselines.

Dependency-Aware Recommendation

Attempts to abandon the assumption that items are inde-
pendent date back from information retrieval studies in the
1980s. By that time, researchers started questioning the
Probability Ranking Principle (PRP), according to which
documents should be retrieved in decreasing order of their
predicted probabilities of relevance (Robertson, 1977).
Bookstein (1983), for instance, presented decision-theoretic
ranking models that take document interactions into account
iteratively. Later on, researchers started to focus on
diversity-based reranking, and they also had to address rela-
tions among items to reduce intersimilarities (Santos, Mac-
donald, & Ounis, 2015). In particular, Carbonell and
Goldstein (1998) proposed the concept of Maximal Marginal
Relevance (MMR) to diminish redundancy while maintain-
ing query relevance. MMR is a criterion that has been
widely adopted in search and recommendation contexts
(Carbonell & Goldstein, 1998; Santos, Macdonald, & Ounis,
2010; Vargas & Castells, 2011; Zuccon, Azzopardi, Zhang,
& Wang, 2012). It consists of a ranking formula that, as well
as our method, takes the individual relevance of items and
relations among them both into account. Given the wide

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—October 2017 2381

DOI: 10.1002/asi

U801 SUOWIWD BAER1D 3|edljdde auy Aq peuiench a1e e e YO @SN J0 SN 104 Azeiq 1 8UIIUO AB]IM UO (SUORIPUOD-PUB-SWLIBY WD AB| 1M ARe.q 1 [eu1juo//Sdy) SUORIPUOD Pue swie L 8Ll 85 *[5z02/80/62] Uo Ariq18ulluO A8|im ‘Zenbuiwog oLesiieg prerainog edelud a0 BwoUOINY PepSRAIN AJ £S8EZ°Se/Z00T OT/10P/LI0D™B] 1M ARelq 1 jeuljuo’ IPISSe//Sdny wo.y pepeojumod ‘0T ‘LTOZ ‘E79TOEEE



scope of applications for MMR, there are different ways of
implementing it, but generally, at each iteration MMR
returns the highest-valued item with respect to a tradeoff
between relevance and diversity.

In the context of recommender systems, several works
exploited relations among items to improve diversity
(Ribeiro et al., 2014). Zhang and Hurley (2008) modeled the
competing goals maximizing relevance and diversity as a
binary optimization problem, relaxed to a trust-region prob-
lem. Wang (2009) presented a document ranking paradigm
inspired by the Modern Portfolio Theory in finance (Elton,
Gruber, Brown, & Goetzmann, 2009), where both the mean
relevance of predictions and their variance are taken into
account. In that context, variance works as a measure of
risk. Based on this mean-variance principle, they devised a
document ranking algorithm, abbreviated henceforth as
MVA. Zuccon et al. (2012) showed how Facility Location
Analysis, taken from Operations Research, works as a gener-
alization for state-of-the-art retrieval models for diversifica-
tion in search. They treated the Top-n search results as
facilities that should be dispersed as far as possible from
each other, and implemented MMR by using Kullback-Lei-
bler divergence as the distance metric for pairs of items.

Relations among items other than diversity have also been
exploited in the search and recommendation literature. Tver-
sky (1972) proposed a model according to which preference
among items is influenced by the presented alternatives. The
model, called Elimination By Aspects (EBA), states that a
consumer chooses among options by sets of aspects, eliminat-
ing items that do not satisfy such aspects. A variation of EBA
for commerce search was proposed by Sheffet, Mishra, and
Ieong, (2012), who introduced the Random Shopper Model,
where each item feature is a Markov network over the items
to be ranked, and the goal is to find a weighting of the fea-
tures that best reflects their importance. Relatedly, Xiong
et al. (2012) observed that the Click-Through Rate (CTR) of
an ad is often influenced by the other ads showed alongside.
They designed a continuous conditional random field for click
prediction focusing on how similarities influence items’
CTRs. Weston and Blitzer (2012) also incorporated interitem
similarity during ranking to improve recall. They used a latent
structured model to learn the structure of the ranked list while
assigning scores to items, merging prediction, and recommen-
dation steps. Hansen and Golbeck (2009) addressed the task
of recommending collections of items—music lists and mix
tapes, for example. This task is different from the one we
tackle, given that in their problem each recommended item is
actually a collection of items (mix tapes, for instance). In spite
of that, they also considered relations between items as an
aspect that contributes to the overall value of a collection. In
particular, they modeled the value of individual items, co-
occurrence interaction effects, and order effects including
placement and arrangement of items.

In this article we adopt Wang (2009) and Zuccon et al.
(2012)’s techniques as baselines. The former is close to ours
because it exploits correlations between documents, via vari-
ance, in a collaborative filtering scenario, even though its

focus is on diversity. The latter relates to our work because
they also use Facility Location Analysis as a framework,
although also focused on diversity. Given that our method
and theirs share the same theoretical framework, we think it is
appropriate to compare them. We do not compare our method
with that of Weston and Blitzer (2012) because what they pre-
sent is an improvement over a specific class of latent factor
models, whereas our method is also suitable for memory-
based approaches. As for Sheffet et al. (2012), we discarded it
because it requires information about item features, and there-
fore it is not a pure collaborative filtering method.

Max-Sum Dispersion Problem (MSDP)

The exploration of relationships among items is becom-
ing popular in the Recommender Systems literature. Some
works, including Zuccon et al. (2012) and Vieira et al.
(2011), consider the setting where they are given a set of
candidate items / and a set valuation function f defined on
every subset of /. For any subset R C [, the overall objective
is a linear combination of f{R) and the sum of dissimilarities
induced by the items in R. The goal is to find a subset R
with a given cardinality constraint—for example, |R|=5 if
five items must be selected out of /—that maximizes the
overall objective (Borodin et al., 2012). Our objective, as
discussed in “Combining Individual and Pairwise Scores”
section, is similar to this. Our valuation function is the sum
of predicted ratings for items in R and we combine it with
the sum of co-utility probabilities induced in R.

These objectives map into a well-known Facility Loca-
tion Analysis problem: the weighted version of the MSDP.
MSDP is a well-studied problem in Operations Research
(Gollapudi & Sharma, 2009). A common scenario is the
placement of facilities in a given area in such a way that the
distances between them, as well as their individual relevan-
ces, are maximized. Analytical models for MSDP assume
that an area is represented by a set V={vy,..., v} of k ver-
tices with a metric distance between every pair of vertices.
The objective is to locate n < k facilities such that some
function of distances between facilities, combined with indi-
vidual relevances, is maximized. MSDP is known to be N P-
hard, but it admits approximation algorithms in some cases.
As we show in “Combining Individual and Pairwise Scores”
section, approximations are not admitted in our case.

Combining Individual and Pairwise Scores

In this work we propose to exploit two fundamental sour-
ces of evidence in order to select which items should be rec-
ommended to a user: i) individual scores ¢, that correspond
to ratings predicted by any Top-n recommender, and ii) pair-
wise scores 0 that quantify co-utility probabilities among
items. Scores ¢ and 0 are always real values, and they are
combined in a bi-criteria optimization problem. In “Pairwise
Scores” section we present techniques to compute pairwise
scores 0 and in “Combining Scores Using MSDP” section
we present techniques to combine individual and pairwise
scores using MSDP.

2382 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—October 2017

DOI: 10.1002/asi

U801 SUOWIWD BAER1D 3|edljdde auy Aq peuiench a1e e e YO @SN J0 SN 104 Azeiq 1 8UIIUO AB]IM UO (SUORIPUOD-PUB-SWLIBY WD AB| 1M ARe.q 1 [eu1juo//Sdy) SUORIPUOD Pue swie L 8Ll 85 *[5z02/80/62] Uo Ariq18ulluO A8|im ‘Zenbuiwog oLesiieg prerainog edelud a0 BwoUOINY PepSRAIN AJ £S8EZ°Se/Z00T OT/10P/LI0D™B] 1M ARelq 1 jeuljuo’ IPISSe//Sdny wo.y pepeojumod ‘0T ‘LTOZ ‘E79TOEEE



Pairwise Scores

In this section we address different techniques for esti-
mating pairwise scores 0. The pairwise score 0;; represents
the probability of items i/ and j being co-useful to any user.
If we consider E;; as a random variable that represents the
event “Items i and j are co-useful to l;; users,” and assume
that E; follows a binomial distribution, then its probability
mass function is given by:

Tl fij 0y) = 0 (1= 05", (1)

ij
where f;; is the number of users that gave feedback to both i
and j.

To estimate 0, we employed the estimators Maximum
Likelihood and Empirical Bayes (Bishop, 2006). Maximum
Likelihood gives the maximum of f(l;j; fij, 0;;) by using the
point where its derivative is zero and its second derivative is
negative. Assuming that f(l;;f;, 0;;) # 0, the derivation of
Maximum Likelihood leads to:

9,=}lg € [0,1]. )

y

Maximum Likelihood is simple but it is not always suitable
when pairs of items have poor support. This is very common
in recommender systems, as users give feedback to a very
small fraction of items. Empirical Bayes has the advantage of
being more robust when not much data are available. An esti-
mate score with Empirical Bayes for the number of users /;
that liked both items 7 and j, with probability of co-utility 0;
for items 7 and j, can be derived by combining a conjugate
prior for the binomial distribution as a prior distribution on 0;;
and a beta-binomial distribution for the marginal distribution
of /;;. In our case, to estimate scores with Empirical Bayes we
follow the rationale exemplified in Casella (1992) for the coin
tossing problem,' whose modeling is adequate for the estima-
tion of ;. Consider the following prior distribution on 0;:

ﬁ(@,'j'):601'j'(1 _Hl'j); (3)

which is symmetric around %, indicating that we have no

prior opinion as to which side of % a specific 0;; lies. We do
not assume anything about how co-useful items i and j are
because this can vary significantly from one pair of items to
another. This prior is a conjugate prior density, which
greatly simplifies the ensuing calculations. We calculate the
distribution of 0;; given /; as:

L(f+4)

m(0;l)= D (1 +2)T(fi—1;+2)

X0 (10,

“

In the coin tossing problem, a coin is tossed n times and the
unknown probability of a head is p. The estimator is designed to esti-
mate the observed number y of heads. In our case, /;; can be interpreted
as y, p as 0;; and f;; as n.

Details about this derivation can be found in Casella (1992).

This posterior distribution contains all information neces-
sary for Bayesian inference (Casella, 1992). If a point esti-
mate of 0; is needed, a Bayes point estimator is given by the
mean of 7(0;]|/;), which is what we effectively use in this

paper:
1
fi i fi 1
E 9," ll“ :J 0,“77: 0," ll d@,": J XJ+ 1_ J X —].
( .I| /) 0 7 ( .I| j) 7 ﬁj+4 ﬁj ﬁ]+4 2
&)

To compute 0;; with either Maximum Likelihood or Empiri-
cal Bayes, we assume that the random variable E;; is the
same for any user u and therefore 0;; is independent of the
user in question. Another important consideration is that,
ideally, E;; should only imply that i and j were co-useful if
they were presented in the same recommendation. Unfortu-
nately, the data sets used in our experiments do not include
such information. Hence, we compute 0,; by considering f;;
and /; regardless of temporality. To give an example, if a
user liked Titanic in November 2012 and Matrix in June
2011, we consider that they were co-useful to her/him even
though s/he was not presented with them simultaneously. It
is important to stress that this is a limitation of our experi-
mental setup, but not of our model. Note as well that our
model does not take into account how co-utility varies from
one user to another. This is a simplification that turned the
model much more scalable and easy to implement, as there
were fewer random variables with values to be estimated.

It is crucial to point out that scores 0 differ from collabo-
rative filtering item-to-item similarities. In particular, these
similarities take all feedback into account. For instance, if a
set of common users rated two items negatively, this contrib-
utes to their cosine similarity as much as positive ratings
would. In the case of scores 0, what is measured is co-
utility—not similarity—and only feedback attesting that
items were actually useful—for example, rated positively—
is taken into consideration.

Another critical distinction between scores 0 and item-to-
item similarities has to do with their scope. Item-to-item
similarities are computed between two sets of items in the
prediction step: i) items that are part of the user’s historical
data, and ii) items to which the user has not given feedback
yet. The idea is to retrieve candidates for recommendation
that are likely to match the user’s taste. In this step, no rela-
tion among the retrieved candidates is taken into account.
Scores 0, on the other hand, capture the co-utility probabili-
ties of pairs of retrieved candidates.

Combining Scores Using MSDP

In this section we present a formulation to MSDP in order
to combine individual and pairwise scores to select n items
out of k£ for recommendation. Our maximization problem is
therefore posed as selecting a set of items R={ij,...,i,}
that maximizes the following function:
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Byp= 0.1 fn=02

Item #1 ltem #2 ltem #3

8,3=07

FIG. 1. The triangle inequality is not satisfied, as 03 > 01, +0,3.

1 1
WZ %‘*’W( > Oy (6)

ijeR i) ER?

where the normalization in both summations is important to
keep their contributions fair. Scores ¢ and 6 are also normal-
ized to the interval [0, 1].

Structurally, this problem is an instance of MSDP. As
previously mentioned, MSDP is a Facility Location Analysis
problem, which is N'P-hard. When pairwise scores 0 satisfy
the triangle inequality, MSDP admits a two-approximation
algorithm (Borodin et al., 2012). On the other hand, it was
demonstrated that if the triangle inequality is not satisfied,
there is no polynomial time approximation algorithm to
MSDP unless P=NAP (Ravi, Rosenkrantz, & Tayi, 1994).
The co-utility probabilities that we exploit in this work,
namely, pairwise scores €, do not satisfy the triangle
inequality, as illustrated in Figure 1. Hence none of the algo-
rithms we analyze in this work have bounds on solution
quality.

There are different ways of obtaining an exact solution to
this optimization problem. For instance, one can trivially enu-
merate all n-combinations of a set with & items and choose
the one that sums up to the highest value. It is also possible to
use integer programming to solve it. We describe how we
obtain exact solutions to MSDP in “Algorithms” section.

Algorithms

To tackle MSDP under a practical viewpoint, we studied
a suboptimal, polynomial algorithm that is widely related to
this problem. We also study an integer programming
approach to MSDP. This problem cannot be solved effi-
ciently by exact algorithms, albeit it is important to under-
stand how it can be optimally solved.

Greedy

A popular heuristic to MSDP, here referred to as Greedy,
was proposed by Borodin et al. (2012). Greedy is popular
because, when pairwise scores 0 satisfy the triangle inequal-
ity, it is a two-approximation algorithm to MSDP. It runs
fast and yields acceptable solutions in practice, even when
scores O do not satisfy the triangle inequality. Greedy is
shown in Algorithm 1. / is a set of items, /4 corresponds to

their individual scores, and / corresponds to their pairwise
scores. The output R is a set with n selected items, where
n < k. Greedy starts by selecting the item that has the best
individual score i in line 1. All other n—1 selected items are
chosen in a way that maximizes the equation in line 5, where
the maximized set is comprised by all items R that were
already chosen and the new item itself.

Algorithm 1 Greedy

Input: I:{ila e vik}v 14):{(1)1-1, cee d)ik}’ 19:{91'11'2;
0,'11‘3, feey 9,‘/‘711“}, and 1 < N < |I|
Output: Selected items R

1 <= argmax;; ¢,

‘R < {i}

<=1\ {i}

: while |R| < N do

J= argma’?;‘el% o > O
R <=RU{j} keR
1<1\{j}

: end while

:return R

Exact Solution

Since MSDP is A/P-hard, it can only be solved effi-
ciently by suboptimal algorithms. Despite that, it is impor-
tant to understand how to model an exact algorithm to
MSDP, especially if comparisons between optimal and sub-
optimal solutions are of interest. We decided to model
MSDP under the integer programming paradigm because of
the rather fast exact solvers available. The parameters to
model our integer programming problem are a set of items
I={iy,...,ix}, their corresponding individual scores
Iy={¢; ..., ¢, }. the pairwise scores for all combinations
of itemsin 7, [y={0;,, ..., 0;_,i }, and the number of items
for selection n. We come up with binary variables ¥ ={yy,

.., Yk} to represent which items are selected (y; =1 if and
only if i; is selected), and rewrite MSDP as:

- 1 1
maximize mZngbj-i- —22 Z ViviOi,
jel 1 =gty
subject to yi €{0,1} Vi, %)
S e
yi€Y

To frame this program in the integer programming
paradigm, we have to linearize MSDP’s products y;yx as
variables xj=y;yx Vj,Vk. Considering that y;, and y, are
binary variables, we have the following constraints for varia-
bles xj:

Xk < Yj
Xk < Vi ®)

Xje > yityw—1L.

2384 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—October 2017

DOI: 10.1002/asi

U801 SUOWIWD BAER1D 3|edljdde auy Aq peuiench a1e e e YO @SN J0 SN 104 Azeiq 1 8UIIUO AB]IM UO (SUORIPUOD-PUB-SWLIBY WD AB| 1M ARe.q 1 [eu1juo//Sdy) SUORIPUOD Pue swie L 8Ll 85 *[5z02/80/62] Uo Ariq18ulluO A8|im ‘Zenbuiwog oLesiieg prerainog edelud a0 BwoUOINY PepSRAIN AJ £S8EZ°Se/Z00T OT/10P/LI0D™B] 1M ARelq 1 jeuljuo’ IPISSe//Sdny wo.y pepeojumod ‘0T ‘LTOZ ‘E79TOEEE



TABLE 1. Statistics of the data sets used in our investigations.

Feature MovieLens-100K  MovieLens-IM  Jester-1
Domain Movies Movies Jokes
Number of users 943 6,040 24,983
Number of items 1,682 3,900 100
Number of ratings 100,000 1,000,209 1,810,455
Minimum ratings/user 20 20 36
Sparsity rate 0.937 0.958 0.275
Ratings range [1,5] [1,5] [-10,10]
Mean rating value 3.588 3.703 1.877

That being stated, we rewrite our problem as:

L 1 1
maximize ‘TZyj¢j+ *22 Z ik Oje
|jel |[| Jel kel|k#j
subject to vi €{0,1} Vi
X <y 9)
Xk < Yk

Xk > yitye—1

Z}’i:N~

€Y

The algorithms addressed in this section are compatible with
any recommender system where it is possible to estimate
individual scores ¢ and pairwise scores 0 for candidate
items. Therefore, these algorithms are a priori compatible
with systems that employ both matrix factorization techni-
ques and fingerprinting methods.

Experimental Setup

In this section we discuss the experimental setup that sup-
ports our investigations in “Experimental Results” section. In
particular, we aim to answer the following research questions:

* Q1. How useful are our produced recommendations?

* Q2. How diverse are our produced recommendations?

* Q3. How far from optimal are our produced recommendations?
* Q4. How scalable is our method?

Studied Data sets

For the experiments described in “Experimental Results”
section we used three data sets: MovieLens—lOOK,2 Movie-
Lens-1M,? and Jester-1.* We worked with the MovieLens
data sets and Jester-1 due to their popularity in the collabora-
tive filtering literature. In this section we present a character-
ization of these data sets in order to facilitate posterior
experiment analyses.

Table 1 summarizes some of the data sets’ main features.
We can see that the ratings in the MovieLens data sets are

2http://Www.grouplens.org/system/files/ml- 100k.zip
3http://www.grouplens.org/system/files/ml-1m.zip
“http://goldberg berkeley.edu/jester-data/jester-data-1.zip
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FIG. 2. Distributions of ratings for Jester-1. Each bar consists of rat-
ings in intervals [-10.00; —9.00), [—9.00; —8.00), ..., [8.00, 9.00),
[9.00; 10.00]. [Color figure can be viewed at wileyonlinelibrary.com]

discretized and vary from 1 to 5, and users in Jester-1 can
assign any real number from —10 to 10 to any joke. Another
key difference is that the MovieLens data sets are signifi-
cantly sparser than Jester-1. In the former, users rated at least
20 movies, whereas in the latter feedback was given to at
least 36 jokes. Considering that there are only 100 jokes in
Jester-1, this value corresponds to a minimum of 36%.

As for the mean rating value, Table 1 indicates that Mov-
ieLens users tend to give average-to-good ratings to movies.
This reveals that users prefer to manifest their tastes by rating
movies they find enjoyable. As for Jester-1, the mean rating
is more neutral. With respect to the MovieLens data sets, we
adopted 4 as a threshold for high ratings, as in Ricci et al.
(2011). As for Jester-1, we decided to adopt 5.00 as a thresh-
old for high ratings because this value is considerably higher
than its mean rating and than the interval [2.00; 3.00), which
is associated with most ratings in this data set, as illustrated
by Figure 2. It is important to choose a value that is above
interval [2.00;3.00) because one could claim that most users
were neutral with respect to the jokes they rated.’

Recommendation Baselines

The baselines that we use can be divided into two catego-
ries: dependency-agnostic and dependency-aware. Depen-
dency-agnostic baselines do not assume interdependencies
among items for recommendation, generate simple Top-n
recommendations, and in this work they are associated with
predictors PureSVD and NNCosNgbr. Individual scores are
predicted for items and, in a dependency-agnostic fashion,
the Top-n ones are recommended. Dependency-aware base-
lines take individual item scores and relations among them

SWe believe that we could alternatively have used a value higher
than 5.00 as well, but given the extent of our experiments we only used
one threshold value for each data set, and 5.00 was a reasonable choice.
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into consideration. In this work, these baselines are MVA
and MMR, introduced in “Dependency-Aware Recommen-
dation” section. MVA and MMR exploit relations among
items as a means of improving diversity in recommendation
lists, while keeping relevance.

For all studied methods, individual scores were predicted
by PureSVD with 50 latent factors and NNCosNgbr.
Greedy’s pairwise scores were calculated with the Empirical
Bayes estimator. We set MVA’s parameter o, that works as a
risk regulator, as 0.05 after a grid search involving values that
ranged from —5 to 5, that is, MVA is slightly risk-lower in
our experiments and prompted the best MVA’s results. As to
MVA'’s covariance matrix, we computed it by considering,
for every pair of items, the ratings they received by a common
set of users. Finally, MMR uses a term regulator A to balance
the contribution of items dissimilarities in the generation of
final scores. We used A =1 because it prompted the best
results in a grid search over values from 0.01 to 1. The com-
putation of dissimilarities between items’ rating distributions
was made by using Kullback—Leibler divergence.6

Validation Metrics

To validate our work, we use the explicit feedback users
give over items as a utility metric: the better the feedback, the
more useful the recommendations are (Breese et al., 1998;
Liu & Belkin, 2015). For example, in movie ratings, where a
5-star movie is considered an excellent movie, we can assume
that recommending a 5-star movie is more useful than recom-
mending a 4-star one (Ricci et al., 2011). Considering that we
are focused on recommendations’ utility, and that we use rat-
ings as a utility metric, we compare different algorithms by
contrasting the ratings their selected items receive.

We applied cross-validation in all experiments, and ran-
domly partitioned the data sets into training and test data.
Consequently, we ignored rating timestamps, whenever they
were present, while splitting the data. Cross-validation is
interesting in our case because we only analyze three data
sets, and by crossing training and data partitions we increase
the number of different scenarios on which we run experi-
ments. Considering that recommendation lists are generated
over items in the test data, to which we know the actual rat-
ings, our experiments simulate scenarios where users would
rate all recommended items. Other works that opt for cross-
validation are Vargas and Castells (2011) and Sarwar, Kary-
pis, Konstan, and Riedl, (2001).

For each data set, the training data are explored by predic-
tors PureSVD and NNCosNgbr to generate individual scores
¢. The training data are also used to estimate pairwise scores
0 and other pairwise information required by the baselines.

Finally, for all experiments, recommendation lists have
sizes |R|=5, 10,20 because these are popular values in the
related literature. We report means of values per fold and,

The use of rating distributions is particularly indispensable when a
strict collaborative filtering schema has to be adopted, or when no infor-
mation about the items is available. This is the scenario assumed for
most of our experiments.

additionally, means of ratings in some experiments. In this
work we also make comparisons under a diversity perspec-
tive. In our scope, diversity is defined as the opposite of sim-
ilarity, and although this is not the focus of our work, we
briefly investigate whether our method hurts recommenda-
tions’ diversity. The diversity metric we apply, intra-list dis-
tance (ILD), was proposed by Zhang and Hurley (2008) and
works as follows:

2
IID=— -~ Z 1—sim(ig, i), (10)
IR|(|R[—1) ini€R 1<k

where R is comprised by all selected items and sim(iy, i;) is
a generic similarity measurement for items i, and i,. Further
discussions on how we computed items’ similarities and per-
formed experiments with ILD are presented in
“Experimental Results” section.

Experimental Results

In this section we present experiments and results that
address and answer research questions Q1, Q2, Q3, and
Q4 presented in “Experimental Setup” section. In
“Recommendation Usefulness” section we compare Greedy
with dependency-agnostic and dependency-aware baselines
in order to understand how useful Greedy’s recommenda-
tions are. In “Relating Co-Utility and Diversity” section we
investigate how diverse Greedy’s recommendations are. In
“Recommendation Optimality” section we compare recom-
mendations obtained with Greedy and recommendations
that correspond to exact solutions to MSDP. Finally, In
“Analyzing the Scalability of Our Method” section, we dis-
cuss Greedy’s scalability.

Recommendation Usefulness

In this section we compare Greedy with different baselines
in order to answer research question Q1: How useful are our
produced recommendations? We use dependency-agnostic,
Top-n baselines with predictors PureSVD and NNCosNgbr
and dependency-aware baselines MVA and MMR. It is
important to mention that Greedy, MVA, and MMR use indi-
vidual and pairwise scores, and in all cases individual scores
were generated by using either PureSVD or NNCosNgbr.

For all experiments reported in the tables, we assessed
the significance of statistical equivalences and differences
by applying paired #-tests with a 95% confidence interval.
The paired #-tests were applied over distributions of mean
predicted ratings (one mean per user in the test fold) and
lowest predicted ratings (one per user in the test fold). The
lowest predicted ratings could be approximated by a Gauss-
ian distribution in all data sets and means of ratings, consid-
ering that the sample sizes for the paired t-tests were always
at least 200, could also be approximated by a Gaussian dis-
tribution according to the Central Limit Theorem (Hastie,
Tibshirani, & Friedman, 2001). It is important to keep in
mind that, for all experiments, very distinct reported average
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TABLE 2. Mean average rating for recommendation lists of size

n=7>5, 10, and 20.

TABLE 3. Lowest average rating for recommendation lists of size
n=75, 10, and 20.

@5 @10 @20 @5 @10 @20
MovieLens-100K MovieLens-100K
PureSVD 3.924 +0.030 3.837 £0.023 3.738 £0.019 PureSVD 2.881 = 0.062 2.404 = 0.060 2.100 £ 0.059
+MVA 3.923 +0.030 3.830 = 0.023 3.720 £0.019 +MVA 2.870 £ 0.064 2.405 = 0.061 2.075 £0.059
+MMR 3.884 +0.030 3.799 £ 0.023 3.698 £0.019 +MMR 2.798 £ 0.063 2.339 £ 0.061 2.037 +0.059
+Greedy 3.987 = 0.029 3.881 £0.023 3.768 = 0.019 +Greedy 3.003 = 0.065 2.481 = 0.062 2.123 £ 0.060
NNCosNgbr 3.821 +0.031 3.775 £0.024 3.691 £0.019 NNCosNgbr 2.670 £ 0.066 2.303 = 0.061 2.035 +0.059
+MVA 3.833 +£0.031 3.768 £ 0.024 3.677 £0.019 +MVA 2.711 £0.065 2.290 £ 0.061 2.016 £ 0.059
+MMR 3.801 = 0.031 3.760 £ 0.024 3.677 £0.019 +MMR 2.663 £ 0.066 2.272 £ 0.061 2.011 £0.059
+Greedy 3.896 = 0.031 3.818 £0.023 3.732 £0.019 +Greedy 2.812 £0.067 2.359 = 0.061 2.065 £ 0.059
MovieLens-1M MovieLens-1M
PureSVD 4.127 £0.011 4.004 = 0.008 3.908 £ 0.007 PureSVD 3.127 £0.025 2.624 = 0.024 2.223 £0.023
+MVA 4.128 £0.011 4.013 = 0.008 3.901 £ 0.007 +MVA 3.129 £0.025 2.608 = 0.024 2.208 £0.023
+MMR 4.120 £ 0.011 4.012 = 0.008 3.900 £ 0.007 +MMR 3.114 £0.025 2.612 £0.024 2.209 £0.023
+Greedy 4.187 £0.011 4.065 = 0.008 3.941 £ 0.007 +Greedy 3.217 £0.025 2.683 £0.025 2.263 £0.024
NNCosNgbr 4.027 £0.011 3.928 = 0.009 3.836 £ 0.007 NNCosNgbr 2.963 £ 0.025 2.472 £ 0.024 2.117 £0.023
+MVA 4.027 £0.011 3.927 £ 0.009 3.824 £ 0.007 +MVA 2.962 £ 0.025 2.457 £0.024 2.087 £0.023
+MMR 4.022 £0.011 3.926 + 0.009 3.832 +0.007 +MMR 2.953 £0.025 2.466 = 0.024 2.111 £0.023
+Greedy 4.082 = 0.011 3.988 + 0.009 3.902 £+ 0.007 +Greedy 3.057 £0.025 2.557 £0.024 2.201 £0.023
Jester-1 Jester-1
PureSVD 1.292 £ 0.028 1.031 £0.021 0.892 =0.017 PureSVD —3.766 = 0.053 —5.589 = 0.046 —6.318 = 0.041
+MVA 1.092 + 0.029 0.950 + 0.021 0.864 = 0.017 +MVA —4295+0.052 —5918=0.044  —6.349 = 0.041
+MMR 1.292 +0.028 1.031 £0.021 0.892 = 0.017 +MMR —3.766 = 0.053 —5.590 = 0.044 —6.319 = 0.041
+Greedy 1.688 = 0.028 1.323 £0.021 0.923 +=0.017 +Greedy —3.270 = 0.054 —5.231 =0.046 76.2& +0.041
NNCosNgbr ~ 2.312 %0.027 152940020 09390017  NNCosNgbr ~ —2.178%+0.057 —4.777+0.049  —6.257 = 0.041
+MVA 1.146 = 0.029 1.338 £0.021 0.859 =0.017 +MVA —4.287 = 0.056 —5.937 £0.048 —6.350 = 0.041
+MMR 2312%0.027 155920020  0939+0017  +MMR —2.179+0.057  —4778=0.049  —6.257 +0.041
+Greedy 2.356 = 0.027 1.578 £0.021 0.939 =0.017 +Greedy —w +0.057 —4.789 = 0.049 —6.261 = 0.041

Reported results are averages across test folds in a 5-fold cross-
validation (at a time, 80% of the data set was used for training and the
remaining 20% for testing, and the partitions are chosen at random).

values are not necessarily statistically different according to
a t-test. This is usually the case, but if there are some
abruptly low or high values in the samples, the averages will
likely reflect it, while the #-test will remain resilient.

In Tables 2, 3, and 5, rows PureSVD and NNCosNgbr indi-
cate the use of these methods as dependency-agnostic base-
lines (Top-n baselines). +MVA, +MMR, and +Greedy’s
results are under either PureSVD or NNCosNgbr, depending
on which of these two techniques was used for the prediction
of their individual scores.

Global analysis. To begin our analysis on Greedy’s use-
fulness, we computed mean ratings obtained with all base-
lines for recommendation lists with sizes R = 5, 10, 20. The
results are summarized in Table 2, which presents strong
evidence that the exploitation of co-utility alone yields better
recommendations than those obtained with competitive
dependency-agnostic, Top-n baselines. In all cases, either
Greedy led to superior mean ratings or it was statistically
equivalent to the corresponding Top-n results. As to what
concerns MVA and MMR, the results indicate that Greedy
is likely to recommend items that receive better feedback
from users. MVA’s mean ratings were particularly low with
respect to Jester-1, and the results yielded by MMR were
very close to those obtained with Top-n baselines. In Table
2, paired t-tests were applied to contrast the performance of

Reported results are averages across test folds in a 5-fold cross-
validation (at a time, 80% of the data set was used for training and the
remaining 20% for testing, and the partitions are chosen at random).

each method against Greedy. p-values are extremely low
(ranging from 107'' to 107%), with exception to
NNCosNgbr, + MMR, and +Greedy in the Jester-1 data set.
Note that in Table 2 there are only three underlined val-
ues that were statistically equivalent to Greedy when consid-
ering the methods NNCosNgBr, +MVA, and +MMR. All
other results have shown statistically significant differences.
This coheres with the fact that we were taking mean ratings
for several users into account—in each test folder of the
cross-validation there were 20% of users on average for all
data sets, and all of them rated at least 20 items. The samples
used in the paired #-test were thus significantly large, which
helps the paired #-test learn differences in predictions on a
more precise level. Larger data sets such as MovieLens-1M
have even more samples for the #-tests, which explains why
so many values were statistically different for this data set.

Worst-case analysis. 1t has been suggested that it is worse
to recommend an item the user dislikes than to not recom-
mend an item s/he likes (Hansen & Golbeck, 2009). In order
to continue our analysis, we exploit this idea by assuming
that low ratings are given to disliked items and compare the
lowest ratings obtained with different baselines and Greedy.
Instead of focusing on all recommended items, this experi-
ment concerns only the worst-rated item in each
recommendation.
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FIG. 3. Percentages of users to which Top-n and Greedy have won over each other, in terms of highest mean rating given to generated recommenda-

tions. [Color figure can be viewed at wileyonlinelibrary.com]

Results in Table 3 indicate that the worst item recom-
mended by Greedy tends to be better rated than the corre-
sponding one for Top-n. In all cases, Greedy leads to superior
or statistically equivalent lowest ratings, when compared with
both baselines. Underlined results are statistically equivalent
to Greedy, and all other results were statistically different,
especially for the data set MovieLens-1M. This is a conse-
quence of the large amount of samples used in the #-tests (p-
values ranged from 107> to 10~ '#). With respect to the
dependency-aware baselines, the worst item recommended by
Greedy tends to be better rated than the corresponding ones
for MVA and MMR. Once again, values obtained with MMR
were somewhat similar to those prompted by Top-n. MVA
performed better than MMR with respect to the MovieLens
data sets and the opposite was noticed with respect to Jester-1.
It is interesting to observe that recommendations generated
for Jester-1 with NNCosNgbr were particularly similar for
Greedy and all baselines, with equivalent mean ratings for
almost all comparisons. As for Jester-1, NNCosNgbr yields
somewhat high lowest ratings in scenarios of low sparsity,
very close to the lowest ratings produced by Greedy.

Win-loss analysis. Figures 3, 4, and 5 lead to a succinct
Win-Loss analysis for Greedy, which generates the highest
mean ratings, to ~65% of users when compared to Top-n
baselines. The percentages associated with Greedy tend to
increase as n grows, which suggests that our method brings
gain to more users when more recommendations are gener-
ated. Greedy wins over MVA for ~65% of users, and it is

more effective when the adopted predictor is NNCosNgbr.
With respect to MMR, Greedy outperforms it for ~65% of
users as well. Nonetheless, the results varied more for
MMR: in the graph associated with Jester-1 and
NNCosNgbr, in particular, it won over Greedy for ~48% of
users. The percentages associated with Greedy tended to
increase as n grew as well, as shown in Figure 3.

It is important to compare the results presented in Tables
2 and 3 to further our understanding of the Win-Loss results,
in particular for the Jester-1 data set. As indicated in Table
2, the differences between average mean ratings tend to be
lower when n increases for Jester-1 when we contrast
Greedy with the baselines. This can also be observed in
Table 3, and although we did not perform an analysis for
average highest mean ratings, we believe it would have fol-
lowed a similar pattern. This likely closer gap between high-
est ratings for Jester-1 when n increases somewhat reflects
the Win-Loss analysis: as they become more similar, the
methods yield more similar Win-Loss proportions. Note that
differences between average mean ratings and average low-
est mean ratings in Tables 2 and 3 do not change much
when 7 increases for the MovieLens data sets, which proba-
bly leads to a more uniform increase in differences for high-
est ratings and wins/losses between Greedy and the studied
baselines.

Recalling Ql1, the results indicate that Greedy consis-
tently generates recommendations that are more useful than
those produced by the studied baselines. Greedy was partic-
ularly better than MVA. In general, absolute gains were
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much higher for the Jester-1 data set. Despite that, the gains
obtained with Greedy were consistent for both data sets

even when they were small.

Relating Co-Utility and Diversity

In this section we address research question Q2: How

diverse are our produced recommendations? In order to do
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TABLE 4. Top 10 pairs of movies with highest co-utility probabilities,
computed with Empirical Bayes. Alongside these pairs, we list the gen-
res each pair has in common.

Pairs of movies Common genres

Seven Samurai Sanjuro Action
The Boat Sanjuro Action
GoodFellas Sanjuro None
Casablanca Sanjuro None
The Wrong Trousers A Close Shave Animation/Comedy
The Great Escape Sanjuro Adventure
The Wrong Trousers Wallace & Gromit Animation
Yojimbo The Bridge on the Drama
River Kwai
Yojimbo A Clockwork Orange None

When We Were Kings Star Wars Episode IV None

so, we investigate whether items that are co-useful have sim-
ilar content. We also compare the level of diversity in rec-
ommendations generated by Greedy, Top-n, and MMR. We
opted to contrast Greedy with Top-n because it is
dependency-agnostic, and thus we can analyze whether the
pairwise scores 0 would hamper the diversity of recommen-
dations generated by predictors PureSVD and NNCosNgbr.
As for MMR, we wanted to understand how its results differ
from those prompted by Greedy and Top-n—two methods
that do not focus on diversity. Finally, we analyze if pair-
wise scores O—that is, co-utility probabilities—correlate
with the cosine similarity.

There are several methods to measure recommendations’
diversity (Vargas & Castells, 2011; Ricci et al., 2011). In
our scenario, it is important to choose a method that explores
item content, as this information was not used by any of the
studied algorithms. The use of content dissimilarities allows
more impartial comparisons among these algorithms—espe-
cially with respect to MMR, as it already embeds rating dis-
tributions’ dissimilarities in its optimization.

An advantage of exploring content instead of rating dis-
tributions is the interpretability of diversity results. For
instance, stating that two books are different because their
genres and authors are not the same is more interpretable
than affirming it because their ratings are not alike. Most
experiments in this subsection are exclusive to the
MovieLens-1M data set because it has a large amount of
content information with which we can compute movie dis-
similarities, in contrast to the Jester-1 data set. To have an
intuition about whether co-useful items share the same gen-
res, we listed the pairs of movies with highest co-utility
probabilities alongside their genres in common in Table 4.

Table 4 indicates that movies that are highly co-useful to
users are not necessarily similar in terms of genres. In partic-
ular, 4 out of 10 pairs of movies have no genre in common.
Although there may be other sources of similarities that we
did not consider, such as actors in common, these results
strengthen the hypothesis that co-utility does not imply simi-
larity. For instance, When We Were Kings is a documentary
released in the 1990s, whereas Star Wars Episode 4 is a Sci-
Fi/Adventure movie from 1977. It is important to note that

TABLE 5. Lowest average rating for recommendation lists of size
n=75, 10, and 20.

MovieLens-1M

@5 @10 @20
PureSVD 0.8305 0.8392 0.8444
+MMR 0.8309 0.8395 0.8445
+Greedy 0.8302 0.8392 0.8444
NNCosNgbr 0.8360 0.8429 0.8458
+MMR 0.8365 0.8428 0.8458
+Greedy 0.8358 0.8429 0.8458

Reported results are averages across test folds in a 5-fold cross-
validation (at a time, 80% of the data set was used for training and the
remaining 20% for testing, and the partitions are chosen at random).

most of these movies are very popular and received high rat-
ings in websites such as IMDb’ and Rotten Tomatoes.®

To further our understanding on how co-utility may relate
to diversity, we aggregated the diversity levels of recommen-
dations generated with Greedy, Top-n, and MMR in Table 5.
To compute movie dissimilarities, we calculated Jaccard’s
coefficient over movies’ corresponding genres. To compare
the diversity levels of Greedy, Top-n, and MMR, we used the
ILD metric described in “Validation Metrics™ section.

We performed paired t-tests for each Top-n/Greedy and
MMR/Greedy pair in Table 5 with a 95% confidence inter-
val, and none of the results were statistically different.
Recalling Q2, the results indicate that Greedy is not likely to
hurt recommendations’ diversity when compared to Top-n
and may generate as diversified recommendations as the
MMR algorithm implemented with the Kullback—Leibler
divergence.

Recommendation Optimality

In this section we used experiments that aim to answer
the research question Q3: How far are our produced recom-
mendations from those obtained with an optimal solution to
MSDP? To contrast Greedy and optimal solutions obtained
with an optimizer, namely, Exact, we divided the data sets
into 10 folds with approximately the same size randomly. In
all cases, one of the folds was chosen for test and the others
were used for training. We did not perform cross-validation
in this experiment due to time constraints. Also, because of
time constraints, experiments with the MovieLens data sets
only use predictor PureSVD, and experiments with Jester-1
only use predictor NNCosNgbr.”

To compute the exact solutions and perform comparisons
that make sense in practical, real-time scenarios, we adopted
a timeout of 20 seconds. We discarded all exact solutions
that would take more than that, and only compared optimal

7http://www.imdb.com/

Shttp://www.rottentomatoes.com/

°In preliminary experiments, predictor PureSVD has yielded the best
results for MovieLens-1M and NNCosNgbr has yielded the best results
for Jester-1.
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FIG. 6. Mean running times per validation fold, in seconds, for different combinations of data sets and predictors, with N =15, 10, 20. Reported
results are averages across test folds in a 5-fold cross-validation (at a time, 80% of the data set was used for training and the remaining 20% for test-
ing, and the partitions are chosen at random). [Color figure can be viewed at wileyonlinelibrary.com]

solutions obtained below this time threshold with their corre-
sponding suboptimal ones. Solutions that take more than 20
seconds to compute corresponded to less than 15% of all
cases. We performed a paired #-test with a 95% confidence
interval over the mean ratings obtained with Greedy and
Exact and all results were statistically equivalent.

Recalling Q3, the results indicate that, in practice, Greedy
is a good approach to MSDP. A case where Greedy and
Exact lead to different solutions works as follows. Let us
consider a set of candidate items /=1{iy,i,,i3} with corre-
sponding sets of scores Iy ={¢$; =0.9, ¢, =0.85, ¢;, =0.85}
and 1p={0;,,=0.7,0;,,=0.6,0,,=0.9}. If we want to
select N =2 items out of /, Exact will select i, and i3,
whereas Greedy will select i; and i,. The Greedy choice of
starting the selection by choosing the item with the highest
score ¢ does not necessarily lead to the optimal solution, as
the example illustrates.

Analyzing the Scalability of Our Method

In this section we examine research question Q4: How
scalable is our method? Although Greedy is polynomial and
rather fast, there are some easy and important optimizations
that make it scalable and competitive in practice. It is impor-
tant, for example, to precompute and store all pairwise
scores 6 in a hash table as a preprocessing step. This offline
computation speeds up the generation of solutions to MSDP
by avoiding redundant computations of pairwise scores.

Another improvement involves the use of memorization to
reuse partial summations. Figure 6 illustrates the mean
computation time per validation fold for each data set,
varying n and the predictor algorithm. All experiments
were performed with a Pentium Dual-Core 2.0GHz with
2GB RAM. We decided to compare Greedy with Top-n
because, from all studied methods, Top-n is the fastest
one in practice.'®

The results in Figure 6 correspond to the mean aggre-
gated running time for the generation of all recommendation
lists concerning a validation fold. These results provide an
answer to Q4: yes, Greedy is quite scalable in practice.

For higher values of n, the time difference between
Greedy and Top-n could increase, but such analysis is not
useful in real-world scenarios because n values are not high
in practice (Ricci et al., 2011). Therefore, for realistic values
of n (i.e., most recommendation applications use lists with
fewer than 50 items), Greedy scales well and its mean run-
ning times per validation fold are only slightly worse than
those obtained with Top-z. In spite of that, the time differ-
ence for generating a single recommendation list with all
methods is irrelevant. Given that in real-world systems rec-
ommendation lists are generated one at a time via the inter-
action with users, Greedy is a feasible alternative.

""We used a Top-n implementation with time complexity
O(KlogN).
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Conclusions and Future Work

In this article we investigated how co-utility probabilities
can be estimated and exploited in order to improve the util-
ity of recommended items. To this end, we modeled the
interplay of individual predictions and co-utility probabili-
ties as a linear combination. Afterwards, we posed the task
of finding the best subset of candidate recommendations,
which mapped trivially into the Max-Sum Dispersion Prob-
lem (MSDP). We implemented a scalable, Greedy heuristic
to MSDP, and evaluated it using three publicly available rec-
ommendation data sets.

To demonstrate the usefulness of our approach, we have
shown that it performs consistently better than two state-of-
the-art dependency-agnostic recommendation baselines.
Moreover, by contrasting our approach to dependency-
aware, diversity-oriented baselines, we have shown that the
exploitation of co-utility probabilities does not necessarily
hurt recommendations’ diversity. Furthermore, by contrast-
ing our Greedy heuristic to an optimal solution to MSDP,
we have shown that our produced recommendations are not
statistically different than those obtained via an exact opti-
mization. Finally, by comparing the running times of our
Greedy heuristic and the dependency-agnostic baselines, we
have demonstrated the scalability of our approach and its
applicability for real-world recommendation scenarios.

Throughout this article, we showed that co-utility proba-
bilities are important evidence for recommender systems.
Hence, in the future we intend to develop Learning to Rank
algorithms that embed co-utility estimates as learning fea-
tures. We also want to extend our method to hybrid recom-
menders, by exploiting content information in order to
compute co-utility probabilities. Finally, we believe that
there is still room for improvement in the choice of 9,-1-, since
different persons/users may have different probability of
items. Thus, we plan to study approaches to set 0, values
according to the probability of items related to each user.
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