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In this article we study the extent to which the interplay
between recommended items affect recommendation
effectiveness. We introduce and formalize the concept
of co-utility as the property that any pair of recom-
mended items has of being useful to a user, and exploit
it to improve collaborative filtering recommendations.
We present different techniques to estimate co-utility
probabilities, all of them independent of content infor-
mation, and compare them with each other. We use
these probabilities, as well as normalized predicted rat-
ings, in an instance of an NP-hard problem termed the
Max-Sum Dispersion Problem (MSDP). A solution to
MSDP hence corresponds to a set of items for recom-
mendation. We study one heuristic and one exact solu-
tion to MSDP and perform comparisons among them.
We also contrast our solutions (the best heuristic to
MSDP) to different baselines by comparing the ratings
users give to different recommendations. We obtain
expressive gains in the utility of recommendations and
our solutions also recommend higher-rated items to the
majority of users. Finally, we show that our co-utility sol-
utions are scalable in practice and do not harm recom-
mendations’ diversity.

Introduction

People from widely varying backgrounds are inundated

with options that lead to a situation known as information

overload, where the presence of too much information inter-

feres with decision-making processes. To circumvent it, con-

tent providers and electronic retailers have to identify a

small yet effective amount of information that matches

users’ expectations. In this scenario, recommender systems

have become tools of paramount importance, providing per-

sonalized recommendations that intend to suit user needs in

a satisfactory way.

The dominant type of recommender systems is known as

collaborative filtering. It makes predictions about the inter-

ests of a user by gathering taste information from many

other users, and works as follows: i) prediction step—keeps

track of users’ known preferences and processes them to pre-

dict items that may be interesting to other users; ii) recom-

mendation step—selects predicted items, optionally ranks

them, and recommends them to users (Adomavicius & Tuz-

hilin, 2005). In the prediction step, scores are independently

assigned to items by taking users’ historical data into

account (Ricci, Rokach, Shapira, & Kantor, 2011). The

higher the score, the higher the estimated compatibility

between the item and the user. It is thus intuitive that recom-

mending the highest scored items should result in the highest

accuracy. Nonetheless, accurate recommendations are not
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necessarily useful ones, because other dimensions or proper-

ties associated with the recommended items may affect rec-

ommendation effectiveness. Examples of dimensions or

properties that are typically taken into account during the

recommendation step include diversity or competition

(Xiong, Wang, Wenkui Ding, & Liu, 2012; Zhang & Hur-

ley, 2008).

In this article we focus on the co-utility property, which is

the property that any pair of items has of being useful to a

user—two items are co-useful with respect to a user if s/he

considers both of them useful. The motivation behind using

this property comes from the Theory of Choice, which indi-

cates that preference among items depends not only on the

items’ specific features, but also on the presented alterna-

tives (Tversky, 1972). In our case, the selection of an item is

based not only on its independently predicted rating, but also

on how likely it is to be co-useful with other selected items.

More specifically, for each pair of items we compute their

probabilities of being co-useful and use this information in

methods designed to generate recommendations. Some of

the contributions of this work include: i) a definition of co-

utility and methods to estimate co-utility probabilities; ii) an

objective function that combines predicted values and co-

utility probabilities, its reduction to a popular Facility Loca-

tion Analysis problem (Borodin, Lee, & Ye, 2012), and algo-

rithms to tackle it; iii) a comparison between the usefulness

of our method and different baselines; and iv) an analysis of

the scalability, diversity, and optimality of recommendations

produced by our method.

In the remainder of this article, “Background and Related

Work” section positions this work in the related literature.

“Combining Individual and Pairwise Scores” section intro-

duces our approach to estimate co-utility probabilities,

whereas “Algorithms” section presents algorithms to tackle

the optimization problem involved in exploiting co-utility.

“Experimental Setup” and “Experimental Results” sections

discuss the setup and results of the empirical evaluation of

our approach. Lastly, “Conclusions and Future Work” sec-

tion concludes the article.

Background and Related Work

Collaborative filtering is traditionally concerned with pre-

dicting the feedback a user would give to an item. Several

predictors have been studied for collaborative filtering, which

can be broadly grouped into two classes: memory-based and

model-based (Breese, Heckerman, & Kadie, 1998). Memory-

based predictors operate over the entire database to compute

similarities between users or items, usually by applying dis-

tance metrics such as the cosine distance, and then they pro-

duce predictions. In contrast, model-based predictors use the

database to learn models, and then use the learned models for

predictions. Instead of producing a numeric prediction for a

given user-item pair, collaborative filtering can be tackled as

a ranking task, often referred to as Top-n recommendation

(Cremonesi, Koren, & Turrin, 2010), in which the goal is to

produce a list of items to be recommended for a given user.

Dependency-Agnostic Recommendation

Traditionally, the items included in a recommendation

list are selected independently from one another, for exam-

ple, based on their individually estimated recommendation

scores. When explicit feedback is available, the state-of-the-

art dependency-agnostic approaches for Top-n recommenda-

tion are NNCosNgbr (Non-normalized Cosine Neighbor-

hood) and PureSVD (Pure Singular Value Decomposition)

(Cremonesi et al., 2010). The NNCosNgbr algorithm is

memory-based and works on the concept of neighborhood,

computing predictions according to the feedback given to

similar items or users—in this article, we focus on similar

items. The algorithm computes similarities between items

with the adjusted cosine similarity, and also takes biases into

consideration, which are related to how users rate items.

Item biases include the fact that certain items tend to receive

better feedback than others. Similarly, user biases include

the tendency that certain users have of giving better feed-

back than others. In contrast, the PureSVD algorithm is

model-based and works on latent factors, that is, users and

items are modeled as vectors in the same space (Cremonesi

et al., 2010). PureSVD factorizes a matrix filled up with

numerical feedback given by users to items, and then pre-

dicts the score of user u for item i via the inner-product

between their corresponding vectors.

In this article, competitive dependency-agnostic Top-n rec-

ommenders are important for two reasons. First, the optimiza-

tion problem we tackle uses individual item scores that

correspond to the predictions generated by such recommen-

ders. Second, our approach extends Top-n recommendations

by addressing dependencies among items—that is, by employ-

ing dependency-aware algorithms—and thus we use the stud-

ied predictors for Top-n recommendations as baselines.

Dependency-Aware Recommendation

Attempts to abandon the assumption that items are inde-

pendent date back from information retrieval studies in the

1980s. By that time, researchers started questioning the

Probability Ranking Principle (PRP), according to which

documents should be retrieved in decreasing order of their

predicted probabilities of relevance (Robertson, 1977).

Bookstein (1983), for instance, presented decision-theoretic

ranking models that take document interactions into account

iteratively. Later on, researchers started to focus on

diversity-based reranking, and they also had to address rela-

tions among items to reduce intersimilarities (Santos, Mac-

donald, & Ounis, 2015). In particular, Carbonell and

Goldstein (1998) proposed the concept of Maximal Marginal

Relevance (MMR) to diminish redundancy while maintain-

ing query relevance. MMR is a criterion that has been

widely adopted in search and recommendation contexts

(Carbonell & Goldstein, 1998; Santos, Macdonald, & Ounis,

2010; Vargas & Castells, 2011; Zuccon, Azzopardi, Zhang,

& Wang, 2012). It consists of a ranking formula that, as well

as our method, takes the individual relevance of items and

relations among them both into account. Given the wide
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scope of applications for MMR, there are different ways of

implementing it, but generally, at each iteration MMR

returns the highest-valued item with respect to a tradeoff

between relevance and diversity.

In the context of recommender systems, several works

exploited relations among items to improve diversity

(Ribeiro et al., 2014). Zhang and Hurley (2008) modeled the

competing goals maximizing relevance and diversity as a

binary optimization problem, relaxed to a trust-region prob-

lem. Wang (2009) presented a document ranking paradigm

inspired by the Modern Portfolio Theory in finance (Elton,

Gruber, Brown, & Goetzmann, 2009), where both the mean

relevance of predictions and their variance are taken into

account. In that context, variance works as a measure of

risk. Based on this mean-variance principle, they devised a

document ranking algorithm, abbreviated henceforth as

MVA. Zuccon et al. (2012) showed how Facility Location

Analysis, taken from Operations Research, works as a gener-

alization for state-of-the-art retrieval models for diversifica-

tion in search. They treated the Top-n search results as

facilities that should be dispersed as far as possible from

each other, and implemented MMR by using Kullback–Lei-

bler divergence as the distance metric for pairs of items.

Relations among items other than diversity have also been

exploited in the search and recommendation literature. Tver-

sky (1972) proposed a model according to which preference

among items is influenced by the presented alternatives. The

model, called Elimination By Aspects (EBA), states that a

consumer chooses among options by sets of aspects, eliminat-

ing items that do not satisfy such aspects. A variation of EBA

for commerce search was proposed by Sheffet, Mishra, and

Ieong, (2012), who introduced the Random Shopper Model,

where each item feature is a Markov network over the items

to be ranked, and the goal is to find a weighting of the fea-

tures that best reflects their importance. Relatedly, Xiong

et al. (2012) observed that the Click-Through Rate (CTR) of

an ad is often influenced by the other ads showed alongside.

They designed a continuous conditional random field for click

prediction focusing on how similarities influence items’

CTRs. Weston and Blitzer (2012) also incorporated interitem

similarity during ranking to improve recall. They used a latent

structured model to learn the structure of the ranked list while

assigning scores to items, merging prediction, and recommen-

dation steps. Hansen and Golbeck (2009) addressed the task

of recommending collections of items—music lists and mix

tapes, for example. This task is different from the one we

tackle, given that in their problem each recommended item is

actually a collection of items (mix tapes, for instance). In spite

of that, they also considered relations between items as an

aspect that contributes to the overall value of a collection. In

particular, they modeled the value of individual items, co-

occurrence interaction effects, and order effects including

placement and arrangement of items.

In this article we adopt Wang (2009) and Zuccon et al.

(2012)’s techniques as baselines. The former is close to ours

because it exploits correlations between documents, via vari-

ance, in a collaborative filtering scenario, even though its

focus is on diversity. The latter relates to our work because

they also use Facility Location Analysis as a framework,

although also focused on diversity. Given that our method

and theirs share the same theoretical framework, we think it is

appropriate to compare them. We do not compare our method

with that of Weston and Blitzer (2012) because what they pre-

sent is an improvement over a specific class of latent factor

models, whereas our method is also suitable for memory-

based approaches. As for Sheffet et al. (2012), we discarded it

because it requires information about item features, and there-

fore it is not a pure collaborative filtering method.

Max-Sum Dispersion Problem (MSDP)

The exploration of relationships among items is becom-

ing popular in the Recommender Systems literature. Some

works, including Zuccon et al. (2012) and Vieira et al.

(2011), consider the setting where they are given a set of

candidate items I and a set valuation function f defined on

every subset of I. For any subset R � I, the overall objective

is a linear combination of f(R) and the sum of dissimilarities

induced by the items in R. The goal is to find a subset R
with a given cardinality constraint—for example, jRj55 if

five items must be selected out of I—that maximizes the

overall objective (Borodin et al., 2012). Our objective, as

discussed in “Combining Individual and Pairwise Scores”

section, is similar to this. Our valuation function is the sum

of predicted ratings for items in R and we combine it with

the sum of co-utility probabilities induced in R.

These objectives map into a well-known Facility Loca-

tion Analysis problem: the weighted version of the MSDP.

MSDP is a well-studied problem in Operations Research

(Gollapudi & Sharma, 2009). A common scenario is the

placement of facilities in a given area in such a way that the

distances between them, as well as their individual relevan-

ces, are maximized. Analytical models for MSDP assume

that an area is represented by a set V5fv1; . . . ; vkg of k ver-

tices with a metric distance between every pair of vertices.

The objective is to locate n � k facilities such that some

function of distances between facilities, combined with indi-

vidual relevances, is maximized. MSDP is known to be NP-

hard, but it admits approximation algorithms in some cases.

As we show in “Combining Individual and Pairwise Scores”

section, approximations are not admitted in our case.

Combining Individual and Pairwise Scores

In this work we propose to exploit two fundamental sour-

ces of evidence in order to select which items should be rec-

ommended to a user: i) individual scores /, that correspond

to ratings predicted by any Top-n recommender, and ii) pair-

wise scores h that quantify co-utility probabilities among

items. Scores / and h are always real values, and they are

combined in a bi-criteria optimization problem. In “Pairwise

Scores” section we present techniques to compute pairwise

scores h and in “Combining Scores Using MSDP” section

we present techniques to combine individual and pairwise

scores using MSDP.
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Pairwise Scores

In this section we address different techniques for esti-

mating pairwise scores h. The pairwise score hij represents

the probability of items i and j being co-useful to any user.

If we consider Eij as a random variable that represents the

event “Items i and j are co-useful to lij users,” and assume

that Eij follows a binomial distribution, then its probability

mass function is given by:

f ðlij; fij; hijÞ5
lij

fij

 !
h

lij
ij ð12hijÞfij2lij ; (1)

where fij is the number of users that gave feedback to both i
and j.

To estimate hij, we employed the estimators Maximum

Likelihood and Empirical Bayes (Bishop, 2006). Maximum

Likelihood gives the maximum of f ðlij; fij; hijÞ by using the

point where its derivative is zero and its second derivative is

negative. Assuming that f ðlij; fij; hijÞ 6¼ 0, the derivation of

Maximum Likelihood leads to:

hij5
lij

fij
2 ½0; 1�: (2)

Maximum Likelihood is simple but it is not always suitable

when pairs of items have poor support. This is very common

in recommender systems, as users give feedback to a very

small fraction of items. Empirical Bayes has the advantage of

being more robust when not much data are available. An esti-

mate score with Empirical Bayes for the number of users lij
that liked both items i and j, with probability of co-utility hij

for items i and j, can be derived by combining a conjugate

prior for the binomial distribution as a prior distribution on hij

and a beta-binomial distribution for the marginal distribution

of lij. In our case, to estimate scores with Empirical Bayes we

follow the rationale exemplified in Casella (1992) for the coin

tossing problem,1 whose modeling is adequate for the estima-

tion of hij. Consider the following prior distribution on hij:

pðhijÞ56hijð12hijÞ; (3)

which is symmetric around 1
2
, indicating that we have no

prior opinion as to which side of 1
2

a specific hij lies. We do

not assume anything about how co-useful items i and j are

because this can vary significantly from one pair of items to

another. This prior is a conjugate prior density, which

greatly simplifies the ensuing calculations. We calculate the

distribution of hij given lij as:

pðhijjlijÞ5
Cðfij14Þ

Cðlij12ÞCðfij2lij12Þ3h
lij11
ij ð12hijÞfij2lij11�

(4)

Details about this derivation can be found in Casella (1992).

This posterior distribution contains all information neces-

sary for Bayesian inference (Casella, 1992). If a point esti-

mate of hij is needed, a Bayes point estimator is given by the

mean of pðhijjlijÞ, which is what we effectively use in this

paper:

EðhijjlijÞ5
ð1
0

hijpðhijjlijÞdhij5
fij

fij14
3

lij
fij

1 12
fij

fij14
3

1

2

� �
:

(5)

To compute hij with either Maximum Likelihood or Empiri-

cal Bayes, we assume that the random variable Eij is the

same for any user u and therefore hij is independent of the

user in question. Another important consideration is that,

ideally, Eij should only imply that i and j were co-useful if

they were presented in the same recommendation. Unfortu-

nately, the data sets used in our experiments do not include

such information. Hence, we compute hij by considering fij
and lij regardless of temporality. To give an example, if a

user liked Titanic in November 2012 and Matrix in June

2011, we consider that they were co-useful to her/him even

though s/he was not presented with them simultaneously. It

is important to stress that this is a limitation of our experi-

mental setup, but not of our model. Note as well that our

model does not take into account how co-utility varies from

one user to another. This is a simplification that turned the

model much more scalable and easy to implement, as there

were fewer random variables with values to be estimated.

It is crucial to point out that scores h differ from collabo-

rative filtering item-to-item similarities. In particular, these

similarities take all feedback into account. For instance, if a

set of common users rated two items negatively, this contrib-

utes to their cosine similarity as much as positive ratings

would. In the case of scores h, what is measured is co-

utility—not similarity—and only feedback attesting that

items were actually useful—for example, rated positively—

is taken into consideration.

Another critical distinction between scores h and item-to-

item similarities has to do with their scope. Item-to-item

similarities are computed between two sets of items in the

prediction step: i) items that are part of the user’s historical

data, and ii) items to which the user has not given feedback

yet. The idea is to retrieve candidates for recommendation

that are likely to match the user’s taste. In this step, no rela-

tion among the retrieved candidates is taken into account.

Scores h, on the other hand, capture the co-utility probabili-

ties of pairs of retrieved candidates.

Combining Scores Using MSDP

In this section we present a formulation to MSDP in order

to combine individual and pairwise scores to select n items

out of k for recommendation. Our maximization problem is

therefore posed as selecting a set of items R5fi1; . . . ; ing
that maximizes the following function:

1In the coin tossing problem, a coin is tossed n times and the

unknown probability of a head is p. The estimator is designed to esti-

mate the observed number y of heads. In our case, lij can be interpreted

as y, p as hij and fij as n.
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1

jRj
X
ij2R

/ij 1
1

jRj2
X

ðia;ibÞ2R2

hiaib ; (6)

where the normalization in both summations is important to

keep their contributions fair. Scores / and h are also normal-

ized to the interval ½0; 1�.
Structurally, this problem is an instance of MSDP. As

previously mentioned, MSDP is a Facility Location Analysis

problem, which is NP-hard. When pairwise scores h satisfy

the triangle inequality, MSDP admits a two-approximation

algorithm (Borodin et al., 2012). On the other hand, it was

demonstrated that if the triangle inequality is not satisfied,

there is no polynomial time approximation algorithm to

MSDP unless P5NP (Ravi, Rosenkrantz, & Tayi, 1994).

The co-utility probabilities that we exploit in this work,

namely, pairwise scores h, do not satisfy the triangle

inequality, as illustrated in Figure 1. Hence none of the algo-

rithms we analyze in this work have bounds on solution

quality.

There are different ways of obtaining an exact solution to

this optimization problem. For instance, one can trivially enu-

merate all n-combinations of a set with k items and choose

the one that sums up to the highest value. It is also possible to

use integer programming to solve it. We describe how we

obtain exact solutions to MSDP in “Algorithms” section.

Algorithms

To tackle MSDP under a practical viewpoint, we studied

a suboptimal, polynomial algorithm that is widely related to

this problem. We also study an integer programming

approach to MSDP. This problem cannot be solved effi-

ciently by exact algorithms, albeit it is important to under-

stand how it can be optimally solved.

Greedy

A popular heuristic to MSDP, here referred to as Greedy,

was proposed by Borodin et al. (2012). Greedy is popular

because, when pairwise scores h satisfy the triangle inequal-

ity, it is a two-approximation algorithm to MSDP. It runs

fast and yields acceptable solutions in practice, even when

scores h do not satisfy the triangle inequality. Greedy is

shown in Algorithm 1. I is a set of items, I/ corresponds to

their individual scores, and Ih corresponds to their pairwise

scores. The output R is a set with n selected items, where

n � k. Greedy starts by selecting the item that has the best

individual score i in line 1. All other n21 selected items are

chosen in a way that maximizes the equation in line 5, where

the maximized set is comprised by all items R that were

already chosen and the new item itself.

Algorithm 1 Greedy

Input: I5fi1; . . . ; ikg; I/5f/i1 ; . . . ;/ikg, Ih5fhi1i2 ;
hi1i3 ; . . . ; hik21ikg, and 1 � N � jIj
Output: Selected items R
1: i( argmaxi2I/i

2: R( fig
3: I ( I n fig
4: while jRj < N do

5: j( argmaxj2I
/j

2
1 1
jRj

X
k2R

hjk

6: R( R [ fjg
7: I ( I n fjg
8: end while

9: return R

Exact Solution

Since MSDP is NP-hard, it can only be solved effi-

ciently by suboptimal algorithms. Despite that, it is impor-

tant to understand how to model an exact algorithm to

MSDP, especially if comparisons between optimal and sub-

optimal solutions are of interest. We decided to model

MSDP under the integer programming paradigm because of

the rather fast exact solvers available. The parameters to

model our integer programming problem are a set of items

I5fi1; . . . ; ikg, their corresponding individual scores

I/5f/i1 ; . . . ;/ikg, the pairwise scores for all combinations

of items in I, Ih5fhi1i2 ; . . . ; hik21ikg, and the number of items

for selection n. We come up with binary variables Y5fy1;
. . . ; ykg to represent which items are selected (yj 5 1 if and

only if ij is selected), and rewrite MSDP as:

maximize
1

jIj
X
j2I

yj/j1
1

jIj2
X
j2I

X
k2Ijk 6¼j

yjykhjk;

subject to yi 2 f0; 1g 8i;X
yi2Y

yi5N:

(7)

To frame this program in the integer programming

paradigm, we have to linearize MSDP’s products yjyk as

variables xjk5yjyk 8j; 8k. Considering that yj and yk are

binary variables, we have the following constraints for varia-

bles xjk:

xjk � yj

xjk � yk

xjk � yj1yk21:

(8)

FIG. 1. The triangle inequality is not satisfied, as h13 � h121h23.
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That being stated, we rewrite our problem as:

maximize
1

jIj
X
j2I

yj/j1
1

jIj2
X
j2I

X
k2Ijk 6¼j

xjkhjk

subject to yi 2 f0; 1g 8i

xjk � yj

xjk � yk

xjk � yj1yk21X
yi2Y

yi5N:

(9)

The algorithms addressed in this section are compatible with

any recommender system where it is possible to estimate

individual scores / and pairwise scores h for candidate

items. Therefore, these algorithms are a priori compatible

with systems that employ both matrix factorization techni-

ques and fingerprinting methods.

Experimental Setup

In this section we discuss the experimental setup that sup-

ports our investigations in “Experimental Results” section. In

particular, we aim to answer the following research questions:

• Q1. How useful are our produced recommendations?
• Q2. How diverse are our produced recommendations?
• Q3. How far from optimal are our produced recommendations?
• Q4. How scalable is our method?

Studied Data sets

For the experiments described in “Experimental Results”

section we used three data sets: MovieLens-100K,2 Movie-

Lens-1M,3 and Jester-1.4 We worked with the MovieLens

data sets and Jester-1 due to their popularity in the collabora-

tive filtering literature. In this section we present a character-

ization of these data sets in order to facilitate posterior

experiment analyses.

Table 1 summarizes some of the data sets’ main features.

We can see that the ratings in the MovieLens data sets are

discretized and vary from 1 to 5, and users in Jester-1 can

assign any real number from 210 to 10 to any joke. Another

key difference is that the MovieLens data sets are signifi-

cantly sparser than Jester-1. In the former, users rated at least

20 movies, whereas in the latter feedback was given to at

least 36 jokes. Considering that there are only 100 jokes in

Jester-1, this value corresponds to a minimum of 36%.

As for the mean rating value, Table 1 indicates that Mov-

ieLens users tend to give average-to-good ratings to movies.

This reveals that users prefer to manifest their tastes by rating

movies they find enjoyable. As for Jester-1, the mean rating

is more neutral. With respect to the MovieLens data sets, we

adopted 4 as a threshold for high ratings, as in Ricci et al.

(2011). As for Jester-1, we decided to adopt 5.00 as a thresh-

old for high ratings because this value is considerably higher

than its mean rating and than the interval ½2:00; 3:00Þ, which

is associated with most ratings in this data set, as illustrated

by Figure 2. It is important to choose a value that is above

interval ½2:00; 3:00Þ because one could claim that most users

were neutral with respect to the jokes they rated.5

Recommendation Baselines

The baselines that we use can be divided into two catego-

ries: dependency-agnostic and dependency-aware. Depen-

dency-agnostic baselines do not assume interdependencies

among items for recommendation, generate simple Top-n
recommendations, and in this work they are associated with

predictors PureSVD and NNCosNgbr. Individual scores are

predicted for items and, in a dependency-agnostic fashion,

the Top-n ones are recommended. Dependency-aware base-

lines take individual item scores and relations among them

TABLE 1. Statistics of the data sets used in our investigations.

Feature MovieLens-100K MovieLens-1M Jester-1

Domain Movies Movies Jokes

Number of users 943 6,040 24,983

Number of items 1,682 3,900 100

Number of ratings 100,000 1,000,209 1,810,455

Minimum ratings/user 20 20 36

Sparsity rate 0.937 0.958 0.275

Ratings range [1,5] [1,5] [-10,10]

Mean rating value 3.588 3.703 1.877

FIG. 2. Distributions of ratings for Jester-1. Each bar consists of rat-

ings in intervals [-10.00; 29.00), [29.00; 28.00), . . ., [8.00, 9.00),

[9.00; 10.00]. [Color figure can be viewed at wileyonlinelibrary.com]

2http://www.grouplens.org/system/files/ml-100k.zip
3http://www.grouplens.org/system/files/ml-1m.zip
4http://goldberg.berkeley.edu/jester-data/jester-data-1.zip

5We believe that we could alternatively have used a value higher

than 5.00 as well, but given the extent of our experiments we only used

one threshold value for each data set, and 5.00 was a reasonable choice.

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—October 2017

DOI: 10.1002/asi

2385

 23301643, 2017, 10, D
ow

nloaded from
 https://asistdl.onlinelibrary.w

iley.com
/doi/10.1002/asi.23853 by U

niversidad A
utonom

a D
e C

hiapa B
oulevard B

elisario D
om

inguez, W
iley O

nline L
ibrary on [23/08/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com
http://www.grouplens.org/system/files/ml-100k.zip
http://www.grouplens.org/system/files/ml-1m.zip
http://goldberg.berkeley.edu/jester-data/jester-data-1.zip


into consideration. In this work, these baselines are MVA

and MMR, introduced in “Dependency-Aware Recommen-

dation” section. MVA and MMR exploit relations among

items as a means of improving diversity in recommendation

lists, while keeping relevance.

For all studied methods, individual scores were predicted

by PureSVD with 50 latent factors and NNCosNgbr.

Greedy’s pairwise scores were calculated with the Empirical

Bayes estimator. We set MVA’s parameter a, that works as a

risk regulator, as 0.05 after a grid search involving values that

ranged from 25 to 5, that is, MVA is slightly risk-lower in

our experiments and prompted the best MVA’s results. As to

MVA’s covariance matrix, we computed it by considering,

for every pair of items, the ratings they received by a common

set of users. Finally, MMR uses a term regulator k to balance

the contribution of items dissimilarities in the generation of

final scores. We used k 5 1 because it prompted the best

results in a grid search over values from 0.01 to 1. The com-

putation of dissimilarities between items’ rating distributions

was made by using Kullback–Leibler divergence.6

Validation Metrics

To validate our work, we use the explicit feedback users

give over items as a utility metric: the better the feedback, the

more useful the recommendations are (Breese et al., 1998;

Liu & Belkin, 2015). For example, in movie ratings, where a

5-star movie is considered an excellent movie, we can assume

that recommending a 5-star movie is more useful than recom-

mending a 4-star one (Ricci et al., 2011). Considering that we

are focused on recommendations’ utility, and that we use rat-

ings as a utility metric, we compare different algorithms by

contrasting the ratings their selected items receive.

We applied cross-validation in all experiments, and ran-

domly partitioned the data sets into training and test data.

Consequently, we ignored rating timestamps, whenever they

were present, while splitting the data. Cross-validation is

interesting in our case because we only analyze three data

sets, and by crossing training and data partitions we increase

the number of different scenarios on which we run experi-

ments. Considering that recommendation lists are generated

over items in the test data, to which we know the actual rat-

ings, our experiments simulate scenarios where users would

rate all recommended items. Other works that opt for cross-

validation are Vargas and Castells (2011) and Sarwar, Kary-

pis, Konstan, and Riedl, (2001).

For each data set, the training data are explored by predic-

tors PureSVD and NNCosNgbr to generate individual scores

/. The training data are also used to estimate pairwise scores

h and other pairwise information required by the baselines.

Finally, for all experiments, recommendation lists have

sizes jRj55; 10; 20 because these are popular values in the

related literature. We report means of values per fold and,

additionally, means of ratings in some experiments. In this

work we also make comparisons under a diversity perspec-

tive. In our scope, diversity is defined as the opposite of sim-

ilarity, and although this is not the focus of our work, we

briefly investigate whether our method hurts recommenda-

tions’ diversity. The diversity metric we apply, intra-list dis-

tance (ILD), was proposed by Zhang and Hurley (2008) and

works as follows:

ILD5
2

jRjðjRj21Þ
X

ik ;il2R;l<k

12simðik; ilÞ; (10)

where R is comprised by all selected items and simðik; ilÞ is

a generic similarity measurement for items ik and il. Further

discussions on how we computed items’ similarities and per-

formed experiments with ILD are presented in

“Experimental Results” section.

Experimental Results

In this section we present experiments and results that

address and answer research questions Q1, Q2, Q3, and

Q4 presented in “Experimental Setup” section. In

“Recommendation Usefulness” section we compare Greedy

with dependency-agnostic and dependency-aware baselines

in order to understand how useful Greedy’s recommenda-

tions are. In “Relating Co-Utility and Diversity” section we

investigate how diverse Greedy’s recommendations are. In

“Recommendation Optimality” section we compare recom-

mendations obtained with Greedy and recommendations

that correspond to exact solutions to MSDP. Finally, In

“Analyzing the Scalability of Our Method” section, we dis-

cuss Greedy’s scalability.

Recommendation Usefulness

In this section we compare Greedy with different baselines

in order to answer research question Q1: How useful are our

produced recommendations? We use dependency-agnostic,

Top-n baselines with predictors PureSVD and NNCosNgbr

and dependency-aware baselines MVA and MMR. It is

important to mention that Greedy, MVA, and MMR use indi-

vidual and pairwise scores, and in all cases individual scores

were generated by using either PureSVD or NNCosNgbr.

For all experiments reported in the tables, we assessed

the significance of statistical equivalences and differences

by applying paired t-tests with a 95% confidence interval.

The paired t-tests were applied over distributions of mean

predicted ratings (one mean per user in the test fold) and

lowest predicted ratings (one per user in the test fold). The

lowest predicted ratings could be approximated by a Gauss-

ian distribution in all data sets and means of ratings, consid-

ering that the sample sizes for the paired t-tests were always

at least 200, could also be approximated by a Gaussian dis-

tribution according to the Central Limit Theorem (Hastie,

Tibshirani, & Friedman, 2001). It is important to keep in

mind that, for all experiments, very distinct reported average

6The use of rating distributions is particularly indispensable when a

strict collaborative filtering schema has to be adopted, or when no infor-

mation about the items is available. This is the scenario assumed for

most of our experiments.
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values are not necessarily statistically different according to

a t-test. This is usually the case, but if there are some

abruptly low or high values in the samples, the averages will

likely reflect it, while the t-test will remain resilient.

In Tables 2, 3, and 5, rows PureSVD and NNCosNgbr indi-

cate the use of these methods as dependency-agnostic base-

lines (Top-n baselines). 1MVA, 1MMR, and 1Greedy’s

results are under either PureSVD or NNCosNgbr, depending

on which of these two techniques was used for the prediction

of their individual scores.

Global analysis. To begin our analysis on Greedy’s use-

fulness, we computed mean ratings obtained with all base-

lines for recommendation lists with sizes R 5 5, 10, 20. The

results are summarized in Table 2, which presents strong

evidence that the exploitation of co-utility alone yields better

recommendations than those obtained with competitive

dependency-agnostic, Top-n baselines. In all cases, either

Greedy led to superior mean ratings or it was statistically

equivalent to the corresponding Top-n results. As to what

concerns MVA and MMR, the results indicate that Greedy

is likely to recommend items that receive better feedback

from users. MVA’s mean ratings were particularly low with

respect to Jester-1, and the results yielded by MMR were

very close to those obtained with Top-n baselines. In Table

2, paired t-tests were applied to contrast the performance of

each method against Greedy. p-values are extremely low

(ranging from 10211 to 10259), with exception to

NNCosNgbr, 1MMR, and 1Greedy in the Jester-1 data set.

Note that in Table 2 there are only three underlined val-

ues that were statistically equivalent to Greedy when consid-

ering the methods NNCosNgBr, 1MVA, and 1MMR. All

other results have shown statistically significant differences.

This coheres with the fact that we were taking mean ratings

for several users into account—in each test folder of the

cross-validation there were 20% of users on average for all

data sets, and all of them rated at least 20 items. The samples

used in the paired t-test were thus significantly large, which

helps the paired t-test learn differences in predictions on a

more precise level. Larger data sets such as MovieLens-1M

have even more samples for the t-tests, which explains why

so many values were statistically different for this data set.

Worst-case analysis. It has been suggested that it is worse

to recommend an item the user dislikes than to not recom-

mend an item s/he likes (Hansen & Golbeck, 2009). In order

to continue our analysis, we exploit this idea by assuming

that low ratings are given to disliked items and compare the

lowest ratings obtained with different baselines and Greedy.

Instead of focusing on all recommended items, this experi-

ment concerns only the worst-rated item in each

recommendation.

TABLE 2. Mean average rating for recommendation lists of size

n 5 5, 10, and 20.

@5 @10 @20

MovieLens-100K

PureSVD 3.924 6 0.030 3.837 6 0.023 3.738 6 0.019

1MVA 3.923 6 0.030 3.830 6 0.023 3.720 6 0.019

1MMR 3.884 6 0.030 3.799 6 0.023 3.698 6 0.019

1Greedy 3.987 6 0.029 3.881 6 0.023 3.768 6 0.019

NNCosNgbr 3.821 6 0.031 3.775 6 0.024 3.691 6 0.019

1MVA 3.833 6 0.031 3.768 6 0.024 3.677 6 0.019

1MMR 3.801 6 0.031 3.760 6 0.024 3.677 6 0.019

1Greedy 3.896 6 0.031 3.818 6 0.023 3.732 6 0.019

MovieLens-1M

PureSVD 4.127 6 0.011 4.004 6 0.008 3.908 6 0.007

1MVA 4.128 6 0.011 4.013 6 0.008 3.901 6 0.007

1MMR 4.120 6 0.011 4.012 6 0.008 3.900 6 0.007

1Greedy 4.187 6 0.011 4.065 6 0.008 3.941 6 0.007

NNCosNgbr 4.027 6 0.011 3.928 6 0.009 3.836 6 0.007

1MVA 4.027 6 0.011 3.927 6 0.009 3.824 6 0.007

1MMR 4.022 6 0.011 3.926 6 0.009 3.832 6 0.007

1Greedy 4.082 6 0.011 3.988 6 0.009 3.902 6 0.007

Jester-1

PureSVD 1.292 6 0.028 1.031 6 0.021 0.892 6 0.017

1MVA 1.092 6 0.029 0.950 6 0.021 0.864 6 0.017

1MMR 1.292 6 0.028 1.031 6 0.021 0.892 6 0.017

1Greedy 1.688 6 0.028 1.323 6 0.021 0.923 6 0.017

NNCosNgbr 2.312 6 0.027 1.529 6 0.020 0.939 6 0.017

1MVA 1.146 6 0.029 1.338 6 0.021 0.859 6 0.017

1MMR 2.312 6 0.027 1.559 6 0.020 0.939 6 0.017

1Greedy 2.356 6 0.027 1.578 6 0.021 0.939 6 0.017

Reported results are averages across test folds in a 5-fold cross-

validation (at a time, 80% of the data set was used for training and the

remaining 20% for testing, and the partitions are chosen at random).

TABLE 3. Lowest average rating for recommendation lists of size

n 5 5, 10, and 20.

@5 @10 @20

MovieLens-100K

PureSVD 2.881 6 0.062 2.404 6 0.060 2.100 6 0.059

1MVA 2.870 6 0.064 2.405 6 0.061 2.075 6 0.059

1MMR 2.798 6 0.063 2.339 6 0.061 2.037 6 0.059

1Greedy 3.003 6 0.065 2.481 6 0.062 2.123 6 0.060

NNCosNgbr 2.670 6 0.066 2.303 6 0.061 2.035 6 0.059

1MVA 2.711 6 0.065 2.290 6 0.061 2.016 6 0.059

1MMR 2.663 6 0.066 2.272 6 0.061 2.011 6 0.059

1Greedy 2.812 6 0.067 2.359 6 0.061 2.065 6 0.059

MovieLens-1M

PureSVD 3.127 6 0.025 2.624 6 0.024 2.223 6 0.023

1MVA 3.129 6 0.025 2.608 6 0.024 2.208 6 0.023

1MMR 3.114 6 0.025 2.612 6 0.024 2.209 6 0.023

1Greedy 3.217 6 0.025 2.683 6 0.025 2.263 6 0.024

NNCosNgbr 2.963 6 0.025 2.472 6 0.024 2.117 6 0.023

1MVA 2.962 6 0.025 2.457 6 0.024 2.087 6 0.023

1MMR 2.953 6 0.025 2.466 6 0.024 2.111 6 0.023

1Greedy 3.057 6 0.025 2.557 6 0.024 2.201 6 0.023

Jester-1

PureSVD 23.766 6 0.053 25.589 6 0.046 26.318 6 0.041

1MVA 24.295 6 0.052 25.918 6 0.044 26.349 6 0.041

1MMR 23.766 6 0.053 25.590 6 0.044 26.319 6 0.041

1Greedy 23.270 6 0.054 25.231 6 0.046 26.285 6 0.041

NNCosNgbr 22.178 6 0.057 24.777 6 0.049 26.257 6 0.041

1MVA 24.287 6 0.056 25.937 6 0.048 26.350 6 0.041

1MMR 22.179 6 0.057 24.778 6 0.049 26.257 6 0.041

1Greedy 22.200 6 0.057 24.789 6 0.049 26.261 6 0.041

Reported results are averages across test folds in a 5-fold cross-

validation (at a time, 80% of the data set was used for training and the

remaining 20% for testing, and the partitions are chosen at random).
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Results in Table 3 indicate that the worst item recom-

mended by Greedy tends to be better rated than the corre-

sponding one for Top-n. In all cases, Greedy leads to superior

or statistically equivalent lowest ratings, when compared with

both baselines. Underlined results are statistically equivalent

to Greedy, and all other results were statistically different,

especially for the data set MovieLens-1M. This is a conse-

quence of the large amount of samples used in the t-tests (p-

values ranged from 1025 to 10214). With respect to the

dependency-aware baselines, the worst item recommended by

Greedy tends to be better rated than the corresponding ones

for MVA and MMR. Once again, values obtained with MMR

were somewhat similar to those prompted by Top-n. MVA

performed better than MMR with respect to the MovieLens

data sets and the opposite was noticed with respect to Jester-1.

It is interesting to observe that recommendations generated

for Jester-1 with NNCosNgbr were particularly similar for

Greedy and all baselines, with equivalent mean ratings for

almost all comparisons. As for Jester-1, NNCosNgbr yields

somewhat high lowest ratings in scenarios of low sparsity,

very close to the lowest ratings produced by Greedy.

Win-loss analysis. Figures 3, 4, and 5 lead to a succinct

Win-Loss analysis for Greedy, which generates the highest

mean ratings, to �65% of users when compared to Top-n
baselines. The percentages associated with Greedy tend to

increase as n grows, which suggests that our method brings

gain to more users when more recommendations are gener-

ated. Greedy wins over MVA for �65% of users, and it is

more effective when the adopted predictor is NNCosNgbr.

With respect to MMR, Greedy outperforms it for �65% of

users as well. Nonetheless, the results varied more for

MMR: in the graph associated with Jester-1 and

NNCosNgbr, in particular, it won over Greedy for �48% of

users. The percentages associated with Greedy tended to

increase as n grew as well, as shown in Figure 3.

It is important to compare the results presented in Tables

2 and 3 to further our understanding of the Win-Loss results,

in particular for the Jester-1 data set. As indicated in Table

2, the differences between average mean ratings tend to be

lower when n increases for Jester-1 when we contrast

Greedy with the baselines. This can also be observed in

Table 3, and although we did not perform an analysis for

average highest mean ratings, we believe it would have fol-

lowed a similar pattern. This likely closer gap between high-

est ratings for Jester-1 when n increases somewhat reflects

the Win-Loss analysis: as they become more similar, the

methods yield more similar Win-Loss proportions. Note that

differences between average mean ratings and average low-

est mean ratings in Tables 2 and 3 do not change much

when n increases for the MovieLens data sets, which proba-

bly leads to a more uniform increase in differences for high-

est ratings and wins/losses between Greedy and the studied

baselines.

Recalling Q1, the results indicate that Greedy consis-

tently generates recommendations that are more useful than

those produced by the studied baselines. Greedy was partic-

ularly better than MVA. In general, absolute gains were

FIG. 3. Percentages of users to which Top-n and Greedy have won over each other, in terms of highest mean rating given to generated recommenda-

tions. [Color figure can be viewed at wileyonlinelibrary.com]
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much higher for the Jester-1 data set. Despite that, the gains

obtained with Greedy were consistent for both data sets

even when they were small.

Relating Co-Utility and Diversity

In this section we address research question Q2: How

diverse are our produced recommendations? In order to do

FIG. 4. Percentages of users to which MVA and Greedy have won over each other, in terms of highest mean rating given to generated recommenda-

tions. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 5. Percentages of users to which MMR and Greedy have won over each other, in terms of highest mean rating given to generated recommenda-

tions. [Color figure can be viewed at wileyonlinelibrary.com]
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so, we investigate whether items that are co-useful have sim-

ilar content. We also compare the level of diversity in rec-

ommendations generated by Greedy, Top-n, and MMR. We

opted to contrast Greedy with Top-n because it is

dependency-agnostic, and thus we can analyze whether the

pairwise scores h would hamper the diversity of recommen-

dations generated by predictors PureSVD and NNCosNgbr.

As for MMR, we wanted to understand how its results differ

from those prompted by Greedy and Top-n—two methods

that do not focus on diversity. Finally, we analyze if pair-

wise scores h—that is, co-utility probabilities—correlate

with the cosine similarity.

There are several methods to measure recommendations’

diversity (Vargas & Castells, 2011; Ricci et al., 2011). In

our scenario, it is important to choose a method that explores

item content, as this information was not used by any of the

studied algorithms. The use of content dissimilarities allows

more impartial comparisons among these algorithms—espe-

cially with respect to MMR, as it already embeds rating dis-

tributions’ dissimilarities in its optimization.

An advantage of exploring content instead of rating dis-

tributions is the interpretability of diversity results. For

instance, stating that two books are different because their

genres and authors are not the same is more interpretable

than affirming it because their ratings are not alike. Most

experiments in this subsection are exclusive to the

MovieLens-1M data set because it has a large amount of

content information with which we can compute movie dis-

similarities, in contrast to the Jester-1 data set. To have an

intuition about whether co-useful items share the same gen-

res, we listed the pairs of movies with highest co-utility

probabilities alongside their genres in common in Table 4.

Table 4 indicates that movies that are highly co-useful to

users are not necessarily similar in terms of genres. In partic-

ular, 4 out of 10 pairs of movies have no genre in common.

Although there may be other sources of similarities that we

did not consider, such as actors in common, these results

strengthen the hypothesis that co-utility does not imply simi-

larity. For instance, When We Were Kings is a documentary

released in the 1990s, whereas Star Wars Episode 4 is a Sci-

Fi/Adventure movie from 1977. It is important to note that

most of these movies are very popular and received high rat-

ings in websites such as IMDb7 and Rotten Tomatoes.8

To further our understanding on how co-utility may relate

to diversity, we aggregated the diversity levels of recommen-

dations generated with Greedy, Top-n, and MMR in Table 5.

To compute movie dissimilarities, we calculated Jaccard’s

coefficient over movies’ corresponding genres. To compare

the diversity levels of Greedy, Top-n, and MMR, we used the

ILD metric described in “Validation Metrics” section.

We performed paired t-tests for each Top-n/Greedy and

MMR/Greedy pair in Table 5 with a 95% confidence inter-

val, and none of the results were statistically different.

Recalling Q2, the results indicate that Greedy is not likely to

hurt recommendations’ diversity when compared to Top-n
and may generate as diversified recommendations as the

MMR algorithm implemented with the Kullback–Leibler

divergence.

Recommendation Optimality

In this section we used experiments that aim to answer

the research question Q3: How far are our produced recom-

mendations from those obtained with an optimal solution to

MSDP? To contrast Greedy and optimal solutions obtained

with an optimizer, namely, Exact, we divided the data sets

into 10 folds with approximately the same size randomly. In

all cases, one of the folds was chosen for test and the others

were used for training. We did not perform cross-validation

in this experiment due to time constraints. Also, because of

time constraints, experiments with the MovieLens data sets

only use predictor PureSVD, and experiments with Jester-1

only use predictor NNCosNgbr.9

To compute the exact solutions and perform comparisons

that make sense in practical, real-time scenarios, we adopted

a timeout of 20 seconds. We discarded all exact solutions

that would take more than that, and only compared optimal

TABLE 4. Top 10 pairs of movies with highest co-utility probabilities,

computed with Empirical Bayes. Alongside these pairs, we list the gen-

res each pair has in common.

Pairs of movies Common genres

Seven Samurai Sanjuro Action

The Boat Sanjuro Action

GoodFellas Sanjuro None

Casablanca Sanjuro None

The Wrong Trousers A Close Shave Animation/Comedy

The Great Escape Sanjuro Adventure

The Wrong Trousers Wallace & Gromit Animation

Yojimbo The Bridge on the

River Kwai

Drama

Yojimbo A Clockwork Orange None

When We Were Kings Star Wars Episode IV None

TABLE 5. Lowest average rating for recommendation lists of size

n 5 5, 10, and 20.

MovieLens-1M

@5 @10 @20

PureSVD 0.8305 0.8392 0.8444

1MMR 0.8309 0.8395 0.8445

1Greedy 0.8302 0.8392 0.8444

NNCosNgbr 0.8360 0.8429 0.8458

1MMR 0.8365 0.8428 0.8458

1Greedy 0.8358 0.8429 0.8458

Reported results are averages across test folds in a 5-fold cross-

validation (at a time, 80% of the data set was used for training and the

remaining 20% for testing, and the partitions are chosen at random).

7http://www.imdb.com/
8http://www.rottentomatoes.com/
9In preliminary experiments, predictor PureSVD has yielded the best

results for MovieLens-1M and NNCosNgbr has yielded the best results

for Jester-1.
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solutions obtained below this time threshold with their corre-

sponding suboptimal ones. Solutions that take more than 20

seconds to compute corresponded to less than 15% of all

cases. We performed a paired t-test with a 95% confidence

interval over the mean ratings obtained with Greedy and

Exact and all results were statistically equivalent.

Recalling Q3, the results indicate that, in practice, Greedy

is a good approach to MSDP. A case where Greedy and

Exact lead to different solutions works as follows. Let us

consider a set of candidate items I5fi1; i2; i3g with corre-

sponding sets of scores I/5f/i150:9;/i250:85;/i350:85g
and Ih5fhi1i250:7; hi1i350:6; hi2i350:9g. If we want to

select N 5 2 items out of I, Exact will select i2 and i3,

whereas Greedy will select i1 and i2. The Greedy choice of

starting the selection by choosing the item with the highest

score / does not necessarily lead to the optimal solution, as

the example illustrates.

Analyzing the Scalability of Our Method

In this section we examine research question Q4: How

scalable is our method? Although Greedy is polynomial and

rather fast, there are some easy and important optimizations

that make it scalable and competitive in practice. It is impor-

tant, for example, to precompute and store all pairwise

scores h in a hash table as a preprocessing step. This offline

computation speeds up the generation of solutions to MSDP

by avoiding redundant computations of pairwise scores.

Another improvement involves the use of memorization to

reuse partial summations. Figure 6 illustrates the mean

computation time per validation fold for each data set,

varying n and the predictor algorithm. All experiments

were performed with a Pentium Dual-Core 2.0GHz with

2GB RAM. We decided to compare Greedy with Top-n
because, from all studied methods, Top-n is the fastest

one in practice.10

The results in Figure 6 correspond to the mean aggre-

gated running time for the generation of all recommendation

lists concerning a validation fold. These results provide an

answer to Q4: yes, Greedy is quite scalable in practice.

For higher values of n, the time difference between

Greedy and Top-n could increase, but such analysis is not

useful in real-world scenarios because n values are not high

in practice (Ricci et al., 2011). Therefore, for realistic values

of n (i.e., most recommendation applications use lists with

fewer than 50 items), Greedy scales well and its mean run-

ning times per validation fold are only slightly worse than

those obtained with Top-n. In spite of that, the time differ-

ence for generating a single recommendation list with all

methods is irrelevant. Given that in real-world systems rec-

ommendation lists are generated one at a time via the inter-

action with users, Greedy is a feasible alternative.

FIG. 6. Mean running times per validation fold, in seconds, for different combinations of data sets and predictors, with N 5 5, 10, 20. Reported

results are averages across test folds in a 5-fold cross-validation (at a time, 80% of the data set was used for training and the remaining 20% for test-

ing, and the partitions are chosen at random). [Color figure can be viewed at wileyonlinelibrary.com]

10We used a Top-n implementation with time complexity

OðKlog NÞ.
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Conclusions and Future Work

In this article we investigated how co-utility probabilities

can be estimated and exploited in order to improve the util-

ity of recommended items. To this end, we modeled the

interplay of individual predictions and co-utility probabili-

ties as a linear combination. Afterwards, we posed the task

of finding the best subset of candidate recommendations,

which mapped trivially into the Max-Sum Dispersion Prob-

lem (MSDP). We implemented a scalable, Greedy heuristic

to MSDP, and evaluated it using three publicly available rec-

ommendation data sets.

To demonstrate the usefulness of our approach, we have

shown that it performs consistently better than two state-of-

the-art dependency-agnostic recommendation baselines.

Moreover, by contrasting our approach to dependency-

aware, diversity-oriented baselines, we have shown that the

exploitation of co-utility probabilities does not necessarily

hurt recommendations’ diversity. Furthermore, by contrast-

ing our Greedy heuristic to an optimal solution to MSDP,

we have shown that our produced recommendations are not

statistically different than those obtained via an exact opti-

mization. Finally, by comparing the running times of our

Greedy heuristic and the dependency-agnostic baselines, we

have demonstrated the scalability of our approach and its

applicability for real-world recommendation scenarios.

Throughout this article, we showed that co-utility proba-

bilities are important evidence for recommender systems.

Hence, in the future we intend to develop Learning to Rank

algorithms that embed co-utility estimates as learning fea-

tures. We also want to extend our method to hybrid recom-

menders, by exploiting content information in order to

compute co-utility probabilities. Finally, we believe that

there is still room for improvement in the choice of hij, since

different persons/users may have different probability of

items. Thus, we plan to study approaches to set hij values

according to the probability of items related to each user.
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