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Abstract: The classification performance of an associative classifier is strongly dependent on the statistic measure or metric
that is used to quantify the strength of the association between features and classes (i.e. confidence, correlation, etc.). Previous
studies have shown that classifiers produced by different metrics may provide conflicting predictions, and that the best metric to
use is data-dependent and rarely known while designing the classifier. This uncertainty concerning the optimal match between
metrics and problems is a dilemma, and prevents associative classifiers to achieve their maximal performance. This dilemma is
the focus of this paper. A possible solution to this dilemma is to learn the competence, expertise, or assertiveness of metrics.
The basic idea is that each metric has a specific sub-domain for which it is most competent (i.e. it consistently produces more
accurate classifiers than the ones produced by other metrics). Particularly, we investigate stacking-based meta-learning methods,
which use the training data to find the domain of competence of each metric. The meta-classifier describes the domains of
competence (or areas of expertise) of each metric, enabling a more sensible use of these metrics so that competence-conscious
classifiers can be produced (i.e. a metric is only used to produce classifiers for test instances that belong to its domain of
competence). We conducted a systematic and comprehensive evaluation, using different datasets and evaluation measures, of
classifiers produced by different metrics. The result is that, while no metric is always superior than all others, the selection
of appropriate metrics according to their competence/expertise (i.e. competence-conscious associative classifiers) seems very
effective, showing gains that range from 1.2% to 26.3% when compared with the baselines (SVMs and an existing ensemble

method). © 2009 Wiley Periodicals, Inc. Statistical Analysis and Data Mining 2: 361-377, 2009
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1. INTRODUCTION

One strategy for devising a classifier is to exploit relation-
ships, dependencies and associations between features and
classes. Such associations are usually hidden in the training
examples, and when uncovered, they may reveal important
aspects concerning the underlying phenomenon that gener-
ated these examples. These aspects can be expressed using
rules of the form X — ¢, which indicate that a set of fea-
tures X is associated with class c. The use of such rules for
the sake of prediction has led to a new family of classifiers
that are often referred to as associative classifiers [1-11].
These classifiers have shown to be valuable in many appli-
cations, including gene functional analysis [12], document
categorization [13,14], Web ranking [15], etc.

An obvious difference between various associative clas-
sifiers resides in the metric used to capture dependencies
between features and classes (i.e. confidence, correlation,
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etc.). It has been observed that many such metrics provide
conflicting information about feature—class dependencies,
resulting in associative classifiers with different classifica-
tion performances cikm. In fact, different metrics have dif-
ferent intrinsic properties [16] (i.e. symmetric/asymmetric
metrics, scaling variant/invariant metrics, etc.), and this
may lead to very different associative classifiers. Some of
these classifiers may be well suited for some classification
problems, but not for others (that is, each metric has a
particular domain for which it is more competent). Compe-
tent metrics are rarely known while devising the classifier,
and this dilemma concerning the best match between met-
rics and problems prevents the full potential of associative
classifiers.

Obviously, one possible solution to the metric dilemma
is to find the domain of competence (or areas of exper-
tise) for each metric, that is, subsets of examples for which
a certain metric produces better classifiers than the oth-
ers. Having this information would enable the assignment
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of competent associative classifiers to specific problems
according to their competence/expertise [17,18]. Hopefully,
classification performance would be drastically boosted by
taking advantage of consciously assigning metrics to spe-
cific subsets of instances (i.e. a domain of competence).
This would be great, except that there are several met-
rics, and numerous (unknown) characteristics affecting their
corresponding competence, and finding such an invariant
domain of competence for metrics seems to be practically
unfeasible.

As an alternate approach to the metric dilemma, we
propose to automatically extract the competence of each
metric. Taking as a starting point, a set of g accurate'
and diverse* metrics, m;, ma, . . ., mgy, a stacking-like
meta-learning strategy [19,20], which is a procedure based
on the idea that different classifiers may provide different
but complementary explanations of the data, is used to
extract, from the training data, information regarding the
competence of each metric. This information is then used to
produce the meta-data. Specifically, it is explicitly indicated
the metrics that correctly classify each example in the
training data (i.e. using a cross-validation procedure).

The meta-data is used to produce a meta-classifier which
has the ability to consciously decide the appropriate match
between metrics and examples (i.e. the meta-classifier
is a function mapping features to competent metrics).
Then, for each test instance ¢, the meta-classifier is used
to decide which is the most competent metric to be
applied, according to their expertise. A specific classi-
fier, Cfnl_, is finally produced, so that m; is expected to
be the most competent metric to classify instance ¢ (i.e.
t belongs to the domain of competence of metric m;).
The classifiers that are produced following this strategy are
regarded as competence-conscious classifiers. We propose
two competence-conscious classifiers, with the difference
between them residing in the way they perform the analysis
of the domains of competence (or areas of expertise). The
first classifier performs a class-centric analysis, in which the
domain of competence of a metric is composed of classes
for which it produces accurate classifiers. The other classi-
fier performs a different analysis, in which the domain of
competence of a metric is composed of examples for which
it produces accurate classifiers.

To evaluate the effectiveness of competence-conscious
associative classifiers, we performed a systematic set of
experiments using the UCI datasets, as well as more com-
plex datasets obtained from other real applications, such as
digital libraries, Web directories, and Web spam detection.

! An accurate metric is one that produces a classifier that has
an error rate of better than random guessing.

2 Two metrics are diverse if they produce classifiers that mis-
classify different instances.
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Our results suggest that the finer-grained the analysis of the
domains of competence (i.e. from classes to instances), the
more effective is the final associative classifier. The results
also show that the proposed competence-conscious associa-
tive classifiers are able to outperform the baselines (SVMs
and existing ensemble methods), providing gains ranging
from 1.2% to 26.3%. In summary, the specific contributions
of this paper are:

e We present a comprehensive study of the competence
of associative classifiers produced by different statis-
tic metrics. We show that no metric is consistently
better than the others for all problems. Further, we
also show that traditional metrics, such as confidence,
are just moderately competent for most of the prob-
lems investigated.

e We propose competence-conscious classifiers, which
effectively combine classifiers produced by different
metrics (an ensemble) using their domains of compe-
tence. All constituent classifiers are produced using
the same rule set. The only difference between the
base classifiers is the way they interpret the rules
(each classifier employs a different metric).

e We used several complex datasets to present a deep
evaluation of the proposed competence-conscious
classifiers, and we show that they are able to pro-
vide expressive gains in classification performance.
Our analysis includes a study about how the diver-
sity and the accuracy of the base classifiers affect
the performance of competence-conscious associative
classifiers.

The remaining of this paper is organized as follows. In
Section 2, we discuss related work. Then, in Section 3,
we introduce our associative classification technique. The
metric dilemma and competence-conscious associative clas-
sifiers (i.e. the ensemble of classifiers produced by different
metrics) are presented in Section 4. In Section 5, we eval-
uate the proposed competence-conscious classifiers, and
compare them against state-of-the-art SVMs and existing
ensemble techniques. Finally, in Section 6 we conclude the

paper.

2. RELATED WORK

The ultimate goal of a classifier is to achieve the best
possible classification performance for the problem at hand.
An ensemble is a collection of classifiers whose predictions
are combined with the goal of achieving better performance
than the constituent classifiers. There is a body of evidence
suggesting that ensembles offer substantial advantages in
enough situations to be regarded as a major advance in
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machine learning [21]. Also, there is a body of theory
explaining why ensembles work. In this section, we will
discuss approaches used to produce ensembles, and how
they relate to the approaches presented in this paper.

A variety of ensemble methods has already been pro-
posed. Well-known methods include bagging [22], boosting
[23], and stacking [19]. Bagging is the acronym for boot-
strap aggregating. It generates bootstrap replicates of the
training data by sampling examples from the original train-
ing data uniformly and with replacement (i.e. an example
may appear repeated times or not at all in any particular
replicate). A classification model is produced from each
replicate, and then they are combined using approaches
such as averaging or voting [24]. Boosting combines sev-
eral weak classifiers (those that are only slightly correlated
with the true classification) in order to produce a single and
much stronger one. Combination approaches include aver-
aging [25] and majority [26]. In the following, we will focus
our attention on stacking methods, since the techniques pro-
posed in this paper are mostly related to them. Stacking
is based on the idea that different classifiers may pro-
vide different but complementary explanations of the data.
Thus, the predictions of these different (base) classifiers can
potentially produce novel information that can be used as
meta-features to form a new training data. Then, a meta-
classifier is built using this new training data, but instead
of predicting the correct class for a given test instance, the
meta-classifier predicts the base classifier that is most likely
to correctly predict the class for such instance. The obvious
advantage, in this case, is that the errors of a base classifier
can be counterbalanced by the hits of others.

In this paper, we are interested in associative classifica-
tion. We exploit stacking-based meta-learning approaches
to address an important issue in associative classification:
the metric dilemma. Several statistic metrics can be used
to estimate feature—class associations [16,27,28], but the
most competent one is rarely known in advance. Thus, we
propose to explore the diversity among classifiers that are
produced using different statistic metrics to maximize the
performance of the final classifier (which will be refereed as
a competence-conscious associative classifier). The metric
dilemma is challenging, and, as far as we know, this is the
first attempt to integrate classifiers produced by different
statistic metrics, in the context of associative classification.

The integration of classifiers using strategies related to
stacking was largely explored [17,18,29-31]. In Ref. [31],
the authors use a neural network to learn, from predefined
meta-features (e.g. maximum confidence, average confi-
dence, number of applicable rules, etc.), how to weigh the
rules using a single association metric (i.e. confidence). We
believe that the work of Ortega et al. [18] is the closest
to ours. They used a referee (which in our case is a meta-
classifier) to indicate the best classifier to be applied for

each example. In our experiments, we performed a direct
comparison between the competence-conscious classifiers
proposed in this paper and the ensemble approach proposed
in Ref. [18].

Self-delegation [17] is another strategy for combining
the predictions of different base classifiers, and thus it
is also related to our work. The idea is that each base
classifier chooses by itself which instances it can safely
classify. This choice is based on the confidence in its pre-
diction. A base classifier delegates the difficult or uncer-
tain predictions to other classifiers. Clearly, this strat-
egy produces classifiers which are exclusively defined in
terms of the original features (no meta-features are gener-
ated). This simplicity may be desirable, but it may neglect
important information associated with meta-features. We
show this by performing a direct comparison between self-
delegating classifiers (SDCs) and competence-conscious
classifiers. We concluded that sensitive information regard-
ing the competence of metrics leads to associative classi-
fiers that provide substantial improvements in classification
performance.

3. ASSOCIATIVE CLASSIFICATION

The classification problem is defined as follows. We have
an input dataset called the training data (denoted as D)
which consists of instances composed of a set of [ attribute
values (aj, az, . . ., a;) along with a special variable called
the class. The set of all possible attribute values is denoted
as A, whereas the class variable draws its value from a
discrete set of classes (c1, ¢2, ..., ¢;). The training data is
used to build a classifier that relates features (or attribute
values) to the class variable. The fest instances are a set of
instances for which only the features are known while the
class value is unknown. The classifier, which is a function
from A to {cy, ¢z, . . ., ¢}, is used to predict the class value
for test instances (i.e. the classifier is a function which maps
a set of features to one of the classes).

Associative classifiers exploit the fact that, frequently,
there are strong associations between features and classes.
Typically, such associations are expressed using rules of
the form X — ¢;, where X C A and ¢; is one of the
classes. These rules are usually hidden in the training data,
and when uncovered they can be combined in order to
accurately map features to classes (i.e. the classification
function is obtained by combining the information provided
by these rules). In the following, we will denote as R
an arbitrary rule set extracted from D. Similarly, we will
denote as R, an arbitrary rule set composed of rules of the
form X — ¢;, such that R, C R.

Naturally, some rules in R represent stronger associa-
tions than others. A set of statistic metrics that quantify the
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strength of the association between X and ¢; are used to
compare the rules. Associative classifiers usually learn the
classification function in two broad steps:

1. Generate a rule set, R, from D.

2. Estimate the likelihood of class membership for each
test instance, by combining the information provided
by rules in R.

The main challenge associated with the first step is to
avoid the rule explosion problem, which may make the rule
extraction process unfeasible in practice (or at least time-
consuming). An approach to deal with this challenge (the
pruning dilemma) was proposed in Ref. [6]. In this paper,
we follow this approach [6], which generates rules on a
demand-driven basis according to each test instance. This
strategy drastically reduces the number of extracted rules,
while at the same time, it reduces the chance of missing
important rules.

In this paper, our focus is on an important challenge
associated with step 2: provide an accurate estimate of
the likelihood of class membership. Specifically, given an
instance 7, we want to estimate the likelihood p(c;|t) that
t belongs to class ¢;. Only rules X — {cj,c2...c} € R,
such that X C ¢ are used to estimate p(cq|t),. .. p(c,lt).
Such rules are said to match ¢, and they form the rule set
R'. Obviously, R' C R.

The likelihood of membership of an instance ¢ is esti-
mated by combining rules in R ={R; UR[ U...U
R.,}. A simple (yet effective) probabilistic strategy is to
interpret R’ as a poll, in which rule X — ¢; € R, is a

vote given by X for class ¢;. The weight of a vote X i
depends on the strength of the association between X and ¢;,
which is given by an association metric m. Weighted votes
for class ¢; are summed and then averaged by the total
number of votes for this class, as expressed by function
s(ci, t), shown in Eq. (1) (where m(r) is the metric value
for rule »). As will be discussed in the next section, there
are cases in which m(r) < 0, and thus a value z (which is
the lowest score, that is, z=s(c;, t)|s(cj, 1) < s(c;, Vi),
is used to ensure that all scores are greater than or equal
to 0.

ZreRi-. m(r)
S(Ci,[):T;l_Z (D

The likelihood of membership of ¢ to class ¢; is expressed
by the function p(c;|t), shown in Eq. (2) (thus, votes with
high weights increase the likelihood of the corresponding
class being the correct one, whereas votes with low weights
reduce the likelihood of the corresponding class being the
correct one). A higher value of p(c;|t) indicates a higher
likelihood of ¢ to belong to class ¢;. The class associated
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with the highest likelihood is finally predicted. As will be
shown in Section 5, association metrics play a fundamental
role in estimating the likelihood of class membership.
However, the best-quality, most competent metric is data-
dependent, and rarely known while devising the classifier®

s(ci, 1)

Z'} s(cj, 1) 2

plciln) =

4. THE METRIC DILEMMA

Selecting an appropriate association metric is a major
issue while designing an associative classifier. Classifiers
produced by different metrics often present different clas-
sification performance. Depending on the characteristics of
the problem, some metrics may be more suitable than oth-
ers. That is, a sub-domain may present properties that make
a metric more suitable than others. This suggests that clas-
sifiers produced by a certain metric are only able to make
reliable predictions over a subset of the entire domain space,
which is the area of expertise, or domain of competence,
of such metric. In this section, we exploit the training data
to learn the competence or expertise of each metric. Then,
a specific metric is used to produce a classifier for sub-
problems that belong to its domain of competence.

4.1. Association Metrics

Next we present several metrics for measuring the
strength of association between a set of features (&) and
classes (c1, ¢2, . . ., cp). Some of these metrics are popular
ones in routine use [16,32], whereas others were recently
used in the context of associative classification [33]. Natu-
rally, there is nothing to gain by combining similar classi-
fiers (i.e. those that perform almost the same predictions),
and thus we selected metrics that are sufficiently differ-
ent (these metrics have different properties according to
Ref. [16]) to indicate that the corresponding classifiers
(Ci,, - - ., Cug) may present some diversity.

e Confidence (m) [32]: This metric measures the frac-
tion of instances in D containing &’ that belong to c;.
It is the conditional probability of c¢; being the cor-
rect class of instance ¢ given that X C ¢, as shown in
Eq. (3). Its value ranges from O to 1.

my = p(ci|X) (3)

3 We denote as ij an associative classifier which applies m ;
as the association metric in Eq. 1.
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e Added value (m;) [28]: This metric measures the gain

in accuracy obtained by using the rule X — ¢; instead
of always predicting c;, as shown in Eq. (4). Negative
values indicate that always predicting c; is better than
using the rule. Its value ranges from —1 to 1.

my = p(ci|X) — p(ci) 4

Certainty (m3) [27]: This metric measures the
increase in accuracy between rule X — ¢; and always
predicting c;, as shown in Eq. (5). It assumes values
smaller than 1.

_ p(cilX) — p(c)

5
p(ci) ©)

m3

Yules’Q (m4) and Yules’Y (ms) [34]: These metrics
are based on odds value, as shown in Eqs (6) and (7),
respectively. Their values range from —1 to 1. The
value 1 implies perfect positive association between
X and c¢;, value 0 implies no association, and value
—1 implies perfect negative association.

_ PXUc)p(XUc) — p(XUG)p(XUc;)
T p(XUc)p(XUc) + p(XUT) p(XUc;)
(6)

P@U)p(ET )~/ pEUE pEU)

=
U p@0e) +\/pau@mp@ua)
0

Strength score (mg¢) [33]: This metric measures the
correlation between X and c;, but it also takes into
account how X is correlated with the complement of
¢; (i.e. ¢;), as shown in Eq. (8). Its value ranges from
0 to oo.

_ p(Xlei)p(ci|X)

8
p(Xle)) ®

Support (m7) [32]: This metric measures the fraction
of instances in D covered by the rule X — ¢;, as
shown in Eq. (9). Its value ranges from O to 1.

m7 = p(XUc;) 9

e Weighted relative confidence (mg) [27]: This met-
ric trades off accuracy and generality, as shown in
Eq. (10). The first component is the accuracy gain
that is obtained by using the rule X — ¢; instead of
always predicting ¢;. The second component incor-
porates generality.

mg = (p(ci|X) — p(ci)) p(X) (10)

Although we focus our analysis only on these eight
metrics, the approaches to be introduced here are general
and able to exploit any number of metrics transparently.

Associative classifiers produced by different metrics
may perform different predictions. Table 1 shows a sim-
ple example containing a training data from which different
associative classifiers may be produced in order to predict
the class, for instance 11. For simplicity, we will consider
only attributes aj, ap, and ¢;. In this case, according to
Eq. (2), classifier C}nll predicts c3, classifiers cll ¢l and

my® Ym3?
C}nls predict cq, and classifiers 6;114’ C,Lls , C;116, and C,, predict
cz. Next we will discuss a simple approach to boost clas-
sification performance by exploiting associative classifiers
produced by the aforementioned metrics.

Self-delegating classifier Equation (2) can be used to
estimate the reliability of a prediction, and this information
can be used to select the most reliable prediction from
all involved classifiers [17]. The process is illustrated in
Algorithm 1. For a given test instance ¢, the selected class
is the one which is associated with the highest likelihood
p(ci|t) among all classifiers Cﬁnl , Cﬁnz, R Cinq. The basic
idea is to use the most reliable prediction (among the
predictions performed by all classifiers) to select the class,
for instance .

Although simple, SDC does not exploit the competence
of each metric. In fact, each base classifier simply decides
by itself the instances it will classify, not meaning that the

select instances belong to its domain of competence.

Table 1. Training data, D (first ten instances), and test set,
7 (instance 11).

Attribute values

Id Class ay az ... q
1 C1 13...6
2 C1 13...7
3 ¢ 24...6
4 2 24...7
5 &) 25...8
6 &) 24...6
7 c 13...9
8 c3 25...9
9 c3 24...8
10 3 24...9
11 2 23...8

Statistical Analysis and Data Mining DOI:10.1002/sam
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Algorithm 1 Classifier based on self-delegation of metrics

Require: The training data D, and a test instance ¢
Ensure: The class for instance ¢

I: R! <rules X — ¢; (with 1 <i < n) extracted from D
such that X C ¢

2: produce different classifiers C,, . C,,, ....C,, . for
instance 7, using rules in R’

3: return the class associated with the highest likelihood
of membership for ¢ [i.e. Eq. (2)], among all classifiers

4.2. Learning the Metric Competence

The optimal match between metrics and problems is valu-
able information. In this section, we present an approach to
estimate such matching. The proposed approach may be
viewed as an application of Wolpert’s stacked generaliza-
tion [19]. From a general point of view, stacking can be
considered as a meta-learning method, because it refers to
the induction of classifiers over inputs that are, in turn, the
predictions of other classifiers induced from the training
data (i.e. meta-data). Specifically, in the stacking strategy,
an algorithm is applied on meta-data, which can contain
properties of the original data, properties of different classi-
fication algorithms, or patterns previously derived from the
original data. The meta-data is used to select, alter, or com-
bine different classifiers, which, in our case, are classifiers
produced by different metrics.

The process starts by enhancing the original training
data (i.e. producing the meta-data) using the outputs of the
base classifiers, C), . C,,, . . .C,, . Algorithm 2 shows the
basic steps involved in the process. Initially, the enhanced
training data, D, is empty. An example ¢, along with the
competence of each metric with regard to ¢ (i.e. which
metric correctly predicted the class for ¢), is inserted into
D,. The process continues until all examples are processed.
In the end, for each example r € D,, we have a list of

Table 2. Enhanced training data, D,.

Most
Competent competent
Attribute values metric(s) metric(s)

1d Class ayay ...aq (per instance) (per class)
1 C1 13...6 my

2 c1 13...7 my m3 mi
3 C1 24...6 nmj

4 (&) 24...7 nmiy mop

5 ) 25...8 my my ms3 mi
6 c 24...6 my

7 Cc3 13...9 mp

8 c3 25...9 mo ms my
9 c3 24...8 my my ms

10 Cc3 24...9 mp

Statistical Analysis and Data Mining DOI:10.1002/sam

Algorithm 2 Enhancing the training data with the compe-

tence of each metric

Require: The original training data D, and a cross-
validation parameter k

Ensure: The enhanced training data D,

1: split D into k partitions, so that D={d; Udr, U . . . U dy}}

2: D, <=0

3: for each partition d; do

4 for each instance ¢t € d; do

5: m< 9

6: R' < rules X — ¢, (with 1 <y <n) extracted
from {D-d;} such that X C ¢

7: produce different classifiers, C, i C,’nz, .. .,Cfnq,
using rules in R’
: for each classifier C,, . do
9: if Cﬁnj correctly predicts the class for ¢ then
10: m<<=mUm;
11: end if
12: end for
13: D, <D, U {t Um}
14:  end for
15: end for

metrics that produced a competent classifier for ¢, and this
information enables learning the domains of competence of
each metric, as will be discussed in the next section.

To illustrate this process, please consider the example
shown in Tables 1 and 2. Table 1 shows the original train-
ing data, D. Using the process described in Algorithm 2,
the competence of each metric to each instance is appended
to D, resulting in the enhanced training data, D,, which is
shown in Table 2. In this case, for a given example ¢, metric
m; is shown if the corresponding classifier Cfn[ has correctly
classified ¢ using the stacking procedure (i.e. metric m; is
competent with regard to example #). The enhanced training
data, D,, can be exploited in several ways. In particular, we
will use D, to produce competence-conscious classifiers, as
will be discussed next.

4.3. Competence-Conscious Classifiers

In this section, we present strategies for exploiting
D, in order to produce competence-conscious associa-
tive classifiers. The challenge, in this case, is to properly
select a competent metric for a specific test instance. The
competence-conscious classifiers to be presented differ in
how they perform the analysis of the domains of compe-
tence of metrics.

Class-centric competence-conscious classifier (C3) The
competence of a metric is often associated with certain
classes. Some metrics, for instance, produce classifiers
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which show preference for more frequent classes, whereas
others produce classifiers which show preference for less
frequent ones. As an illustrative example, please consider
Table 2. Metric m; is extremely competent for classifying
instances that belong to classes c¢; and c¢;. On the other
hand, if we consider instances belonging to c¢3, metric m»
perfectly classifies all instances. This information (which
is shown in the last column of Table 2) may be used to
produce class-centric competence-conscious classifiers. The
process is depicted in Algorithm 3. It starts with a meta-
classifier, M, which learns the most competent metric for
a given class. Any classifier can be used to build the meta-
classifier. For simplicity, we choose an associative classifier
that weights the votes given by rules using the confidence
metric. In this case, instead of generating rules X — ¢;,
the meta-classifier generates rules X — m;, which maps
features (i.e. in the third column of Table 2) to metrics (i.e.
in the fifth column of Table 2). Then, for each test instance
t, the meta-classifier indicates the most competent metric,
mj, that is then used to produce the final classifier, Cﬁnj,
which is finally used to predict the class, for instance ¢.

The main advantage of C3 and IC* is that, in practice,
multiple metrics produce competent classifiers for a partic-
ular instance ¢, but M needs to predict only one of them
(competent metrics are not mutually exclusive, and thus,
in practice, multiple metrics produce competent classifiers,
for instance t). We will show in Section 5 that this redun-
dancy in competence that exists when different metrics are
taken into account, may increase the chance of selecting a
competent metric.

Algorithm 4 Instance-centric meta-classifier.

Require: The enhanced training data D, (i.e. the 3rd and
4th columns of Table 2), and a test instance ¢

Ensure: The most competent metric for instance ¢

1: for each metric m; do

2: thni & rules X — m; extracted from D, such that
XCt

3:  Estimate p(m;|t), according to Eq. (2) (using confi-
dence to weigh the votes)

4: end for

5: return metric m; such that p(m;|t) > p(m;|t)Vi # j

Algorithm 3 Class-centric meta-classifier.

Require: The enhanced training data D, (i.e. the 3rd and
5th columns of Table 2), and a test instance ¢

Ensure: The most competent metric for instance ¢

1: for each metric m; do

2: Rin,- < rules X — m; extracted from D, such that
XCt

3:  Estimate p(m;|t), according to Eq. (2) (using confi-
dence to weigh the votes)

4: end for

5: return metric m; such that p(m;|t) > p(m;|t)Vi # j

Instance-centric competence-conscious classifier aIch
Although the competence of some metrics are associated
with certain classes, specific instances may be better classi-
fied using other metrics. In such cases, a finer-grained anal-
ysis of competence is desired. As an illustrative example,
please consider again Table 2. Although metric m; is the
most competent one to classify instances belonging to class
c1, metric my is the only one which competently classifies
instance 1 (which belongs to c¢;). Again, a meta-classifier,
M, is used to explore such cases. The process is depicted in
Algorithm 4. In this case, the meta-classifier learns the most
competent metric by generating rules of the form X — m;,
which maps features (i.e. the third column of Table 2) to
metrics (i.e. in the fourth column of Table 2). Then, for
each test instance ¢, the meta-classifier indicates the most
competent metric, m;, which is used to produce the final
classifier, Cﬁnj.

Algorithm 5 summarizes the basic steps of the compe-
tence-conscious associative classifiers. The algorithm
receives a test instance ¢ and a meta-classifier (either C°
or IC4) as input, and returns the class associated with ¢ as
output.

Algorithm 5 Competence-conscious classifiers.

Require: The training data D, the meta-classifier M, and
a test instance ¢

Ensure: The class for instance ¢

1: for each class ¢; do
2. Ry ¢ rules X— ¢; extracted from D such that
XCt

3: end for

4: select the most competent classifier for ¢, C,’m,
Y )

5: Estimate p(c;|t) (with 1<i<n), according to Eq. (2)
(using metric m, to weigh the votes)

6: return class c; such that p(c;|t) > p(c;i|t)Vi # j

using

Bounds for competence-conscious classifiers We
derived lower and upper bounds for the classification
performance of the proposed competence-conscious asso-
ciative classifiers. The lower bound is the performance
that is obtained by randomly selecting a competent met-
ric. Clearly, this lower bound increases with the redundancy

between the base classifiers, Cﬁn] R Cﬁnq. The upper bound

Statistical Analysis and Data Mining DOI:10.1002/sam
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is the classification performance that would be obtained by
an oracle which always predicts a competent metric (note
that perfect performance is not always possible, since it may
not exist a competent metric for some instances). Clearly,
this upper bound increases with the accuracy and diversity
associated with base classifiers.

Diversity between base classifiers We use the plain
disagreement [35] as a measure of diversity between two
base associative classifiers, C,, and ij, as shown in
Eq. (11), where C,, (t) is the class predicted by classifier
Cn;, for instance ¢, and diff(C,, (¢), ij (1)) returns 1 if the
two arguments are different (and O otherwise). The diversity
of the ensemble is finally given by averaging PD(Cy;, Cyn;)
over all g base classifiers.

il
PD(C;, Cn;) = % Zdiff(cm,- (1), C; (1)) (1)

t=1

5. EXPERIMENTAL EVALUATION

In this section, we will empirically analyze the proposed
classifiers, SDC, C°, and IC*. In our experiments, we used
26 datasets from the UCI Machine Learning Repository
[36] and three datasets obtained from more complex appli-
cations. These datasets cover a wide range of properties. We
compare the proposed classifiers against SVM [37] base-
lines* (we used the LibSVM tool [38] in order to select
appropriate parameters, which are discussed in each exper-
iment), and against the ensemble approach proposed in Ref.
[18], called ER (standing for external referee) in which the
ensemble is composed of the base classifiers C,,, . . ., Cpyg,
but the best classifier for each test instance is selected using
a decision tree referee. For associative classifiers, continu-
ous attributes in the training data were discretized using the
entropy-minimization method [39], and the attribute values
in the test set were simply mapped to the corresponding
intervals (in this way, the discretization process did not
use class information in the test set). Experiments that
compare classification performance report results for the
standard 10-fold cross-validation procedure. In all experi-
ments, parameter k for Algorithm 2 was set to 2 (i.e. each
training data, D, was split in two disjoint partitions, d; and
d;, in order to obtain the enhanced training data, D,). In
order to ensure that the domain of competence of each met-
ric is independent of a particular data configuration, C> and
IC* were executed a certain number of times employing

4In most of the experiments, SVM baselines take the original
training data (and not the enhanced one) as input. However, in
some of our experiments, we also employed SVMs as a meta-
classifier, as will be detailed.

Statistical Analysis and Data Mining DOI:10.1002/sam

different data configurations (i.e. training data is randomly
partitioned), and the final result is averaged by the number
of executions (which was set to 10). To perform a fair com-
parison, the same procedure was adopted to evaluate the
other classifiers, that is, SDC, ER, and SVM were also exe-
cuted multiple times with different data configurations. Best
results, including statistical ties, are emphasized. A bold
face indicates that the corresponding result was found sta-
tistically significant at the 95% confidence level when tested
with the two-tailed paired 7-test. Experiments were run on
1.8 MHz Intel processors 1 GB RAM under Linux.

5.1. Digital Library

The first dataset was extracted from the first level of the
ACM Computing Classification System (http://portal.acm.
org/dl.cfm/). The dataset contains 6682 documents labeled
using the eight first level categories of ACM, namely,
Hardware (C1), Computer Systems Organization (C2), Soft-
ware (C3), Computing Methodologies (C4), Mathematics
of Computing (C5), Information Systems (C6), Theory of
Computation (C7), and Computing Milieux (C8). Citations
and words in title/abstract compose the set of features. The
dataset has a vocabulary of 9840 unique words, and a total
of 51 897 citations. Please, refer to Ref. [13] for a detailed
description of this dataset.

Using the rules extracted from this dataset, we can ana-
lyze the relationship between the widely used confidence
metric (m) with other metrics, as shown in Fig. 1 (to ease
the observation of this relationship, we also include, in each
graph, a thicker line which indicates the corresponding con-
fidence value). Each point in the graphs corresponds to
a rule, for which it is shown the values of some metrics
(i.e. confidence in the x-axis and another metric in the y-
axis). Clearly, each metric has its particular behavior with
varying values of confidence. For lower values of confi-
dence, added value (m;) has a preference for less frequent
classes, but, after a certain confidence value, the preference
is for more frequent classes. Certainty (m3) always pre-
fer less frequent classes, but linearly approaches confidence
because its value increases. Yules’Q (m4) and Yules’Y (ms)
have a similar behavior, showing preference for less fre-
quent classes and hardly penalizing associations with low
confidence values. Strength score (mg) and weighted rel-
ative confidence (m3) both prefer less frequent classes,
but strength score shows a non-proportional preference for
associations with higher values of confidence. The relation-
ship between confidence and support (m7) is omitted, but,
by definition, support shows a preference for more frequent
classes. We will use these relationships to explain some of
the results reported in the following.

Table 3 shows the classification performance obtained
by different classifiers using the ACM dataset (for this
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Fig. 1 Relationship between confidence and other metrics using the ACM dataset.

application, performance is computed through the tradi-
tional accuracy). We will first analyze the performance
associated with each category, and then the final classi-
fication performance, which is shown in the last line of
the table. Classifiers produced by confidence (C,,) and
support (Cy,,) performed very well in the most frequent cat-
egories (Software, Inf. Systems and Theory of CS). On the
other hand, instances belonging to less frequent categories
(Computing Methodologies, Mathematics of CS, and CS
Organization) were better classified using Yules’Q (Cy,)
and Yules’Y (Cn;). This is expected, and is in agreement
with the behaviors depicted in Fig. 1 (Yules’Y and Yules’Q

show a preference for less frequent categories). The best
metric is the one that better balances its performance over
all categories. Although the classifier produced by Yules’Y
was not the best one for any specific category of ACM, it
was the best overall classifier (among classifiers produced
by other metrics in isolation).

SDC shows a performance that is similar to the
performance obtained by most of the base classifiers (the
improvement, when it exists, is only marginal). Compe-
tence-conscious classifiers C3 and IC* showed the best
performances, although they were not the best performer
for any individual category. Overall, IC* outperformed all

Table 3. Classification performance associated with each category of the ACM dataset.

Lower Upper

Cni Cmy Cmy  Cmy  Cuws  Cmg  Cmy;  Cumg Diversity bound SDC C5 IC* bound ER SVM
Cl  0.808 0.847 0.827 0.835 0.833 0.846 0.184 0.629 0.235 0.714 0.816 0.809 0.818 0.889 0.799 0.726
C2 0718 0.790 0.760 0.776 0.798 0.753 0316 0.789 0.114 0.727 0.727 0.737 0.768 0.878 0.719 0.877
C3 0915 0.852 0.887 0.866 0.862 0.752 0.960 0.876 0.124 0.872 0.880 0.889 0.921 0981 0.875 0.665
C4 0568 0.690 0.626 0.655 0.664 0.678 0.095 0.551 0.228 0.561 0.581 0.618 0.621 0.800 0.605 0.516
C5 0550 0.625 0.588 0.680 0.678 0.668 0.007 0.325 0.269 0.567 0.570 0.625 0.653 0.750 0.612 0.909
C6  0.952 0930 0.946 0.942 0.926 0.896 0.690 0.766 0.081 0.881 0.919 0913 0.928 0968 0.899 0.868
C7 0924 0894 0.892 0.891 0.891 0.887 0.505 0.682 0.133 0.833  0.902 0.897 0.899 0.924 0.879 0.668
C8  0.643 0.716 0.687 0.722 0.729 0.756 0.069 0.478 0.282 0.587 0.658 0.693 0.697 0.824 0.674 0.770
Total 0.841 0.847 0.852 0.854 0.854 0.812 0.566 0.733 0.143 0.797 0.849 0.858 0.882 0923 0.812 0.825
Wins 1 1 0 0 0 0 1 0 — — 0 0 0 — 0 2
Ties 1 1 1 1 0 2 0 0 — — 0 0 0 — 0 1
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other classifiers, providing gains of more than 7%, when
compared with SVM (using polynomial kernels of degree
6), and gains of more than 8.5% when compared with ER.
IC* is always far superior than the corresponding lower
bound, but it is also relatively far from the corresponding
upper bound.

It seems that the improvements provided by C° and
IC* are somehow related to how accurate and diverse
are the base classifiers (we assume that the lower bound
is a suitable approximation of the accuracy of the base
classifiers, since it tends to increase with the accuracy
of the base classifiers). Thus, we relate the harmonic
mean between the lower bound and the diversity (i.e.
2 x (Diversity x Lower bound)(Diversity+Lower bound)),
with the gains relative to the lower bound. Figure 2 shows
this relationship. Each point is associated with a category
of the ACM dataset. Clearly, for the ACM dataset, the
improvements provided by C and IC* increase with the
diversity and the accuracy of the base classifiers.

We also performed an analysis on how the different met-
rics were used by C> and IC?, as seen in Fig. 3(left). C°
utilized only few metrics, especially m,, m3, and my. Met-
ric m4 was used to produce classifiers to only one category,
and metrics ms and mg were not used (this is because these
two metrics were not the most competent in any category
of ACM, and therefore are not considered by CS). IC4,
on the other hand, utilized all metrics, especially my, m;
and mj3. Both C° and IC* make large utilization of metrics
m, and m3. For C°, some areas of expertise can be easily
detected. Metric m, is considered competent for categories
Hardware and CS Organization, whereas metric m3 is con-
sidered competent for category Information Systems. For
IC*, areas of expertise are finer grained, but with manual
inspection we detected that m is considered competent for
category CS Organization, and m3 is considered competent
for category Milieux.

Next, we analyze one of the reasons of the good perfor-
mance showed by IC*. Figure 3(right) shows the accuracy
associated with scenarios for which a different number of
metrics are competent. The frequency of occurrence of each
scenario is also shown (note that both accuracy and fre-
quency values are shown in the y-axis). As it can be seen,
for more than 7% of the instances no metric is compe-
tent, and, obviously, these instances were misclassified (this
means that the inclusion of other metrics may improve clas-
sification performance in this dataset). As expected, accu-
racy increases with the number of competent metrics. For
almost half of the instances all eight metrics are competent.
In these scenarios, there is no risk of misclassification, since
a classifier produced by any metric will perform a correct
prediction. The accuracy associated with scenarios where
only seven and only six of the metrics are competent, is
also extremely high (respectively, 99% and 96%). These

Statistical Analysis and Data Mining DOI:10.1002/sam

three scenarios (i.e. eight, only seven, and only six metrics
are simultaneously competent) correspond to 86% of the
instances, and the average accuracy associated with these
three scenarios is almost 98% for IC*. Further, IC* shows
to be more robust that C?, providing superior accuracy (rel-
ative to the accuracy of C°) in scenarios where there are
only few competent metrics.

We also employed SVMs as meta-classifiers, that is,
we used SVMs to select competent metrics for each test
instance, and compare the classification performance with
the performance obtained by IC* and C3. Our results
indicate that the SVM-based meta-learning strategies (i.e.
instance-centric and class-centric) lead to classification per-
formances that are (statistically) similar to the classification
performances obtained by IC* and C> counterparts.

5.2. Web Directory

Next we investigate the classification performance of
competence-conscious associative classifiers using another
dataset, which is composed of 2911 randomly selected arti-
cles published in the Slashdot online forum (http://slashdot.
org). Each article is a document with an author, a title, and
the story content. Each document is labeled under one of the
16 categories of Slashdot, namely, Apple (A1), Ask Slash-
dot (A2), Backslash (A3), Books (A4), Developers (AS),
Entertainment (A6), Games (A7), Hardware (AS8), Inter-
views (A9), Information Technology (A10), Linux (A1l),
News (A12), Politics (A13), Science (A14), Technology
(A15), and Your Rights Online (A16). More than a forum
for publishing stories, Slashdot constitutes a large social
network, where users may interact with each other. Conse-
quently, a particular author may acquire friends and ene-
mies throughout her/his enrollment as a participant of Slash-
dot. This information about the social relationship of the
author (i.e. her/his set of friends and enemies) is explicitly
informed in Slashdot and may represent relevant informa-
tion for the sake of classification.

Classification performance associated with each category
is shown in Table 4. Classifiers produced by strength score,
support, and relative confidence achieved the worst perfor-
mance in most of the categories. SDC did not achieve good
performance numbers. IC*, on the other hand, was the best
performer in most of the categories, showing the advan-
tages of competence-conscious classifiers. C> achieved a
classification performance which was usually close to the
performance achieved by ER. In most of the categories,
SVM was very competitive with IC*, but IC* was the best
overall performer.

Figure 4 shows the relationship between the accuracy and
the diversity of the base classifiers, with the improvements
provided by C> and IC*. Each point is associated with
a category of the Slashdot dataset. As can be seen, the
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Fig. 2 (Left) Relationship between diversity and accuracy of the base classifiers, and the improvements provided by IC* using the ACM
dataset. (Right) Relationship between diversity and accuracy of the base classifiers, and the improvements provided by C> using the ACM

dataset.
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improvements over the lower bound slightly increase with
the harmonic mean between the accuracy and the diversity
of the base classifiers.

We also investigated the improvements relative to the
base classifiers provided by C> and IC* using simple lin-
ear models (a similar approach was used in Ref. [40]).
Specifically, we are interested in modeling the accuracy of
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competence-conscious associative classifiers using the best
results obtained by the base classifiers. Thus, we assumed
a linear relationship between the accuracy obtained by the
best base classifier in each category, and the correspond-
ing accuracy obtained by either C3 or IC*. We character-
ized this relation using statistical correlation coefficients
(CO).
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Fig. 4 (Left) Relationship between diversity and accuracy of the base classifiers, and the improvements provided by IC* using the
Slashdot dataset. (Right) Relationship between diversity and accuracy of the base classifiers, and the improvements provided by C> using

the Slashdot dataset.
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Table 4. Classification performance associated with each category of the Slashdot dataset.
Lower Upper

Cni Cmy Cmy  Cmy Cuws  Cwmg Cu; Cmg Diversity bound SDC C5 IC* bound ER SVM
Al 0.581 0.573 0.596 0.623 0.614 0.600 0.535 0.577 0.168 0.600 0.621 0.622 0.624 0.664 0.618 0.631
A2 0.886 0.891 0.891 0.893 0.888 0.862 0.849 0.870 0.121 0.882 0.889 0.892 0.903 0.925 0.896 0.899
A3 0.723 0.704 0.723 0.703 0.700 0.689 0.659 0.678 0.097 0.723 0.721 0.732 0.738 0.801 0.734 0.736
A4 0.481 0.489 0.500 0.503 0.508 0.472 0434 0474 0.214 0.498 0.501 0.510 0.515 0.679 0.513 0.513
A5 0.591 0.590 0.591 0.610 0.598 0.547 0.538 0.558 0.306 0.595 0.604 0.606 0.612 0.683 0.601 0.611
A6 0.550 0.547 0.575 0.560 0.568 0.542 0.522 0.551 0.143 0.556 0.558 0.570 0.577 0.684 0.572 0.567
A7 0.929 0901 0.906 0915 0.920 0.873 0.845 0.877 0.103 0.805 0912 0921 0916 0.975 0917 0.900
A8 0.843 0.856 0.870 0.871 0.870 0.837 0.815 0.836 0.080 0.864 0.889 0.889 0.885 0.941 0.885 0.894
A9 0.801 0.806 0.805 0.803 0.809 0.783 0.781 0.778 0.099 0.806 0.811 0.823 0.836 0.896 0.828 0.825
A10 0525 0.521 0.550 0.568 0.565 0.508 0.500 0.506 0.167 0.547 0.558 0.582 0.590 0.683 0.582 0.580
All 0901 0909 0.909 0908 0.905 0.886 0.877 0.886 0.047 0.906 0916 0.918 0.918 0.983 0.913 0.902
Al12  0.630 0.633 0.646 0.639 0.645 0.623 0.619 0.629 0.212 0.622 0.649 0.651 0.669 0.707 0.653 0.671
A13  0.680 0.685 0.689 0.688 0.691 0.658 0.684 0.665 0.230 0.680 0.692 0.695 0.708 0.791 0.701 0.696
Al4  0.865 0.854 0.867 0.863 0.860 0.856 0.846 0.849 0.114 0.837 0.865 0.875 0.877 0.934 0.872 0.876
Al5 0.748 0.757 0.761 0.751 0.753 0.742 0.744 0.746 0.077 0.750 0.763 0.761 0.757 0.802 0.765 0.757
Al6 0.733 0.735 0.735 0.731 0.725 0.730 0.701 0.726 0.124 0.722 0.737 0.747 0.762 0.829 0.760 0.748
Total 0.729 0.721 0.756 0.765 0.762 0.700 0.684 0.704 0.220 0.735 0.765 0.785 0.827 0964 0.791 0.815
Wins 1 0 0 0 0 0 0 0 — — 0 0 2 — 0 0
Ties O 0 0 0 0 0 0 0 — — 2 7 12 — 8 11
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Fig. 5 Accuracy model for competence-conscious associative
classifiers using the Slashdot dataset.

The associated regression lines were built using the 16
categories of Slashdot (i.e. each point corresponds to one
of the 16 categories). Regression lines for C3 and IC*
are shown in Fig. 5, and both have very high CC (which
are shown between parenthesis). Further, their regression
gradients are higher than one, possibly indicating that,
in the limit, competence-conscious associative classifiers
are indeed more accurate than the best base associative
classifier.

5.3. Web Spam Detection

In this application, the objective is to detect mali-
cious actions aimed at the ranking functions used by

Statistical Analysis and Data Mining DOI:10.1002/sam

search engines. We used a dataset obtained from the Web
Spam Challenge (http://webspam.lip6.fr/wiki/pmwiki.php).
The dataset is very skewed (only 6% of the examples are
spam pages). Each example is composed of direct features
(i.e. number of pages in the host, number of characters
in the host name, etc.), link-based features (i.e. in-degree,
out-degree, PageRank, etc.), and content-based features (i.e.
number of words in the page, average word length, etc.).

Table 5 shows the classification performance obtained
by different classifiers (for this application, performance
is computed through accuracy, F; measure,’ and the area
under the curve). C,, and C,, showed impressive perfor-
mance in terms of accuracy. This is expected, because the
vast majority of examples are legitimate pages, and con-
fidence (m;) and support (m7) have preference for more
frequent classes. On the other hand, C,,, and C,, showed
poor performance in terms of F; and AUC (i.e. no spam
pages were actually detected). The remaining base asso-
ciative classifiers were able to detect some spam pages,
specially C,,,, which also shows impressive performance in
terms of accuracy. In terms of AUC, C,, and C,,, showed
the best performance, among base classifiers. Thus, differ-
ent metrics show distinct performance depending on the
evaluation target (i.e. accuracy, F; or AUC).

Now we evaluate C° and IC*, which are the best per-
formers in terms of F;. Although IC* showed to be far from
the optimal performance, it showed impressive gains when

> A combination of precision (p) and recall () defined as their
harmonic mean (2pr)/(p + r).
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Table 5. Classification performance for Web spam detection.

le sz Cm3 Cm4 Cn 5 Cm(’ Cm7

Lower
Cmg bound SDC C° IC*

Upper
bound ER SVM

Accuracy 0.945 0.705 0.703
F; 0484 0.525 0.525
AUC 0.500 0.755 0.758

0.585 0.592 0.591

0.895 0900 0.946 0.945 0.881 0.854 0.861
0.487 0.589 0.590 0.593 0.611 0.622 0946 0.587 0.502
0.608 0.605 0.559 0498 0.632 0.662 0.727

0.872 0.897 0.988 0.864 0.954

0.715 0.790 0911 0.728 0.514

compared with SVM (using linear kernels with parameter
C set to 5.00), and ER, in terms of F; and AUC.

Results obtained by detection methods that were specif-
ically designed for Web spam detection are shown in
http: // webspam.lip6.fr /wiki/pmwiki.php?n=Main.Phaselll
Results. These methods use specific heuristics that are par-
ticularly suitable for Web spam detection. The first six com-
petitors achieved detection performances that range from
0.731 to 0.848 in terms of AUC. IC* shows to be very
competitive, achieving a detection performance which is
(statistically) similar to the performance obtained by the
4th place.

5.4. UCI Datasets

In the last set of experiments, we used 26 datasets
obtained from the UCI Machine Learning Repository [36].
Table 6 shows the performance obtained by each classifier
using these datasets (for this application, performance is
computed through the traditional accuracy). C,,, and Cp,
showed poor performance in skewed datasets where few
classes are much more frequent than the others (i.e. anneal,
lymph, auto, and hypo). This is because Yules’Y and
Yules’Q have preference for less frequent classes (as shown
in Fig. 1). For these skewed datasets, C,,, (support) showed
its best performance, since the likelihood of predicting
most frequent classes is higher in such datasets (this is
expected, due to the definition of support). For most of the
datasets, Cyn;, Cpn,, and Cp,, are in close rivalry (C,,, shows
a slightly better average performance, but C,,, shows better

Accuracy E

0.8}

0.6}

Value

0.4F}

0.2}

0 1 2 3 4 5 6 7 8
Number of Competent Metrics

performance more often). C,, (strength score) shows the
best average performance, among all base classifiers.

On average, C° shows superior classification perfor-
mance than SDC. Also, the performance of C’ is, on aver-
age, slightly superior than the performance obtained by
SVM (parameters for each dataset are shown in Table 7)
and ER baselines. Again, IC* is the best performer, and
for some datasets it reaches a performance that is close to
optimal (i.e. anneal, breast, hypo, iris, labor, sick, wave,
and wine), suggesting that the more fine-grained the anal-
ysis of competence, the more effectively the metrics are
combined. Interestingly, the performance of C approaches
the performance of IC* for datasets containing more classes
(i.e. glass, led7, lymph, vehicle, and zoo), since in this case
the competence analysis performed by C> becomes finer
grained.

Some datasets deserve special attention. IC* showed
very good performance in the anneal dataset. Figure 6(left)
shows the frequency distribution of competent metrics for
this dataset. Almost 70% of the instances have more than
five competent metrics, and in such scenarios accuracy
reaches 100%. The accuracy obtained in such scenarios
guarantees a final classification performance that is already
superior than the performance of Cp,, Cp,, Cins, and C;.
Similar trends also happens in datasets austra, breast, cleve,
german, heart, hypo, iono, iris, sick, and wine. In the auto
dataset, IC* showed poor performance, being worse than
base classifiers Cp,, Cn,, Cns;, and Cp,. Figure 6(right)
shows the frequency/accuracy distribution of competent
metrics for this dataset. As can be seen, the accuracy
associated with almost 40% of the instances falls below

" Accuracy
Frequency

0.8

0.6

Value

047

0.2}

0o 1 2 3 4 5 6 7 8
Number of Competent Metrics

Fig. 6 Distribution of competent metrics for IC* in the anneal (left) and auto (right) datasets.
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Table 6. Classification performance of classifiers in the UCI datasets.
Lower Upper

Cui Cmy Cws Cmy Cms Cmg Cwy Cumg Diversity bound SDC €5 IC* bound ER SVM
Anneal 0.761 0.694 0.864 0.115 0.229 0.926 0.763 0.616 0.374 0.623 0926 0.935 0.958 0.993 0.921 0.946
Austra  0.861 0.855 0.852 0.861 0.849 0.856 0.833 0.864 0.084 0.859 0.869 0.868 0.880 0.921 0.848 0.855
Auto 0.715 0.752 0.759 0.043 0.105 0.782 0.404 0.513 0.280 0.534 0.684 0.705 0.698 0.895 0.674 0.725
Breast  0.940 0.971 0.969 0.967 0.972 0.971 0.934 0.972 0.017 0950 0.955 0961 0970 0.989 0.973 0.973
Cleve 0.843 0.832 0.826 0.839 0.832 0.816 0.835 0.824 0.069 0.839 0.842 0.836 0.853 0.900 0.839 0.836
Crx 0.835 0.850 0.853 0.849 0.841 0.860 0.843 0.864 0.091 0.847 0.855 0.865 0.873 0.926 0.862 0.855
Diabet  0.783 0.745 0.739 0.749 0.752 0.779 0.698 0.738 0.188 0.741 0.750 0.783 0.782 0.937 0.776 0.766
Germa 0.702 0.694 0.693 0.692 0.693 0.748 0.698 0.723 0.226 0.717 0.727 0.734 0.748 0.953 0.738 0.712
Glass 0.713 0.657 0.672 0.640 0.648 0.709 0.565 0.646 0.286 0.633 0.657 0.701 0.682 0.865 0.672 0.705
Heart 0.814 0.840 0.835 0.822 0.830 0.829 0.827 0.830 0.121 0.828 0.832 0.840 0.861 0.901 0.848 0.838
Hepati  0.798 0.778 0.781 0.841 0.829 0.848 0.797 0.850 0.161 0.797 0.805 0.837 0.835 0.989 0.818 0.810
Horse  0.710 0.731 0.732 0.702 0.685 0.747 0.773 0.720 0.192 0.743 0.756 0.771 0.813 0.890 0.777 0.822
Hypo 0.951 0.879 0.881 0.126 0.129 0971 0.957 0.932 0.084 0.730 0.883 0.937 0.992 1.000 0.953 0.988
Iono 0.901 0.896 0.888 0.875 0.870 0.929 0.688 0.840 0.145 0.858 0.898 0910 0.942 0.980 0.918 0.917
Iris 0.940 0.950 0.948 0.946 0.951 0.936 0.944 0.942 0.021 0.937 0948 0.947 0.949 0956 0.947 0.959
Labor 1.000 0948 0.930 0.758 0.890 0.951 0.627 0.924 0.095 0.965 0.969 1.000 0.997 1.000 0.973 0.782
Led7 0.740 0.741 0.739 0.737 0.743 0.711 0.743 0.741 0.222 0.733 0.746 0.774 0.758 0.806 0.745 0.748
Lymph 0.862 0.758 0.812 0.064 0.143 0.780 0.747 0.781 0.299 0.579 0.798 0.844 0.846 0.948 0.849 0.802
Pima 0.733 0.746 0.748 0.749 0.749 0.777 0.692 0.745 0.212 0.740 0.750 0.770 0.798 0.936 0.771 0.768
Sick 0.936 0.640 0.648 0.128 0.139 0.967 0.934 0.677 0.315 0.623 0928 0.946 0.983 0.997 0.969 0.965
Sonar 0.813 0.866 0.862 0.854 0.865 0.834 0.770 0.864 0.072 0.821 0.855 0.867 0.868 0.952 0.865 0.841
Tic-tac  0.649 0.918 0.814 0.928 0.927 0.816 0.410 0.530 0.105 0.766 0.836 0.880 0.926 1.000 0.876 0.830
Vehicle 0.658 0.670 0.664 0.668 0.648 0.701 0.534 0.623 0.134 0.655 0.665 0.728 0.734 0.765 0.700 0.722
Wave 0.809 0.808 0.807 0.814 0.813 0.813 0.787 0.788 0.097 0.802 0.814 0.814 0.834 0.836 0.821 0.871
Wine 0.913 0.934 0.932 0.818 0.826 1.000 0.687 0.745 0.068 0.831 0.885 1.000 0.990 1.000 0.941 0.975
Zoo 0.845 0.849 0.876 0.856 0.781 0912 0.708 0.698 0.133 0.826 0.894 0.942 0.952 0973 0.956 0.928
Average 0.816 0.808 0.812 0.671 0.682 0.845 0.738 0.769 0.157 0.768 0.828 0.854 0.866 0.935 0.847 0.844
Wins 0 0 0 0 0 1 0 1 — — 0 0 4 — 0 1
Ties 6 4 3 3 4 7 1 4 — — 3 14 19 — 8 6

58%, which are the scenarios with less than five competent
metrics. Also, we believe that, for such datasets, the meta-
classifier was not able to correctly distinguish the domains
of competence. Similar trend also happens for datasets
hepati, tic-tac, and wave.

Improvement over Lower Bound
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Figure 7 shows the relationship between the diversity
and the accuracy (i.e. the lower bound) of the base
classifiers (i.e. 2 x (Diversity x Lower bound) (Diversity +
Lowerbound)) and the improvements provided by C> and
IC* over the lower bound. Each point is associated with

0.6

05}

0.4+t

0.3}

0.2}

0.1} ™

Improvement over Lower Bound

0

\\‘*—i,, /j;_,-
+ L+ +# )

0

0.1

0.2

0.3

0.4

0.5

Harmonic Mean
(Diversity and Lower Bound)

Harmonic Mean
(Diversity and Lower Bound)

Fig. 7 (Left) Relationship between diversity and accuracy of the base classifiers, and the improvements provided by IC* using the UCI
datasets. (Right) Relationship between diversity and accuracy of the base classifiers, and the improvements provided by C> using the UCI

datasets.
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Table 7. SVM parameters for each UCI dataset.

Kernel C Degree y
Anneal Polynomial — 6 —
Austra Linear 1.50 — —
Auto RBF — — 0.0003
Breast Linear 3.00 — —
Cleve Linear 3.00 — —
Crx Linear 0.10 — —
Diabet Linear 1.00 — —
Germa Linear 1.00 — —
Glass RBF — — 0.0012
Heart Linear 5.00 — —
Hepati Linear 0.10 — —
Horse Linear 1.00 — —
Hypo Linear 3.00 — —
Tono Linear 0.50 — —
Iris Polynomial — 4 —
Labor Linear 0.50 — —
Led7 RBF — — 0.0012
Lymph Polynomial — 5 —
Pima Linear 0.10 — —
Sick Linear 5.00 — —
Sonar Linear 5.00 — —
Tic-tac Linear 0.50 — —
Vehicle Polynomial — 6 —
Wave Polynomial — 5 —
Wine Polynomial — 5 —
Zoo RBF — — 0.0012

an UCI dataset. In general, the improvements increase with
the harmonic mean between the diversity and the accuracy
of the base classifiers. This suggests the importance of the
diversity and the accuracy of the base classifiers, in order
to produce effective ensembles.

We finish our evaluation with simple linear models that
are used to assess the improvements provided by C> and
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Fig. 8 Accuracy model for competence-conscious associative
classifiers using the UCI datasets.

IC4, relative to the base classifiers. Again, we are interested
in modeling the accuracy of competence-conscious associa-
tive classifiers using the best results obtained by the base
classifiers.

The associated regression lines were built using the 26
UCI datasets (i.e. each point corresponds to one of the
26 datasets). Regression lines for C°> and IC* are shown
in Fig. 8, and both have very high CC. Further, their
regression gradients are higher than one (note that this
makes the estimated accuracy higher than one when x =
1.00), possibly indicating that, in the limit, competence-
conscious associative classifiers are indeed more accurate
than the best base associative classifier.

We also employed SVMs as meta-classifiers, that is,
we used SVMs to select competent metrics for each test
instance, and compare the classification performance with
the performance obtained by IC* and C>. The results we
obtained indicate that, again, the SVM-based meta-learning
strategies (i.e. instance-centric and class-centric) lead to
classification performances that are (statistically) similar
to the classification performances obtained by IC* and C>
counterparts.

6. CONCLUSIONS

This paper focused on an important problem in associa-
tive classification, the metric dilemma. We have shown that
the performance of associative classifiers is strongly depen-
dent on the metric that is used to quantify the strength of
the association between features and classes. There is no
perfect metric, and no metric is consistently superior than
all others, in the sense that it can be safely used in isolation.
In fact, each metric has a particular domain of competence,
or area of expertise, for which it is able to produce the most
accurate classifier. We investigate meta-learning methods,
which use the training data to learn the domain of compe-
tence of each metric. Finally, the competence of metrics are
exploited to decide which is the best metric to be applied
in each scenario, resulting in a combination or ensemble of
classifiers produced by different metrics, which maximizes
the performance of the final classifier, that we denoted as
competence-conscious associative classifiers.

For effective metric combination, the corresponding clas-
sifiers must cover different portions of the training data (i.e.
the metrics must show some diversity), and the training data
must have features that are able to distinguish those por-
tions of the training data. If these favorable conditions are
met, our method reaches full potential of the base classifiers
(i.e. the performance is close to the upper bound). On the
other hand, a performance penalty may result.

We proposed competence-conscious classifiers, where the
difference between them resides in how they perform the
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analysis of the domains of competence. The coarse-grained
analysis, performed by the class-centric approach (C°)
provides lower gains when compared with the fine-grained
analysis, performed by the instance-centric approach (IC*),
which outperforms all the evaluated classifiers, including
a simple delegation approach (SDC), an existing ensem-
ble method (ER), and SVMs. As future work, we intend to
move forward by investigating other application scenarios
and evaluating other association metrics. We are currently
studying the correlation between metrics and the effective-
ness of the corresponding associative classifiers.
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