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Recommender systems are quickly becoming ubiquitous in applications such as e-commerce, social media
channels, content providers, among others, acting as an enabling mechanism designed to overcome the in-
formation overload problem by improving browsing and consumption experience. A typical task in many
recommender systems is to output a ranked list of items, so that items placed higher in the rank are more
likely to be interesting to the users. Interestingness measures include how accurate, novel and diverse are
the suggested items, and the objective is usually to produce ranked lists optimizing one of these measures.
Suggesting items that are simultaneously accurate, novel and diverse is much more challenging, since this
may lead to a conflicting-objective problem, in which the attempt to improve a measure further may result
in worsening other measures. In this paper we propose new approaches for multi-objective recommender
systems based on the concept of Pareto-efficiency − a state achieved when the system is devised in the
most efficient manner in the sense that there is no way to improve one of the objectives without making
any other objective worse off. Given that existing multi-objective recommendation algorithms differ in their
level of accuracy, diversity and novelty, we exploit the Pareto-efficiency concept in two distinct manners:
(i) the aggregation of ranked lists produced by existing algorithms into a single one, which we call Pareto-
efficient ranking, and (ii) the weighted combination of existing algorithms resulting in a hybrid one, which
we call Pareto-efficient hybridization. Our evaluation involves two real application scenarios: music rec-
ommendation with implicit feedback (i.e., Last.fm) and movie recommendation with explicit feedback (i.e.,
MovieLens). We show that the proposed Pareto-efficient approaches are effective in suggesting items that
are likely to be simultaneously accurate, diverse and novel. We discuss scenarios where the system achieves
high levels of diversity and novelty without compromising its accuracy. Further, comparison against multi-
objective baselines reveals improvements in terms of accuracy (from 10.4% to 10.9%), novelty (from 5.7% to
7.5%), and diversity(from 1.6% to 4.2%).
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1. INTRODUCTION

Recommender systems identify interesting items in situations where the number and
complexity of possibilities outstrip the user’s capability to survey them in order to
reach a proper decision. Such complex situations are commonly observed in applica-
tions provided by many social media [Guy et al. 2010] and e-commerce sites [Wang and
Zhang 2011]. Ideally, by suggesting interesting items, a recommender system essen-
tially brings properties that are desired by the users, quickly becoming essential tools
that change the way people interact with the Web.
There are several tasks and challenges associated with modern recommender sys-

tems. A typical task is stated as follows: given a set of items that are known to be
relevant to some users (i.e., past preference data), the system must return a ranked
list of suggested items, so that items that are more interesting to the user appear in the
top of the rank [Cremonesi et al. 2010]. The notion of interestingness, however, may be
subjective, encompassing a broad repertoire of measures, including: (i) accuracy (how
well the suggested items meet the user’s information need), (ii) novelty (how well the
system promotes unknown items to the users), and (iii) diversity (how different the
suggested items are with respect to each other).
Historically, the typical goal of a recommender system is to maximize accuracy as

much as possible in predicting and matching user information needs, often by con-
sidering individual delivered items in isolation. However, it has become a consensus
that accurate suggestions are not necessarily useful [McNee et al. 2006]: real value
is found in the ability to suggest relevant items that are not easily discovered by the
users, that is, in the novelty and diversity of the suggestions [Zhou et al. 2010]. There-
fore, a pressing challenge resides on devising recommender systems able to perform
suggestions that are simultaneously accurate, novel and diversified, what may lead to
a conflicting-objective problem, where the attempt to improve a measure further (i.e.,
an objective) may result in worsening other competing measures. Thus, the need of the
hour is to devise solutions that find a proper balance between accuracy, novelty and
diversity, so that the returned ranked list reflects all three interestingness measures
simultaneously as well as when they are taken in isolation (i.e., items in the top of the
ranked list are likely to be as accurate, diverse and novel as possible).

In this paper we tackle this problem by proposing approaches based on the concept
of Pareto Efficiency. This is a central concept in Economics, which informally states
that “when some action could be done to make at least one person better off without
hurting anyone else, then it should be done.” This action is called Pareto improvement,
and a system is said to be Pareto-Efficient if no such improvement is possible. The
same concept may be exploited for the sake of devising multi-objective recommender
systems that are built by combining existing recommendation algorithms. In this case,
the most efficient recommender system is the one which cannot improve an objec-
tive further (i.e., accuracy, diversity or novelty) without hurting the other objectives.
Given that existing recommendation algorithms are complementary in the sense that
they greatly differ in their level of accuracy, novelty and diversity, we may exploit the
Pareto-Efficiency concept in two distinct manners:

(1) Pareto-Efficient Ranking: Each possible item is associated with a point in an n-
dimensional scattergram (which we call the user-interest space). In this case, a
point is represented as [c1, c2, . . . , cn], where each coordinate ci corresponds to the
relevance score estimated by a different recommendation algorithm. Points that
are not dominated by any other point in the scattergram compose the Pareto fron-
tier [Goldberg 1989; Palda 2011]. Points lying in the frontier correspond to cases
for which no Pareto improvement is possible, being therefore items more likely to
be simultaneously accurate, novel and diversified.
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(2) Pareto-Efficient Hybridization: The final relevance score of an arbitrary item is
estimated using a linear combination of the relevance scores estimated by n differ-
ent existing recommendation algorithms (i.e., α× c1 + β × c2 + . . .+ θ× cn). In this
case, we have a 3-dimensional scattergram (which we call the objective space) and
each point in this scattergram corresponds to the level of accuracy, novelty and di-
versity achieved by a possible hybrid recommendation algorithm. We may search
for weights (i.e., α, β, . . . , θ) for which the corresponding points lie in the Pareto
frontier, and then choose the hybrid that best fits the system priority.

Both approaches run in an offline setting, that is, the ranked lists are produced be-
fore the user interacts with the system. We conducted a systematic evaluation involv-
ing different recommendation scenarios, with explicit user feedback (i.e., movies from
the MovieLens dataset), as well as implicit user feedback (i.e., artists from the LastFM
dataset). The results show that our main goal was successfully achieved: in most cases
the proposed approaches produce systems that improve diversity and novelty without
compromising accuracy (when compared against the results obtained with the best
algorithms in isolation). Further, the comparison against multi-objective baselines in-
dicate the superiority of our proposed approaches, which provide significant gains in
terms of all three criteria considered in our analysis.

A preliminary partial version of the hybrid recommendation approach appeared
in [Ribeiro et al. 2012]. The main difference between the paper in [Ribeiro et al.
2012] and this work is the inclusion of a totally different multi-objective recommen-
dation approach, which, in some cases, is able to overcome the approach proposed
in [Ribeiro et al. 2012]. In summary, the Pareto-efficient hybridization approaches
proposed in [Ribeiro et al. 2012] should be the choice if it is desirable to give em-
phasis to a particular objective, without significantly hurting the other objectives. The
Pareto-efficient ranking approaches introduced in this work should be the choice if it
is desirable to maximize all objectives simultaneously.

2. RELATED WORK

Recommender systems have been recognized as an important topic by many research
communities [Rendle et al. 2011; Leung et al. 2011; Li et al. 2011; Wang and Zhang
2011]. Several tasks have being extensively studied, including problems such as cold-
start [Gunawardana and Meek 2008; Zhou et al. 2011], rating prediction [Koren and
Sill 2011] and top-k recommendation [Cremonesi et al. 2010]. Items that are typical
target for recommendation include tags [Garg and Weber 2008; Surbjörnsson and van
Zwol 2008; Guan et al. 2009; Menezes et al. 2010] and movies [Gunawardana and
Meek 2009]. In this work we perform experiments involving top-k recommendation of
musics and movies, with implicit and explicit user feedback.

Several recommendation approaches have being proposed with the specific objective
of providing to the user the most accurate suggestions as possible [Bellogı́n et al. 2011;
Pan et al. 2008; Hu et al. 2008; Zhang et al. 2008]. More recent studies have shown that
accuracy alone does not guarantee high user satisfaction in recommender systems [Mc-
Nee et al. 2006; Ge et al. 2010]. As a result, attention has also being devoted to other
properties associated with suggested items, such as diversity and novelty [Castells
et al. 2011]. In [Zhou et al. 2010], the authors showed that the choice between accuracy
and diversity is not necessarily a dilemma, and that it is possible to simultaneously
achieve gains in accuracy and diversity by proposing hybrid approaches. In this paper
we reached similar conclusions, but using different approaches.

Traditionally, hybrid recommendation algorithms are obtained by the combination
of two different families of base algorithms − namely, content-based and collaborative
filtering [Adomavicius and Tuzhilin 2005]. In this paper, we combine a broad reper-
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toire of recommendation algorithms, including different content-based and collabo-
rative filtering algorithms, algorithms that deal with explicit and implicit feedback
etc. We treat each recommendation algorithm as a black-box, so adding or removing
recommendation algorithms is easy. Different hybridization approaches have being
proposed to combine recommendation algorithms, such as weighted approaches [Clay-
pool et al. 1999], voting approaches [Pazzani 1999], switching between different algo-
rithms [Lekakos and Caravelas 2008; Billsus and Pazzani 2000], and re-ranking the
results of one algorithm with another [Burke 2002].
In [Ziegler et al. 2005], the authors introduced the notion of “topic diversification”,

which ensures diversity by balancing suggestions across different topics. Further, the
authors proposed the intra-list similarity measure for assessing the diversity of sug-
gested items. In [Lathia et al. 2010], the authors proposed a different measure of item
diversity, which assess the extent to which the same items are being recommended
to users over and over again. In this paper we employed diversity measures proposed
in [Vargas and Castells 2011].
In [Kawamae 2010], the authors introduced a new metric for assessing item novelty

by hypothesizing that the degree of user’s surprise is proportional to the estimated
time spent searching the item. In [Hurley and Zhang 2011], the authors proposed a
statistical model for assessing novelty in recommender systems using a concentra-
tion index, which measures the ability to suggest novel items. They analyzed various
recommendation approaches using the concentration index to determine which ap-
proaches are more suited towards diversity. In [Fouss and Saerens 2008], the authors
proposed a novelty measure which assumes that less popular items are less likely to
be widely known by users, and thus a penalty is imposed depending on the frequency
or popularity of the suggested items. Again, in this paper we adopt novelty measures
proposed in [Vargas and Castells 2011].
An excellent survey involving several measures used for evaluating recommender

systems is found in [Shani and Gunawardana 2011]. Approaches for multi-objective,
or multi-criteria recommender systems, were proposed in [Adomavicius et al. 2011;
Adomavicius and Kwon 2007; Lee and Teng 2007].
To the best of our knowledge, the approaches we introduce in this paper differ

from all existing multi-objective recommendation approaches. We exploit the notion
of Pareto-Efficiency in order to sort items that balance accuracy, novelty and diversity.
The Pareto-Efficiency concept was already employed in recommender systems that
must cope with additional dimensions such as user privacy [Dokoohaki et al. 2010] and
friendship [Naruchitparames et al. 2011], but our scenario is much more challenging,
involving competing objectives. Our first approach employs the Pareto frontier to find a
partial ordering between items, and by avoiding items located at the extreme positions
of the frontier it finds items that are likely to be simultaneously interesting in terms
of accuracy, diversity and novelty. Our second approach employs the Pareto frontier
to find hybrids that are more likely to perform suggestions that are simultaneously
interesting in terms of accuracy, diversity and novelty. Our proposed approaches are
highly practical and effective for multi-objective recommender systems, as shown in
our experiments.

3. PARETO-EFFICIENT RANKING

In this section we introduce our approach for Pareto-efficient ranking. We start by dis-
cussing how possible items are disposed in a user-interest space by exploiting different
recommendation biases within existing recommendation algorithms. Then, we discuss
how the user-interest space is used in order to aggregate multiple ranked lists into a
final, Pareto-efficient, ranked list.
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3.1. Recommendation Bias and User-Interest Space

Typically, a recommender system arranges items into a ranked list, so that the top-
k items are those most interesting to the user. Although being naturally subjective,
the potential interest a user will have in the top-k items may be approximated by the
following interestingness measures:

—Accuracy: returns how well the top-k items meet the user’s information need.
—Novelty: is inherently linked to the notion of discovery and returns how novel to

the user are the top-k items. Further, top-k items are assumed to be accurate (i.e.,
relevant).

—Diversity: returns how different with respect to each other are the top-k items. Fur-
ther, top-k items are assumed to be accurate.

Existing recommendation algorithms differ by large in their level of accuracy, nov-
elty and diversity. The difference is due to a distinct recommendation bias which is
followed by each algorithm, that is, existing algorithms may favor different interest-
ingness measures. However, it is already a consensus that all three interestingness
measures are essential to effective recommendation, since together these measures
have a complementary effect which is highly desirable for recommender systems. That
is, accurate suggestions are of little value if they are obvious to the user. Besides,
suggesting items that are too similar to each other leads to monotonous and ineffec-
tive recommendations. Therefore, in order to ensure effective results, the top-k items
within a ranked list must be as accurate, novel and diverse as possible.
Consider the set of constituent recommendation algorithms A = {a1, a2, . . . , an} and

assume that these algorithms assign to each possible item a score p̂aj
(ui|t) correspond-

ing to the potential interest user t has on item ui, we may represent each item ui as a
point in a n-dimensional user-interest space: St = [p̂a1

(ui|t), p̂a2
(ui|t), . . ., p̂an

(ui|t)]
m
i=1,

where m is the number of possible items and each p̂aj
(ui|t) is calculated using one

out of n different constituent recommendation algorithms (i.e., following different rec-
ommendation biases). Figure 1 (Left) depicts a 2-dimensional user-interest space. The
dominance operator relates two items in such space, so that the result of the domi-
nance operation has two possibilities: (i) one item dominates another or (ii) the two
items do not dominate each other. We need now the following definition.

Definition 1: A Pareto-Efficient ranked list for user t is an ordered list of m items
Lt = {u1, u2, . . . , um} such that there is no pair (ui, uj) ∈ Lt for which ui dominates uj ,
given that i > j.

3.2. Building Pareto-Efficient Ranked Lists

Algorithm 1 builds a Pareto-Efficient ranked list for user t. Items that are not domi-
nated by any other item in St lie on the Pareto frontier, as shown in Figure 1 (Right).
Stripping off an item from the Pareto frontier, and building another frontier1 from the
remaining items in St reveals a partial ordering between the items, which we call a
Pareto-Efficient ranking.

Next, we discuss different strategies for building Pareto-Efficient ranked lists for
each user t. These strategies are based on Algorithm 1, and the only difference be-
tween them resides on the item that is selected at each iteration (i.e., step b). Still,
our strategies try to avoid selecting items located at extreme positions of the frontier,
since such items may privilege a specific measure. Instead, highly dominant items, or

1There are efficient algorithms for building and maintaining the Pareto frontier, such as the ones based
on skyline queries [Lin et al. 2007; Papadias et al. 2003]. In particular, we employed the skyline operator
algorithm proposed in [Börzsönyi et al. 2001], ensuring O(n×m× k) complexity.
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Fig. 1. Left − User-Interest space according to two different recommendation biases (i.e., different recom-
mendation algorithms). Points are possible items and are represented by the relevance level estimated by
different algorithms. Right − Non-dominated items form successive Pareto frontiers.

ALGORITHM 1: Pareto-Efficient Ranking.

Input: St (the n-dimensional interest space for user t), and k (the number of suggested items).
Output: Lt (a Pareto-Efficient ranked list for user t).
repeat

build the Pareto frontier in St;
include an item x lying in the frontier into Lt;
remove x from St;

until |Lt| = k;

items that are representative of other items in the frontier, are more likely to balance
multiple objectives.

3.2.1. Most Dominant Items First. This strategy aims at selecting the item lying in the
Pareto frontier which dominates more items in the user-interest space St, as given by:

ui such that arg max(dom(ui)), ∀ ui ∈ St

where dom(ui) is the number of items dominated by ui.
The number of items that are dominated by an arbitrary item ui is easily obtained

while building the Pareto frontier, and it remains unchanged as most dominant items
are removed from St, ensuring the efficiency of the process.

3.2.2. Learning to Rank. This strategy aims at selecting the item which is more likely
to be located in the first Pareto frontier. To this end, we label items according to the
frontier they are located (i.e., first, second, . . ., frontiers), so that items lying in the first
frontiers are labeled as more relevant than items lying in subsequent frontiers. Then,
we apply a well-known learning to rank algorithm, SVM-Rank [Joachims 2002], in
order to sort items accordingly to their potential relevance level. Specifically, we model
the training data as item-user pairs, and each pair is labeled with the Pareto frontier
in which the corresponding item is located. SVM-Rank formalizes the ranking problem
as a binary classification problem on instance pairs, and then solve the problem using
SVMs [Joachims 2006].

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 1, Article 1, Publication date: February 2013.



Multi-Objective Pareto-Efficient Approaches for Recommender Systems 1:7

4. PARETO-EFFICIENT HYBRIDIZATION

In this section we introduce our search approach for Pareto-efficient hybrids. We start
by discussing how different recommendation algorithms are combined, so that poten-
tial hybrids are created. Then we describe the search strategy for Pareto-efficient hy-
brids.

4.1. Weighted Hybridization

Our hybridization approach is based on assigning weights to each constituent algo-
rithm. We denote the set of constituent algorithms as A = {a1, a2, . . . , an}, and we sup-
pose that these algorithms assign to each possible item a score p̂aj

(ui|t) corresponding
to the potential interest user t has on item ui. Since the constituent algorithms may
output scores in drastically different scales, a simple normalization procedure is nec-
essary to ensure that all algorithms in A operate in the same scale. The aggregated
score for each item i is calculated as follows:

p̂(ui|t) =
n
∑

j=1

p̂aj
(ui|t)× waj

(1)

where waj
is the weight assigned to algorithm aj ∈ A. The assignment of weights to

each algorithm is formulated as a search problem which we discuss next.

4.2. Searching for Pareto-Efficient Hybrids

Finding a suitable hybrid, represented as a vector of weights W = {wa1
, wa2

, . . . , wan
},

can be viewed as a search problem in which each wai
is selected in a way that opti-

mizes a established criterion. We consider the application of evolutionary algorithms
for searching optimal solutions. These algorithms iteratively evolve a population of
individuals towards optimal solutions by performing genetic-inspired operations, such
as reproduction, mutation, recombination, and selection [Goldberg 1989]. Next we pre-
cisely define an individual.

Definition 2: An individual is a candidate solution, which is encoded as a sequence of
n values [wa1

, wa2
, . . . , wan

], where each wai
indicates the weight associated with algo-

rithm ai ∈ A.

Each constituent algorithm ai assigns scores to items using a cross-validation set.
Finally, weights are assigned to each recommendation algorithm and their scores are
aggregated according to Equation 1, producing an individual (i.e., an hybrid). A fitness
function is computed for each individual in order to make them directly comparable,
so that the population can evolve towards optimal solutions (i.e., individuals located
closer to the Pareto frontier).

Definition 3: An optimal solution is a sequence of weights W = {wa1
, wa2

, . . . , wan
},

satisfying Equation 2:

maximize φ(oi) ∀oi ∈ {accuracy, novelty, diversity} (2)

where φ(oi) is the value of an objective oi, which can be either accuracy, novelty or
diversity. Thus, the performance of each individual is given by a 3-dimensional objec-
tive vector, containing the average accuracy, novelty and diversity over all users in the
cross validation set. Searching for optimal hybrids is a multi-objective optimization
problem, in which the value of φ(oi)must be maximized for each of the three objectives
that compose an optimal solution. Therefore, multiple optimal individuals are possible.

Again, we exploit the concept of Pareto dominance for solving the multi-objective op-
timization problem. As a result, given the 3-dimensional objective space, the evolution-
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ary algorithm evolves the population towards producing individuals that are located
closer to the Pareto frontier, as illustrated in Figure 2.
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Fig. 2. A 3-dimensional objective space. Points are possible hybrids and are represented by the correspond-
ing level of accuracy, novelty and diversity. Hybrids lying in the Pareto frontier are not dominated by any
other hybrid.

The result is a set of Pareto-efficient hybrids. Under this strategy, we follow the well-
known Strength Pareto Evolutionary Algorithm approach [Zitzler and Thiele 1999;
Zitzler et al. 2001], which has shown to be highly effective and also because it provides
more diverse individuals when compared to existing approaches [Corne et al. 2000;
Deb 1999; Srinivas and Deb 1994] for many problems of interest. The Strength Pareto
approach isolates individuals that achieve a compromise between maximizing the com-
peting objectives by evolving individuals that are likely to be non-dominated by other
individuals in the population. Algorithm 2 shows the basic steps of our Pareto-efficient
hybridization approach.

ALGORITHM 2: Pareto-Efficient Hybridization.

Input: P (the current population of individuals), p (the next population of individuals), and g
(the maximum number of generations).

Output: Hybrids lying in the Pareto frontier.
repeat

include the best individuals from P into p (those closer to the frontier);
apply genetic operators to individuals in p;
update P with individuals in p;

until g generations are produced;
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4.3. Adjusting the System Priority

It is well recognized that the role that a recommender system plays may vary depend-
ing on the target user. For instance, according to [Herlocker et al. 2004], the sugges-
tions performed by a recommender system may fail to appear trustworthy to the user
because it does not recommend items the user is sure to enjoy but probably already
knows about. Based on this, a recommender system might prioritize accuracy instead
of novelty or diversity for new users, while prioritizing novelty for users that have
already used the system for a while. This is made possible by our hybridization ap-
proach, by searching which individual in the Pareto frontier better solves the user’s
current needs.

The choice of which individual in the Pareto frontier is accomplished by perform-
ing a linear search on all of the individuals, in order to find which one maximizes a
simple weighted mean on each of the three objectives in the objective vector, where
the weights in the weighted mean represent the priority given to each objective. It is
worth noting that fitness values are always calculated using the cross-validation set.
Therefore, considering a 3-dimensional priority vector Q = {q1, q2, q3}, that represents
the importance of each objective j, the individual in the Pareto frontier P is chosen as
follows:

arg max
i∈P

3
∑

j=1

qj × φ(oj) (3)

5. EXPERIMENTAL EVALUATION

In this section we empirically analyze the effectiveness of our proposed Pareto-efficient
approaches for the sake of multi-objective recommender systems. We assume an eval-
uation setting where recommendation approaches are compared without user interac-
tion (i.e., offline setting). The experiments were performed on a Linux-based PC with
a Intel I5 4.0 GHz processor and 4.0 GBytes RAM.

5.1. Evaluation Methodology

The evaluation methodology we adopted in this paper is the one proposed in [Cre-
monesi et al. 2010], which is appropriate for the top-N recommendation task. For each
dataset, ratings are split into two subsets: the training set (denoted as M), and the
test set (denoted as T ). The training set M may be further split (if necessary) into
two subsets: the cross-validation training set (denoted as C), and the cross-validation
test set (denoted as V), which are used in order to tune parameters or adjust models
(when applicable). The test set T and the cross-validation test set V only contain items
that are considered relevant to the users in the dataset. For explicit feedback (i.e.,
MovieLens), this means that the sets T and V only contain 5-star ratings.
In the case of implicit feedback (i.e., Last.fm), we normalized the observed item ac-

cess frequencies of each user to a common rating scale [0,5], as used in [Vargas and
Castells 2011]. Namely, r(u, i) = n ∗ F (frecu,i), where frecu,i is the number of times
user u has accessed item i, and F (frecu,i) = |j ∈ u|fu,j < fu,i|/|u| is the cumulative
distribution function of frecu,i over the set of items accessed by user u, denoted as u. In
this case, the test set and the cross validation test set only contain ratings such that
r(u, i) >= 4, since the number of 5-star ratings is very small using this mapping of
implicit feedback into ratings. It is worth noting that all the sets have a correspond-
ing implicit feedback set, used by the recommendation algorithms that can deal with
implicit feedback.

The detailed procedure to create M and T is the same used in [Cremonesi et al.
2010], in order to maintain compatibility with their results. Namely, for each dataset
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we randomly sub-sampled 1.4% of the ratings from the dataset in order to create a
probe set. The training set M contains the remaining ratings, while the test set T
contains all the 5-star ratings in the probe set (in the case of explicit feedback) or 4+
star ratings (in the case of implicit feedback mapped into explicit feedback). We further
divided the training set in the same fashion, in order to create the cross-validation
training and test sets C and V. The ratings in the probe sets were not used for training.

In order to evaluate the algorithms, we first train the models using M. Then, for
each item in T that is relevant to user u:

—We randomly select 1,000 additional items unrated by user u. The assumption is
that most of them will not be interesting to u.

— The algorithm in question forms a ranked list by ordering all of the 1,001 items.
The most accurate result corresponds to the case where the test item i is in the first
position.

Since the task is top-N recommendation, we form a top-N list by picking the N
items out of the 1,001 that have the highest rank. If the test item i is among the top-N
items, we have a hit. Otherwise, we have a miss. Recall and precision are calculated
as follows:

recall@N =
#hits

|T |
(4)

precision@N =
#hits

N ∗ |T |
=

recall@N

N
(5)

In order to measure the amount of novelty within the suggested items, we used a
popularity-based item novelty model proposed in [Vargas and Castells 2011], so that
the probability of an item i being seen is estimated as:

P (seen|i) =
|u ∈ U |r(u, i) 6= ∅|

|U |
(6)

where U denotes the set of users. Since the evaluation methodology supposes that most
of the 1,000 additional unrated items are not relevant to user u, we used the metrics in
the framework proposed in [Vargas and Castells 2011] without relevance awareness.
Finally, the amount of novelty within a top-N recommendation list R presented to user
u is therefore given by:

EPC@N = C

iN
∑

ik∈R

disc(k)(1− p(seen|ik)) (7)

where disc(k) is a rank discount given by disc(k) = .85k−1 and C is a normalizing con-

stant given by 1/
∑iN

ik∈R disc(k). Therefore, this metric is rank-sensitive (i.e. the novelty
of the top-rated items counts more than the novelty of other items). As is the case with
precision and recall, we average the EPC@N value of the top-N recommendation lists
over the test set.
We used a distance based model [Vargas and Castells 2011] in order to measure the

diversity of the recommendation lists without relevance-awareness. The recommenda-
tion diversity, therefore, is given by:

EILD@N =

iN ,lN
∑

ik∈R,il∈R,l 6=k

Ckdisc(k)disc(l|k)d(ik, il) (8)
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where disc(l|k) = disc(max (1, l − k)) reflects a relative rank discount between l and k,
and d(ik, il) is the cosine distance between two items, given by:

d(i, j) = 1−
|Ui ∩Uj|

√

|Ui|
√

|Uj|
(9)

such that Ui denotes the users that liked item i, and Uj denotes the users that liked
item j.

5.2. Datasets

We apply the methodology presented in the previous section to two different scenarios,
in order to evaluate our Pareto-efficient approaches: movie and music recommenda-
tion. For movie recommendation, we used the MovieLens 1M dataset [Miller et al.
2003]. This dataset consists of 1,000,209 ratings from 6,040 users on 3,883 movies. For

music recommendation, we used an implicit preference dataset provided by Ò.Celma
[Celma and Herrera 2008], which consists of 19,150,868 user accesses to music tracks
on the website Last.fm2. This dataset involves 176,948 artists and 992 users, and we
considered the task of recommending artists to users. Mapping the implicit feedback
into user-artist ratings yielded a total of 889,558 ratings, which were used by the al-
gorithms that cannot deal with implicit feedback, and to separate the dataset into the
training and test sets M and T .

5.3. Recommendation Algorithms

We selected eight well-known recommendation algorithms to provide the base for our
Pareto-efficient approaches. To represent latent factor models, we selected PureSVD
with 50 and 150 factors (PureSVD50 and PureSVD150), described in [Cremonesi et al.
2010]. These were the only algorithms we used that are based on explicit feedback.
To compute the scores for the items in the Last.fm dataset, we used the mappings of
implicit feedback into ratings explained in Section 5.1.

As for recommendation algorithms that use implicit feedback, we used algorithms
available in the MyMediaLite package [Gantner et al. 2011]. We used Weighte-
dItemKNN (WIKNN) and WeightedUserKNN (WUKNN) as representative of neigh-
borhood models based on collaborative data [Desrosiers and Karypis 2011] (we only
used WeightedItemKNN on the MovieLens dataset, as MyMediaLite’s implementa-
tion cannot yet handle datasets where the number of items is very large, which is the
case in the Last.fm dataset). Further, we also used MyMediaLite’s MostPopular im-
plementation, which is the same as TopPop in [Cremonesi et al. 2010]. We also used
WRMF − a weighted matrix factorization method based on [Hu et al. 2008; Pan et al.
2008], which is very effective for data with implicit feedback. Finally, we used UserAt-
tributeKNN(UAKNN), a K-nearest neighbor user-based collaborative filtering using
cosine-similarity over the user attributes, such as sex, age etc. (which both datasets
provide).

5.4. Baselines

We employed three baselines for the sake of comparison. The first baseline is a voting-
based approach based on Borda-Count (BC) which is similar to [Pazzani 1999], where
each constituent algorithm gives n points to each item i such that n = |R| − pi, where
|R| is the size of the recommendation list and pi is the position of i in R. The second
baseline is STREAM, a stacking-based approach with additional meta-features [Bao
et al. 2009]. We used the same additional meta-features as [Bao et al. 2009], namely,

2www.Last.fm
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the number of items that a certain user has rated and the number of users that has
rated a certain item (denoted as RM1 and RM2). We tried the learning algorithms
proposed in [Bao et al. 2009], and Linear Regression yielded the best results, so the
results presented for STREAM are generated using Linear Regression as the meta-
learning algorithm. Our last baseline is the weighted hybrid we proposed in Section
4.1, using equal weights for each constituent algorithm. We called this baseline Equal
Weights (EW).

5.5. Pareto Efficient Hybridization Details

We apply the algorithm described in Section 4 to both datasets, combining all of the
recommendation algorithms described in subsection 5.3. We used an open-source im-
plementation of SPEA2 [Zitzler and Thiele 1999; Zitzler et al. 2001] from DEAP3. We
used a two points crossover operator [Holland 1975], and a uniform random muta-
tion operator with probability .05. Table I presents SPEA-2’s parameters, which were
sufficient for convergence.

Table I. Parameters of the SPEA2 Algorithm

Parameters MovieLens Last.fm

Population Size 100 100

Gene dimension 7 algorithms 6 algorithms

# of Objectives 3 3

# of Generations 300 300

Mutation Rate .2 .2

Crossover Rate .5 .5

In order to speed up the fitness calculations, we ran all of the constituent algorithms
on the cross validation test set and stored their predictions. Then, in order to evaluate
the fitness of each individual, we combine the constituent algorithms with the appro-
priate weights and evaluate the results on the cross validation test set V. It is worth
remembering that V is a list of triples (u, i, s), where u is an user, i is an item that is
relevant to u and s is a set of 1,000 items that are unrated by u.
Each objective in the fitness function of a certain ranking R of the items {i} + s

provided by a certain individual is given by:

O(R) =
∑

(u,i,s)∈V

f(u, i, s, R) (10)

For the accuracy objective, f(u, i, s, R) is defined as follows:

f(u, i, s) = 21−max(21, Ri) (11)

where Ri is the position of item i in the ranking. This equation provides a way to value
hits up to the 20th position, with more value being given to positions closer to the top.
As for the novelty objective f(u, i, s, R) is simply EPC@20(R). Similarly, for the di-

versity objective, f(u, i, s, R) is equal to EILD@20(R).

5.6. Results and Discussion

The results achieved by each of the constituent recommendation algorithms can be
seen in Tables II and III. There is a clear compromise between accuracy, novelty and
diversity of these algorithms. For the MovieLens dataset (Table II), the constituent

3Freely available at http://deap.googlecode.com
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Table II. Results for Recommendation Algorithms on the MovieLens dataset, with the three objectives (i.e.,
accuracy, novelty, and diversity). The recommender methods variants are grouped into: (i) constituent algorithms,
(ii) multi-objective baselines, and (iii) our proposed Pareto-efficient approaches. We used the symbols: †, •, ⋄
to point out our method and the respective baseline. For each group, the best results for each metric are in
bold. Underlined values means that the selected approach and the respective baseline are statistically different
(95%).

Accuracy Novelty Diversity

Algorithm R@1 R@5 R@10 R@20 P@1 P@5 P@10 P@20 EPC@20 EILD@20

C
on

st
.
A
lg
or
it
h
m
s PSVD50 † .1900 .4155 .5402 .6643 .1900 .0831 .0540 .0332 .8070 .8650

PSVD150 •⋄ .1237 .3203 .4450 .5658 .1237 .0641 .0445 .0283 .8519 .8881

TopPop .0722 .2061 .2895 .3994 .0722 .0412 .0289 .0200 .7079 .7905

WRMF .1513 .3453 .4545 .5674 .1513 .0691 .0455 .0284 .7847 .8394

WIKNN .1529 .3564 .4624 .5806 .1529 .0713 .0462 .0290 .7744 .8257

WUKNN .1510 .3364 .4437 .5707 .1510 .0673 .0444 .0285 .7560 .8216

UAKNN .0614 .1762 .2504 .3387 .0614 .0352 .0250 .0169 .7386 .8173

B
a
se
li
n
es STREAM .1792 .3961 .5169 .6426 .1792 .0792 .0517 .0321 .8078 .8454

BC .0473 .1657 .2639 .4352 .0473 .0331 .0264 .0218 .8210 .8698

EW .1562 .3574 .4752 .5980 .1562 .0715 .0475 .0299 .7441 .8160

O
u
r
A
p
p
ro
a
ch

es

PEH-mean † • ⋄ .1776 .4175 .5379 .6656 .1776 .0835 .0538 .0333 .8361 .8696

PEH-acc † .1959 .4161 .5399 .6689 .1959 .0832 .0540 .0334 .8188 .8565

PEH-nov • .1415 .3656 .4857 .5917 .1415 .0731 .0486 .0296 .8649 .8964

PEH-div ⋄ .1309 .3223 .4263 .5297 .1309 .0645 .0426 .0265 .8828 .9047

PER-dom † • ⋄ .1979 .3722 .4368 .4910 .1979 .0744 .0437 .0245 .8549 .9060

PER-SVM † • ⋄ .1953 .4296 .5540 .6554 .1953 .0852 .0554 .0328 .8341 .8699

algorithm that provides the most accurate recommendations is PureSVD50. The con-
stituent algorithm that provides the most novel and diverse recommendations, with an
acceptable level of accuracy, is PureSVD150, but its accuracy is much worse than the
accuracy obtained by PureSVD50. TopPop provided the worst performance numbers in
all criteria used.

On the Last.fm dataset (Table III), the constituent algorithm that provides the most
accurate recommendations is WRMF. This is expected, as Last.fm is originally an im-
plicit feedback dataset, to which WRMF is more suitable. Once again, PureSVD150
proved its bias to suggest novel and diverse items, being the best constituent algo-
rithm both in terms of novelty and diversity. In this dataset the compromise between
the three objectives is once again illustrated by the fact that there is no algorithm that
dominates the others in every objective.

Regarding the performance of the baselines in the MovieLens dataset, STREAM per-
forms worse then PureSVD50 on accuracy and diversity, maintaining the same level
of novelty. Borda Count performed poorly on accuracy, reasonably well in terms of nov-
elty and diversity. Equal Weights performed poorly on accuracy and novelty, and well
on diversity. On the Last.fm dataset, STREAM performed slightly worse than WRMF
in accuracy, and slightly better in terms of diversity and novelty. Once again, Borda
Count performed poorly on accuracy. Finally, Equal Weights performed poorly on accu-
racy, diversity and novelty.

Pareto-Efficient Ranking

Now we turn our attention to the evaluation of our Pareto-efficient ranking ap-
proaches. First, we evaluate the simpler approach, which we call PER-dom (Pareto-
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Table III. Results for Recommendation Algorithms on the Last.fm dataset, with the three objectives (i.e., accu-
racy, novelty, and diversity). The recommender methods variants are grouped into: (i) constituent algorithms,
(ii) multi-objective baselines, and (iii) our proposed Pareto-efficient approaches. We used the symbols: †, •, ⋄
to point out our method and the respective baseline. For each group, the best results for each metric are in
bold. Underlined values means that the selected approach and the respective baseline are statistically different
(95%).

Accuracy Novelty Diversity

Algorithm R@1 R@5 R@10 R@20 P@1 P@5 P@10 P@20 EPC@20 EILD@20

C
on

st
.
A
lg
or
it
h
m
s PSVD50 .3859 .5997 .6649 .7178 .3859 .1199 .0665 .0359 .8878 .9561

PSVD150 •⋄ .3265 .5241 .6055 .6667 .3265 .1048 .0605 .0333 .8998 .9617

TopPop .1879 .4114 .5198 .6224 .1879 .0823 .0520 .0311 .8508 .9405

WRMF † .3834 .6148 .7073 .7858 .3834 .1230 .0707 .0393 .8735 .9471

WUKNN .3272 .5662 .6562 .7340 .3272 .1132 .0656 .0367 .8481 .9352

UAKNN .1922 .3790 .4712 .5328 .1922 .0758 .0471 .0266 .8605 .9424

B
a
se
li
n
es STREAM .3898 .6022 .6685 .7185 .3898 .1204 .0668 .0359 .8882 .9563

BC .2973 .5346 .6026 .6692 .2973 .1069 .0603 .0335 .8606 .9414

EW .3017 .5850 .6785 .7595 .3017 .1170 .0679 .0380 .8473 .9363

O
u
r
A
p
p
ro
a
ch

es

PEH-mean † • ⋄ .4230 .6505 .7250 .7829 .4230 .1301 .0725 .0391 .8908 .9514

PEH-acc † .4323 .6476 .7232 .7819 .4323 .1295 .0723 .0391 .8820 .9484

PEH-nov • .3751 .5911 .6659 .7246 .3751 .1182 .0666 .0362 .9219 .9643

PEH-div ⋄ .3139 .5184 .5943 .6573 .3139 .1037 .0594 .0329 .9388 .9713

PER-dom † • ⋄ .3866 .6310 .7127 .7829 .3866 .1262 .0713 .0388 .9016 .9561

PER-SVM † • ⋄ .3851 .6062 .6972 .7264 .3851 .1212 .0691 .0363 .8838 .9516

Efficient Ranking with most dominant items first). Considering the Movielens
dataset, we directly compared PER-dom against two different baselines: PSVD50 and
PSVD150, since these algorithms were the best performers in terms of accuracy, nov-
elty and diversity. PER-dom is significantly superior than PSVD50 in the top of the
rank, but becomes significantly worse than PSVD50 as k increases. On the other hand,
PER-dom greatly outperformed PSVD50 in terms of diversity and novelty. Also, PER-
dom is better than PSVD150 in terms of novelty, and it greatly outperforms PSVD150
both in terms of accuracy and diversity. In fact, Per-dom was the best performer in
terms of diversity. The more sophisticate approach, which we call PER-SVM (Pareto-
Efficient Ranking with SVM), was evaluated using the same procedure as to PER-
dom. PER-SVM is slightly superior than PVSD50 in all three objectives considered.
Also, PER-SVM is much better than PSVD150 in terms of accuracy and diversity, and
slightly better in terms of novelty. In summary, PER-SVM is a good choice for cases
where all objectives are simultaneously important: it was not the best performer in
any of the objectives, but its performance is close to the best performers in any of the
objectives.
A similar trend is observed for the Last.fm dataset. We directly compared PER-

dom against two different baselines: WRMF and PSVD150, since these algorithms
presented the best numbers in terms of accuracy, novelty and diversity. PER-dom is
significantly superior than WRMF, in terms of all objectives considered, and particu-
larly better in terms of novelty. Further, PER-dom is much better than PSVD150 in
terms of accuracy, and slightly better in terms of novelty, but it is significantly worse
than PSVD150 in terms of diversity. PER-SVM performed similarly to PER-dom, both
in terms of accuracy and diversity. Also, PER-SVM greatly outperforms PVSD150 in
terms of accuracy, but PSVD150 is significantly better in terms of diversity and nov-
elty. Finally, PER-SVM is slightly better than WRMF in all objectives considered. The
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Table IV. Constituent algorithms’ weights for different individuals, Movielens

Individual PSVD50 PSVD150 TopPop WRMF WIKNN WUKNN UAKNN

PEH-mean 21.60 20.19 -14.91 8.83 0.36 13.92 -3.10

PEH-acc 21.55 7.80 -11.10 10.20 5.47 10.86 -3.98

PEH-nov 25.95 22.43 -5.19 0.04 -5.07 8.18 -7.48

PEH-div 25.95 23.43 -26.94 1.20 -5.86 16.90 -1.89

same conclusion holds for Last.fm, that both PER-dom and PER-SVM are good choices
if all objectives must be maximized simultaneously.

Pareto-Efficient Hybridization

Now, with our hybridization approach, we could reach any of the individuals in Figure
3, which represents the accuracy (in this case, Recall@10) and novelty (EPC@20) of
the recommendations in x and y axes, and diversity (EILD@20) with a color scale. It is
clear that there is a compromise between accuracy and the other two objectives: the in-
dividuals with the most accurate recommendations provide less novel and diverse lists,
and so on. This compromise can be adjusted dynamically with little extra cost, since
the cost of reaching these individuals is as low as a linear search (for the individual
that maximizes a weighted mean, as described in Section 4.3) over the Pareto frontier
individuals’ scores. The Pareto frontier consists of 510 individuals in the MovieLens
dataset, and of 318 individuals in the Last.fm dataset, so a linear search can be done
very quickly. We chose to demonstrate a few of these individuals in Tables II and III.
First, PEH-mean (Pareto-Efficient Hybrid with mean weights) represents the individ-
ual that optimizes the mean of the three normalized objectives, assuming each of them
are equally important. This would be an option if personalization was not desired, or if
the designers of the recommender system do not know which combination of the three
objectives would result in higher user satisfaction. However, in a more realistic sce-
nario, the system designer would most likely want to select different individuals for
different users. We selected as examples the following individuals, which were found
by the process explained in Section 4.3 with the represented associated weighted vec-
tors:

—PEH-acc:[Accuracy:0.70, Novelty:0.30, Diversity:0.00]
—PEH-nov: [Accuracy:0.15, Novelty:0.50, Diversity:0.35]
—PEH-div: [Accuracy:0.10, Novelty:0.35, Diversity:0.55]

These objective weights led to the algorithm weights presented in Table IV. It is worth
noticing that even though some algorithms are always highly weighted (PSVD50, for
example) and others are always weighted negatively (TopPop), there are significant dif-
ferences between the weights of different individuals, which lead to completely differ-
ent objective values. It is interesting to notice that weaker algorithms (such as WRMF,
which in this dataset is worse than PSVD50 in all three objectives) are still able to
play a significant role when the algorithms are combined.

We compared PEH-acc against PureSVD50, which is the most accurate constituent
algorithm. It perform equally well or better than PureSVD on accuracy, but PEH-acc
performs better on novelty and worse on diversity. We compared PEH-nov against
PureSVD150, which presented the most novel recommendations to the users, with
reasonable accuracy. PEH-nov performs better on all three objectives, when compared
to PureSVD150 - particularly accuracy and novelty. Finally, we compared PEH-div
with PureSVD150, the algorithm with the most diverse recommendations. PEH-div
maintains (or slightly improves)the accuracy level, while improving a lot on both nov-
elty and diversity. PEH-mean was an individual that balanced the three objectives,
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Fig. 3. (Color online) Individuals lying in the Pareto frontiers for Movielens.

performing much better than PureSVD150, but worse than PureSVD in accuracy, and
better than PureSVD50 on novelty and diversity, but worse than PureSVD150. We
were able to find individuals in the Pareto Frontier that performed at least as well
as the best algorithms in each individual objective, but better on the other objectives.
Once again, we could have chosen to compromise more accuracy if we desired even
more novelty and diversity, as it is shown in Figure 3.
As for the Last.fm dataset, we selected the following individuals:

—PEH-acc: [Accuracy:0.70, Novelty:0.30, Diversity:0.00]
—PEH-nov: [Accuracy:0.15, Novelty:0.85, Diversity:0.00]
—PEH-div: [Accuracy:0.05, Novelty:0.45, Diversity:0.50]

These objective weights led to the algorithm weights presented in Table V. Once again,
we notice that different priorities lead to very diverse algorithm weights, and that
weaker algorithms (such as UAKNN) are able to play an important role when the
algorithms are combined.

Table V. Constituent algorithms’ weights for different individuals, Last.fm

Individual PSVD50 PSVD150 TopPop WRMF WUKNN UAKNN

PEH-mean 26.02 24.57 -10.53 23.21 2.77 -7.91

PEH-acc 26.02 22.43 -6.24 24.14 4.93 -7.36

PEH-nov 27.94 26.97 -9.51 13.01 -5.49 -8.60

PEH-div 26.02 21.81 -9.27 4.19 -1.90 -8.15

This time, we compared PEH-acc against WRMF, which is the most accurate con-
stituent algorithm on this dataset. PEH-acc is much more accurate than WRMF, while
also improving on novelty and performing almost as well on the diversity level. PEH-
nov was compared against PureSVD150, and it performedmuch better on accuracy and
novelty, while losing on the diversity. PEH-div was compared against PureSVD150,
and it faired slightly worse on accuracy, while greatly improving on both novelty and
diversity. PEH-mean was once again a balanced individual, although this time its ac-
curacy was much better than any of the constituent algorithms. Once again, we were
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Fig. 4. (Color online) Individuals lying in the Pareto frontiers for Last.fm.

able to find effective individuals in the Pareto frontier, but we could have reached any
of the individuals in Figure 4 by tweaking the weight value for each objective.

In summary, our proposed approaches are able to provided significant improvements
when compared against other multi-objective approaches. Specifically, a comparison
involving our best performers and the best baselines, reveals improvements in terms of
accuracy (R@1), with gains ranging from 10.4% (on Last.fm) to 10.7% (on MovieLens),
in terms of novelty, with gains ranging from 5.7% (Last.fm) to 7.5% (MovieLens), and
also in terms of diversity, with gains ranging from 1.6% (Last.fm) to 4.2% (MovieLens).

5.7. Reproducibility

The datasets we have used in our experiments are freely available, and can be obtained
following instructions in [Miller et al. 2003; Celma and Herrera 2008]. All constituent
algorithms are implemented in the MyMediaLite package [Gantner et al. 2011]. The
SVM-Rank implementation used in PER-SVM is freely available at http://svmlight.
joachims.org/svm rank.html. The evolutionary algorithm implementation we used to
find Pareto-efficient hybrids is available at http://deap.googlecode.com.

6. CONCLUSIONS

In this paper we propose Pareto-efficient approaches for recommender systems where
objectives such as accuracy, novelty and diversity must be maximized simultaneously.
We show that existing recommendation algorithms do not perform uniformly well
when evaluated in terms of accuracy, novelty and diversity, and thus we propose ap-
proaches that exploit the Pareto efficiency concept in order to combine such recommen-
dation algorithms in a way that a particular objective is maximized without signifi-
cantly hurting the other objectives. The Pareto-efficiency concept is exploited in two
distinct manners: (i) items are placed in an n-dimensional space (i.e., n constituent
algorithms) in which the coordinates are the scores assigned to the item by the algo-
rithms. In this way, combining the constituent algorithms means maximizing all objec-
tives simultaneously; (ii) hybrid algorithms (i.e., linear combination of the constituent
algorithms) are placed in a 3-dimensional space in which the coordinates are the level
of accuracy, novelty and diversity associated with each hybrid. Different hybrids may
give emphasis to a particular objective, provided that this will not significantly hurt
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the other objectives. Our proposed Pareto-efficient approaches may be very useful in
different scenarios. An obvious scenario is to provide better suggestions to the users,
recommending items that are simultaneously accurate, novel and diverse. Another ex-
ample is the personalization of recommendations according to particular users. For
instance, new users may benefit from an algorithm which generates highly ratable
items, as they need to establish trust and rapport with the recommender system be-
fore taking advantage of the suggestions it offers. The costly part of our Pareto-efficient
approaches is performed entirely offline, and the online cost of choosing items or hy-
brids in the Pareto frontier is almost negligible, since the Pareto frontier is comprised
of few items or hybrids.
We performed highly reproducible experiments on public datasets of implicit and

explicit feedback, using open-source implementations. In our experiments, we demon-
strated that the proposed approaches have either the ability to balance each of the
objectives according to the desired compromise, or the ability to maximize all three ob-
jectives simultaneously. Finally, we show that the proposed approaches have obtained
results that are competitive with the best algorithms according to each objective and
almost always better on the other objectives.
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S. Börzsönyi, D. Kossmann, and K. Stocker. 2001. The Skyline Operator. In IEEE International Conference
on Data Engineering. 421–430.

R. Burke. 2002. Hybrid recommender systems: Survey and experiments. User modeling and user-adapted
interaction 12, 4 (2002), 331–370.

P. Castells, J. Wang, R. Lara, and D. Zhang. 2011. Workshop on novelty and diversity in recommender
systems - DiveRS 2011. In ACM Conference on Recommender Systems. 393–394.

Oscar Celma and Perfecto Herrera. 2008. A new approach to evaluating novel recommendations. In ACM
Conference on Recommender Systems. 179–186.

M. Claypool, A. Gokhale, T. Miranda, P. Murnikov, D. Netes, and M. Sartin. 1999. Combining Content-Based
and Collaborative Filters in an Online Newspaper. In ACM SIGIR Workshop on Recommender Systems.
40–48.

D. Corne, J. Knowles, and M. Oates. 2000. The Pareto Envelope-Based Selection Algorithm for Multi-
objective Optimisation. In Parallel Problem Solving from Nature. 839–848.

P. Cremonesi, Y. Koren, and R. Turrin. 2010. Performance of recommender algorithms on top-n recommen-
dation tasks. In ACM Conference on Recommender Systems. 39–46.

K. Deb. 1999. Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems.
Evolutionary Computation 7, 3 (1999), 205–230.

C. Desrosiers and G. Karypis. 2011. A Comprehensive Survey of Neighborhood-based Recommendation
Methods. In Recommender Systems Handbook, Francesco Ricci, Lior Rokach, Bracha Shapira, and
Paul B. Kantor (Eds.). Springer, 107–144.

N. Dokoohaki, C. Kaleli, H. Polat, and M. Matskin. 2010. Achieving Optimal Privacy in Trust-Aware Social
Recommender Systems. In International Conference on Social Informatics. 62–79.

ACM Transactions on Intelligent Systems and Technology, Vol. 9, No. 1, Article 1, Publication date: February 2013.



Multi-Objective Pareto-Efficient Approaches for Recommender Systems 1:19

F. Fouss and M. Saerens. 2008. Evaluating Performance of Recommender Systems: An Experimental Com-
parison. In International Conference on Web Intelligence. 735–738.

Z. Gantner, S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme. 2011. MyMediaLite: a free recommender
system library. In ACM Conference on Recommender Systems. 305–308.

N. Garg and I. Weber. 2008. Personalized, interactive tag recommendation for flickr. In ACM Conference on
Recommender Systems. 67–74.

M. Ge, C. Delgado-Battenfeld, and D. Jannach. 2010. Beyond accuracy: evaluating recommender systems by
coverage and serendipity. In ACM Conference on Recommender Systems. 257–260.

E. Goldberg. 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley
Longman Publishing Co., Inc.

Z. Guan, J. Bu, Q. Mei, C. Chen, and C. Wang. 2009. Personalized tag recommendation using graph-based
ranking on multi-type interrelated objects. In International ACM SIGIR Conference on Research and
Development in Information Retrieval. 540–547.

A. Gunawardana and C. Meek. 2008. Tied boltzmann machines for cold start recommendations. In ACM
Conference on Recommender Systems. 19–26.

A. Gunawardana and C. Meek. 2009. A unified approach to building hybrid recommender systems. In ACM
Conference on Recommender Systems. 117–124.

I. Guy, N. Zwerdling, I. Ronen, D. Carmel, and E. Uziel. 2010. Social media recommendation based on
people and tags. In International ACM SIGIR Conference on Research and Development in Information
Retrieval. 194–201.

J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. 2004. Evaluating collaborative filtering recom-
mender systems. ACM Transactions on Information Systems 22, 1 (2004), 5–53.

J.H. Holland. 1975. Adaptation in natural and artificial systems. Number 53. University of Michigan Press.

Y. Hu, Y. Koren, and C. Volinsky. 2008. Collaborative Filtering for Implicit Feedback Datasets. In IEEE
International Conference on Data Mining. 263–272.

N. Hurley and M. Zhang. 2011. Novelty and Diversity in Top-N Recommendation - Analysis and Evaluation.
ACM Transactions on Internet Technology 10, 4 (2011), 14.

T. Joachims. 2002. Optimizing search engines using clickthrough data. In ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining. 133–142.

T. Joachims. 2006. Training linear SVMs in linear time. In ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 217–226.

N. Kawamae. 2010. Serendipitous recommendations via innovators. In International ACMSIGIR Conference
on Research and Development in Information Retrieval. 218–225.

Y. Koren and J. Sill. 2011. OrdRec: an ordinal model for predicting personalized item rating distributions.
In ACM Conference on Recommender Systems. 117–124.

N. Lathia, S. Hailes, L. Capra, and X. Amatriain. 2010. Temporal diversity in recommender systems. In
International ACM SIGIR Conference on Research and Development in Information Retrieval. 210–217.

H. Lee and W. Teng. 2007. Incorporating Multi-Criteria Ratings in Recommendation Systems. In IEEE
International Conference on Information Reuse and Integration. 273–278.

G. Lekakos and P. Caravelas. 2008. A hybrid approach for movie recommendation. Multimedia tools and
applications 36, 1 (2008), 55–70.

K. Leung, D. Lee, and W. Lee. 2011. CLR: a collaborative location recommendation framework based on
co-clustering. In International ACM SIGIR Conference on Research and Development in Information
Retrieval. 305–314.

L. Li, D. Wang, T. Li, D. Knox, and B. Padmanabhan. 2011. SCENE: a scalable two-stage personalized
news recommendation system. In International ACM SIGIR Conference on Research and Development
in Information Retrieval. 125–134.

X. Lin, Y. Yuan, Q. Zhang, and Y. Zhang. 2007. Selecting Stars: The k Most Representative Skyline Operator.
In IEEE International Conference on Data Engineering. 86–95.

S. McNee, J. Riedl, and J. Konstan. 2006. Being accurate is not enough: how accuracy metrics have hurt
recommender systems. In Conference on Human Factors in Computing Systems, Extended Abstracts.
1097–1101.
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