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Creating models from past observations and ensuring their effectiveness on new data is the essence of machine learning.
However, selecting models that generalize well remains a challenging task. Related to this topic, the Rashomon Effect refers
to cases where multiple models perform similarly well for a given learning problem. This often occurs in real-world scenarios,
like the manufacturing process or medical diagnosis, where diverse patterns in data lead to multiple high-performing solutions.
We propose the Rashomon Ensemble, a method that strategically selects models from these diverse high-performing solutions
to improve generalization. By grouping models based on both their performance and explanations, we construct ensembles
that maximize diversity while maintaining predictive accuracy. This selection ensures that each model covers a distinct region
of the solution space, making the ensemble more robust to distribution shifts and variations in unseen data. We validate our
approach on both open and proprietary collaborative real-world datasets, demonstrating up to 0.20+ AUROC improvements
in scenarios where the Rashomon ratio is large. Additionally, we demonstrate tangible benefits for businesses in various
real-world applications, highlighting the robustness, practicality, and effectiveness of our approach.

CCS Concepts: - Computing methodologies — Classification and regression trees; Ensemble methods; - Human-centered
computing;
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1 INTRODUCTION

Model selection is crucial in industry and research, and the widely adopted approach is cross-validation. Although
cross-validation generally provides robust risk estimation [4], it can fail for specific problems depending on the
goal of model selection, and empirical risk in a test set might not always correlate with real-world performance
[24]. Empirical risk can be significantly affected when different models perform equally well on the test set [55].
This limitation of relying solely on empirical risk motivates us to explore alternative evaluation approaches that
capture subtle differences in model behavior.

The Rashomon Effect, also known as the multiplicity of good models [16], presents a phenomenon where
many models perform equally well. However, these models may process data in substantially different ways,
making it challenging to draw reliable conclusions or automate decisions based on a single model fit [129].
This inherent diversity in'model behavior emphasizes why a single performance metric can be misleading. A
significant challenge arises when a cross-validated model, carefully selected during training, encounters data
drawn from a different distribution during production. In these cases, even small internal differences among
models may lead to divergent outcomes. Cross-validation guarantees no longer apply to out-of-distribution data,
resulting in unpredictable model performance and rendering held-out performance an unreliable risk estimate.
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To address this issue, we extend our analysis beyond empirical risk and explore additional axes to identify more
robust models. In doing so, we not only measure performance but also examine how models adapt their behavior
across varying data distributions.

Our main hypothesis posits that models exhibit similar behavior only when data are drawn from the same
distribution as seen during training. If this holds, we can sample different models and verify their outputs during
production (i.e., once deployed and used on new data). Disagreement among models would imply that the data are
drawn from an unknown distribution, leading to untrustworthy predictions. Conversely, if the models agree, we
gain extra confidence in the correctness of their predictions, as diverse models converge on the same conclusion.
These models can be used to build an ensemble, and we may establish the Jensen-Shannon distance between the
outputs of the ensemble constituents as a production risk metric.

However, we believe that diversity among individual models is still crucial for gaining an understanding of the
data. The Rashomon Effect suggests that multiple explanations can exist for a given phenomenon, each consistent
with the observed data. To systematically capture this diversity, we can group models based on the similarity of
their explanations. Ideally, this leads to dense groups of models that share common factors, from which the most
distinct representatives are selected. The traditional approaches attempting to induce a single model from all
sub-populations may perform poorly in complex problems where data inherently contain several local structures
and sub-populations [8, 70, 72, 128]. Our strategy instead culminates in an ensemble that is both diverse and
robust, with all its constituents being performant models focused on a subset of features, a local structure in the
data.

Further, as each constituent offers a different explanation for the target phenomenon, the ensemble’s output
is directly linked to the trustworthiness of predictions. The consensus among the constituents indicates a
match between the data distribution and the one seen during training, with all the cross-validation guarantees.
Disagreement suggests that cross-validation properties may not be trusted. In our experiments, we consider a
simple voting scheme ensemble and the returned voting ratio, that is, the probability predicted by our ensemble,
as a measure of agreement. For binary classification problems, such as those evaluated in our experiments, ratios
close to 50% indicate the highest uncertainty. We coined this concept the Rashomon Ensemble. In summary, our
approach involves the following steps:

(1) Sampling models from a pre-defined Rashomon subspace (i.e., a set of models with equivalent performance),
achieved by drawing different random feature subsets.

(2) Computing the explanation for each sampled model and quantifying the pairwise similarities among
them.

(3) Perturbing held-out test data through appropriate transformations to evaluate model stability.

(4) Measuring the pairwise distances on the perturbed dataset to capture divergence in predictions.

(5) Segmenting the Rashomon Set into subgroups based on the models’ explanation vectors and distance
metrics.

(6) Selecting a set of models with contrasting explanations and divergent responses on the perturbed data.

(7) Constructing an ensemble and evaluating the degree of agreement among models as a proxy for production
risk.

We validate our approach on a set of public datasets for reproducibility and demonstrate its robustness
in simulated scenarios. Our results show that Rashomon ensembles consistently outperform state-of-the-art
ensemble learning approaches if the Rashomon Set is large enough. When exposed to data drift, our approach
remained the performant one in most evaluated scenarios, providing further evidence of its reliability. Further,
we also employ the Rashomon ensembles in four real-world applications partnered with various industries and
institutions, studying the impact of our approach. We demonstrate how our approach leads to a tangible impact
on business, with reported gains of over R$1.5 million and a patent being filed. Our results also consistently show
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that Rashomon ensembles outperform state-of-the-art ensemble learning approaches when the Rashomon Set is
sufficiently large.

The remainder of this work is structured as follows: Section 2 introduces background to support the understanding
of the devised techniques, explaining concepts such as the Rashomon Effect, Rashomon Ratio, and our understanding
of model explanation. Section 3 discusses related research, including data drift, domain adaptation, ensemble
learning, and prior applications of the Rashomon Effect in machine learning. Section 4 formalizes our proposed
Rashomon Ensemble, outlining its theoretical framework and implementation. Sections 5 and 6 present experimental
evaluations. Section 5 addresses the analysis of our approach’s robustness and limitations under publicly available
datasets, while Section 6 focuses on multiple real-world case studies using unique collaborative data. Finally,
Section 7 brings about the conclusion and proposes directions for future research.

2 BACKGROUND

The idea of capturing model uncertainty by exploring the relationship between test points-and the learned model
is not new. Typical approaches include building an ensemble of models and measuring inter-model variance
[77], or learning a scoring rule that captures ambiguity in targets [66, 67]. However, most recent research on
this topic has mainly focused on Neural Networks and how they learn intermediate features. More specifically,
state-of-the-art approaches to Out-of-Distribution (OoD) detection enrich the intermediate feature space beyond
what would ordinarily be learned via supervised learning alone, such as encouraging a model to learn high-level
task-agnostic semantic features [114], or employing an additionally labeled outlier dataset during training [53].
When one cannot access the intermediate feature space, most of the mentioned approaches fail. As noted by
Chen et al. [20], this type of approach has two drawbacks: first, models trained to identify OoD may fail to cover
the entire data distribution; second, explaining the source of OoD may be non-trivial.

The key difference in our work lies in the analysis of additional unexplored axes, such as the decision-making
process of a model via its explanatory factors [75, 125]. A second key idea is to exploit the Rashomon Effect by
looking for models with similar performance during training. Both of these propositions enable explanation
of the risk metric by assigning importance to the factorsleading to each model decision and comparing them.
Further, our approach is algorithm-agnostic and reproducible with any model that handles tabular data. We
therefore summarize three pivotal points underlying our approach: acknowledging that production data may
fall outside the training distribution, recognizing the multiplicity of high-performing models, and analyzing the
explanatory factors behind model decisions

Underspecification: Underspecification in deep learning arises when models achieve similar in-sample performance
but present divergent behaviors on out-of-sample data. This is problematic when some models perform significantly
worse in production, creating challenges for proper model selection [24]. Although much of the underspecification
literature focuses on deep neural networks, the phenomenon largely arises from the elevated number of
optimized parameters [18, 91]. Mei and Montanari [83] state that this issue is common to any machine learning
pipeline. D’Amour et al. observed that repeating a training process can generate many models with identical
test performance but significantly different behaviors, even when only minor perturbations are introduced, such
as using a different random seed. This, in turn, differentiates each model by small arbitrary learning decisions.
Although these differences are usually considered minor, the consequence is varying degrees of performance in
the real world. As such, underspecification is closely tied to the Rashomon Effect.

Rashomon Effect: The Rashomon Effect, as analyzed by Fisher et al. [36], refers to the set of models with
accuracy close to that of the optimal model. From this set, they formally defined the concept of the Rashomon Set,
which represents the subspace of the universe of models summarizing the range of effective prediction strategies
an optimal analyst might choose. The Rashomon Effect is further explored by Semenova et al. [100], who provide
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pertinent definitions concerning the generalization of the Rashomon Set, its shape, and its volume. In particular,
they explore under which situations it is possible to obtain a sample of the model space such that the Rashomon
properties of this subspace are similar to those of the full universe.

The Rashomon Set thus comprises a collection of close-to-optimal models that share similar explanations and
performance due to the Rashomon Effect. For this, we need a comparison to some key reference model, denoted
as hyr. Fisher suggests that h,.¢ can be derived from expert knowledge or from some quantitative decision rule
implemented in practice. This prespecified reference model serves as a baseline for performance. Thus, if we
establish € as the maximum accepted error relative to h,.r for considering a model part of the Rashomon Set, we
can denote it as:

R(H,e) := {h € H: E[L(h, Z)] < E[L(hyef, Z)] + €} 1)

where E denotes expectations concerning the population distribution, L is some nonnegative loss function, H is
the hypothesis space, and Z = [YX] is the data. The € metric takes into account models that might be arrived at
due to differences in data measurement, processing, filtering, model parameterization, covariate selection, or
other analysis choices.

Further, let X; € X be the set of all features that model ;. relies on to reach a prediction. This reliance metric
has a direct relationship with model explanation. We can expect models that rely too heavily on X; to be prone to
high variance, leading to poor performance. Likewise, models that rely too little on X; are prone to high bias, also
leading to poor performance. Model reliance (MR) of variable X; can be computed as the increase in expected loss
when the contribution of this variable is removed by random permutation. The range of all possible MR values
within this class gives rise to the notion of Model Class Reliance (MCR), which helps define a minimum and
maximum MR value to classify a model f within the set defined by h¢f, €, and X;. These models comprise the
set of high-performing models that also share a similar reliance on X as the reference model k., as proposed
by Fisher et al.

Rashomon Ratio: The concept of the Rashomon ratio, as introduced by Semenova and Rudin [100], quantifies
the fraction of models within the hypothesis space that perform nearly as well as a reference model. Given a
hypothesis space H and a subset R C H of good models (the Rashomon Set), the ratio is defined as:

|R|
Rratio = ﬁ (2)
Here, the notation | - | is used to denote the size of a set, and its interpretation depends on the hypothesis space
shape. For discrete spaces, that is, when H is discrete and finite, |R| and |H| represent the cardinalities of the

Rashomon Set and the full hypothesis space, respectively:

|R|=Zl{heR}, |H|:Z1

heH heH

in which 1{-} is the indicator function.
For continuous hypothesis spaces, that is, in scenarios where H is continuous or infinite, |R| and |H| can be
interpreted as volumes under a chosen measure V(-), such that:

IRl =V(R) and |H|=V(H)

V(R)
V(H)
However, even for discrete hypothesis spaces, the exact computation of R4, would involve evaluating every

model f € H, which may be computationally infeasible. Thus, we approximate the Rashomon ratio by random
sampling: models are drawn from H and the set, the fraction of sampled models, that lie in R serve as an empirical

in which the ratio

is well-defined under the assumption of a uniform prior over H.
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estimate R,4, of this discrete hypothesis subspace. If the sample is large enough, this estimate holds guarantees
of similarity to the true Rashomon Set, as stated by Fisher et al. [36].

Data drift: Let T be the train distribution of the source data, and U be some unknown distribution from another
dataset. Candela et al. [19] defines data drift as a change in the joint distribution of features. That is:

P(xt,yr) # P(xu, yu) (3)
Probably approximately correct learning relies on the assumption that data are independently and identically
distributed to estimate the empirical risk of a learning function. If we observe data drift, we cannot guarantee
that the empirical risk is close to the true risk.

We can decompose P(x,y) = P(x) X P(y|x). Thus, if data drift occurs, it may stem from two sources: a change
in P(x) (covariate drift) or a change in P(y|x) (concept drift). As stated by Moreno-Torres et al. [85], covariate
drift is tied to the distribution of the variables, while concept drift implies that the relationship between the
target and predictors changes between datasets. Finally, both P(x) and P(y|x) may differ significantly from the
original distributions, which is defined as dual drift. Overall, data drift can be stated as a phenomenon in which
the statistical properties of a target domain change over time in an arbitrary way [74].

In this work, we address data drift by building ensembles composed of models trained on independent feature
subsets. We propose that if a small portion of features suffers from drift, accurate predictions can still be obtained
from the unaffected features. Further, if the distributions T and U are completely different, we must be able to
signal the low reliability of the prediction. Finally, to ensure diversity in constituent models, we rely on the notion
of explainability.

Model Explanation: Instead of the model reliance metric proposed by Fisher et al., another possible approach is
presented by Lundberg and Lee [75]. Shapley Additive Explanations (or simply SHAP) use Shapley values
to interpret a prediction model. We represent how model f’ explains the data as a d-dimensional vector
S(f’) = s1, 52, - .., Sq, showing which features contribute most to the prediction. The Shapley value is a concept
in cooperative game theory introduced by Shapley [101]. In each game, a unique distribution of the rewards
generated by the cooperation of all players'is provided. Many other feature attribution methods exist [17, 96, 98],
but as highlighted by Hinns et al. [55], the sound mathematical foundation and ease of implementation make SHAP
ideal for identifying underspecification. Further, SHAP is the only method with the three desirable properties:

e Local accuracy: the explanations truthfully explain the model.

e Missingness: missing features have no attributed impact on the decisions.

o Consistency: if a model changes so that some feature’s contribution increases or stays the same regardless
of the other features, that feature’s attribution should not decrease.

In summary, the Rashomon Set reveals the existence of multiple valid model solutions with similar performance.
Their explanations allow us to examine each model’s decision rationale and understand the importance of different
features, highlighting what makes each model in the Rashomon Set distinct. Further, it enables us to discern the
unique aspects of each model that contribute to varied performance and responses under data drift. By combining
these approaches, we gain a broader understanding of the problem and build ensembles of diverse models that
provide complementary explanations for different facets of the data. This ensemble enhances the robustness of
our solution, as each model’s behavior under varying conditions is better understood and accounted for.

3 RELATED WORK

Data drift is usually associated with the notion of online learning, in which a model is applied to production
and is constantly updated as new instances arrive. Under online learning, a model must handle new concepts as
they arrive, properly tuning itself to new data distributions. The main challenge consists of the fact that, as data
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drifts toward these new concepts, it negatively impacts the accuracy of the models that are learned based on
past training instances [45]. Therefore, early identification and adaptation to data drift are key aspects of such
systems. Lu et al. [73] provides a basic framework underlying general drift detection:

o Stage 1 (Data Retrieval): retrieval of chunks from data streams to infer data distribution.

e Stage 2 (Data Modeling): extraction of key features that present the most impact on the system in the
presence of drift.

o Stage 3 (Test Statistics Calculation): the measurement of a dissimilarity or distance metric.

e Stage 4 (Hypothesis Test): evaluation of the statistical significance of the measured metric.

The main differences between methods lie in stages 3 and 4. Concerning stage 3, two of the main categories of
drift identification are error-based and data-based algorithms. Most error-based drift detection employs a base
classifier and tracks the change in the online error rate. The main hypothesis behind these methods relies on the
fact that the base model will misclassify new instances when data drifts, thus increasing the error rate. This is
the core idea behind the DDD of Minku and Yao [84]. There are many other error-based methods, but, as stated
by Lu et al. [73], DDD is perhaps the most referenced method. Under their framework, other methods can be
summarized by changes to some stage of the drift detection, such as employing another hypothesis testing [41]
or changing some detail of the evaluated metric [7].

Data-based  drift detection algorithms rely on directly quantifying the dissimilarity
between the distribution of historical and new data. The standard strategy is to define a fixed window for
the past and a sliding window for new data during the online learning process [62]. If we ignore Stage 1 of the
drift detection framework, the problem turns into a multivariate two-sample test evaluating if samples come
from the same distribution. However, there remains a problem concerning actual and virtual drift.

The decomposition of Equation 3 presents the sources of data drift: covariate drift and concept drift. Covariate
drift is often called virtual drift due to drift in P(x) not affecting the decision boundary of models [95]. Retraining
a model under covariate drift might not be necessary, as the learned conditional P(y|x) remains unchanged.
This is not the case for dual drift, however, when both P(x) and P(y|x) exhibit a shift under new data. It is
important to highlight that the aforementioned approaches to drift detection are well-suited for online learning
scenarios, which is not the case for our propesed problem. We can only compute error-based metrics if we
know the correct label of new incoming instances. Sliding window data-based methods depend on the notion of
temporal relationships. Further, knowledge of the labels of novel instances is necessary to differentiate between
dual and virtual drift, which might not be possible in scenarios outside of online learning. We propose building an
ensemble of models and using the intra-constituent agreement as a proxy for error rate, as described in Section 4.

Existing research has explored methods to address the challenge of data distribution shifts. Domain adaptation,
for instance, aims at'mitigating performance degradation when a model trained on a source domain is applied to
a different but related target domain. Farahani et al. categorize these approaches into shallow and deep methods,
emphasizing strategies such as feature alignment, instance re-weighting, and adversarial training for settings
where only source labels are available [35]. These methods often focus on aligning feature distributions or
adapting the model parameters to the target data [71, 92, 108].

Another related approach that tackles this problem is domain generalization, in which one seeks to train
models that can generalize well to unseen target domains without access to this target data during training [86].
The current approaches can be organized into categories such as data manipulation, representation learning, and
learning strategies [? ]. For example, Mixup-based augmentation [118] enhances diversity by modifying training
data through linear interpolation, while domain-adversarial training [42] explicitly aligns distributions across
domains by adversarial optimization.

A third approach consists of test-time adaptation methods. Unlike domain adaptation or generalization, which
operate during training, this approach adapts pre-trained models directly to unlabeled test data in real time [68]
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and, as highlighted by Liang et al., they broadly fall into three categories: (i) test-time domain adaptation, which
leverages pseudo-labeling or clustering to align entire target domains with source knowledge [69, 94]; (ii) test-time
batch adaptation, which adjusts normalization statistics or fine-tunes parameters on small batches [99, 119]; and
(iii) online test-time adaptation, which incrementally updates models on streaming data while attempting to
mitigate catastrophic forgetting [88, 113]. Other approaches also include entropy minimization [112], contrastive
consistency [21], or memory-augmented prototypes [31]. However, these methods assume that models must be
adapted to the target distribution, requiring access to source model parameters and computational resources for
updates. These may be prohibitively limiting in scenarios where model stability, interpretability, or deployment
efficiency are crucial.

While these existing methods, be they domain or test-time, focus on adapting models to shifted data, our
approach leverages the inherent diversity of high-performing models in the Rashomon Set. Instead of modifying
parameters or normalizing statistics, we detect data drift through disagreement among ensemble constituents.
Models in the Rashomon Set, though equally accurate on training data, rely on distinct features and hold
different decision boundaries. Significant prediction divergence on new data hints at-distribution shifts. This
process requires no model updates, source data access, or computational overhead after deployment, providing a
lightweight, proactive indicator for safety-critical or resource-limited settings, as is the case for many real-world
applications.

One of the core motivations in this work arises from the insight that a dataset might be heterogeneous, thus
inducing a large Rashomon Set. There might exist regions of the data that show complex correlations among a
specific set of features and the target label, and the same correlations are not necessarily so strongly observed in
other regions. If this is true, it would be more suitable if local behavior were represented by a local model, which
can be incorporated into an ensemble [126]. Sampling multiple local minima allows approximation of the global
objective while expanding the representation space [30]. This idea of employing local models aligns with the
Rashomon Set concept, as it acknowledges the existence of multiple valid and diverse models that perform well
in different regions of the data space. By exploring the Rashomon Set and considering models with contrasting
explanations, we can identify subgroups.of correlated features and build ensembles with diverse models that
contribute unique explanations for different facets of the data [122]. Such an approach enhances robustness by
leveraging the multiplicity of high-performing models with diverse decision-making processes.

Dembczynski et al. [28] focuses on understanding how one can learn a performant rule-based ensemble via
boosting. Starting from the standard initial rule, they iteratively add new rules to obtain an ensemble that can
cover most of the data. To validate their approach, they also define the concept of coverage through a ¢(x), this
being an arbitrary axis-parallel region in the attribute space. The diversity of constituents is measured solely by
the coverage ¢ of each rule. As noted by D’Amour et al. [24], two rules may have the same coverage but exhibit
divergent behavior in practice. Thus, using some other metric associated with the inner mechanism of the model
and not simply the observed response may be relevant, such as a vector representation of the explainability of a
model.

Grosskreutz [46] propose splitting dataset rows into subgroups given a set of restrictions over its columns,
and apply this approach to an unsupervised problem. If the groups are large enough, the associated restrictions
express some significant pattern in the data. Grosskreutz focuses on tasks where there is no target variable.
However, one can employ an equivalent technique regardless of this fact, similar to Malik and Kender [79]
and Knobbe and Valkonet [65]. All these works operate primarily within the data space, looking for relevant
patterns, clusters, or subgroups that induce diverse models. Our approach, in contrast, operates within the model
space, finding different groups of explanations. The Rashomon groups can be interpreted as a particular set of
restrictions on the data, which in turn induce the subgroups presented. We improve upon previous work in the
sense that the SHAP groupings aided by the Rashomon concept not only prune a large portion of the search
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space but also provide a direct measure of model behavior similarity while tackling the problem of data drift
detection in domains outside of online learning.

Regarding the Rashomon Effect, many works have exploited its implications to gain insights about the solution
space. Marx et al. [82] explores the concept of predictive multiplicity, the ability of a prediction problem to admit
competing models with conflicting predictions, which can be seen as a restriction on the Rashomon Set. Kissel and
Mentch [64] searches for an entire collection of plausible models via a forward selection approach and resampling
of the training dataset to account for uncertainty. Dong and Rudin [32] introduces the notion of a variable
importance cloud, mapping every variable to its importance for the Rashomon Set, and experimenting on criminal
justice, marketing data, and image classification tasks. [87] performs a similar approach using Shapley values
as a measure of importance. There is also relevant literature regarding Rashomon Sets and a specific learning
algorithm of choice. For instance, Ahanor et al. [3] and Danna et al. [25] both look for the set of near-optimal
solutions for integer linear programs, while Xin et al. [117] restricts their analysis of the Rashomon Set to Decision
Trees. To the best of the authors’ knowledge, building an ensemble from the Rashomon set is a novel idea.

4 METHOD

We consider a supervised learning scenario and formulate a classification model as a function h(X,Y;0)
parameterized by € that maps inputs x; € X to labels y; € Y. During cross-validation, we train models on
data Dyrqin, coming from a distribution T. To estimate the predictive risk of each function, we employ additional
data Dy, from the same distribution T and evaluate h, € H on this independent and identically distributed data.
The standard model selection step involves selecting the function that minimizes the empirical predictive risk,
providing performance guarantees when future data follows the same distribution T. However, these guarantees
do not hold when dealing with data coming from other distributions, such as in the case of data drift.

Our main objective is to build a diverse ensemble comprising contrasting explanations for the same problem.
Additionally, we aim to estimate the reliability of our predictions under uncertainty arising from an unknown data
distribution U, which may contain drift compared to the training data distribution T. To achieve this, we explore
how models behave when the differences between executions are only minor. We consider 6 to encompass any
choices made during training that lead to similar models exhibiting contrasting performances. We then introduce
drift to the test data and evaluate its effects on each model.

Instead of simply mixing different structures into a single model and minimizing the objective function h(x),
we sample the model space by minimizing different functions h(x’"), where x” C x and |x’| < |x|, as in [128].
This sampling strategy approximates the Rashomon Set, acknowledging the existence of multiple valid and
diverse models that perform well in different regions of the data space. By exploring the Rashomon Set and
considering models with contrasting explanations, we can identify subgroups of correlated features and build
ensembles with diverse models that contribute unique explanations for different facets of the data. This approach
enhances the robustness of our solution by considering the multiplicity of well-performing models with varying
decision-making processes.

We build our ensemble exploiting two concepts: diversity between individual models and stability between
model explanation and empirical predictions [102]. Diversity is crucial for gaining a general understanding of a
phenomenon, assuming that problems are not tied to a single cause, which may vary in ways that are not directly
intuitive. To promote diversity while finding patterns, we cluster the set of sampled models H’ based on the
distance between their explanation vectors (i.e., SHAP values). In our experiments, we employ Euclidean distance
and k-means clustering, though alternative metrics and clustering methods could be applied. Ideally, this creates
groups of models that are internally dense and separated from other models in terms of their explanatory factors.
Stability, on the other hand, refers to models within a cluster being associated with the same explanatory factors
and performing similar predictions.
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To assess prediction-explanation stability, we cluster the model space based on the distance between the
explanation vector associated with each model and project them into the prediction space. This allows us to
locate different Rashomon subgroups inside the Rashomon Set and select models from each subspace. In practice,
when we evaluate one constituent at a time, the remaining members of the ensemble act as reference models to
verify consistency under new data distributions. If a candidate model’s predictions agree with the remainder
of the ensemble, it is indicative of prediction stability. Further, we also require a stability check to ensure that,
when searching for optimal constituents, adding or removing features does not significantly alter the model’s
explanation vector relative to its cluster centroid and neighborhood. Finally, to study the Rashomon Set for a
given problem, we need to sample models from the complete model space. Algorithm 1 describes the main steps
of our ensemble learning approach. Here each model 4 is represented by the unique feature set that it employs.
As such, we overload the notation & to denote both the model and its feature set, using them interchangeably in
the algorithm description.

Algorithm 1: Rashomon Ensemble Algorithm

Input: Feature set F, evaluation dataset Z, number of initial models n, maximum model width m, error
margin €
Output: Ensemble of models M
Initialize pool P with n models, each built using a random subset of features from F.
Choose a reference model k. (e.g., a baseline method).
Initialize an empty Rashomon Set R.
for each model h; € P do
Evaluate h; on Z.
if E[L(h;, Z)] < E[L(hyes, Z)] + € then
Compute explanation vector S(h;) (e.g., using SHAP).
L Add h; along with S(h;) to R.

Cluster the models in R based on the distance between their explanation vectors, forming clusters C.
For each cluster ¢ € C, select a representative model (e.g., the clusteroid) A,.

Initialize the ensemble M with these representative models.
for each clusterc € C do
Let h. be the representative model for cluster c.
while |h.| < m do
Identify the feature f € F \ h. that minimizes

E[L((M\ {he}) U {he U{f}}.2)]
while ensuring that k. U {f} remains consistent with the explanatory profile of cluster ¢ (e.g.,

does not fall into another cluster).
Update h, < h. U {f}.

return M

Deriving an Ensemble: We assume a factorial combinatorial space encompassed by all feature combinations
constrained to a single learning algorithm. To induce the Rashomon Set, we aim to find a set of relevant features
K (with size |K|) that characterize an evaluated subspace. These features show complex correlations with the
target label, which may not appear as strongly in other regions of the data space, thus inducing a Rashomon
subspace.
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To mitigate the curse of dimensionality, we restrict the model space to subsets of size s where |[K| < s < Syax,
with Spay < |F|. This avoids the computational intractability of enumerating all 2/ subsets. The number of
models containing the subset K is derived by fixing |K| features and choosing the remaining s — |K| from |F| — |K]:

Smax
[F] - K] "
s = |K]|
s=|K|
The probability of sampling a model containing X is:
Zszmx (lF‘__ ‘Kl)
PK _ s=|K| \ s—|K]| (5)

22 ()

We limit our scope to problems where |K| < |F|, as otherwise, the Rashomon ratio diminishes due to the
combinatorial scarcity of subspaces containing K. To ensure computational tractability; we restrict models to
sizes s where |K| < s < Spax, avoiding the curse of dimensionality inherent in high-dimensional feature spaces.
If we sample an arbitrary model from this constrained space, the probability of it not containing K is 1 — Pk.
From Equation 5, to guarantee that the subspace K is present in at least one model with probability «, we need to
sample at least  models:

~ In(1-a)

T (1= Py
For example, for |F| = 100, |[K| = 4, Smax = 10, and & = 0.95:
_ In(1-0.95)

T~ 1n (1 - 0.00005)

(6)

~ 60,000

Time Complexity: In the experiments, we use Decision Trees as base models for the ensemble constituents. The
time complexity of training and explaining a Decision Tree is O(log(F)ID + D?) [75], where I is the number of
instances, F is the number of features, and D is the maximum tree depth. Since we sample T trees, other steps
present negligible complexity in comparison to the sampling stage, resulting in O(TI) complexity. However, as
we sample models, the Rashomon ensemble substantially reduces the number of models that need to be evaluated,
making the approach feasible in practice. For instance, any model with a loss close to random guessing is unlikely
to present itself as a useful constituent. Thus, we do not need to explain the entire model space, and need only
concern ourselves with the Rashomon Set.

Splitting the Rashomon Set: To split the Rashomon Set into clusters, we represent how a model b’ explains
a phenomenon as a d-dimensional vector S(h’) = [ey; €;; ...; e4] showing which features [xy, x2, ...x4] drive the
model’s prediction. We use K-Means clustering with a suitable number of clusters, identified by maximizing
the silhouette value. This splits the Rashomon Set into well-divided clusters based on their explanatory factors,
leading to compact and well-separated clusters. As discussed previously, there usually exists a small subset of key
features that are only present in models from one cluster and absent in the remaining ones. The presence of this
subset leads to these models being close in the feature preference space since cohesion values are relatively high
and lead to concise and well-divided clusters.

Prediction Distance: We compare models within the Rashomon Set to estimate the risk under an unknown
distribution U. We compute the Jensen-Shannon distance (JSD) [34] as our metric of choice for a measure of risk,
indicating how similar the predictions of the two models are. Let P be the probability distributions returned from
a model h,, and we wish to compute a metric that estimates the risk of selecting it in production. Further, let Q
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be the probability distribution from a model f; that ideally behaves similarly to h,. As shown by MacKay [76],
we can compute the error of P from Q by the cross-entropy between P and Q as:

H(P,Q) = H(P) + Dkr(P||Q) (7

We could also evaluate the Kullback-Leibler (KL) divergence between these models under the unknown
distribution U, and thus estimate risk. The main drawback of employing the Kullback-Leibler divergence is that it
is non-symmetric. That is, Dk (P, Q) might be different from Dk (Q, P). To avoid confusion, we instead opt to
employ the Jensen-Shannon distance as our metric of choice for a measure of risk. If P and Q agree (low JSD), we
have a strong indicator that U should be similar to T, and predictions can be trusted. Contrasting P and Q (high
JSD) suggests that U differs from T, and the returned predictions cannot be trusted.

Constituent search: In summary, we verify that looking at the explanatory factors in isolation is not enough to
observe meaningful patterns. In our preliminary experiments, we find instances of models with similar SHAP
but contrasting predictions as well as contrasting SHAP but similar predictions. The choice of a h; model to
estimate the risk of the target constituents becomes a challenging task. We propose performing a controlled
transformation in T to create a simulated production dataset. This should enable us to estimate model behavior in
an out-of-distribution scenario. Namely, the transformation employed over data drawn from T consists of adding
Gaussian noise to the input features such that y; = h(x; + ;) and €; ~ N(0, 6?). We can then select models that
have contrasting explanations and predictions. Among possible transformations, we choose Gaussian noise for
its simplicity and the ease of computing exact feature distortion. In many real-world scenarios, Gaussian noise
might not be the closest representative of divergence. However, we verify that this simple transformation is
enough to induce large changes in model behavior and enable our ensemble learning approach.

Further, not all variables are relevant for prediction, and some features may even be detrimental. To find a
set of relevant features to induce the Rashomon Set, we represent the model space as a directed acyclic graph
(DAG) in which each node represents a distinct feature subset, and vertex A — B is connected if B can be reached
by simple feature addition from A, thus representing a transitive reduction of the more complex combinatorial
complete model space. This modeling approach has two desirable properties: (i) any vertex is reachable from the
[0] model, and (ii) a topological ordering exists such that for every edge, the start vertex occurs earlier in the
sequence than the ending vertex of the edge for any feature set path. These properties imply a partial ordering of
the graph starting from the root node, which allows us to search it in an orderly manner. It has been shown that
this modeling approach is effective for the task at hand [122, 126].

We can, for example, apply the A* algorithm [51], employing as a heuristic the performance of the model
represented by the feature set of a given vertex and the Jensen-Shannon distance to the predictions of the
remaining Rashomon subgroup clusteroids. We hypothesize that there exists a set of optimal feature expansions
that lead to the best-performing models for each specific base task. This allows us to search the F! combinatorial
space of feature subsets to select the best-performing specialized models and build the Rashomon ensemble.

5 OPEN DATASETS

We present our experiments related to the Rashomon Set for a given problem and the process of obtaining
ensemble constituents using the Rashomon Sets. The goal is to explore the usefulness of Rashomon Sets as a
method for model space partitioning and to understand their effectiveness in addressing the problem akin to
underspecification in ensembles. To study the Rashomon Set for a given problem, we sampled models from
the complete model space. We considered the N! combinatorial space, encompassing all feature combinations
constrained to a single learning algorithm. We aimed to evaluate whether Rashomon Sets could serve as a valuable
tool for partitioning the model space and generating diverse ensembles.
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To achieve this, we proposed a process of Rashomon Set partitioning based on clustering models by their
explainability vectors. The K-Means algorithm was used to induce clusters, and we determined the optimal
number of clusters (K) using silhouette scores. By creating ensembles composed solely of models located close to
the centers of each Rashomon subgroup, we aimed to generate diverse ensembles capable of covering a wider
region of the solution space.

5.1 Benchmark Suite and Datasets

To verify the effectiveness of the Rashomon ensemble learning technique, we considered a benchmark suite
including a series of open-source datasets from the UCI machine learning repository [5] and the OpenML database
[12]. The benchmark suite consists of the following datasets:

APS Failure: The dataset used for the 2016 IDA Industrial Challenge [23]. It consists of data collected from
heavy Scania trucks in everyday usage, and the problem is formulated as a binary classification task to predict
component failures for a specific component of the APS system after a small amount of noise was introduced to
the data.

Diabetes Readmission: This dataset was submitted on behalf of the Center for Clinical and Translational
Research, Virginia Commonwealth University [106]. It represents 10 years of clinical care at 130 US hospitals and
integrated delivery networks. The problem is a binary classification task to predict whether a given patient will
be readmitted to a hospital.

Heart Disease: This dataset from the Cleveland database focuseson the diagnosis of coronary artery disease
[2]. The goal is to predict the presence of heart disease in the patient,; with a severity indicator valued from 0
(no presence) to 4. We have focused on the binary counterpart of'this problem, in which we simply attempt to
distinguish presence (value 1, 2, 3, 4) from absence (value 0).

MADELON: This artificial dataset contains data points grouped in 32 clusters placed on the vertices of a five-
dimensional hypercube and randomly labeled +1 or -1, and it was one of five datasets used in the NIPS 2003
feature selection challenge [49]. The problem is a binary classification task to separate examples into two classes.

MAGIC: This dataset is composed of a series of Monte Carlo simulations regarding the registration of high-
energy gamma particles in a ground-based atmospheric Cherenkov gamma telescope (Major Atmospheric Gamma
Imaging Cherenkov Telescope project,, MAGIC) [13]. The problem is a binary classification task to discriminate
the patterns caused by primary gammas (signal) from the images of hadronic showers initiated by cosmic rays in
the upper atmosphere (background).

Nursery: This dataset was derived from a hierarchical decision model originally developed to rank applications
for nursery schools, thus constituting the Nursery Database [89]. The goal is to predict the final decision, ranging
from not recommended to priority. We have focused on the binary counterpart of this problem, in which an
applicant was given either a priority recommendation or not.

Speed Dating: This dataset was gathered from participants in experimental speed dating events from 2002 to
2004 [37]. The problem was formulated as a binary classification task to predict whether both participants would
like to date each other again, given each participant’s questionnaire responses and characteristics.

WDBC: This dataset is composed of features computed from a digitized image of a fine needle aspirate (FNA) of
a breast mass associated with breast cancer [107]. The problem was formulated as a binary classification task to
predict the presence of malignant tumor cells.
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Table 1. Mean AUROC results on binary classification tasks after 10 repetitions. Datasets with no pre-defined test set were
subject to an 80-20 cross-validation split.

Benchmark Baseline Algorithm Rashomon
Dataset Rows Cols| DT Ada RF XGB LGBM CatBoost GRANDE NSGA-II|Ensemble Ratio
APS 76000 172 |.866 .824 .869 .835 .853 .888 .855 .859 911 12.4%
Diabetes 101766 1691|.544 .614 .599 .615 .616 .619 - .619 .618 17.4%
Heart 303 171 |.748 .787 .826 .796 .830 .834 .825 .806 .839 50.3%
Nursery 12630 784 |.999 .999 .999 991 .999 .999 .999 999 .999 83.2%
WDBC 569 903 |.949 .973 .967 .963 .967 974 975 973 974 21.5%
Wine 4898 13 |.762 .722 .802 .755 .764 782 .802 .804 .805 8.9%
MAGIC 19020 102 |.808 .830 .857 .837 .850 .850 .897 .809 .848 19.4%
MADELON 2000 502 |.764 .598 .694 .828 .832 .852 594 674 .746 < 0.5%
Speeddating 8378 123 [.650 .673 .630 .639 .642 .668 .801 751 .632 < 0.5%

Wine Quality: This dataset is composed of chemical analysis of wines grown in the same region in Italy but
derived from three different cultivars [1]. The analysis determined the quantities of 13 constituents found in each
of the three types of wines, and the end goal is to predict the wine quality score, ranging from 0.0 to 8.0. We have
focused on the binary counterpart of this problem, in which we wish to predict whether a given wine is of high
quality (>5) or not.

5.2 Rashomon Ensemble Learning

Table 1 summarizes our comparison between our approach and classic and state-of-the-art algorithms. Specifically,
we employ AdaBoost [40], Random Forests [15], XGBoost [22], LightGBM [61], Catboost [93], and GRANDE [81]
as baseline algorithms. We also consider an evolutionary approach using the NSGA-II algorithm [27, 48] and
evaluating the same number of models as our Rashomon Ensemble. The proposed evolutionary framework
optimizes both the performance and feature diversity of the population and induces an ensemble from the best
individuals of the last generation. For a fair comparison to the ensemble and boosting methods, we only employed
decision trees as base constituents for our Rashomon ensembles. In our experiments, we sampled 100, 000 decision
trees to guarantee a minimum subset diversity and trained a meta-model to combine constituent outputs in a
stacking ensemble. No hyper-parameter tuning was employed, either on the baselines or the Rashomon ensembles,
to ensure a fair comparison.The number of trees in all ensemble algorithms was limited to 50.

In the Nursery dataset, we verify that nearly all models lie inside the Rashomon space. This implies that the
problem is relatively easy, and nearly any model is performant. In this scenario, the choice of using Rashomon
ensembles or any other learning algorithm becomes less meaningful, and we observe that all baselines can achieve
an AUROC of 0:99. In other scenarios, where the Rashomon ratio is large but not excessive (between 8% and 50%),
we observe statistically significant gains when using our approach. The poor performance on the Speed Dating
and MADELON datasets can be explained by the scarcity of contrasting explanations, represented by the small
size of the Rashomon Set. The same cannot be said of the MAGIC dataset. One hypothesis for this behavior is
related to MAGIC being a purely synthetic dataset. There might be some underlying pattern guiding the feature
creation that is not present in the remainder datasets, which were crafted from different real-world problems.
Figures 1a and 1b illustrate some Rashomon subspaces and their respective Rashomon partitions after sampling.
The figures show a TSNE reduction of the Rashomon space and the optimal silhouette scores for each subgroup.
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(a) Optimal k (15) for MAGIC models. (b) Optimal k (23) for APS Failure models.

Fig. 1. TSNE reduction of the Rashomon space and optimal silhouette for each'subgroup.

5.3 Evaluating Ensemble Composition and Robustness

To assess the ensemble composition and robustness, we considered three scenarios toisolate the impact of key
components in our Rashomon pipeline (Figure 2). Scenario I (green points) evaluates the stability of the full
proposed method, in which we ran the complete pipeline 30 times with different random seeds to test sensitivity
to stochasticity. Scenario II (red points) serves as a cluster-aware ablation, in which we retained the Rashomon
subgroups but selected constituents randomly from each, over a total of 10,000 runs. This scenario represents
omitting the intra-cluster optimization step. Finally, in Scenario III (blue points), we conduct a subgroup-free
ablation. We ignored clustering entirely and selected models randomly from the entire Rashomon Set over 10,000
runs.

In Figure 2a, Scenario I (green) demonstrates stable similarity to the reference model across seeds, while
Scenarios II (red) and III (blue) illustrate how omitting optimization or clustering increases variability. Figure 2b
presents a comparison against the remaining baseline methods employed in our previous experiments.

To compare these different scenarios, we used a visualization scheme that jointly considered the Jaccard Index
and SHAP values’ similarity-between the models found in each scenario and a reference model (performance
in Table 1). The Jaccard Index provided insights into the degree of agreement between two sets of predictions,
accounting for differences in prediction patterns that might be overlooked by standard performance metrics. On
the other hand, the SHAP values similarity helped gauge the robustness of the explanations and whether the
explanatory factors remained consistent despite the stochastic nature of the algorithms.

Upon analyzing the results presented in Figure 2, we observed that both Scenario I and Scenario II demonstrated
models. with high Jaccard Index and SHAP values similar to the reference model, indicating better ensemble
compositions and increased robustness in terms of explanations. In contrast, Scenario III, which directly selected
models from the whole Rashomon Set without considering subgroups, yielded models with statistically inferior
performance compared to the reference model.

The outcomes of Scenarios I and II provide evidence that the Rashomon pipeline offers a viable solution to
enhance ensemble robustness and credibility. By maintaining Rashomon subgroups and selecting ensemble
constituents from each cluster, the Rashomon ensemble generation process appears to mitigate challenges related
to ensemble underspecification, as discussed by D’Amour et al. [24], which mentions that only observing the
performance of models poses an ineffective way to judge underspecification and thus, the potential multiplicity
and divergence of seemly equal models under production settings. We also observe that performing the intra-
cluster optimization step, represented by the green cloud of points on Figure 2a, severely reduces the variability
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Fig. 2. Similarity to a reference model found from running the Rashomon and baseline pipelines, filtering models with
statistically worse performance than the proposed threshold. MAGIC dataset.

on SHAP. That is, different runs of the algorithm seem to result in the same set of variables and key constituents
being chosen. This same behavior cannot be verified for most of the remaining baseline methods in Figure 2b,

except for Catboost.

5.4 Robustness to Distribution Drift

To evaluate the robustness of Rashomon ensembles to distribution drift, we conducted experiments to address
concerns about out-of-distribution data. We considered two scenarios: the addition of Gaussian noise with
increasing values of o2 to simulate data drift and shuffling feature values to evaluate the reliance on core key
features.

In the first scenario, we added Gaussian noise with increasing o? values to the datasets, mimicking shifts
in the data distribution. We then evaluated the performance of Rashomon ensembles and other models under
these perturbations. The results of this data drift scenario are summarized in Table 2, where each approach’s
performance is represented as a ring plot ordered by performance. The mean AUROC (Area Under the Receiver
Operating Characteristic curve) after 30 repetitions is provided as a measure of performance.

In the second scenario, we shuffled the feature values within the datasets, disrupting the relationship between
features and the target variable. This scenario aimed to evaluate whether models could extrapolate from global
information rather than relying on specific local patterns. The results of this data shuffle scenario are also
presented in Table 2.

Upon analyzing the results, we observed that Rashomon ensembles consistently outperformed other models in
both data drift and data shuffle scenarios, demonstrating their robustness to distribution changes. The Rashomon
ensemble’s ability to maintain superior performance under these perturbations showcases its capacity to adapt
and generalize well to variations in data distributions.

The comparative analysis provided in Table 2 highlights the strengths of Rashomon ensembles in handling
distribution drift. The findings suggest that the ensemble’s ability to leverage diverse subgroups of models
contributes to its robustness and adaptability, making it a promising approach for real-world applications where
data distributions may evolve over time.
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5.5 Intra-Model Associations

Out of the three datasets in which our approach was not able to beat the state-of-the-art, two can be explained by
the Rashomon ratio. In most scenarios, a fair share of the sampled models presented performance statistically
close to or superior to the all-in-one model, resulting in explanation diversity. In the cases of the Speed Dating
and MADELON problems, less than 0.5% of the sampled models (less than 500) were comparable to the all-
in-one model. This entailed scarcity in possible different solution paths and the possibility that nearly all the
present features provided a complementary view of the solution. This harmed our sub-space division, leading to
non-representative groups and poor predictive power.

When exploring ensemble composition and robustness, we verified that once we filtered the underperforming
models of III, this group population represented a sample of several ensembles that could be reached by direct
optimizations over their constituents. On the opposite extreme, the group I represented the ensembles found
following our proposed pipeline. It was important to remark that our approach depended on sampling the
extremely complex model space, making it highly unlikely that the clusteroids found in each repetition were
the same. However, the high Jaccard coefficient associated with the high cosine similarity between the SHAP
vectors provided strong evidence that the centroids found in each repetition were contiguous, resulting in similar
clusteroids that led to similar ensembles. Finally, group II represented a sample of possible optimization paths
within the respective Rashomon Sets.

In all experiments, group III not only presented the lowest values of Jaccard and SHAP similarity but also
consisted of the sparsest point cloud. Groups I and II were more cohesive and concentrated over high values
of similarity with the reference model. When considering that all models had a statistically equal or higher
performance than the reference model, it was reasonable to conclude that the pipeline involving Rashomon
Sets reduced the impact of underspecification while retaining concise predictions. When further exploring drift
by introducing Gaussian noise and shuffling feature values, the robustness of Rashomon ensembles became
evident. In most explored scenarios, our approach remained the best-performing model, even when considering
the MAGIC dataset, in which Rashomon ensembles had slightly worse performance than other models.

Further investigation of the relationships learned in the ensemble revealed a variety of interesting patterns, as
illustrated by Figure 3 with partial dependence plots derived from the constituents’ Shapley values. For instance,
in Figure 3a, we observed that the ensemble learned to rely on the output of the 9th base model to give mostly
positive predictions, with nearly all points above the 0.2 probability threshold presenting a positive SHAP value.

Table 2. Performance loss comparison between B, Random Forest [, Light GBM 7, CatBoost Ml and Rashomon ensembles
B Mean AUROC after 30 repetitions.

Data Drift (¢2) Data Shuffle (n)
0.4 0.8 1.2 1.6 2.0 10% 30% 50% 70% 90%
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Fig. 3. Dependence between relevant base models in the MAGIC Rashomon ensemble.

We also verified that models 9 and 10 provided a complementary view of the problem, as higher prediction values
of 9 were likewise associated with high prediction values of 10. Figure 3b showed that models 13 and 15 mostly
contrast. Whenever there was disagreement, the relative importance of Model 13 increased. Similarly, model 13
presented Shapley values close to zero when both models agreed, resulting in a concentration of yellow points
on the lower side of the distribution.

6 UNIQUE COLLABORATIVE DATASETS

To validate the effectiveness of our approach in real-world scenarios, we present the results of our evaluation
across distinct applications conducted in collaboration with various companies and institutions: stainless steel
surface defect detection, COVID-19 hemogram detection from blood counts, energy consumption forecasting, and
medical bills auditing. In all cases, new unique handcrafted datasets were created to explore each of the mentioned
problems. Although these problems may seem vastly different, they share a common characteristic: the absence
of a clear consensus among specialists on the best solution. Instead, they appear to exhibit multiple possible and
effective solutions without a definitive optimal model or explanatory factors. This implies the presence of a large
Rashomon Set fit for the application of our approach.

6.1 Surface Defects in Stainless Steel Manufacturing

The quality of duplex stainless steel can be compromised by surface defects, such as slivers, which increase
production costs due to their detection occurring only during the final inspection stage. In collaboration with
APERAM South America, we analyzed the chemical composition and hot rolling process variables of duplex stainless
steel plates. Chemical compositions were measured using spectrometers, capturing the relative abundances of 20
elements, while 1,160 temporal hot-rolling variables were collected. We extended the feature space by considering
elemental ratios, increasing the total to 220 chemical attributes. For the hot rolling data, we discretized the
temporal series into 30-second intervals and calculated statistical moments, resulting in 11,488 hot rolling features
after filtering non-actionable variables. This data was used to predict the likelihood of sliver formation as a binary
classification problem.

As described by Barbosa et al. [10], identifying factors contributing to sliver formation is challenging, as
these defects can arise from a combination of process variables or chemical compositions at various steelmaking
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stages. We hypothesize that different data structures might correspond to different models and that models with
similar feature importance distributions likely reflect similar mechanisms. Our analysis identified correlations
between feature sets and predictions, indicating that some features are more sensitive to specific defect formation
mechanisms [126].

To explore the model space, we constructed a Rashomon Set by sampling 75,000 models for each feature set
size until no significant performance improvement was observed, resulting in 1,049,999 models. Since no strong
baseline exists in the literature, we compared it against an all-in-one model, which included all features and
achieved an AUC of 0.62. Models surpassing this threshold formed the Rashomon Set, comprising 63,374 models
(6.04%). For visualization purposes, Figure 4 presents a t-SNE projection of 2,500 models from the Rashomon Set,
clustered by their explanations.

We selected the optimal model for each cluster using two approaches. In the first one, we simply elect the
clusteroids as the ensemble constituents. In the second approach, we reframe the problem of model selection as a
graph search problem. We consider each possible model as a node in a graph, and two models are connected if
they can be reached from simple feature addition. For each cluster, we employ the A* search algorithm in this
graph using as a heuristic the AUROC of each model and penalizing paths that lead to models that lie outside the
cluster boundaries. Figure 5 compares the performance of our ensemble (both A* and clusteroid models) against
state-of-the-art tree-based ensemble techniques and other classical algorithms with and without feature selection.

Once representative models were found, we asked for insights from metallurgical experts. The main lesson
was that there were cases where some conclusions did not fit with realistic scenarios. For example, some models
hinted towards increasing carbon concentration to such high levels that the steel plates could not be classified as
Duplex anymore. These inconsistencies highlight the advantage of our approach, which allows domain experts
to discard unrealistic models at production time without inveolving data scientists and the need to retrain and
evaluate new models, since, during training time, we sample from the complete model. We verified that this sort
of approach drastically increases the power of domain-experts and helps build trust in the models, as they feel in
control of these domains and business-specific decisions concerning model development. This insight led to a
patent further explained in Section 6.3. After filtering unrealistic patterns, the most relevant ones were turned
into production rules and employed in the 2019 and 2020 steelmaking processes. A reduction from 49% to 3% in
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Fig. 4. T-SNE visualization of the sampled Rashomon space for models trained on the steel plate defects problem. Each point
represents a model. Models are placed according to the defect explanations assigned to each steel plate so that models that
possess similar SHAP values are placed next to each other in space. The color indicates the cluster for which the model was
assigned.
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Fig. 5. Comparison of different algorithms to our approach in the steel manufacturing defects problem. Even when employing
the clusteroid ensemble, in which most constituents are underperforming, our approach exceeds other state-of-the-art results.

the occurrence of heating slivers was reported, showing the potential of this strategy in real-world problems and
validating the proposed framework.

6.2 Diagnosing COVID-19 from Complete Blood Counts

In late 2019, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) emerged in Wuhan, China, leading
to a global outbreak of Coronavirus Disease 2019 (COVID-19) within weeks [60, 116]. By the time of writing,
over 630 million COVID-19 cases and 6.67 million deaths have been reported worldwide. Diagnosing COVID-19
is complicated by initial symptoms such as fever, dry cough, and tiredness, which overlap with many respiratory
diseases [29]. Complete blood counts (CBC) are commonly used for diagnostic purposes [111]. As a low-cost
test, CBC measures various analytes and can provide insights into potential diseases, including infectious ones.
However, correlating specific CBC results with particular diagnoses can be challenging, as similar changes may
occur across different diseases.

In analyzing complete blood counts of individuals with COVID-19 infection in isolation, we find some changes
to be quite characteristic of the disease [38, 39, 57], hinting at the potential for automated detection and screening
of the disease using machine learning: However, many possible analyte combinations might lead to the same
conclusion regarding a target disease, thus elucidating the Rashomon Effect and posing a suitable problem to
deploy our ensembling approach. Numerous models have been proposed for automated COVID-19 diagnosis using
CBC and omics data. We argue that the detection performance of these models may be biased due to non-unique
patterns not exclusive to SARS-CoV-2. Our study utilizes a dataset from 2016 to 2021, in collaboration with Grupo
Fleury, encompassing blood tests and RT-PCR results across Brazil for COVID-19 and other pathologies, including
Influenza-A and HIN1 [122].

Data collection for 2020 and 2021 includes 900, 220 unique individuals, 809, 254 CBCs, and 1, 088, 385 RT-PCR
tests, with 21% (234, 466) positive results and less than 0.2% (1, 679) inconclusive results. This work does not
consider demographic, prognostic, or clinical data, such as ethnicity or hospitalization. We frame the task as a
binary classification problem and analyze two timeframes: the early pandemic stage (the first wave of COVID-19
in Brazil) and a second stage post-November 2020, coinciding with the emergence of the PI variant that led to a
health crisis in Amazonas [52].

Our algorithm’s first step involved sampling 100, 000 models from the complete model space, examining
both raw analytes and analyte ratios as features. Previous studies have explored the use of CBC for COVID-19
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detection through various machine-learning methods and, as such, provide reference points for our Rashomon
space induction. Notable examples include a naive Bayes classifier with an AUROC of 0.84 [6], a gradient boosting
machine achieving 0.81 [104], and a neural network and random forest model reaching an AUROC of 0.94 [9].
Other studies report AUROC values ranging from 0.88 to 0.94, with one analysis involving 114, 957 individuals in
a COVID-negative cohort [105].

Based on this literature, we established a performance threshold of AUROC 0.81 to define a minimally
performant model for our Rashomon Set, resulting in a sampled model space H’ containing 47,708 models
(47.71% performing better than the literature threshold). This substantial Rashomon Set indicates that blood-
related features are significant for preliminary disease diagnosis. Figure 6 illustrates the induced Rashomon space,
highlighting divisions after clustering models based on their explanatory vectors.

Cluster

0.80  0.85
Mean AUC

Fig. 6. TSNE visualization of the COVID-19 Rashomon space of models trained to predict COVID-19 diagnosis. No clear
relationship exists between cluster assignment and predictive power. Cluster 11 appears to be more spread over the space,
overlapping with other clusters, while the remaining ones are mostly concise, reminiscent of the steel-plate defects of
Rashomon space.

In line with previous findings in the literature, not all CBC analytes are relevant for differentiating the target
diseases, and some may detract from model performance. To refine feature selection for each representative
Rashomon model, we represented the model space as a directed acyclic graph (DAG), where each node corresponds
to a feature subset. The A* algorithm [51] was applied, utilizing the AUROC of models represented by each vertex
as a heuristic. Once models were selected, their suitability as Rashomon constituents was assessed. Our hypothesis
posits that models exhibiting disagreement under data drift and with diverse explanations can form a more
robust ensemble. In Figure 7, we introduced Gaussian noise to normalized features and examined the probability
distributions returned by each constituent. We observed a direct correlation between noise and confidence
intervals, indicating increased divergence among models under drift and thus supporting the appropriateness of
our constituent selection.

By mid-November 2020, Brazil entered the second wave of COVID-19, which eventually led to the collapse of
the health system in Manaus, the capital of Amazonas, a state in Brazil [33]. One of the explanations raised by the
local government was the emergence of a new COVID-19 variant, known as 20J/501Y.V3 - or simply P.1 [52]. To
evaluate the performance of our COVID-19 model as the SARS-CoV-2 virus mutates, we trained it on two distinct
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Fig. 7. Effect of introducing noise to input features of models trained for COVID-19 diagnosis from blood analytes.

points in time. The first one, which we will refer to as the ‘First-wave model’, was trained using the training set
associated with the first wave. The second, which we will refer to as the ‘Second-wave model’, was trained using
the training set associated with the second wave in Brazil. Figure 8 presents AUROC values obtained from these
models during the pandemic until March 2021, utilizing a 7-day sliding window and depicting the prevalence of
COVID-19 cases over time. We focus on three periods of interest: when the reproduction number exceeded 1.00,
during the holiday season,and during Carnival, which included gatherings despite event cancellations.

We evaluate the COVID-19 Rashomon ensemble on both periods using the model trained with data up to
October, illustrated in Figure 9. Performance on both periods appears to be comparable, thus implying that the
constituents were able to properly generalize to the second wave. We also verify that the Rashomon ensemble
remains a suitable approach, outperforming all constituents in either scenario. Further, the empirical risk found
during training can be used to estimate the empirical risk on production, as no significant divergences were
observed. Overall, leveraging our Rashomon ensemble technique, we predicted COVID-19 RT-PCR outcomes
using CBC data, achieving an AUROC of 0.917.

6.3 Including specialists in the model creation process

A patent was filed focusing on incorporating experts and decision-makers into the AI model development
pipeline [110]. The core of the patent is to foster a sense of shared responsibility and co-creation, where researchers
make decisions regarding the technical aspects while domain experts provide guidance on domain-specific topics
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Fig. 8. AUROC fluctuation over time considering a 7-day sliding window on 357 956 CBCs. The red line represents the
model trained only on the first wave of COVID-19 in Brazil data (up to 2020-06), while the green line represents a model
trained with data immediately before the start of the second wave of COVID-19 in Brazil (up to 2020-10). Thinner lines
depict the measured AUROC values, while thicker lines illustrate their respective trends. The second-wave model can retain
performance during the second wave while the performance of the first-wave model deteriorates. Key events are marked in
gray and purple.
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Fig. 9. Comparison of model performances across periods. Each constituent model is represented by the Cluster from which
it hailed. Both in the train and novel datasets, we can observe that all constituent models behave similarly. We should expect
data distributions from late 2020 and early 2021 to be properly represented in data before October 2020.

such as feature selection, exclusion, and the interpretation of discovered patterns. This balance ensures that the
model development process integrates both technical rigor and domain knowledge.

Among the methods included in the patent is the usage of the developed Rashomon ensembles framework,
which identifies multiple contrasting patterns in the data as per the Rashomon Effect. Frequently, some of these
patterns are closely aligned with experts’ experience and existing domain literature, enhancing the specialists’
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trust in the model. This alignment thus leads to more constructive discussions, especially regarding patterns that
deviate from established knowledge. Since experts find some patterns consistent with their mental models, we
verified that they are more likely to engage with the results and question potential gaps in the literature rather
than dismissing them outright.

In the specific case involving COVID-19 diagnosis from blood-count data, this methodology prompted experts
to question whether a model trained solely on COVID-19 cases could distinguish it from other respiratory diseases.
This line of inquiry proved crucial in improving the model’s final performance, demonstrating the value of expert
involvement in refining and validating the patterns uncovered by the Al models. Figure 10 shows how different
models perform specifically on individuals who were infected by some viruses in 2019. The ideal result would be
all predictions being negative for COVID-19. However, models trained solely on COVID-19 data failed to do so
(Figure 10a). Including viruses other than SARS-CoV-2 during training increases the performance of 2019 data
(Figure 10Db).
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Fig. 10. Results of different models evaluated on 11116 CBCs from 2019 individuals with confirmed RT-PCR results for
diverse viruses, including Influenza-A, Influenza-B, Influenza-H1N1, and Seasonal Influenza. Left is a model trained only on
SARS-CoV-2 data. CBC (-) includes only COVID-19 (-). The model to the right was trained using data of diverse viruses,
including SARS-CoV-2. CBC (-) also includes viruses other than SARS-CoV-2.

6.4 Data Divergence in Hospital Settings

We investigated the behavior of Rashomon ensembles under train and production divergence using two datasets:
one related to COVID-19 and another to Alzheimer’s disease. Both datasets contain information from different
contexts, indicative of shifts in data distribution. Due to the lack of a strong baseline in the literature, we adopted
the “all-in-one” approach to establish a reference model (f;.r) and quantify uncertainty (¢) for the ensemble.

COVID-19: This dataset is an initiative of the Sao Paulo Research Foundation (FAPESP) and includes pseudonymized
data from two Brazilian hospitals: Beneficéncia-Portuguesa Hospital (HBP) with 91, 648 exams and Sirio-Libanés
Hospital (HSL) with 37, 643 exams. The data encompasses clinical and laboratory exams as well as hospitalization
information. The binary classification task aims to predict the death prognosis of COVID-19 patients 20 days prior.
The training dataset comprises exams from 453 individuals hospitalized at HBP, while our considered production
dataset consists of exams from 4, 018 individuals hospitalized at HSL, highlighting potential distribution drift.
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Fig. 11. TSNE visualization of the Rashomon space of each problem.

Alzheimer’s Disease: This dataset includes patients with suspected Alzheimer’s Disease symptoms, featuring
attributes such as gender, age, education level, and lab results. The binary classification task predicts whether a
patient is diagnosed with Alzheimer’s. Data is sourced from the Geriatrics and Neurology departments, each
presenting unique socio-economic characteristics. The training dataset consists of 154 exams from the geriatrics
department, and our considered production dataset consists of 166 exams from the neurology department,
ensuring divergence due to the inclusion of non-geriatric patients.

The all-in-one approach involves creating a comprehensive model that utilizes the entire dataset for predictions.
We trained a decision tree model with all available data and features, referred to as the “all-in-one” model, which
captured overall patterns. The model achieved average AUROC values of 0.90 and 0.81 for the COVID-19 and
Alzheimer’s datasets, respectively, establishing benchmarks for minimal performance in the Rashomon Set. After
sampling 100,000 models for each dataset, this resulted in subspaces containing 2, 554 and 6, 251 models, leading
to Rashomon ratios of 2.5% and 6.2%. Figure 11 illustrates the Rashomon subspaces identified through clustering.
We employed t-distributed Stochastic Neighbor Embedding (t-SNE) for visualization, where each point represents
a model, colored by cluster assignment. K-means clustering was utilized to define subspaces, with the number of
clusters determined by maximizing the silhouette value.

To evaluate model performance under train and production divergence, we combined models in a voting
scheme. Since the task is a binary classification, the probability returned for the ensemble constitutes the absolute
agreement rate of the constituents (e.g., for an ensemble of 10 constituents, a probability of 80% means that 8
out of the 10 constituents agreed on predicting the positive class). Thus, probabilities near 0% or 100% indicate
strong agreement, while values close to 50% suggest uncertainty. Voting provides an interpretable measure of
prediction reliability, beneficial in cases of production divergence and unknown data distributions. However,
we also considered a stacking scheme where a meta-model learns to optimally combine the constituent outputs
given the patterns present in the training data.

Figure 12 displays performance comparisons for each base model and ensemble on the COVID-19 and
Alzheimer’s datasets. While all constituent models performed similarly on training data, voting consistently
outperformed stacking on new, unseen data, confirming our hypothesis regarding erratic behavior across models.
Both ensemble techniques exceeded the performance of individual models and state-of-the-art methods.

To understand the relationship between model agreement and prediction confidence, we stratified test data
points based on ensemble agreement and evaluated performance as shown in Figure 13. A direct correlation was
observed between ensemble performance and intra-constituent agreement. When the models agreed, ensemble
accuracy approached 1, indicating high confidence. Conversely, as agreement neared 50%, ensemble accuracy
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Fig. 12. Comparison of model performances across datasets. Each constituent model is represented by the Cluster from
which it hailed. In the train datasets, we can observe that all constituent models behave similarly. On the novel datasets,
under the unknown U distribution, performance becomes unpredictable. However, we can verify that the voting approach
always outperforms the best constituent model, thus presenting itself as a suitable technique to mitigate this behavior.

resembled random guessing, supporting our hypothesis that model agreement is critical for prediction reliability.
This relationship has significant implications for deploying Rashomon ensembles in dynamic data environments.
Consensus among constituent models suggests instances similar to those encountered during training, enhancing
trust in predictions. Conversely, divergence indicates that observations may fall outside training data, leading to
unreliable predictions:

6.5 Determinants of energy consumption

Energy systems are increasingly linked with economic, social, and climate factors. Understanding these interconnections
is crucial for electricity planning, particularly regarding how they impact electricity consumption and supply.
Climate and weather significantly influence energy demand, with temperature being a key variable [26, 56].
Various temperature-related metrics effectively approximate energy consumption [59]. While degree days are
commonly used for load forecasting, recent studies indicate that other weather variables, such as humidity,
also affect electricity demand, particularly during hot days [78, 115]. This suggests a range of potential weather
predictors, indicating the Rashomon Effect and aligning with our analytical approach. Given the strong connection
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Fig. 13. Relationship between Rashomon Ensemble accuracy and intra-constituent agreement./As we hypothesized, there
exists a direct relationship between ensemble performance and agreement. When constituents agree, accuracy is close to
1, implying that the observed instance is similar to what was seen in training, and we can trust the prediction with high
confidence.

between weather and Brazil’s electrical system, we focus on weather determinants of consumption, as presented
in our previous work [123, 124].

We utilized two primary datasets in our study: the Brazilian National Energy System Operator (ONS) historical
reports [90] and the ERAS5 reanalysis [54]. Energy data from the ONS website spans from 1999 to the present,
including daily measures of load, maximum consumption, mean and total daily megawatts (MWd), and hourly
megawatts (MWh). The ERAS5 dataset offers global hourly estimates from 1950-2021 for atmospheric variables at
a spatial resolution of 0.25 degrees (approximately a 30'x 30 km grid). Our final weather feature subset includes
daily temperature minimums, means, and maximums, humidity, wind speed, precipitation, heating degree days
(HDD), cooling degree days (CDD), heat index, wind chill index, apparent temperature, and the derived HDD and
CDD from respective indices.

The primary objective is to predict consumption in the absence of abnormal events, enabling a direct comparison
between predicted and actual consumption. We formulate this as a regression problem. Given a set w € W of
weather descriptors and a set t-€ T of time descriptors, we apply a function f(w;t; o) parameterized by o to map
a period to consumption. To exclude disruptive factors, we identify optimal subsets W ¢ W and T” c T.

We propose three main groups of factors influencing electricity consumption based on existing literature: load
growth, historical events, and weather [44]. We observed a logistic growth trend in yearly energy consumption.
Normalizing daily consumption by the load growth function, derived from yearly load interpolation while filtering
atypical events, enables the construction of a counterfactual model focused on weather and temporal factors.
This allows for the development of various models f’(w;t; ') with different feature sets, forming an ensemble
that captures potential explanation biases in line with the Rashomon Effect.

The first step in building our ensemble involves sampling models to estimate the Rashomon space. We chose
to use the Mean Average Percentile Error (MAPE) for inducing Rashomon Sets. Figure 14 illustrates the found
Rashomon space after sampling 100 000 models and also depicts the impact of different choices for the MAPE ¢
threshold. For MAPE of 7%, we found a Rashomon ratio of .82 (82 114 models presented MAPE < 0.07) while
decreasing this threshold to 5% reduced the ratio to .04 (4 064 models presented MAPE < 0.05). In Figure 14a,
we noted that underperforming models clustered together, hinting that including these models in the ensemble
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Fig. 14. Induced Rashomon spaces with € thresholds of 7% and 5% MAPE. Overestimating € results.in a larger Rashomon
space and undesirable correlations between cluster assignments, explanatory factors, and performance.

might not be productive. By properly tuning the e value, we reduced the Rashomon space and extracted more
meaningful clusters, as depicted in Figure 14b.

Following our algorithm, we searched for optimal representatives within each explanation cluster. Once again,
we represented the model space as a directed acyclic graph (DAG) and searched for optimal constituents. In Figure
15, we added Gaussian noise to the normalized features and observed the normalized consumption estimates from
each model. In the absence of noise, all models behaved similarly within a narrow confidence interval. However,
introducing noise led to increased divergence among models, confirming the direct relationship between noise
levels and the width of the confidence interval, indicating reduced ensemble reliability. Although the mean
ensemble prediction remained stable, minor noise introduced significant prediction variability.

As shown in all the other experiments, agreement is a key metric to measure the reliability of the Rashomon
ensembles. However, defining agreement in regression contexts is challenging since visual inspections of
confidence intervals are impractical. While in classification, agreement occurs when two models predict the same
class; in regression, we consider predictions "similar’ if they are within a context-dependent range. We selected
the coefficient of variance (Cy’) between regressors as our agreement measure, defined as:

Cv=— (8)
J7i

Here, o represents standard deviation, while dividing by p provides a dimensionless metric indicating the
variability extent relative to population means. A higher Cy reflects greater dispersion and disagreement between
constituents. In a voting scheme, the ensemble prediction is y, while Cy indicates the degree of divergence among
individual constituents.

We validated our ensemble by comparing performance with constituent prediction dispersion Cy, as shown
in Figure 16. A direct relationship between these metrics was observed, with most instances below Cy = 0.05,
indicating less than 5% dispersion among ensemble constituents. In such scenarios, we anticipate an MAPE below
4%, which is favorable. As dispersion increased, error escalated, confirming that disagreement among constituents
compromises prediction reliability.

We evaluate the robustness of our approach through a case study in Brazil from 2001 to 2002. Severe drought
and low reservoir levels in early 2001 raised concerns about a potential grid collapse, prompting the Federal
Government to implement policies aimed at reducing energy consumption by 20% [11]. These measures included
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Fig. 15. Effect of noise on ensemble constituents’ input features and predictions for models trained to predict Brazilian
energetic consumption.
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Fig. 16. Relationship between constituent agreement and ensemble performance when predicting energetic consumption.
The coefficient of variance between constituent predictions was used as an agreement metric.

awareness campaigns, peak-hour price increases, and incentives to limit non-essential energy use. This period
provides a clear opportunity to measure expected impacts, allowing for a direct evaluation of our method. Figure
17 illustrates the effects of these policies across regions. Our counterfactual model revealed mean and median
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Fig. 17. Consumption during Brazil’s 2001 Apagao (Blackout). The South region did not adhere as closely to the restrictions
as the other regions.

relative residuals for the Center-West region from June 2001 to January 2002 of —18.1%(+1.6%) and —18.6%,
closely aligning with the anticipated —20% reduction during the restriction period from July 1, 2001, to February
19, 2002. Similar trends were observed in the North and Northeast regions, with relative residuals of —19.1% and
—18.9%, respectively.

We also examine the year 2020, particularly during the early COVID-19 pandemic, which imposed significant
mobility restrictions and reduced global GDP. Figure 18 compares electricity consumption with the Oxford
Stringency Index, which measures the strictness of COVID-19 policies [50]. During this period, there was
a notable relationship between the drop in consumption and the Stringency Index in Brazil. From April to
June, electricity consumption showed a mean relative residual of —8.87% =+ 1.2%, in accordance with economic
records [47].

The lack of demographic and behavioral variables enables us to assess the pandemic’s impact through a
counterfactual approach, with the expectation of uniform constituent errors in 2020. This period demonstrates the
usefulness of the Rashomon ensembles and our proposed approach in contrast to other counterfactual techniques.
Figure 19 shows ensemble and constituent performances when trained on data from 2014 to 2018 and applied to
2019 and 2020. As expected, errors for 2019 are similar to those seen in training, meaning similar weather variable
distributions. However, in 2020, the Rashomon ensemble displayed erratic behavior, with a coefficient of variance
rising from 0.04 in 2019 to 0.14 in May 2020, suggesting atypical weather patterns. Since this pertains to the
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Fig. 18. Impact of COVID-19 on Brazil in 2020. Stringency data from Ritchie et al. [97].

high point of restrictions in Brazil, we can conclude that the pandemic effect shadowed this change in weather.
In October, Brazil experienced one of its most intense heatwaves in history, breaking century-old temperature
records [80]. Such extremes diverged from the 2014-2018 distribution. If May’s prediction errors were solely
pandemic-related, we would expect consistent performance across constituents. However, the erratic behavior
implies that the weather throughout the year was unusual and evident months before the heatwave.
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Fig. 19. Comparison of model performances across periods, with each constituent model represented by its cluster. In 2019,

models showed low MAPE; in 2020, individual performances became erratic, indicating data from different distributions due
to the October heatwave.
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6.6 Auditing medical bills in large healthcare companies

Auditing hospital and outpatient bills is critical for identifying errors and overcharges, but the high volume
of daily bills makes comprehensive auditing challenging [63, 109, 120]. We collaborated with Unimed-BH, the
leading private healthcare provider in Minas Gerais, Brazil, to address this issue. With over 1.5 million patients,
only a small fraction of bills are manually reviewed, leading to missed discrepancies and inefficient use of expert
auditors. Automating this process allows auditors to focus on the most complex cases.

We developed a tool to rank bills based on a “discrepancy score”, estimating the likelihood of inconsistencies [127].
Bills from Unimed-BH’s accredited network are evaluated using a Rashomon ensemble, where each model
contributes a distinct perspective on inconsistency. We define a dataset X = {x1,xs,...,xn}, x; € RP and a
representation space Z € RK(K < N). The score function 7(-) : X — R ranks bills by inconsistency likelihood,
using an ensemble of models tuned to different features. Each model i maps data to Z (e.g., via autoencoders) or
generates a score 7;(+) (e.g., via isolation forests), which informs the ranking of X.

Unlike in our previous experiments, we explored how to merge multiple algorithms in a single ensemble and
weigh their importance. We employ a multi-armed bandit (MAB) approach, balancing exploration (auditing
lower-ranked bills) and exploitation (focusing on high-ranked bills). This method allows us to incorporate varied
algorithms without directly comparing their applicability [14]. The ensemble models inconsistency detection as a
ranking task, where high-ranked bills are more likely to contain misaligned financial values. The MAB algorithm
assigns weights to each model based on its performance with labeled data, combining models optimally to reflect
diverse explanations. The final ensemble uses a weighted voting method, dynamically adapting to new data.
Constituent models include:

e Generative methods: PCA, Denoising AutoEncoders.
e Regressor methods: Elastic Net, Lasso, Support Vector Regressor, XGBoost, Light GBM.
e Isolation methods: Isolation Forest, K-Nearest Neighbors.

Given that our data is only partially labeled (only monetary values of audited bills are known), we use this
subset to tune model weights. As new patterns of inconsistency emerge monthly, the MAB Rashomon ensemble
ensures that models with stronger predictive power receive higher weights, while less effective models are
penalized, as shown in Figure 20. This setup also accommodates the integration of new models and maintains
robustness against performance drift and degradation [43, 58].

Our initial experiments tested the hypothesis that combining models would outperform any single model in
detecting inconsistencies and evaluated the monetary recovery potential of this approach. In February and March
2023, Unimed audited 31,355 hospital bills, with recorded adequacy values (in Brazilian Reais, BRL) indicating
the recovery amount from inconsistencies. To establish a benchmark, we ranked bills by adequacy values to
set a theoretical upper bound for recovery. We also used a baseline ensemble method where all constituent
models contributed equally, allowing comparison with the MAB approach. Figure 21 illustrates the results of
comparing our MAB Rashomon ensemble with other approaches in terms of adequacy. The baselines consisted of
the theoretical maximum recovery, the voting scheme approach used previously, an oracle system selecting the
best constituent before deployment, and a literature-based anomaly detection approach.

The analysis showed that reaching the 90% adequacy threshold - the minimum level for practical applicability -
required 2,178 bills by the theoretically optimal ranking. In comparison, the Multi-Armed Bandit (MAB) ranking
needed 10,219 bills, while the baseline voting scheme required 14,190 bills to achieve the same threshold. Despite
these differences, all methods significantly outperformed traditional anomaly detection approaches such as
isolation forests, as well as a naive baseline in which bills are audited in order of arrival, configuring a system
without a priority ranking. Using the MAB Rashomon ensemble could reduce the number of bills audited by
nearly 62% from the naive approach, from over 26,000 to approximately 10,000, while meeting the 90% adequacy
threshold.
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Fig. 20. Multi-armed bandit approach to assign ensemble weights. Models with inferior performance are penalized, and new
models can be added.
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Fig. 21. Performance of the proposed approach in Brazilian Reais (BRL). The ensemble requires 28% fewer bills to reach the
90% adequacy threshold compared to the best individual model.

We proceeded to deploy our approach in Unimed’s pipeline under specific constraints. The model was trained
on bills from the previous three months, and daily rankings of medical bills were generated for auditing. To
account for processing delays, we use a D-3 sliding-window rule, which generates the final daily ranking using the
last three days’ worth of bills. We accompanied the results of this deployment for 5 months, from April to August
2022. During this period, the solution alone recovered R$1,571,146 (USD 349,610) that would otherwise have been
lost. From April to August, Unimed’s current rule-based system and the Rashomon solution analyzed 8,570 bills.
Of these, 3,327 were flagged by our algorithm, identifying 665 more inconsistent bills than the rule-based system.
Unimed’s business area decided that all bills flagged by the algorithm should be audited monthly, although only
an average attainment rate of 89.9% was achieved due to workforce constraints. However, this resulted in an
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increase of 63.4% in the number of bills flagged for auditing, with 39% of these bills being flagged exclusively by
our algorithm. The monetary recovery increased by 38%, with the highest adequacy values aligning with the
months where the auditors prioritized the bills recommended by our solution. These results further demonstrate
the robustness and effectiveness of the Rashomon ensembles in real-world problems.

7 CONCLUSION

In this study, we proposed a novel approach for ensemble learning based on explainability that enables estimating
the prediction risk in production. We address the challenge of model selection by identifying a Rashomon subset
of models that perform similarly but process data differently. By inducing perturbations on a held-out test set, we
simulate out-of-distribution data and assess ensemble loss of predictive power as constituent models diverge.
Our approach relies on ensemble diversity, leveraging that our constituents’ behavior may diverge when faced
with data from distributions that do not match the one seen in training.

An extensive evaluation across various tasks demonstrated the effectiveness of our Rashomon ensemble,
especially in scenarios with multiple local structures. In such cases, our approach consistently outperformed other
state-of-the-art tree-based ensembling techniques, showcasing the capabilities of our approach. Even in scenarios
in which local structures were less prevalent, our ensembles proved robust, maintaining high-performance levels.
This adaptability becomes particularly valuable when predicting in domains where the inherent data generation
functions may differ from what was observed during training.

Nevertheless, we acknowledge instances where our approach faced challenges. Specifically, when the Rashomon
ratio - the proportion of models retained in the Rashomon Set - was relatively small. The scarce diversity among
the constituent models limited performance gains. This finding emphasizes the importance of carefully considering
the Rashomon ratio and the diversity of explanatory factors. While our approach consistently achieved superior
results in most of our experiments, care should be exercised when deploying it in domains with a low Rashomon
ratio. Alternative ensemble methods or model selection strategies may be more suitable in such cases. Therefore,
we stress the importance of understanding each problem domain and evaluating the ensemble’s diversity and
performance before deployment. Our experiments have also revealed a direct relationship between model
agreement and prediction accuracy.

Finally, we emphasize the importance of expert input in refining the final model and sets of variables, which
resulted in a patent [110]. Due to our focus on explicability, we observed that when inducing our Rashomon
Ensembles, some expert-known patterns frequently emerged among the constituents. This not only helped gain
the experts’ trust but also led to more insightful discussions regarding the remaining learned patterns. This
was a main factor in achieving a tangible impact on business and a core aspect of the patent. Its applicability is
demonstrated in both the stainless steel case study, which resulted in significant improvements in production
processes, and the Unimed one; with gains of over R$1.5 million across 5 months.

CODE'AND DATA AVAILABILITY

The code used for all machine learning analyses, made available for non-commercial use, has been deposited at
https://doi.org/10.6084/m9.figshare.30081913 [121]. The datasets employed in this study are accessible as follows:

e Open datasets: Available directly from the UCI Machine Learning Repository [5] and the OpenML
database [12].

FAPESP COVID-19 datasets: Accessible upon request via covid19datasharing@fapesp.br.
Alzheimer datasets: See details in [103].

APERAM South America stainless steels datasets: See details in [126].

Grupo Fleury COVID-19 datasets: See details in [122].

Brazilian energy datasets: See details in [124].
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e Unimed-BH medical bills datasets: See details in [127].

All datasets were used strictly in accordance with their respective terms of use, and any restrictions on data
redistribution are noted in the corresponding references.
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