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Resumo

Mecanismo de agao refere-se a interacao bioquimica especifica através da qual uma
droga produz um efeito farmacologico. A modelagem matemética e computacional
facilita anélises multiparamétricas simultaneas de processos biologicos dindmicos e a
identificacao de novos usos de medicamentos ja conhecidos. Motivados pelo estudo
da reposicao de medicamentos, apresentamos um modelo de incorporacao de graficos
de multiplas relacoes que aprende representacoes latentes de medicamentos e doencas,
para que a posicao das representacoes de medicamentos e doengas no espaco de incor-
poragao possa revelar candidatos de reposicionamento. Exploramos grafos de interacao
de droga-proteina e doenga-droga, a fim de construir contextos de relagoes especificas
a partir dos quais as representacoes sao obtidas. Além disso, a estrutura especifica de
medicamentos e doengas farmacologicas permite a incorporagao rapida (fast embed-
ding), analisando apenas as vizinhancas imediatas de vértices e considerando a topolo-
gia do grafo que possibilita criacao dos embeddings de forma mais eficiente. Nosso
estudo revela varias propriedades interessantes do espaco de embedding de medica-
mentos e doencas, o que torna a selecao de candidatos na fase de hipdtese mais facil
e mais confiavel. Além disso, mostramos que é possivel usar uma combinacao de rep-
resentacoes latentes de interagoes de droga-acao, droga-mecanismo e droga-alvo para
prever as interagoes entre drogas e doengas e, em seguida, utilizar os falso-positivos
para encontrar possiveis candidatos de reposicionamento. Espera-se que os resultados
deste trabalho pavimentem o caminho para uma nova area na descoberta de novos usos
de drogas, mostrando que doencas e medicamentos que estimulam as mesmas varidveis
latentes, ocupam regioes proximas no espago de embedding e tém mecanismos de agao

semelhantes.

1X






Abstract

The mechanism of action is a specific chemical interaction by which a drug produces
its effect. It explicitly characterizes the function of a drug in cellular machinery.
Mathematical and computational modeling facilitates the concurrent multi-parametric
analyses of dynamic biological processes and the identification of new uses of already
known drugs. Motivated by the study of drug repurposing, we present a multi-relation
graph embedding model that learns latent representations of drugs and diseases so
that the position of each drug and disease in the embedding space may reveal repo-
sitioning candidates. We exploit drug-protein and drug-disease interaction graphs to
build relation-specific contexts from which representations are obtained. Further, the
specific structure of drug-disease and drug-protein graphs enables fast embedding by
analyzing only the immediate node neighborhood. Our research reveals some interest-
ing properties of drug-disease embedding space, making the candidate selection in the
hypothesis phase easier and less costly. Moreover, we show that it is possible to use
the combination of latent representations of drug-action, drug-mechanism, and drug-
target bipartite graphs to predict drug-disease interactions and then utilize the false
positives to find possible repurposing candidates. We also studied the proximities in
a model’s decision space through a link prediction task to identify hidden similarities
among drugs and diseases and managed to find several drug repurposing candidates.
The results of the current work is expected to pave the way to a new horizon in the
discovery of new uses of drugs, showing with evidences that diseases and medications
which stimulate the same embedding feature and occupy nearby regions have similar

mechanisms of action.
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Chapter 1

Introduction

It is known that some drugs used in the treatment of a disease may show effectiveness
in treating other diseases as well. This takes place if the primary target of a drug is
involved in several pathologies or when a drug affects the activity of additional tar-
gets relevant to the primary one |[Pushpakom et al., 2019]. Drug development is an
expensive and time-consuming process (see Figure . Developing new drug costs be-
tween $500 million to $2 billion and takes 10-17 years |[Berdigaliyev and Aljofan, 2020].
Therefore, avoiding the long process of drug discovery and reducing healthcare costs
is a motivation for investigating the already known pharmaceutical agents that act on
multiple targets [Kumar et al., 2019]. The enormous cost and lengthy drug develop-

ment process underline the need for an alternative approach.
Target screen Tool compound Candidate compound Pre-clinical compound Clinical compound Therapy

Figure 1.1: Traditional drug discovery steps.

Drug repositioning, also known as drug repurposing, reprofiling, retasking, or
therapeutic switching [Tobinick, 2009a],[Berdigaliyev and Aljofan, 2020], is a way to
reduce the cost and time of developing new drugs [Tobinick, 2009b|. It is the pro-
cess of identifying new indications for already approved medications. Since repo-
sitioning relies on previously approved drugs, their toxicity profiles are already
known [Kato et al., 2015]. Also, because they have already passed multiple toxic-
ity tests, drug repositioning candidates tend to be ready for clinical trials quickly
[Berdigaliyev and Aljofan, 2020]. Therefore, it can decrease the traditional timeline
from 10-17 years to only 3-12 years [Berdigaliyev and Aljofan, 2020|. The significance

of drug repositioning would be more tangible, knowing that a small percentage of pro-
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2 CHAPTER 1. INTRODUCTION

posed drugs can pass the hypothesis generation and target screening phases successfully
(on average less than 10% of proposed drugs pass these phases). This rate for oncology
drugs is only 5% |Kato et al., 2015]. This low success rate emphasizes the importance
of drug repositioning in reducing the cost and risk of drug development. In addition, a
large number of potential drugs never reach clinical testing. Furthermore, fewer than
15% of compounds entering clinical development ultimately receive approval, despite
most of them being deemed safe. Therefore, repurposing is attractive and pragmatic,
given drug discovery’s substantial cost and time requirements.

One of the earliest drug repurposing cases is the use of reticulose for post-radiation
effects in the 1950s [Yonkman, 1959],[Atkinson Jr et al., 1975|, [Hurle et al., 2013].
Later in the 1980s, anti-malarial drugs were suggested as potential repurposing
candidates for Rheumatoid Arthritis and Connective Tissue disease [Harris, 1981],
[Mathewson, 1982]. A famous example of drug repositioning is Pfizer’s Sildenafil (Vi-
agra) which was repositioned from angina treatment to erectile dysfunction treatment
in men in 1998 [Novac, 2013] and recently has been studied as a possible treatment
for Age-related Macular Degeneration (AMD) [Coleman et al., 2018|. Thalidomide is
another example of drug repositioning. It first was introduced as a sedative-hypnotic
and then was withdrawn because of severe side effects. Later, Thalidomide was re-
introduced as an anti-cancer agent and used for erythema nodosum leprosum and
HIV wasting syndrome. In some clinical trials, Duloxetine, a medication for depres-
sion, was found to be effective in the treatment of stress urinary incontinence in women
[Hurley et al., 2006]. Overall, between 2007 and 2009, about 30-40% of newly approved
drugs were repurposed medications [Jin and Wong, 2014].

For a successful drug repositioning, the drug must have a positive effect on a differ-
ent disease but, its highest value resides in that its use for the novel indication surpasses
the currently available therapeutic options for that condition. Experimental approaches
for drug repositioning generally involve high-throughput assays where libraries of ap-
proved compounds are tested against biological targets of interest. The effects of a
large number of the Food and Drug Administration (FDA) approved compounds on
gene expression have been measured on several cultured human cell lines (the Con-
nectivity Map known as CMap), and this information have been utilized to investigate
similarities between drugs’ mechanism of action [Hurle et al., 2013],[Kwon et al., 2020],
[Mousavi et al., 2020] (the term mechanism of action refers to a biochemical interaction
through which a drug substance produces its pharmacological effect).

The process of drug repurposing can be performed either experimentally or com-
putationally, also called in silico drug repurposing, which belongs to computational

pharmacology [Shim and Liu, 2014]. In this approach, repurposing is categorized into



1.1. MOTIVATION 3

discovering new indications for an already known drug (drug-centric) and identifying
effective drugs for a disease (disease-centric) and has the common strategy of simi-
larity assessment between drugs and diseases |Liu et al., 2013]. The development of
in silico drug repurposing and its wide use today have been made possible by two
technological trends [Shim and Liu, 2014]. The first trend is generating and gathering
high-throughput data from various sources, including genomics, proteomics, chemo-
proteomics, and phenomics. As a result, data characterizing disease phenotypes and
drug profiles, and entire pathway maps have become available. The second is due to
advances in computational and data sciences which have made the development of
repurposing algorithms possible, along with retrospective analysis and database main-

tenance for experimental data [Hodos et al., 2016].

1.1 Motivation

Our work is motivated by the problem of finding drug repurposing opportunities by
modeling the mechanisms of action of drugs. For example, the mechanism of action of
selective serotonin reuptake inhibitors, or SSRIs, inhibits serotonin’s reuptake, increas-
ing serotonin’s serotonin level in the brain and improving the individual’s mood. As
another example, different biological solutions can be used to decrease blood pressure
chemically. A first solution is to remove the excess salt from the body, thereby de-
creasing the tension in the vessels. Another solution is to inhibit the vasoconstrictive
signaling of a hormone. Finally, it is also possible to act directly on the cells physically,
narrowing vessels and preventing their unwanted action [Ong et al., 2007]. Each of the
solutions mentioned earlier requires a different mechanism of action. A drug may have
several mechanisms of action, and therefore it can potentially play different roles by
perturbing proteins involved in various biological processes, which are accountable for
the drug poly-pharmacology [Car, 2012|. Drug repurposing is a direct application of
drug polypharmacology [Zhang et al., 2016| [Anighoro et al., 2014]. Sometimes a new
candidate for an available drug may be identified only by chance. However, new data
analytic methods and a large number of available data enable the development of
systematic approaches to identify and assess drug repositioning candidates with signif-
icantly lower costs.

When using complex drug-disease-protein graph structures for drug repositioning,
our primary goal is to discover the hidden and unknown relations between the compo-
nents’ interactions and finally use these unknown relations to facilitate the complex and

time-consuming drug discovery process. We are mainly interested in understanding the
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characteristics of embedding and link predictor model’s decision space of drug-disease-
protein interactions and using them to predict new possible candidates for an individual

or a group of diseases that share similar traits.

1.2 Main contributions

This proposal focuses on learning and exploring the latent space of the graphs
constructed upon the official information of drug-disease-protein, drug-action, drug-
mechanisms, drug-target, and drug-indication interactions. Furthermore, we identify
and assess challenges and opportunities in using these data in several tasks of drug

repurposing. The main contributions of the current work are as follow:

e Proposing a new unsupervised node representation learning approach based on
adaptive sampling of nodes’ nearest neighbors and as a result, predicting the
new uses of drugs by modeling pharmacological effects through fast and effective

learning of the latent representations of drugs and diseases.

e Identifying important characteristics of embedding space of the drug-disease-
protein graph and utilizing them to accelerate the process of repurposing candi-
date selection, and showing through this process that the latent representations of
drugs and diseases in the decision space can in fact be used as distance measures

of similarities between different mechanisms of action.

e Proposing the use of false negatives of a link prediction task, carried on the fused
embeddings of separately learned latent representations of independent graphs of
drug-action, drug-mechanism, and drug-target interactions, as a means of iden-

tifying new repositioning opportunities.

1.3 Thesis statement

This thesis aims to show, based on the evidences, that:

e The node influence factors in a graph structure can be used to learn a good
quality embedding for each node while decreasing the number of training data

significantly.

e The latent representation of the drug-disease-protein graph has unique properties
that can be explored and utilized to find possible repositioning candidates for

various diseases.
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e The Shapley space, which is mainly used to interpret the model’s decision-making
processes, can also be used in both supervised and unsupervised tasks. This result

implies the possibility of joining the concepts of predictability and interpretability.

e Drug-action, drug-mechanism, and drug-target graphs’ latent representations can
be learned separately and used to predict possible drug-disease interactions, which

itself may lead finding new uses of already known drugs.

1.4 Thesis structure

The remainder of this thesis is organized as follows. Chapter 2 gives a brief background
about the process of drug repurposing and discusses the related works. Chapter 3
gives a brief explanation of graph embedding methods. Chapter 4 details the whole
process and the results of our studies on modeling pharmacological effects through
multi-relation and multi-graph unsupervised embedding learning. Chapter 5 presents
a summary and the conclusions for the current research. The complementary results

are shown in the appendix.






Chapter 2

Related Works

In this chapter, methods used to find new drug opportunities are outlined. We first
talk about the experimental approaches and then explain the computational methods.
These two approaches can be used, alone or combined, to achieve a more holistic point

of view and increase the chance of success in drug repurposing.

2.1 Drug repurposing strategies

Typically drug repurposing consists of three general phases:
1. Identifying the candidate molecule for a given indication (hypothesis phase).
2. Assessment of drug’s effect in preclinical models.
3. Evaluation of the efficiency of the drug in clinical trials.

Among these three steps, hypothesis generation and identifying the right candi-
date for a disease of interest with high confidence are critical. Here is where modern
methods can be helpful. A variety of experimental and computational approaches have
been leveraged to implement various modalities of drug repositioning. In the following,
we summarize the experimental approaches and then detail three main branches of
computational methods, discussing the recent studies and research tendencies in each

one.

2.1.1 Experimental methods

Experimental approaches utilize several strategies in hypothesis generation step which

are as follows:
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Target-based (also known as structured-based).

Repurposing based on transcriptional signatures.

Drug-based.

Literature-based.

Target-based methods rely on the idea that similar proteins have similar func-
tionalities. Hence, similarity comparison can be used to find secondary targets of an
already existing drug [Ehrt et al., 2016]. In comparison with blind search, which does
not use pharmacological or biological information, target-based repurposing directly
links targets with disease mechanisms, and hence the chance of drug discovery im-
proves significantly. In addition, the target-based approaches can screen nearly all
drug compounds with known chemical structures. The disadvantage, however, is that
target-based methods cannot identify unknown mechanisms beyond the targets already
known.

Molecular transcriptional signatures can be compared to create relations be-
tween drugs and new diseases indications. This approach explores drug-disease re-
lations through comparing gene expression profiles between disease and drugs and
provides helpful information for finding new unknown targets for the known drugs
[Thorman et al., 2020]. The advantage of this method is in its ability to identify new
mechanisms of action for drugs.

Drug-based methods rely on the concept that similar compounds have similar
biological properties. In drug repurposing, this group of methods has been used
widely to analyze and predict the activity of ligands for new targets [GNS et al., 2019],
|[Liu et al., 2010].

Finally, literature-based strategies aim to prepare potential data that help re-
searchers establish a new hypothesis by studying the numerous hidden indirect relations
between drug, target, and disease extracted from the scientific literature. Literature
mining is carried out through Medical Subject Heading (MeSH) terms to retrieve rel-
evant information [Lekka et al., 2011], [Sun et al., 2017].

2.1.2 Computational methods

Computational approaches are primarily data-driven. These methods utilize a vari-
ety of data sources such as drug-disease and drug-protein datasets, electronic health

records, gene expressions, and chemical structures, formulating repurposing hypotheses
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and then carrying out clinical tests. Computational approaches consist of three main

branches:

e Computational molecular docking.
e Network mapping.

e Data mining and machine learning.

These methods significantly reduce drug development costs and enable the joint
analysis of different data sources, including biomedical, genomics, and pharmacological
data, which improve drug repurposing efficiency. In the following, each of the above

methods is explained.

2.1.2.1 Computational molecular docking

Molecular docking [Meng et al., 2011] is a computational structure-based method that
analyzes and predicts the binding site between ligand (drug) and target (receptor).
If there is prior knowledge about the target receptor of the disease, multiple med-
ications, which also have the same target, may be investigated to find the possible
drug candidates. Conversely, the library of drugs with the same target as the already
known one (known in terms of treating a specific disease) can be interrogated to iden-
tify novel interactions that can be taken forward with new uses. Dakshanamurthy
and colleagues [Dakshanamurthy et al., 2012] used numerical methods in order to cal-
culate the similarity between ligand descriptors and pocket using Euclidean distance
[Liberti et al., 2014]. Their algorithm called TMF'S (train, match, fit, streamline) man-
ages to predict drug-target associations with 91% accuracy for the majority of drugs.
Kinnings et al. [Kinnings et al., 2009] developed a chemical system of biology meth-
ods to identify off-targets of major pharmaceuticals on a proteome-wide scale. They
proved the efficiency of this approach by repositioning the available drugs for Parkin-
son’s in treating Multi-drug-resistant (MDR) and Extensively drug-resistant (XDR)
tuberculosis.

Although molecular docking has been used in many researches, it suffers from
three major standpoints. First, this approach is restricted to those studies in which
the 3-dimensional structures of protein targets are available. Second, there is a lack of
a well-formed macromolecular target database that provides valuable structural infor-
mation. Finally, the usefulness of the docking algorithm has been questioned regarding
the inaccuracy of the scoring function and the limitations in the predictability of the

proposed methods [Pagadala et al., 2017].
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2.1.2.2 Pathway or network mapping

The network-based aims to organize the relation between biological molecules to dis-
cover new properties at the network level and investigate how cellular systems sim-
ulate different properties under different conditions. A network is a graph structure
where each node can be considered a molecular entity (i.e., drugs and proteins), and
edges represent a direct or indirect interaction. Network mapping is specifically help-
ful in finding the hidden relations between drug and target in complex diseases as
they are known to be caused by the perturbations of biological networks. Hu et al.
[Hu and Agarwal, 2009| used the GEO dataset [Barrett et al., 2006] to construct a net-
work containing 645 disease-disease, 5,008 disease-drug, and 164,374 drug-drug inter-
actions and integrated this network with molecular profiles and knowledge of drugs and
drug targets to infer drug repositioning opportunities. Through developing a hybrid
model composed of a network component called Cancer-signaling Bridges and Bayesian
Factor Regression, Jin and colleagues |Jin et al., 2012] managed to identify the off-
target effects and repositioning drugs for cancer therapeutics. In another recent study,
Zhou and colleagues analyzed the network proximity of drug targets and HCoV-host
interactions in the human interactome and managed to identify three potential drug
combinations that can help treat 2019-nCoV and SARS-CoV-2 [Zhou et al., 2020].
Barrenas et al. [Barrenas et al., 2012| analyzed disease-specific and protein-protein
networks and found that genes containing disease-associated single nucleotide polymor-
phisms (SNPs) tend to form highly connected clusters in protein-protein interaction
networks. This characteristic was used to identify highly interconnected gene clusters
from highly diverse complex diseases and find new drug repurposing opportunities.
Fiscon et al. exploited SAveRUNNER [Fiscon and Paci, 2021|, a recently developed
network-based algorithm for drug repurposing that quantifies disease-associated genes’
proximity to drug targets to identify drug candidates for Amyotrophic Lateral Sclerosis
(ALS) [Fiscon et al., 2021]. This approach allowed to identify 403 repurposable drugs

that were strongly associated with the disease.

2.1.2.3 Data mining and machine learning

Data mining is the automatic discovery of unknown patterns from existing informa-
tion. On the other hand, machine learning aims at predicting the behavior of future
coming information by learning the properties of several groups of existing knowledge.
Recently, both data mining and machine learning have been vastly employed in drug
repurposing. Aliper et al. [Kumar et al., 2019 used a fully connected deep neural net-

work for training the model using transcriptional data at the gene level to predict drug
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therapeutic and to use them in drug repurposing. Donner et al. [Donner et al., 2018]
proposed a ligand-based approach based on learning the embedding of gene expres-
sion profiles using deep neural networks and considered it as a measure of compound
functional similarity for drug repurposing. Hu and Agarwal [Hu and Agarwal, 2009]
created a disease-drug network using publicly available gene expressions. Wu and col-
leagues developed and evaluated a network-based approach to predict effective drugs
and reveal potential drug mechanisms of action at the level of signaling pathways.
To do so, they constructed a patient-specific signaling network by integrating known
disease-associated genes with patient-derived gene expression profiles and showed that
it significantly improved the success rate of discovering effective drugs for the PC-3
prostate cancer [Wu et al., 2017].

By emerging new deep learning and graph learning methods, which manage to
learn complex network structures, the network-based methods are becoming an excit-
ing research area with promising drug discovery and repurposing results. Recently,
Zeng et al [Zeng et al., 2019]. proposed a network-based deep learning approach for
drug repurposing by integrating ten networks: one drug-side-effect, one drug-disease,
one drug-target, and seven drug-drug networks. Using a random walk embedding
learning, they first generated network representation from a heterogeneous network
of ten drug-related interactions. They then fused matrices of each network into a
low-dimensional feature representation common to all networks via a multimodal deep
autoencoder. Finally, a collective variational autoencoder was used to predict potential
associations between drugs and diseases for Alzheimer’s and Parkinson’s. Although the
results of this study are promising, this method is complex, and it needs at least ten
considerably extensive networks to train the model and to have successful predictions.
Following the same direction, Yan and colleagues developed a network-based method
based on bi-random walks and multiple disease-disease and drug-drug similarity mea-
sures in order to predict potential drug-disease associations [Yan et al., 2019]. Marinka
and colleagues [Zitnik et al., 2018] trained a Convolutional Neural Network (CNN) on
a graph, with proteins and drugs as its nodes and drug-protein and drug-drug inter-
action as the edges, in order to model the polypharmacy side-effects. Deepika and
Geetha [Deepika and Geetha, 2018] used node representations along with a bagging
Support Vector Machine (SVM) to predict drug-drug interactions. Finally, Gao et
al. |[Gao et al., 2018] applied a Short-term Memory Recurrent Neural Network and a
Graph Convolutional Neural Network (GNN) to learn the low-dimensional representa-
tions of proteins and drug structures and engaged them in the prediction of drug-target
interaction.

Traditional drug development strategies are costly, failure-prone, and expensive.
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Therefore, drug repositioning has recently drawn attention and brings drugs out faster
for clinical use. However, drug repositioning is a complex process involving multiple
factors such as technology, commercial models, patents, investment, and market de-
mands. Although many medical databases have been established, selecting the appro-
priate approach to make full use of massive amounts of medical data is still a challenge.
Therefore, it is urgent to develop new approaches for drug repositioning.

Although the results of the recent studies are encouraging, to the best of our
knowledge, none has considered investigating the characteristics of embedding and
decision space of drug-disease interactions. Identifying similar behaviors enables pre-
dicting possible repositionable drugs and explaining why a specific drug is a good
candidate for treating a specific or a group of diseases. In chapter 4, we propose a
fast graph-based method for creating the latent representation of drug and disease in-
teractions, exploring its essential properties and using them to find new repositioning
opportunities. We show that the collective and individual behavior of drugs in a graph
structure conveys specific characteristics that may reveal some hidden and unknown
drug-disease relations that further help researchers choose candidates that are more
likely useful in treating a new group of diseases. In the next chapter, the concept of

graph learning and some of the well-known graph embedding approaches are detailed.



Chapter 3

Graph representation learning

Graphs are important structures used to model a set of objects, as a source of knowl-
edge, that are related in some sense. Although vastly employed in various applications
such as molecular structure, digital maps, and time-series data, researchers have re-
cently considered graphs an interesting source of pattern recognition [Xia et al., 2021].
For example, one may be interested in learning the structure of friendships in social
networks, suggesting new friends for users, or modeling and predicting drug side effects
by learning drug-protein relations in a graph. No matter which application of graph
learning we are interested in, the primary challenge is to find a way to incorporate
the complex structure of graphs (nodes and edges) into the existing machine learning
algorithms. In order to address this challenge, several algorithms have been proposed
aiming at learning graph structure and creating a lower-dimensional representation of
graphs (called embedding) [Angles and Gutierrez, 2008]|, [Grover and Leskovec, 2016a]
and |Kipf and Welling, 2016a).

The idea behind representation learning is to find a mapping that embeds a set
of n observations with p predictors in a low-dimensional vector space R? called embed-
ding space where the distance between observations can be considered as a measure of
similarity. Although it was first used to find the representation of words in a set of sen-
tences, recently, it was applied on graphs in order to find the embedding of nodes while
preserving the graph’s structure in a low-dimensional space [Hamilton et al., 2017D].
Graph representation learning approaches can generally be divided into shallow em-
bedding and generalized encoder-decoder. We start by presenting a brief explanation
of encoder-decoder methods, and subsequently, we will explain some representation

learning approaches in detail.

13
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3.1 Encoder-decoder

The main idea behind encoder-decoder methods is that if we can reconstruct higher-
dimensional information from a lower one, the latter can act as a compact form of the
higher-dimensional space and then be used in machine learning tasks. For example,
the encoder may convert high dimensional data related to nodes (or even entire graph)

to a vector or a single point Z in lower-dimensional space.

Encoder : V — R? (3.1)

The decoder, on the other hand, takes the lower-dimensional representations and
reconstructs the original data (see Figure .

d
100
W %
geg

dec
| e nog e lap node label
e/ e.g.,
Zj community,
(embedding) function

encode node

Figure 3.1: The structure of encoder-decoder. The encoder creates a lower-dimensional
representation of graph and the decoder try reconstructing the original graph space.
[Hamilton et al., 2017b]|

To create low-dimensional representations, decoder maps pairs of embeddings to
original data related to this pair based on some user-defined similarity measure (i.e.
the probability of seeing the vector V; through a random walk of length [ originated

from V;). To do this, the encoder-decoder often tries to minimize a loss function:

(=Y UDEC(Z,Z;),5,(V:, V})) (3.2)
(Va.V))

where s, is user-defined similarity measure of the original pair of vertices in
higher-dimensional space. Every method categorized as an encoder-decoder approach
ultimately minimizes the above loss function to generate embeddings, although the way
architecture of the decoder-encoder is designed and the similarity measures are differ-
ent for each method. In the following, two main approaches in graph representation

learning are explained.
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3.2 Shallow embedding

Shallow methods are a mostly different interpretation of already existing matrix fac-
torization whose principal goal is to decompose a matrix into the product of lower-
dimensional rectangular matrices. We can generally categorize the shallow embedding
algorithms into matrix factorization and random walk methods. We first explicate
matrix factorization as it is the basis of the general shallow embedding, and afterward,

a brief explanation of random walk methods is given.

3.2.1 Matrix factorization

Older methods like Principal Component Analysis (PCA) [Wold et al., 1987] are
inefficient in reducing data dimensionality where there is a non-linear correlation
between variables. Thereby, novel methods like Local Linear Embedding (LLE)
[Roweis and Saul, 2000], and Isomap [Balasubramanian and Schwartz, 2002| were in-
troduced in order to capture the non-Euclidean distances while reducing the dimen-
sionality. Laplacian Eigenmaps [Belkin and Niyogi, 2002] is one of the most well-known
matrix factorization methods. Using this approach, when the data are transformed to
a lower-dimensional subspace, non-linear correlations between variables are retained
under projection. Closely related to LLE and spectral clustering, given ¢ data points
in n-dimensional space, it starts by constructing a neighboring weighted graph with ¢
nodes and a set of edges which are weighted based on their distance from that point.
The projection of the nodes in the lower dimension can then be considered as the
graph’s representation.

The decoder is defined as L? norm between the pair of encodings:

DEC(Z;, Zj) =\ Zi — Z; |Iz (3.3)

Then the reconstruction is done by minimizing the loss function defined by equa-
tion 3.2

In addition to Euclidean norm, recent methods [Cao et al., 2015,
[Ou et al., 2016], [Ahmed et al., 2013] suppose that the strength of the relation
between two nodes is proportional to the dot product of their embeddings and define

the decoder as:

DEC(Z;,Z;) = Z].Z; (3.4)

Soon after, the mean squared error (MSE), as the loss function, is minimized in
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order to realize the reconstruction.

(= || DEC(Z;, Z;) = 54(Vi, V}) |3 (3.5)

3.2.2 Random walk approaches

The basic idea of this group of methods is the use of the probability of co-occurrence
of a pair of vertices through a random walk of length 7" as a measure of similarity
between their embeddings instead of a deterministic measure of node similarity as
mentioned in factorization methods. In this approach, sequences of nodes are gener-
ated through random walks and then fed into the model to learn the node representa-
tions [Bojchevski et al., 2018], [Jalilifard et al., 2019], [Gamage et al., 2020]. Thus the
decoder is defined as:

T,.
e%i %

DEC(ZZ, ZJ) = ~ Pg,T('Ui|Uj) (36)

T ~~
e%i #k
v eV

where p, r(vj]v;) is the probability of visiting v; during a random walk of length T
starting from v;, and with T usually defined to be in the range T'e {2, ...,20}. The node

embeddings are then calculated through minimizing the cross-entropy loss function:

(=Y " —log(DEC(Z;, Z;)) (3.7)

Since computing the normalization factor is expensive, methods like Node2vec
[Grover and Leskovec, 2016a] and DeepWalk [Perozzi et al., 2014a] attempt to approx-
imate it using different strategies. For example, Node2vec employs a set of random
negative samples to approximate the normalizing factor, while DeepWalk applies the
hierarchical softmax technique using a binary-tree structure which accelerates the com-

putation.

3.2.2.1 DeepWalk

The DeepWalk uses local information obtained from truncated random walks to learn
latent representations by treating walks as the equivalent of sentences. The walks begin
from a selected node, and then move to randomly selected neighbors for a defined
number of steps. The DeepWalk seeks to optimize the node weight matrix by correctly
predicting context nodes, given a center node. In other words, the model aims to
maximize the probability of correctly predicting all context nodes simultaneously, given

a center one. This maximization optimizes the weight matrix ¢ that best represents
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nodes in a vector space. The parameter 6 is then the result of a concatenation of input
and output weight matrices [Winput, Woutput]. The weights are then optimized during

the minimization of the following loss function:

C el’p(Woutput(c) h)
=1 Zf:l exp(Woutput(i) h)

where h is the representation of the center node, and ¢ and ¢ are the context

(3.8)

nodes and their index, respectively. This loss functions can be simplified as:

c %
J(; w(t)) = — Z(Woutput(c>.h) + C x log Z e:cp(Woutput(i).h) (3.9)

=1 i=1

The node embedding matrices [Winput, Woutput] are optimized through forward and
backward propagations. For each iteration, the model learns to reduce prediction error
by optimizing the weight matrix 6, thus acquiring higher quality embedding matrices
that better capture relationships among words.

In general, the DeepWalk consists of three steps:

1. Sampling, which is done during random walks of length 7". The authors of Deep-
Walk confirm that it is sufficient to perform 32 to 64 random walks from each
node. They also show that choosing 40 steps is the ideal length for a random

walk.

2. Generating random walks corresponding to each node and maximizing the prob-

ability of predicting the nodes met during random walks given the central node.

3. Concatenating the central and context representations of each node and forming

the final embedding matrix.

>
OO R
1 O 2 OO 3
) .. )\
Sampling Training  —~ /<)~ Computing o
random Oa O’ Oa O skip-gram ./ " embeddings
walks model

Figure 3.2: Three steps of the DeepWalk.

The main disadvantage of DeepWalk is its inability to emphasize the local and
global structure of the network. However, this problem can be addressed using ideas
from a more sophisticated graph embedding algorithm like Node2vec, fixing this short-

coming.
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3.2.2.2 Node2vec

The Node2vec is a modification of DeepWalk with a difference in how random walks
are generated. More specifically, it generates second-order biased walks where instead
of looking at direct neighbors of the current state, the second-order transition applies
a bias factor o (which is a function that takes as inputs the current state and the
potential next state) to reweight the edge weights depending on the previous state.

The « function is defined as:

apo(t,u) =< 1 ifdy =1 (3.10)
o ifdu=2

where ¢ and u are the previous and next states, and d;, is the distance between
the two.

In order to generate biased random walks, the Node2vec introduces two param-
eters, P and (). Parameter () is called exploration rate and it defines how probable it
is that a random walk discovers the unknown parts of graph, while parameter P, also
known as return rate, is the probability of random walk returning to the previous node.
Parameter P controls the discovery of microscopic view around nodes. Parameter )

on the other hand, controls the discovery of the neighborhood of a node (also called

1/Q 1/P
1/Q 1

Figure 3.3: The probabilities of a random walk in Node2vec. A step is taken from the
red to the green node. If the current state is the green node, the probability of going
back to the red node is 1/P. Since the two blue nodes connected to the green state has
no direct connection with the red node (the previous state), the probability of going
to these nodes is 1/Q. On the other hand, for the blue node with a direct connection
to the red one, the transition probability is set to 1.

macro-view).

The biased walk generation is based on the idea that if two states (nodes) are



3.3. GENERALIZED ENCODER-DECODER 19

not connected, then « is set to be 1/g. Thus one can either increase the probability
of going outward (meaning that the walk is not restricted in a localized neighborhood)
by specifying a small ¢ value or conversely restrict the walks to a local neighborhood
by setting a large ¢ value. If the two states are identical, meaning that the walk is
returning back to the previous state, then « is set to be 1/p, where p is the return
parameter. Finally, if the two states are not identical and connected, alpha is set to 1.

The probability of moving from one state to another given the current one is

calculated by:

apg(t,u)w(u,v)
uleNv OéPvQ(t’ u/)w(u/, U)

p(ult,v) = 5 (3.11)

where t is the previous state, v is the current state, w is the transition weight
and «’ represents all the other possible states in the neighborhood of node v.

The Node2vec is able to create global and local strategies and learn better node
representations. However, the calculation of transition probabilities adds an extra
time cost. Also it is not an efficient algorithm for densely connected graphs, as its
time complexity depends on the graph’s branching factor b and is equal to O(b?)
[Pimentel et al., 2019].

3.3 Generalized encoder-decoder

Shallow embedding approaches learn the representation of each node independently.
Consequently, there is no parameter sharing (which can act as a form of regulariza-
tion) [Hamilton et al., 2017b|. Another shortcoming is that this group of methods is
inherently transductive. This means that the algorithm cannot generate embedding for
unseen data in the training phase. Moreover, these methods consider only the pairwise
relation of nodes in graph structure during the embedding creation process and fail
to learn the attribute information. In order to solve these problems, recently, a new
branch of representation learning methods has emerged, which follows the same logic
of encoder-decoder methods but differs in the sense that it introduces more complex

encoders.

3.3.1 Neighborhood autoencoders

As explained in the previous methods, encoding is done by minimizing the loss func-
tion related to the similarity of pair of embeddings with their real similarity in graph

structure without considering the information of the surrounding nodes. Algorithms



20 CHAPTER 3. GRAPH REPRESENTATION LEARNING

like Structural Deep Network Embedding (SDNE) [Wang et al., 2016a] and Deep Neu-
ral Graph Representations (DNGR) [Cao et al., 2016] uses autoencoders to compress
the neighboring information of each node. To do so, a similarity matrix S;; between
all pairs is constructed. In this matrix, each row s; represents the similarity of ith
node with all the other nodes in the graph. As a result, each row is viewed as a vec-
tor representation of v;’s neighborhood in high-dimension. This representation is then

compressed using an autoencoder to generate a low-dimensional embedding.

Sq

O
™ NP
@) e — § ~ H
ol ~p2 ol
1. Extract high-dimensional neighborhood vector M % ol g 2]
(si € RIVI contains v;’s proximity to all other nodes) § ¥ § 9 =z 9
‘A"
8 :
A g

.
2. Compress s; to low-dimensional embedding, z;
(using deep autoencoder)

Figure 3.4: The neighborhood autoencoder first extracts a high-dimensional neighbor-
hood vector for each node, summarizing its similarity to all other nodes in the graph.
This vector is then fed through a deep autoencoder to reduce its dimensionality and
produce a low-dimensional embedding.

Afterward, the loss function is minimized so that the sum of squared difference

between decoding of encoded s; and s; itself over all v; is minimum:
(=" || (DEC(ENCautoencoder(s:), 5:)) II3 (3.12)

3.3.2 Neighborhood aggregation and convolutional encoders

Although the neighborhood autoencoders tackle the problem of parameter sharing
between embeddings, they need the entire graph for generating embeddings which can
be problematic when the graph is enormous or constantly growing. It also means that
if a graph is dynamic, the whole training phase should be repeated each time a new
node is added to the graph.

Neighborhood aggregation methods like GraphSage [Hamilton et al., 2017a] and
variations of Graph Convolutional Neural Networks (GCN) [Kipf and Welling, 2016b]
[Kipf and Welling, 2016a] aims at solving these problems by aggregating the node’s
local neighborhood information into embeddings. As a result, each node is represented
as a function of its surrounding neighborhood. First, embeddings are built upon the
original input. Then, the encoding is done through iterations, where nodes aggregate

the embeddings of their neighborhood using an aggregation function. Hence, even if a
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node is not present in the training phase, its neighboring nodes can still be adequately
represented.

In general, all the algorithms based on the idea of neighborhood aggregation
follow the same procedure, although they differ in aggregation function and how they
combine the previous embedding vectors with the current aggregation information.

Recently node representation learning has shown great promise in predicting in-
teractions and discovering hidden characteristics of graphs. It can also benefit drug
repurposing by representing the complex interactions between drugs and diseases. In
the next chapter, we detail two case studies where a fast and effective node embedding
method is applied to learn the low-dimensional representations of nodes in heteroge-
neous graphs, and then these representations are used to reveal unknown drug-disease

interactions, which can possibly be considered as new uses of known drugs.






Chapter 4

Case study: drug repurposing
through learning complex structures

of graphs

We carried out our studies on drug repurposing in two cases. First, we used drug-
protein and drug-disease interaction graphs to model mechanisms of action. More
specifically, we built a large and heterogeneous graph comprising drug, disease, and
protein entities linked according to information collected from the biomedical litera-
ture. In the graph, relations involving drugs and proteins represent mechanisms of
action, while drug indications are given by relations involving drugs and diseases. Our
goal is to find a low-dimensional latent representation for drugs and diseases so that the
latent representation embeds the relationship between mechanisms of action and drug
indications. We then, employ link prediction based on the drug-disease representations
to capture repurposing candidates. Although through link prediction we are able to
find possible unknown connections between drugs and diseases, we are also interested
to explain why and how the trained model choose specific connections between drugs
and diseases. Therefore, we analyze the properties of the generated embedding space,
also the decision space of the model where we can explain the model’s reasoning charac-
teristics and further to use them to find repositioning candidates. In the second study,
we applied the methods developed through the first study to extend our research and
evaluate the possibility of using multiple embeddings generated from multiple indepen-
dent graphs, related to four different types of relations among diseases and drugs, to
train several graph models independently, join the embeddings, create a single vector

representation for drugs, and use these representations to predict new uses of drugs.
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4.1 Multi-relation graph unsupervised embedding

for drug repurposing

Our main goal is to discover new relations between drugs and diseases by utilizing exist-
ing public drug-disease protein interactions. We built a large and heterogeneous graph
comprising drug, disease, and protein entities that are linked according to information
collected from the biomedical literature, as shown in Figure 1.1l More specifically,
we formulate the drug repositioning problem as a three-layer multi-relation directed
graph G = (V, R, E), where V is a set of entities (i.e., drugs, diseases and proteins),
R is a set of relations (i.e., drug-protein, drug-disease and protein-protein), and F
is a set of edges connecting different entities in V. In the graph, relations involving
drugs and proteins represent mechanisms of action, and repositioning opportunities
are represented by (hidden) relations involving drugs and diseases. The graph also
contains protein-protein interactions in order to increase connectivity and information

propagation while learning node representations.

Discases [ [O O ......

Figure 4.1: Multi-relation graph, composed of drug-protein, drug-disease and protein-
protein interactions. A drug (A) perturbs some proteins (()) and this drug is indicated
to certain diseases(0dJ). A single drug may perturb different proteins, and these proteins
may also interact. Further, the same drug may be indicated to different diseases. Links
may provide evidence for repositioning opportunities (i.e., dotted links).

4.1.1 Data

Asin [Zitnik et al., 2018], we used the human protein-protein interaction (PPI) network
compiled by [Menche et al., 2015|, [Chatr-aryamontri et al., 2015|, integrated with ad-
ditional PPI information from [Szklarczyk et al., 2017]. The PPI graph contains phys-
ical interactions experimentally documented in humans, such as metabolic enzyme-
coupled interactions and signaling interactions. The network is unweighted and undi-
rected with 19,085 proteins and 719,402 interactions. For the graph of drug-protein,
we obtained relationships between drugs and proteins from the STITCH database

[Chatr-Aryamontri et al., 2015]. This database integrates various chemical and protein
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networks with over 8,083,600 interactions between 8,934 proteins and 519,022 chemi-
cals. We considered only the interactions between chemicals (i.e., drugs) and proteins
that have been experimentally verified, comprising 16,546 proteins and 584 drugs, and
there are 1,824,204 interactions among them. Drugbank [Wishart et al., 2008|] was used
to retrieve known drug-disease links. DrugBank is a bioinformatics and cheminformat-
ics resource that provides a knowledge-base for drugs, drug actions and drug targets.
We focused on 584 drugs that were indicated to 508 diseases, resulting in a total of
2,836 drug-disease links.

4.1.2 Unsupervised node representation learning and link

prediction

Drug-protein and drug-disease interaction graphs usually exhibit a sparse struc-
ture, and often, a protein is linked to drugs occupying different parts of the
graph. We utilize the structural roles of the proteins in order to learn repre-
sentations for drugs and diseases. More specifically, we applied the general idea
of SkipGram [Mikolov et al., 2013a] to learn representations in an unsupervised
manner, but instead of performing expensive random walks to produce contexts
[Grover and Leskovec, 2016b|, [Perozzi et al., 2014b], we employ a restricted number of
permutations over the immediate neighborhood of a node as context to generate its
representation. Further, we exploit the multi-relation nature of the graph by employing
two types of contexts while learning representations. Specifically, some contexts are
composed of drugs and proteins (i.e., mechanisms-of-action), while others composed
of drugs and diseases (i.e., drug indications). This results in an embedding for each
drug and for each disease, so that adjacent entities are placed close to each other in
the vector space, while unconnected entities are pushed away. As a result, drugs and

diseases that have a similar distribution of neighbors will end up being nearby.

4.1.2.1 Adaptive ego-centric graph representation learning

In natural language processing, the context of a word is often approximated by other
words surrounding it. In graphs, however, a node’s context is an even more complex
concept. As mentioned earlier, algorithms like DeepWalk, and Node2Vec generate text-
like sentences through random walks, and consequently, the context is all the nodes
that appear along a walk. In contrast, in the current approach, the contexts are solely
based on the neighborhoods of nodes, defined here as the nodes directly connected to

them. Consequently, their neighborhoods will mainly express nodes’ representations,
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and those with similar locality (contexts) will be associated with similar embeddings.
Therefore, embeddings are primarily focused on second-order proximity. Thus, the
more common neighbors shared by a pair of vertices (v;,v;), the more their proximity

in the embedding space.

The Nearest Neighbor Embedding (NBNE) first creates a set of groups S through
a fixed number of permutations over each node’s neighbors. It then trains the vector
representations of nodes by maximizing the log-likelihood of predicting a node given
another one in a group and given a set of representations r, making each node in a

group predict all the others. The log-likelihood maximized by NBNE is given by:

max Z log (p (4.1)

" SGS
where p (s|r) is the probability of each group, which is defined as:
IOg( | Z < Z lOg (Uj|vi7 T)))) (42)
1€s  \JESs,jFi

where v; is a vertex and v; are the other vertices in the same group. The probabilities
in this model are learned using the feature vectors r,, ;, which are then used as the

nodes’ embeddings. The probability p (v;|v;, ) is given by:

exp (rl;‘fj X 7’%)

veV (eXp (T/UT X Tqu))

p (vjlvi,T) = 5 (4.3)
where r/fj is the transposed output feature vector of vertex 7, used to make predictions.
The representations r/, and r, are learned simultaneously by optimizing Equation

This optimization step is performed using stochastic gradient ascent with negative
sampling [Mikolov et al., 2013b].

One drawback of using a fixed number of permutations for neighborhood sam-
pling, however, is sequence redundancy, which can result in slow training and low-
quality of learned embeddings |Li et al., 2019]. We propose sampling nodes’ neighbor-
hood information based on their influence factor so as to overcome the fixed sampling
drawbacks. Node influence implies the ability of a node to broadcast information. The

faster and broader a node spreads, the more influential it becomes.

Burt’s Constraint [Burt, 2004] is usually used to measure structural holes. Burt
suggests it as a measurement for the concept of bridging social capital. Essentially, a

constraint measures how much the ego’s friends are also connected among themselves.
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It is defined by both dyadic constraint and overall or ego-level constraint. Dyadic

constraint ¢;; is the extent to which one node ¢ constraints another one j. It can be

defined as:

cij = (pij + Z PiqPaj)’ (4.4)

qEN(i)—j
where p;; is the proportion of energy or edge weights an ego ¢ invests in its
neighbors j, and p;,p,; is the indirect influence. The proportion of energy p;; can be

defined as:

Q45 + A j;

D = 4.5
’ ZKEN(i)(a’ik + ki) (45)

where a;; are the elements of the graph adjacency matrix. Overall constraint, c;,

is then:

¢ = Z Cij (4.6)

JEN()

Nodes with lower constraint values (less information blockage and high access) are
not limited by their neighbors and can access the information flow outside of a highly
cohesive nodes pool. Conversely, those with high constraints do not get much exposure
to information outside of what is already accessible by their neighbors. Therefore,

nodes that act as information brokers have lower constraint values.

To sample node neighborhoods efficiently, we allocate an influence score to each
node based on its connectivity and constraint values so that nodes with more connec-
tions and more access to the information flow receive a higher influence score. Thus,
the more influential a node in a graph’s structure, the more samples are gathered from

its locality. We define the adaptive permutation p’ for each vertex as following:

;o p
Pi=p (logg(H(ci_l, deg(i)) + 2)-‘ (47)

where p is a pre-defined permutation parameter, deg(i) is the degree of ith node
of the graph, and 0 < p, < p. The choice of logarithmic operation is due to its
flattening property in conditions when nodes with large number of edges and different
constraint values may result in similar number of permutations (considering that the

initial number of permutations p is often small). The harmonic average H of the



CHAPTER 4. CASE STUDY: DRUG REPURPOSING THROUGH LEARNING COMPLEX

28 STRUCTURES OF GRAPHS
positive real numbers x1, xs, ..., x, is defined to be:
n -1\ 1
H— (Zzlxz ) (4.8)
n

and if defined in terms of the arithmetic, is the quantity which its reciprocal is
the arithmetic mean of the reciprocals of the given quantities.

One major disadvantage of arithmetic mean is its sensitivity to extreme values,
especially when the sample size is small. Therefore, it is not an appropriate measure
of central tendency for skewed distributions. The choice of harmonic average is due
to its punishing property for extreme values where there is low or no balance between
the quantities. In the context of adaptive sampling, nodes with low values of degree
and highest constraint have higher information blockage, which suggests the existence
of many interconnections among the node’s direct neighbors. This implies that those
sequences which are pruned in the current node, will likely be sampled in the next iter-
ations when the current neighbors will be the central node. This is due to the existence
of several possible paths between neighbors in nodes with high constraint. Therefore,
these nodes are candidates for more pruning. On the other hand, for those nodes with
high direct neighbors and low constraint, more samples should be collected. In case
of the nodes with high degree and maximum constraint ¢; = 1 (the maximum possible
information blockage) or low degree and minimum constraint (maximum inverse of the
constraint), the harmonic mean produces a bias toward the lower values, resulting in
more pruning (see Figure , although the pruning is less than the case where there
are low number of direct neighbors and the information blockage is maximum.

During the sequence sampling, we adapt the permutation number regarding the
influence score calculated for each node. For nodes without any neighbors or with very
high constraint, there is no need to generate many permutations. The more neighbors
with less information access blockage a node has, the closer the selected permutation p’
to p. The Figure[4.3]illustrates an example of how the number of adapted permutations
changes for different values of initially set permutations p while sampling from the
drug-disease-protein graph. Note that for weighted graphs, the degree of a node can
be replaced with node strength [Barrat et al., 2004] to generate biased permutations
based on the sum of weights attached to ties belonging to a node (see Algorithm .

Burt’s theory suggests that nodes hold certain positional characteristics from
how they are embedded in neighborhoods. These specific characteristics change based
on how the connection among the edges are distributed. Because Burt’s constraint
measures the direct and indirect connectivity between the neighbors of an ego, in

the absence of communities or neighbors’ inter-connectivity, the nodes’ constraint is
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Arithmetic mean .-~ . .-
ot Harmonic mean . -

100,

100"
0
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100 © 100 0

Figure 4.2: A comparison between arithmetic and harmonic means for different values
of the inverse of node constraint ¢=! and degree d for randomly selected nodes i. Note
that the lowest theoretic value of the inverse constraint is 1.

uniform. One example of such graphs is bipartite networks |Asratian et al., 1998| where

there is a limitation on the nodes’ connection such that ties are only cross classes. This
implies that no direct path between the nodes of the same type is allowed and the
indirect connections are through the ego. Therefore, for such graphs where our domain
knowledge shows the nonexistence of inter-connections between the ego’s neighbors or
lack of communities, we may simplify the equation [4.7] taking into consideration only

the node’s degree or strength (in case of weighted graphs):

, p
PP Tiogy(deg() + 21 )

Hence, simpler sampling strategy is applicable for sparse graphs. For multipartite

networks, where the graph can be partitioned into multiple sets, the number of indirect

connections among the neighbors depends on how each node is positioned between the

sets [Dawande et al., 2001|. Thus, for such graph structures the effectiveness of both

fully adaptive and degree-based adaptive sampling methods can be measured through
cross-validation [Berrar, 2019] and the best strategy may be selected for the future

cycles of model training.

Many applications of proximity or similarity in graphs use the notion of first
and second order proximity. The first-order proximity in a graph is the local pairwise
proximity between two vertices. For each pair of nodes linked by an edge (u,v), the
weight on that edge, wy,, indicates the first-order proximity between u and v (the

weight w,, for unweighted graphs is 1). In the absence of an edge between u and
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Figure 4.3: Distributions of the adapted permutations p’ based on node influence factor
for different initially set permutations p.

v, their first-order proximity is defined to be 0. The first-order similarity is then the
concept that connected nodes in a network should have similar properties. On the
other hand, the second-order proximity between a pair of nodes (u, v) is the similarity
between their neighborhood network structures. From mathematics perspective, let
Pu = (Wy1, ..., Wy, |v|) denote the first-order proximity of u with all the other nodes,
then the second-order proximity between u and v is defined by the similarity between
p., and p,. If no vertex is linked from/to both w and v, the second-order proximity
between v and v is 0. The notion of second-order proximity indicates that nodes with

similar neighborhoods should have common characteristics.

The proposed approach takes advantage of both first and second-order proxim-
ities as the representation of set of nodes v; that are in the context of the ego v; are
learnt so that the sum of the conditional probabilities of the context given the target
node is maximized (see the equation . By optimizing the log probability, the al-
gorithm maximizes the likelihood of predicting a neighbor given a node, creating node
embeddings so that nodes with similar neighbors have similar representations. Since

there is more than one neighbor in each group, this model also makes connected nodes
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Algorithm 1: Adaptive sequence generation

1 GenerateSequence (G, p,!)
inputs : the graph G, upper bound permutation number p and sequence
length [

output: An array of generated sequences

sequences < [(];

foreach node v € G do

ds < v.degree() or v.strength();

constraint < v.constraint();

influence score = Harmonic mean(inverse of constraint,ds)

P =p— p/logy(influence score + 2)

group + [0];

fori=0; i<=p;i=i+1do
group = [v] + permute(v.neighbors, l)
sequences.append(group)

© 0 N o ok WwN

-
- o

return sequences;

=
N

have similar representations because they will both predict each other’s neighbors, re-
sulting in representations also with first-order similarities. A trade-off between first
and second-order proximity can be achieved by changing the initial number of permu-
tations p which controls the number of distinct nodes within each generated sequence
and the length of the sequence [. The higher the number of permutations in the current
node, the more likely the generated sequences through neighbors permutations have
shared nodes (the second-order similarity), and the higher the length of the sequence [,

the more the model learns about the ego’s direct neighbors (the first-order similarity).

Here, we considered Node2Vec and DeepWalk as strong baselines, be-
cause they are widely used and have been proved to be highly effective
[Grover and Leskovec, 2016a]. The main difference between Adaptive NBNE and the
two baselines is the sampling strategy. DeepWalk uses uniform random walks to ex-
plore the around neighborhood. The major limitation of this approach is the lack of
any control over the explored regions. Node2vec, on the other hand, takes into con-
sideration the information of both previous and the potential next nodes to generate
biased walks and in each step calculates a group of weights for all the possible paths
of the next step. The choice of sampling method has major effect in both the embed-
ding quality and the time complexity. DeepWalk has a time complexity bounded by
O(|V] x n) where |V| is the number of nodes and n represents the number of walks.
Node2vec takes two additional parameters, p and ¢, which are then used to increase

the probability of returning to the parent node or going further away. Although this
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results in having a more efficient sampling and as a results a better embedding quality
[Grover and Leskovec, 2016a], several models should be trained in order to choose the
best values for p and gq. Another disadvantage is its time and memory complexity de-
pendency on the graph’s branching factor b and having a time complexity bounded by
O(b*), making it hardly scalable to large and dense networks |[Liu and Krishnan, 2021].
The Adaptive NBNE based on calculating the structural holes has a worst case time
complexity bounded by O(|V| x d?) where n is the number of vertices for which the
Burt’s constraint is calculated and d is the average degree in the graph. Although for
the worst case scenario our approach has a higher time complexity than the DeepWalk
due to the calculation of node constraints, the reduction in the total number of se-
quences and using the first and second-order proximities results in embeddings with
higher quality and a faster training as the sampling occurs efficiently and only in the
direct neighborhood. The adaptive sampling based on node degree has a low worst
case time complexity bounded by O(|V| x average(p’)). Because of the near-bipartite
property of sparse graphs [Cranston and Yancey, 2020] and considering that the real-
world graphs are often sparse [Danisch et al., 2018] |[Chung, 2010|, this approach is
potentially best suited for real-world problems as it can significantly reduce the exces-
sive sequences generated in the previous approaches while increasing the embeddings’

quality.

4.1.2.2 Model selection

We first evaluate the performance of the fixed-size permutation (interchangeably we
will use NBNE as a short form of fixed-size permutation NBNE) by comparing the
quality of its embeddings against those generated by Node2vec and DeepWalk through
a link prediction task. Hence, we conducted a random search with 25 iterations. Cross-
validation is used to find the best embedding space of node representations. Finally,
the following configurations were selected for each of the algorithms as the best hy-
perparameters: a) NBNE with a window size of 24, number of permutations equal to
30; b) Deepwalk with a window size of 12, number and length of walks equal to 7 and
25; ¢) Node2vec with window size, number and length of walks equal to 5, 57 and 73,

respectively.

4.1.2.3 Link prediction

Our official drug indications contain 2836 links. We divided the dataset into five folds,
each time one of them is used for the validation and the rest for the training. However,

as the indications contain only positive examples, negative examples are essential to
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training a classifier. This is due to the fact that the drug-disease graph has many
nodes without any connection to the others. Therefore, we generated 301964 negative
examples using the complementary graph of the known indications. For embedding
quality evaluation, we used the mean area under the curve (AUC score) of Random
Forest |[Breiman, 2001] trained on the generated embeddings as a primary measure for
assessing the performance of the node representation learning algorithms.

Our results show that the NBNE achieves numbers as high as 85% in terms
of mean area under the curve, while Node2vec and Deepwalk achieve 68% and 67%
of mean area under the curve, respectively (see Figure . With 55% and 72%,
the fixed-size nearest node embedding also shows better results in both kolmogorov-
Smirnov (KS) score [Massey Jr, 1951] and true positive rate (recall), when compared
with 46% and 45% KS and 63% and 62% recall for Deepwalk and Node2vec respectively
(see the complete results in the Table . As explained, the main difference of the
NBNE from the other two algorithms is the context generation approach, as NBNE is

based on gathering information of the immediate neighborhood.

AUC

0.8 |

0.6

sensitivity

0.4

02 #

NBNE (AUC = 0.85) —— |
DeepWalk (AUC = 0.68) ——
o Node2Vec (AUC = 0.67)
0 0.2 0.4 0.6 0.8 1

1-specificity

Figure 4.4: The area under the curve related to the link prediction task using the
embeddings generated by Deepwalk, Node2vec and NBNE.

4.1.2.4 Adaptive strategy compared to the fixed-size permutations

As mentioned before, sequence redundancy may lead to slow training and lower embed-
ding quality. The adaptive permutation can enable efficient sampling and fast training
as it considers information accessibility of nodes in order to pay more attention to those
of strong influence. A total of 3 types of embeddings, with permutation parameters set
to 15, 20, 30, and 40 for each of the adaptive variants, and fixed permutation NBNE

were trained, and the results were analyzed. More specifically, we compared fixed-size
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and adaptive permutation neighborhood sampling in three criteria: 1) a total number
of sentences used in training, 2) training time, and 3) the area under the curve when
the generated embeddings were used in the link prediction task.

As seen in Figure [4.5] as the permutation number increases, the number of se-
quences generated by NBNE increases rapidly, and fixed permutation strategy results
in generating 17280, 23040, 34560, and 46080 samples when the permutation parameter
was set to 15, 20, 30 and 40. On the other hand, the Full Adaptive NBNE, where both
node constraint and its degree are used to sample from the neighborhood, yields 6429,
8179, 11481, and 14651 sequences for the same initial number of permutations. Hence,
by applying a fully adaptive permutation sampling strategy, we manage to reduce the
number of sequences by approximately 63%, 65%, 67%, and 75% for 15, 20, 30, and
40 number of initial permutations, respectively (see Table . Furthermore, because
the number of samples is reduced significantly, the training becomes much faster than
fixed-size sampling as the number of initially set permutations increases. For degree-
based adaptive sampling, the number of generated sequences are 12847, 16287, 23635,
31142 for 15, 20, 30, and 40 initial permutations, respectively. This higher number of
sequences compared to the fully adaptive strategy is due to the high pruning degree
of the additional constraint factor in equation which leads to penalizing the nodes
with higher information blockage.

.
Model Model

— Degree Adaptive NBNE — Degree Adaptive NBNE

-—- Full Adaptive NENE ---- Full Adaptive NBNE
NBNE NBNE

40000 -

-
[~)

30000 - 1=

20000 - - —

Number of sequences
Training time (minutes)
©

wo00- e -

' ' ' ' ' '
15 20 25 30 35 40

\ ] 0 | \
- 15 20 25 30 35 40
Permutations

Permutations

Figure 4.5: the training time and the total number of sentences generated during
the training phase in fully adaptive and degree based adaptive NBNE compared to
the fixed-size permutation strategy. As shown, both the Full the Degree Adaptive
approaches results in less training sequences and faster training. Between the three
methods, the full adaptive sampling strategy resulted in the least number of sequences
and consequently the least training time.



4.1. MULTI-RELATION GRAPH UNSUPERVISED
REPURPOSING

0.&7
0.66
0.85
Q
3 0.84
083
062

I NBME
0.81

19

I Degree Adaptive NENE

I Full Adaptive NBNE

20 0
Number of permutations

EMBEDDING FOR DRUG

35

Figure 4.6: The box plot of the area under the curve (AUC) for the Full Adaptive,
Degree Adaptive, and fixed permutation sampling. For each model and each initially set
permutation number, 30 experiments in from of 30-folds cross-validation were carried
out and the AUC metric was calculated during each experiment.

Fold

AUC - NBNE
(p = 15)

full adaptive

sampling (p = 15)

AUC - NBNE with AUC - NBNE with

degree adaptive

sampling (p = 15)

0.83 £ 0.0141
0.858 £ 0.01313
0.848 £ 0.01348
0.84 £ 0.01378
0.852 £ 0.01335
0.854 £ 0.01325
0.859 = 0.01309
0.855 £ 0.01323
0.846 £ 0.01355
0.842 £ 0.01370
0.836 £ 0.01192
0.849 £ 0.01347
0.857 £ 0.01317
0.851 £ 0.01239
0.85 £ 0.01340
0.847 £ 0.01152
0.843 £ 0.01466

0.843 £ 0.01368
0.856 = 0.01318
0.856 = 0.01319
0.851 £ 0.01339
0.85 £ 0.01343
0.852 £+ 0.01336
0.849 £ 0.01346
0.846 £ 0.01355
0.844 +£ 0.01363
0.86 + 0.01304
0.829 £+ 0.01415
0.845 £ 0.0136
0.855 = 0.01323
0.846 £ 0.01355
0.866 = 0.01278
0.85 £ 0.01341
0.854 £ 0.0132

0.858 £ 0.01311
0.864 £ 0.01289
0.867 £ 0.0127
0.855 £ 0.01324
0.865 = 0.01285
0.873 £ 0.01252
0.86 £ 0.01305
0.87 £ 0.01265
0.854 £ 0.01328
0.852 = 0.01336
0.843 £ 0.01366
0.861 £ 0.01299
0.865 = 0.01285
0.868 £ 0.0127
0.87 £+ 0.01264
0.87 £ 0.01265
0.853 £ 0.0133
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18
19
20
21
22
23
24
25
26
27
28
29
30

0.838 £ 0.01384
0.845 + 0.0136
0.843 £ 0.01165
0.84 £ 0.01278
0.841 + 0.01375
0.836 = 0.01092
0.85 £ 0.01341
0.842 + 0.01372
0.852 + 0.01336
0.852 = 0.01336
0.861 = 0.013
0.842 + 0.01172
0.838 = 0.01384

0.835 £ 0.01394
0.844 £ 0.01365
0.856 + 0.01319
0.864 £ 0.01289
0.849 £ 0.01345
0.85 £ 0.01340
0.844 + 0.01364
0.848 + 0.01348
0.856 + 0.01318
0.865 £ 0.01282
0.863 £ 0.0129
0.867 £ 0.01275
0.854 £ 0.0132

0.859 £ 0.01309
0.87 £ 0.01265
0.862 £ 0.0129
0.861 £ 0.01301
0.869 + 0.0126
0.85 £ 0.01343
0.859 = 0.01306
0.846 + 0.01355
0.865 = 0.01283
0.856 + 0.01321
0.869 £ 0.01269
0.843 + 0.01368
0.871 + 0.01261

Table 4.1: The area under the curve with 95% confidence interval for 30-fold test when

the initial permutation parameter was set to 15.

Fold

AUC - NBNE
(p = 20)

full adaptive

sampling (p = 20)

AUC - NBNE with AUC - NBNE with

degree adaptive

sampling (p = 20)

O 00 J O T = W N

e e
= W NN o= O

0.824 £ 0.0143
0.821 + 0.0144
0.823 £ 0.0134
0.83 £ 0.0141
0.81 £ 0.0127
0.847 £ 0.0135
0.825 + 0.0143
0.826 + 0.0102
0.842 £ 0.0137
0.83 £ 0.0141
0.834 £ 0.014
0.81 £ 0.0147
0.837 £ 0.0139
0.835 = 0.0139

0.866 + 0.0128
0.852 = 0.0133
0.841 £ 0.0137
0.854 £ 0.0133
0.874 £ 0.0125
0.872 £ 0.0126
0.864 + 0.0129
0.862 £ 0.013
0.861 + 0.013
0.857 £ 0.0132
0.868 £ 0.0127
0.861 = 0.013
0.86 = 0.013
0.868 £ 0.0127

0.866 = 0.0128
0.86 £ 0.0131
0.853 = 0.0133
0.864 + 0.0129
0.862 £ 0.013
0.867 £ 0.0128
0.856 = 0.0132
0.851 + 0.0134
0.861 + 0.013
0.867 £ 0.0127
0.871 + 0.0126
0.849 £ 0.0134
0.868 £ 0.0127
0.865 = 0.0128
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15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

0.833 £ 0.014
0.83 £ 0.0141
0.829 + 0.0142
0.832 + 0.0141
0.841 + 0.0137
0.83 £ 0.0141
0.828 + 0.0142
0.818 + 0.0145
0.818 £ 0.0145
0.838 + 0.0138
0.819 + 0.0145
0.839 £ 0.0138
0.839 + 0.0138
0.84 £ 0.0138
0.832 £ 0.012
0.837 + 0.011

0.863 £ 0.0129
0.861 + 0.013
0.851 + 0.0134
0.853 £ 0.0133
0.869 = 0.0127
0.856 + 0.0132
0.862 £ 0.0129
0.869 £ 0.0127
0.858 + 0.0131
0.861 = 0.013
0.862 £ 0.013
0.863 = 0.0129
0.845 £ 0.0136
0.864 + 0.0129
0.861 + 0.013
0.861 + 0.013

0.85 £ 0.0134
0.837 £+ 0.0139
0.86 4 0.013
0.863 £+ 0.0129
0.873 £ 0.0125
0.857 £ 0.0136
0.856 = 0.0132
0.874 £ 0.0125
0.868 + 0.0127
0.858 + 0.0131
0.847 £ 0.0135
0.866 + 0.0128
0.871 + 0.0126
0.854 £ 0.0133
0.852 £ 0.0133
0.864 £+ 0.0129

37

Table 4.2: The area under the curve with 95% confidence interval for 30-fold test when
the initial permutation parameter was set to 20.

Fold

AUC - NBNE
(p = 30)

full adaptive

sampling (p = 30)

AUC - NBNE with AUC - NBNE with

degree adaptive

sampling (p = 30)

©O© 00 J O Ot = W N

0.831 + 0.0141
0.837 £ 0.0139
0.831 + 0.0141
0.835 £ 0.014
0.844 + 0.0136
0.844 £+ 0.0136
0.839 + 0.0138
0.844 + 0.0136
0.828 £+ 0.0142
0.842 + 0.0137
0.824 £ 0.0143
0.834 £ 0.014

0.862 £ 0.013
0.856 + 0.0132
0.856 + 0.0132
0.86 &= 0.013
0.841£0.0138
0.855£0.0132
0.85740.0132
0.84940.0135
0.86 = 0.013
0.855 = 0.0133
0.861 + 0.012
0.854 + 0.0133

0.841 £ 0.0138
0.857 + 0.0132
0.839 + 0.0138
0.843 £ 0.0137
0.849£0.0135
0.853£0.0133
0.86+0.013
0.84140.0138
0.845 + 0.0136
0.858 = 0.0131
0.862 £ 0.013
0.858 + 0.0131
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13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

0.843 £ 0.0137
0.813 £ 0.0147
0.834 £+ 0.014
0.823 £ 0.0144
0.839 £ 0.0138
0.821 + 0.0144
0.839 + 0.0138
0.815 £ 0.0146
0.833 £ 0.014
0.834 £ 0.014
0.854 £ 0.0133
0.844 £+ 0.0136
0.849 £ 0.0135
0.828 + 0.0142
0.831 £ 0.0141
0.84 £+ 0.0138
0.837 £ 0.0139
0.845 £ 0.0136

0.844 + 0.0136
0.861 + 0.013
0.857 £ 0.0132
0.857 £ 0.0132
0.844 + 0.0136
0.859 £+ 0.0131
0.856 + 0.0132
0.85 £ 0.0134
0.846 + 0.0136
0.868 £ 0.0127
0.862 + 0.0129
0.844 £ 0.0137
0.864 + 0.0129
0.86 £+ 0.013
0.873 £ 0.0125
0.854 £+ 0.0133
0.857 £ 0.0132
0.863 £ 0.0129

0.846 £ 0.0136
0.865 = 0.0129
0.839 = 0.0138
0.857 £ 0.0132
0.867 £+ 0.0128
0.858 + 0.0131
0.858 + 0.0131
0.833 £ 0.014
0.862 + 0.013
0.856 = 0.0132
0.843 £ 0.0137
0.846 + 0.0135
0.856 + 0.0132
0.859 £ 0.0131
0.856 + 0.0132
0.84 £+ 0.0138
0.836 = 0.0139
0.842 + 0.0137

Table 4.3: The area under the curve with 95% confidence interval for 30-fold test when

the initial permutation parameter was set to 30.

Fold

AUC - NBNE
(p = 40)

full adaptive

sampling (p = 40)

AUC - NBNE with AUC - NBNE with

degree adaptive

sampling (p = 40)

© 00 J O Ot = W N -

0.834 £ 0.014
0.83 £ 0.0141
0.833 = 0.014
0.836 + 0.0139
0.823 £ 0.0143
0.838 £ 0.0138
0.824 + 0.0143
0.854 + 0.0133
0.836 £ 0.0139
0.841 £+ 0.0138

0.849 + 0.0135
0.845 £ 0.0136
0.835 £ 0.014
0.856 + 0.0132
0.849 £ 0.0135
0.837 £ 0.0139
0.848 + 0.0135
0.853 = 0.0133
0.84 = 0.0138
0.863 = 0.0129

0.843 £ 0.0137
0.856 = 0.0132
0.855 £ 0.0132
0.849 + 0.0135
0.856 = 0.0132
0.845 £ 0.0136
0.859 £+ 0.0131
0.843 £ 0.0137
0.849 £ 0.0135
0.85 £ 0.0134
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11 0.84 4+ 0.0138 0.853 £ 0.0133 0.844 £+ 0.0136
12 0.84 4+ 0.0138 0.866 + 0.0128 0.846 + 0.0136
13 0.844 + 0.0136 0.837 £+ 0.0139 0.843 + 0.0137
14 0.84 4+ 0.0138 0.86 + 0.013 0.847 £ 0.0135
15 0.836 + 0.0139 0.852 + 0.0133 0.855 + 0.0132
16 0.839 + 0.0138 0.852 + 0.0134 0.839 + 0.0138
17 0.836 + 0.0139 0.857 £+ 0.0132 0.848 £+ 0.0135
18 0.837 + 0.0139 0.869 + 0.0127 0.844 + 0.0136
19 0.836 + 0.0139 0.852 + 0.0134 0.848 + 0.0135
20 0.854 + 0.0133 0.865 + 0.0129 0.852 + 0.0133
21 0.841 + 0.0137 0.85 + 0.0134 0.833 £ 0.014
22 0.849 + 0.0134 0.845 + 0.0136 0.84 + 0.0138
23 0.839 + 0.0138 0.847 + 0.0135 0.855 + 0.0132
24 0.833 £+ 0.014 0.847 £ 0.0135 0.849 £+ 0.0135
25 0.831 + 0.0141 0.856 + 0.0132 0.848 + 0.0135
26 0.833 £ 0.014 0.845 + 0.0136 0.851 £+ 0.0134
27 0.842 + 0.0137 0.847 £+ 0.0135 0.856 + 0.0132
28 0.838 £+ 0.0139 0.86 + 0.0131 0.847 + 0.0135
29 0.839 + 0.0138 0.849 + 0.0135 0.855 + 0.0132
30 0.849 + 0.0134 0.854 + 0.0133 0.848 £+ 0.0135

Table 4.4: The area under the curve with 95% confidence interval for 30-fold test when
the initial permutation parameter was set to 40.

Because the adaptive sampling strategy generates sequences based on the infor-

mation access rate of nodes, it also manages to improve the model performance as
shown in Figure [4.6 The results suggest that adaptive sampling delivers better clas-
sification results for both degree-based and full adaptation while reducing the number
of sequences and the training time, in average being faster with approximately 38%
for full and 31% for degree based adaptation strategies. This reduction is observable
in all the other configurations as illustrated in Table 4.6 The difference between the
number of sequences in degree based and fully adaptive sampling due to the existence
of some protein-protein connections which results in a higher information blockage for
the drugs connected to these proteins. Note that when model’s hyperparameters are
fixed, the training time is only affected by the number of samples gathered through

the calculation of constraint and node degrees, as discussed earlier. Since in all the
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Model Mean Mean Mean
AUC KS Recall
NBNE (p = 15) 0.839 0.559 0.723
NBNE with full adaptive 0.844 0.579 0.758
sampling (p = 15)
NBNE with degree adaptive 0.869 0.591 0.7672
sampling (p = 15)
NBNE (p = 20) 0.825 0.543 0.741
NBNE with full adaptive 0.855 0.562 0.732
sampling (p = 20)
NBNE with degree adaptive 0.86 0.585 0.758
sampling (p = 20)
NBNE (p = 30) 0.846 0.544 0.715
NBNE with full adaptive 0.857 0.594 0.767
sampling (p = 30)
NBNE with degree adaptive 0.855 0.572 0.741
sampling (p = 30)
NBNE (p = 40) 0.83 0.521 0.706
NBNE with full adaptive 0.857 0.592 0.784
sampling (p = 40)
NBNE with degree adaptive 0.854 0.562 0.75
sampling (p = 40)
Deepwalk 0.681 0.462 0.632
Node2vec 0.672 0.457 0.619

Table 4.5: Alternative metrics used to measure the performance of Deepwalk,
Node2vec, fixed-size, full adaptive and degree adaptive nearest neighbor embedding
methods for 5-fold trials.
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Model Number of generated Training time
sequences (minutes)
NBNE (p = 15) 17280 5.55
NBNE with full adaptive 6429 3.42
sampling (p = 15)
NBNE with degree adaptive 12847 4.30
sampling (p = 15)
NBNE (p = 20) 23040 7.43
NBNE with full adaptive 8179 5.40
sampling (p = 20)
NBNE with degree adaptive 16287 6.01
sampling (p = 20)
NBNE (p = 30) 34560 11.37
NBNE with full adaptive 11481 6.58
sampling (p = 30)
NBNE with degree adaptive 23635 8.14
sampling (p = 30)
NBNE (p = 40) 46080 15.19
NBNE with full adaptive 14651 8.44
sampling (p = 40)
NBNE with degree adaptive 31142 11.36

sampling (p = 40)

Table 4.6: Sequence numbers and training time obtained in different configurations of
fixed-size, full adaptive and degree adaptive sampling.

previous methods the sequence generation has been considered as a sub-process of the
embedding training, we also consider the node influence factor calculation phase as
a part of training. Finally, the best results for k-fold cross validation evaluation are
gained when the number of initial permutations is set to 20, where the full adaptive
strategy reaches a mean value of 86.6% and a maximum value of 87.4% of the area
under the curve in 30 folds among a total of 360 trained models during the test phase
(see Tables [1.1] [4.2] and [£.4).

After generating high quality embeddings of the nodes in drug-disease-protein
graph through an unsupervised, fast and efficient algorithm, we are interested in un-

derstanding the characteristics of this latent space and possibly use them to extract
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insights that may potentially accelerate the drug repurposing process. In the next sec-
tion, we present the process of generating low-dimensional visualizations of this latent
space, also its traits which lead to a better understanding of the proximities of diseases

and their associated drugs.

4.1.3 Drug-disease embedding space properties

We employ the t-distributed stochastic neighbor embedding (t-SNE)
[Van der Maaten and Hinton, 2008] in order to visualize the embedding space of
drugs and diseases. The t-SNE is a technique used to visualize high dimensional data
by giving each data point a location in a two-dimensional map. The visualization
suggests some interesting insights about the reasons that lead to the good performance
of our method. In order to have a clear visualization, the drugs are represented by
triangles (blue) and the diseases by rectangles (green). Further, some points are also
highlighted in the figures to demonstrate interesting properties of drugs, diseases and
their interactions in the embedding space. Figure shows that similar diseases
have close vector representations. Figure (Left) shows a cluster of diseases (red
points) representing pain-related diseases, while Figure (Right) shows a cluster
of muscle-related diseases. These visualizations suggest that our method generates
meaningful representations as related diseases are located close to each other in the

embedding space.

4
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Pain-related diseases ¢ Muscle-related diseases ¢

Figure 4.7: Proximity of related diseases. Left — pain-related diseases. Right —
muscle-related diseases.

We have also analyzed the spatial relation of diseases and their corresponding
drugs. Figure (Left) highlights drugs which are used to treat breathing difficulty.

In this case, most of the indicated drugs are concentrated next to the disease. The
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Figure 4.8: Proximity of diseases and their corresponding medications. Left — breath-
ing difficulty. Right — HIV. In general, drug indications and the corresponding health
problems are located closely

same trend is observed in Figure (Right), where we highlighted the HIV disease.
Again, most of the indicated drugs are placed next to the disease. These visualization
give us a great insight of the embedding space generated by our algorithm and how its
properties can help in searching new uses for known drugs.

Since proximity in the embeddings space implies the existence or lack of the exis-
tence of connections among drugs and a specific group of diseases, these results suggest
that nearby regions can be appropriate choices for finding drug repurposing opportu-
nities. As mentioned earlier, the process of drug discovery is a long and expensive
process. Although the traditional methods have successfully reduced this prolonged
process, the hypothesis generation phase still requires a lot of time, and conducting
these efforts in the right direction can help be more efficient in this phase. Therefore,
after generating meaningful representations for drugs and diseases, they can be used
to limit the search space of repurposing opportunities, reducing the time and cost of
finding new uses of known drugs.

For drug repurposing, both predictability (in form of a variety of supervised and
unsupervised tasks like classification and clustering) and explainability are important
in identifying the possible candidates. Although the generated embedding space has
interesting properties which help limit the search space in hypothesis generation phase,
link prediction task with the use of local approximator algorithms like random forest
and boosted decision trees [Woodruff, 2017] assists predicting the possible links in a
non-linear manner and through a local approximation. Furthermore, it lets automating
the process of identifying new uses of drugs. Since the embedding space does not

represent these non-linear and local decisions boundaries which exist in the decision
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space, it may not be ideal for clustering tasks. On the other hand, generating such a
decision space for complex models (i.e. Random Forest) can be expensive due to high
time complexity of capturing such non-linear patterns. Therefore, it is desirable to learn
the mapping from the original space to the decision space using a small proportion of
data, transferring the entire observations to the decision space using the learnt mapping
function and then carrying out all the prediction and explanation efforts in a single
space. To do so, it is necessary to identify the decision space properties and verify the
possibility of carrying out prediction tasks in a such space. In the next sections, we

analyze its properties and evaluate the possibility of drug repositioning in this space.

4.1.4 Predictability in decision space

Predictability is the degree to which a correct prediction or forecast of a machine
learning system is generated, either qualitatively or quantitatively. On the other hand,
explainability can facilitate the understanding of how a model makes its decisions,
having insights about different aspects of data and variables that make the prediction
possible. Although intrinsic interpretation methods are by nature more interpretable
(i.e., linear models), they may not be able to learn highly complex data efficiently
[Krakovska et al., 2019]. Nonetheless, often non-parametric models can learn intricate
patterns well, but they also can be difficult to explain [Adadi and Berrada, 201§].
Lots of studies have proposed post-hoc explanations that quantifies variable im-
pact on a model [Moradi and Samwald, 2021], [Rudin, 2019]. For example, the Ran-
dom Forest was developed with built-in permutation importance that evaluates reduc-
tions in model performance after removing each variable. Therefore, one commonly
used post-hoc approach is to ask tree-based models’ opinion about variable importance
in a dataset and then train another one using the selected most important variables
by the previous model [Kazemitabar et al., 2017]. Although these approaches have
been applied widely, they still leave the model and its decisions a black-box. Recently,
the game theory-based approaches have been trying to unveil the underlying behavior
of the black-box algorithms and get insights about data by understanding the model’s
decisions [Ribeiro et al., 2016|, [Lundberg and Lee, 2017a]. Although these approaches
have been used successfully in explaining non-parametric black-box models, prediction
and explanation still take place separately and in two distinct spaces (Shapley and
feature spaces). Moreover, since black-box and non-parametric models are often slower
to train and may suffer over-fitting [Ganguly and Cambier, 2021, simpler models are
preferable when observations are linearly separable. Thereby, unifying predictability

and explainability in a more linearly separable space is desirable.
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In coalational game theory, a game consists of a set of players, a value function
which maps the set of players P C {1,2,..., N} to a real value V(P), game is what re-
produces the outcomes, and the mapping should satisfies V({)) = 0. The value function
shows how much collective payoff a group of players can bring to the game through
their collaboration. Shapley value answers the question of how much contribution a
player ¢ brings to the game through calculating the contribution of a set of players with
and without the presence of player i. Therefore the Marginal Contribution ¢ of player

1 with respect to a coalition P can be defined as:

5,(i, P) = V(P Ui) — V(P) (4.10)

Hence, the Shapley value of a player i, ®;, can be seen as a weighted average of

its marginal contributions:

i)=Y s UEZ)_:) 4C)) (4.11)
scpP—{i} IS|

where S is a subset of players and n is the number of players in a collation, and
satisfies the following axioms:

Symmetry: for players i, and j, if §y (i, P) = dy(j, P) for any subset of players,
then ®(i) = ®(j). In other words, if the marginal contribution of two players for any
permutation is equal, then their Shapley values are equal as well.

Additivity: for games a and b, and a single player i, ®,,4(i) = ®,(i)+Py(7). This
guarantees that value function of a combined game is equal to the sum of individual
value functions of each game.

Dummy: for a single player i, if 6y (¢, P) = 0, then the Shapley value ®(i) = 0.
That is, if a player does not bring any contribution to the game, its Shapley value is
Zero.

Given a model f(X = pi,pa,ps,...,0a), the set of features 1 to d can be con-
sidered as players. Hence, model and its predictions are the game and the payoft V',
respectively.

Lemma. If a model f;(X) has a better learning capability than a second model
f2(X) and both models have better learning capability than a random classifier (i.e.
a coin tosser), then the Shapley space of f;(X) is more linearly separable than the
Shapley space of fo(X).

Proof. Shapley space is more linearly separable than feature space if a model
f(X) has a better learning capability than a random classifier (i.e. a coin tosser).

Suppose a binary classification problem with balanced classes, and multi-variable ob-
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servations X; with feature set {pi, pa, ps, ..., pa}, belonging either to class 1 or 0. As
before, for this model the Shapley value of feature p for an observation Xj, @, (X;),
is defined as the weighted sum of marginal contributions. Considering the Dummy

axiom, for a random classifier or a not learnable observation:
vplap?a oy Pd € P ) ®<p’b> =0 (412)

That is, for a completely random classifier, the Shapley values for all the features
are zero. Therefore, in a classifier with better predictability than a random predictor,

for at least one of the features and one of the observation ®,,(X;) # 0. That is:

Ercollo®ll 2 Ef om0 [|0(pi)] (4.13)

Based on the definition of marginal contribution, for a non random classifier
and a correctly classified instance X, if it belongs to class 1, then ®,,(X;) > 0, and
®,,(X;) < 0 otherwise. Therefore from (4.13):

Eyx)[o(pi)|class = 1] > Ey, oo 0)[0(pi)|class = 1]
and (4.14)

Erxololpi)lclass = 0] < Ej, ) [0(pi)|class = 0]

Given two models fi(X) and fo(X), suppose fi(X) has better learability than
f2(X). That is, f1(X) is able to classify more observations correctly and with a higher
Kolmogorov-Smirnov distance(KS) between the cumulative distributions of predicted
probabilities for each class. Because for a model with higher KS, less classification errors
(more correctly classified observations) means larger difference between the marginal
contributions of instances related to each class [Utkin et al., 2021], then the equivalent
of {.13] and [£.14] are satisfied for general case.

Namely, from [£.14] the mean values of the distributions of the observations as-
sociated with each class move away from each other. The more a model capable of
learning, the more distance between the mean values of the instances related to each
class in Shapley space and the better separability.

Transforming feature space into another with more separability is common in
a group of statistical learning approaches. Support Vector Machines (SVM) is ca-
pable of handling nonlinear classification problems by mapping input vectors into a
high-dimensional space with kernel functions where data are more linearly separable
[Cortes and Vapnik, 1995], [Noble, 2006]. Training on Multilayer Perceptron (MLP)

can be thought of as a process of learning a mapping from original feature space to
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a more linearly separable one through matrix multiplication [Yegnanarayana, 2009|.

Because of the membership separability characteristic of Shapley space, the weights of
a Shapley regression represent a mapping function that transforms the original obser-
vations into a new favorable space with a higher separability than the original feature
space. Therefore, we first trained a Shapley regression, based on Random Forests, only
with a proportion of data used in the training phase of the previous link prediction
task. Then the trained weights were used to transform the test data into the Shapley
space. The Principal Component Analysis was applied to make it possible to visualize
both spaces in lower dimensions. As shown in Figure and [4.9D], since the trained
Random Forest model has better learnability than a random classifier, its Shapley

space is more separable than the original feature space.

3rd component 3rd component

~ oors

-+ 2nd component oo = " 2nd component
s < o0

Ist component : ” < Ist componcni R 7 s
(a) Original feature space (b) Shapley space

Figure 4.9: A comparison between the Shapley and the embedding space of the drug-
disease-protein graph in terms of separability of observations related to each class in
three dimensions. Each dimension represents one of the principal components found
by PCA.

Asking the opinion of a primary model about the nature of data and using it

in a second model is a common practice in machine learning |[Mursalin et al., 2017,

|[Pan and Shen, 2009]. A grey-Box is a combination of white-Box and black-Box mod-

els, and its goal is to is develop an ensemble of black and white-Box models to combine

and acquire the benefits of both |Pintelas et al., 2020|. Because of the non-linear na-

ture of black-box models, they typically outperform the white-box models in complex

learning tasks |James et al., 2013|. Therefore, due to the feature separability of Shap-

ley space and because the interpretation of data is already embedded in Shapley values,
one can make use of black-box models to learn the Shapley transformation based on
a small proportion of data, transform the entire data to the Shapley space, and then

train a white-box model (which has better interpretability and is generally faster to



CHAPTER 4. CASE STUDY: DRUG REPURPOSING THROUGH LEARNING COMPLEX
48 STRUCTURES OF GRAPHS

train) in this new space so that it achieves better classification or regression results
compared to the original space. Furthermore, migrating to Shapley space is favorable
because both supervised and unsupervised tasks can be done in a more interpretable
space where predictability and interpretability are met.

As illustrated in Figures 4.10a| and [4.10b, Logistic Regression achieves 76% of
AUC when trained on the original embedding space of the drug-disease-protein graph.

At the same time, it manages to reach 84% of AUC after being trained on Shapley

space of a Random Forest as the primary model.
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10 10

o8 [T

06 06

a4 04

02
02

0o

oo
oo 02 04 06 o8 10
1 - Specificity

00 02 08 10

1 N Speciﬁcoitay
(a) Logistic Regression trained on the (b) Logistic Regression trained on the
original space. Shapley space.

Figure 4.10: The performance of Logistic Regression as a white-box model in original
and Shapley space.

The proposed grey-box modeling in combination with the Shapley separability
property helps obtain the same flexibility of a complex and hard to explain black-
box algorithm, with better explainability. The Random Forest, initially used as a
black-box model, has a time complexity of O(k x n x log(n) x m) where k is the
number of trees, and m and n are the number of independent variables and number of
observations, respectively. The space complexity for this algorithm is O(k x 2¢) where
d is the maximum depth. Since the time complexity of the splitting phase of tree-
based methods for continuous variables depends on the number of observations (with a
O(n x log(n)) factor), using p proportion of data results in a faster training. The time

and space complexity of a Logistic Regression is O(n x m) and O(m), respectively,

having a faster training as well [Singh et al., 2009]. The proportion of data to be used

in Shapley values generation phase can be considered as a hyperparameter and can
be decided through cross-validation evaluation. As shown in Figure applying

only 20% of data is sufficient to capture the complex decision making process of the
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Figure 4.11: The proportion of data used to generate Shapley values and train the
Logistic Regression versus the model performance in terms of the area under the curve.

Random Forest by the Logistic Regression as a less complex white-box algorithm,
resulting in a better explanation of the decision making process and faster training.
It is worth mentioning that the time complexity of generating Shapley values using
SHAP approximation is of the order O(k x n x m x d?) and thus, using a p proportion

of data leads to faster generation of Shapley values as well.

4.1.5 Clustering in Shapley versus embedding space

Shapley values enable understanding the model’s global decision making process
through combining many local explanations. From the structural perspective, the
embedding space generated by the proposed algorithm maintains the first and second-
order similarities, making the nearest neighbors located in the same region. However,
proximity in the embedding space does not necessarily convey a link between the the
neighbors. The proximity based on the connectivity of the nearest neighbors is decided
by model and within its decision space, making the Shapley space more convenient for
further interpretations.

Previously, it was shown that the Shapley space is more linearly separable than
the original space since for a model with better separability than a random model,
the expected value of the weighted average of marginal contributions of each player
for observations of different classes move away from each other. In addition to the
concentration of these expected values of the marginal contributions of different classes

in different regions, those observations with similar feature contributions should occupy
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nearby regions.

Lemma. For a given class and a set of observations x1,xs, z3, ..., x, and a set
of variables p1,po, ps, ..., pq, observations with similar weighted average of marginal
contributions ®(1), ®(2), ®(3), ..., ®(d), are more closely located than other data points
with less similar weighted marginal contributions.

Proof. Suppose two observations x; and x; with similar ®(d)s, and another
observation x; with different weighted average of marginal contributions compared to
x; and x;. That is, at least for one of the players p; in the game, z; and x; have more
similar marginal contributions compared to x;. The Euclidean distance between two

data points a and b is defined as:

d(a,b) = |[b—all = (4.15)

Therefore the Euclidean distance between x; and z; is,

d(z;,x;) = \/((IJ(l)j —®(1);)2 4+ (2(2); — D(2),)2 + ... + (®(d); — ®(d);)*>  (4.16)

The Euclidean distance between each of the z; or x; with x;, is then:

Ay, mi) = (@1 — (1)) + (2 — D(2)iy)? + .. + (B(d)s — B(d)y)?
(4.17)
where i|j represents an attribute related to ith or jth observations. For example,
d(x;;, v1,) shows the distance between x;, and either z; or x;, and ®(d);); represents the
weighted marginal contribution of either ith or jth observations for dth player.
Because two observations with more proximity were defined to have at least one

more similar weighted marginal contribution than a third data point, thereby:

[@(1); = @(1)] < [®(1)x — (1)
or [®(2); — D(2)i] < [P(2)x — P(2)i5] (4.18)
or ,..|®(d); — ®(d);| <|P(d)r — P(d);]
Therefore from [4.16], [£.17] and (.18}

d(x;, ;) < d(2i;, vr) (4.19)

As a result, z; and z; are closer compared to x;. Note that although a measure

of Euclidean distance was used to prove the proximity between z; and z;, the same
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result is valid for any p — norm of Minkowski distance |Gueorguieva et al., 2017]:

3=

D
d(i, x5) = [lw; — zill, = | | D_(®(d); — B(d)s) (4.20)
d=1

where p represents the pth norm.

As shown, the sum of the marginal contributions of non-random model is sup-
posed to be similar for observations associated with each class, making not only the
expected value of coalitions of each feature more linearly separable than the original
space, also makes the observations with similar feature marginal contribution be lo-
cated in the nearby regions. These attributes do not hold in the embedding space.
Hence, when the goal is to cluster the closely related observations based on their prox-
imity in having similar links, Shapley space is a more appropriate choice for clustering
when the similarity metric is based on Minkowski distance.

The practical benefit that the generated Shapley space brings to our clustering
task can be shown using clustering quality metrics. Suppose that the data points ¢
of the embedding space have been grouped by K clusters Cj for K = 1 to K. The
average distance between the data point ¢ and all the other observations in cluster C},

1s:

a; = |Ck Z d(i, 7)) (4.21)

1,jeCl,i#]
where d(i, j) is some measure of Minkowski distance between observations ¢ and
j. Therefore, the smallest mean distance of a point ¢ to all the other data points in the

other clusters C, -k, called as smallest mean dissimilarity, is defined as:

b = mm Z d(i, j1)) (4.22)

]ECm i#£g!

where the cluster with the smallest mean dissimilarity is called neighboring clus-

ter. The Silhouette [Rousseeuw, 1987] of a single data point is then defined as:

i=—— . 4if |C 1 4.23
s mazx(a;, b;) if 1G] > ( )

and

s;=0 , if |Cil=1 (4.24)

The Silhouette coefficient is defined to be the the maximum value of the mean
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Figure 4.12: A comparison of Silhouette coefficients for different number of clusters
ranging from K = 2 to 11. The clustering in Shapley space constantly shows a better
separation of clusters for all the the values of K.

s(i) over all the observations of the entire dataset and ranges from -1 to 1. A score
of 1 indicates a perfect clustering and the closer the Silhouette coefficient value to 1,
the more well apart from each other the clusters are. On the other hand, a Silhouette

coefficient of 0 and -1 means indifferent and wrong clustering, respectively.

In order to compare the cluster qualities, the clustering was carried out in both
Shapley and embedding spaces and then, the Silhouette coefficients were calculated for
different values of K in K-means clustering ranging from 2 to 11 (as the best number
of clusters which was identified through elbow method). As illustrated in Figure m
and [4.13] for all the values of K in K-means, the Shapley space constantly enables the
clustering algorithm to form groups with better separation. More specifically, clustering
in the embedding space resulted in an average Silhouette coefficient of 0.0689 across
all the K configurations, while the Shapley space leads to a better average Silhouette
score of 0.257.

It should be noted that when Gradient Boosting-based algorithms such as XG-
boost [Chen et al., 2015 are used to train and generate Shapley values, if the loss is set
to be a binary logistic objective function, the Shapley values are log-odds. In case the

calculated values are probabilities generated using an inverse of log-odds, the generated
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Figure 4.13: Examples of groups formed through K-means clustering for K = 10 and
K =11 in the embedding and Shapley spaces.

space is a Simplicial space |[Baues, 1995] and can be defined as:

D
SP =X = [561,.’172,273,...,(1713] GRD|X7; > O,ZZ‘Z =k (425)
i=1
Because the probabilities generated by log-odds alongside all the dimensions sum

to 1, the probability space can be considered as a Simplicial space where k = 1.

Such a space generated by compositional data |Aitchison, 1982] can be modeled with
Dirichlet distribution [Makgai et al., 2021|. Because the observations in Dirichlet dis-

tribution are located in the probability space, the Euclidean distance usually used in

clustering algorithms like K-means does not hold anymore |Bui et al., 2017|. Thereby,

another distance measures like Bhattacharyya |Bhattacharyya, 1943| distance should

be adopted [Bui et al., 2017]. Also for any types of analysis based on distance (i.e.

mean distance between data points), Isometric Logratio Transformations (ILR) can be

applied to transform the compositional coordinates to real ones while preserving all
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metric properties [Egozcue et al., 2003)].

4.1.6 Drug repurposing opportunities in decision space

We used SHAP |[Lundberg and Lee, 2017b] based on a Random Forest model initially
trained on a proportion of data (only the training set) and then transformed the entire
embedding data (associated with the train and test sets) related to the drug-disease-
protein graph into the Shapley space. Afterward, we analyzed the response factor of
variables associated with each disease and drug. The response factor of a variable
is its tendency to push the model’s prediction toward a specific result. Therefore in
our link prediction problem, a positive response factor is a variable’s attempt to con-
vince the model to predict the existence of a link between a drug and disease, and
negative response factors do the opposite. We found out that those diseases and med-
ications that share the same group of positive and negative response factors have sim-
ilar characteristics. As illustrated in Figure [4.14] the response factors of each cluster
show a relation with a specific group of diseases and drugs. Based on the explana-
tion of the model, illnesses related to the same cluster are supposed to be related as
well, and the medications of each cluster are possibly good candidates for drug re-
purposing [Vogt et al., 2014]. This property has been shown in several clusters. For
example, one of the clusters shows that diseases related to muscle and joint pain, bipo-
lar II disorder, and cluster headaches respond equally to specific embedding features.
Interestingly, a recent research confirms that Migraine with active headache is asso-
ciated with other painful physical symptoms among patients with major depressive
disorder [Hung et al., 2019]. In another example, our algorithm put Multiple Sclerosis
(MS) and Toxoplasmosis in the same cluster. According to a study carried out by
|[Enriquez-Marulanda et al., 2017], Toxoplasmosis should be considered as a differen-
tial diagnosis of tumefactive MS. Our algorithm also decided to group Amyotrophic
Lateral Sclerosis (ALS) and HIV, which confirms the result of the studies where it was
reported that that ALS-like disorder should be considered an HIV-related neurologic
complication [Moulignier et al., 2001] [Douville and Nath, 2017]. Recognition of these
HIV-related motor neuron syndromes is crucial because they may positively respond to
the same group of treatments. These syndromes also raise theoretical issues whether
sporadic ALS could ever be caused by a virus or autoimmunity. It is still not known how
HIV might cause a motor neuron disorder [Jubelt and Berger, 2001]. Another interest-
ing result is the association between panic disorder and Amyotrophic lateral sclerosis
(ALS) found by our algorithm and recently confirmed by [Siciliano et al., 2019]. Ac-
cording to this study, 33% of patients who suffer from ALS also suffer from some kind
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of panic and anxiety disorder.

As mentioned before, our model suggests using the medications of each cluster
as possible candidates for treating the diseases which are members of the same group.
Accordingly, our algorithm suggests Gabapentin as a candidate for bipolar II disor-
der. This result has been confirmed by |Fullerton et al., 2010] and |Pande et al., 2000,

and in several other studies. While Naproxen is used in treating balance prob-

lems, it can also be used for treating Myofascial Pain ([Khalighi et al., 2016]). Our

algorithm confirms this result as it puts these diseases and medications in the

same group. Recent studies show that Fibromyalgia is associated with muscle ten-

sion and depression [Bosco et al., 2019]. As another recent research carried out by

|Guymer and Littlejohn, 2019a] shows, Amitriptyline, which has been used in the treat-

ment of muscle tension, is a possible candidate for Fibromyalgia. By putting Amitripty-

line and Fibromyalgia in the same group, our algorithm chooses this drug as a possi-

ble repurposing medication to treat Fibromyalgia. Finally, [Bubnova et al., 2019] and

[Donato and Brown, 2019| confirmed that both Amlodipine and Atorvastatin caused

significant improvement in patients with high blood pressure, which is in accordance

with our results.

T

(c) Balance-related diseases (d) HIV-related diseases

Figure 4.14: Four examples of groups of diseases with the same response factors. Those
diseases with the same set of Shapley features which move the model toward a specific
class show having similar symptoms.

Having the same group of negative and positive response factors is an important
Shapley space property that reveals how drugs with a similar mechanism of action and
diseases with similar symptoms share similar latent representations, However, the simi-

larity of the Shapley values related to response factors reveals which regions of Shapley
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space have more chance of finding repurposing candidates. In order to understand the
effect of having similar Shapley values, we used K-means [MacQueen et al., 1967] with
K =11 as the maximum point of decrease in intra variance. As mentioned before, the
number of clusters, K, was decided by the elbow method. Since the sum of the intra-
group variances slowly continues decreasing up to K = 25, higher number of clusters
based on the maximum number of meaningful groups can also be examined.

Diseases with no similar connecting edge with the same group of diseases in
the original graph were separated and their possible relation was analyzed. In this
Shapley space, disease proximity is translated to the existence or lack of existence of
similar connections with a group of drugs and proteins (either directly or indirectly).
Because diseases with the same underlying mechanism may have similar symptoms
[Pietzner et al., 2021], we expect that diseases located in the same groups to have sim-
ilar phenotypes and thus having repositionable drugs [Vogt et al., 2014]. By analyzing
the disease pairs in each group, we found several repurposing opportunities. Namely,
our algorithm indicates a relation between Optic Neuritis and Renal Calculi (which
itself can cause Renal failure). Wolfgang and colleagues mentioned that Renal cal-
culi can be an underlying cause of Optic Neuropathy [Winkelmayer et al., 2001]. Lee
et al. reported that Bilateral Optic Neuropathy can be a rare uraemic manifestation
of end-stage renal disease [Lee and Vaithilingam, 2011]. Also, a recent study men-
tions that eye shares genetic and structural pathways with the kidney and suggests
that ocular and kidney diseases may be closely linked [Escoli et al., 2018]. Interest-
ingly, a recent study [Hayes et al., 2020] reported the effectiveness of Corticotropin, a
drug used in the treatment of optic neuritis, to improve renal damage. Our algorithm
put Glioblastoma and Eczema into the same clusters, indicating a strong relationship
between these two diseases. This is in accordance with the research carried out by
Wang and colleagues, where it is reported that Eczema is associated with a reduced
risk of Glioma [Wang et al., 2016b|. Azathioprine is mainly used in the treatment
of people with severe atopic Eczema. Recently, Nam et al. reported that Azathio-
prine is a promising therapeutic to treat Glioblastoma [Nam et al., 2021]. Brown and
colleagues confirmed that prevalence of incontinence is significantly elevated among
women with pre-diabetes, when compared with women with normal glucose levels
[Brown et al., 2006]. The near relation between Essential Tremor(ET) and Parkin-
son’s has been studied in [Tarakad and Jankovic, 2018|, and authors cited that some
patients diagnosed with ET show an increased risk of developing Parkinson’s years
after initial tremor attacks. Gabapentin is a drug used in the treatment of ET. Abe et

al. confirmed that Gabapentin had improved both hallucination and pain in patients

diagnosed with Parkinson’s [Abe et al., 2016] (see Tables [4.7 and [4.§).
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These results suggest that both embedding and decision spaces (related to the
prediction of drug-disease interactions) have several useful characteristics that permit
selecting a specific group of candidates with a high possibility of repositioning among
thousands of drugs, accelerating the drug repurposing process and providing a geomet-

ric explanation.

Disease Associated with Also confirmed by
ALS-like disorders HIV-related neurologic [Douville and Nath, 2017|
Panic disorder ALS [Siciliano et al., 2019
Toxoplasmosis MS |Guymer and Littlejohn, 2019b)|
Optic Neuritis Renal Calculi [Winkelmayer et al., 2001]
Glioblastoma Eczema [Wang et al., 2016b]
Essential Tremor Parkinson’s |Tarakad and Jankovic, 2018§]

Table 4.7: Diseases with similar shapley characteristics are associated with each other.

Drug Disease Also confirmed by
Naproxen Myofascial Pain [Khalighi et al., 2016]
Amitriptyline Fibromyalgia |Guymer and Littlejohn, 2019b]
Amlodipine High blood pressure |[Donato and Brown, 2019
Atorvastatin High blood pressure |[Bubnova et al., 2019]
Corticotropin Optic Neuritis [Hayes et al., 2020]
Azathioprine Glioblastoma [Nam et al., 2021]
Pergabalin Generalized unprovoked vulvodynia  [van Beekhuizen et al., 2018]
Tizanidine Chronic Pain [Peck et al., 2020]
Celecoxib Musculoskeletal Arthritis [Krasselt and Baerwald, 2019]
Amitriptyline  Generalized unprovoked vulvodynia  [van Beekhuizen et al., 2018§]
Cyclobenzaprine Chronic Pain [Peck et al., 2020]
Brexpiprazole Schizophrenia |Ekinci and Ekinci, 2018]
Cetirizine Asthma [Corsico et al., 2019
Gabapentin Bipolar II disorder [Fullerton et al., 2010]

Table 4.8: Some of the candidates for drug repurposing found by the proposed method
which also have been confirmed in the recent studies.

During this study, we proposed an unsupervised node representation learning ap-
proach based on adaptive sampling of nodes’ nearest neighbors. Using this method we
managed to decrease the number of generated sequences up to 70% and we reached
an approximately 40% faster training for p = 20 as the configuration which resulted
in the best link prediction result. We showed that in the generated embedding space,
diseases with similar symptoms and their corresponding drugs are located in nearby re-

gions. This important discovery of the relation of drugs and diseases in the embedding
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space directly benefits the time consuming processes of finding repositionable drugs
by limiting the search space. Here in addition to indicating possible candidates, we
aim at explaining why a specific or a group of drugs are good repurposing candidates.
Therefore, we analyzed the explanation space and found out that diseases with similar
positive and negative response factors are associated with each other and usually share
a same group of symptoms. Because in the explanation space of drug-disease-protein
graph having similar response factors is an indication of having connections with the
same group of diseases and proteins, those drugs with similar response factors should
possibly share connections with the same group of diseases. By utilizing the specific
characteristics of the explanation space, we integrated all the prediction, explanation
and clustering tasks in the same space where the explanation comes with each single ob-
servation, the predictions become more explainable and the groups generated through
clustering task are more separable. Finally, by applying the proposed approach we
managed to find several repositioning opportunities which some have also been con-
firmed in the recent studies as already shown in Table (see the complete list of the

associated drugs and diseases in the appendix).

4.2 Extended case study for modeling
pharmacological effects with multi-graph

embedding

Repositioning opportunities can be uncovered systematically by following either a
disease-centric approach, as a result of a close relation between an old and new in-
dication, a target-centric one, which links a known target and its established drug
to a new indication, or a drug-centric approach, which connects a known drug to a
new target and its associated indication. Disease-centric repositioning may appear
faster and more direct than target-centric and drug-centric repositioning. In fact, a
disease-centric repositioning hypothesis is based on a close connection between drug-
indications. This appear to be the ideal approach as it enables the possibility of drug
repositioning without a need to have deep knowledge about physico-chemial interac-
tions between drugs, targets and proteins. However, if this were the case, one cancer
drug would cure all forms of cancer. Disease-centric approaches require a detailed un-
derstanding of the disease phenotype and underlying molecular processes to pursue the
novel indication. In target-centric repositioning, we consider only drugs for which old

and new indication are of different type. However, a novel link from target to new in-
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dication is a rare finding. Since each of these approaches has its own pros and cons, we
propose a novel hybrid approach which models the latent relation among drug-target,
drug-mechanism, drug-indication and disease-indication connections in order to predict

novel drug connections with diseases.

4.2.1 Data

We collected the data from Drugbank, which is a web-enabled database containing
molecular information about drugs, their interactions, their mechanisms, and their
targets [Wishart et al., 2018]. Our cohort is composed of 315 drugs, 1218 diseases and
four types of interactions: a) drug-action; b) drug-mechanism; c) drug-target and d)
drug-indication each with 102033, 3593, 36454 and 10714 interactions respectively. As
illustrated in Figure [.15] based on these interactions, we constructed four bipartite
graphs.

Drug Indication Drug Action Drug Mechanism  Drug Target

Figure 4.15: Four types of interactions including drug-indication, drug-target, drug-
action and drug-mechanism were used to create four independent graphs. These inter-
actions are learnt and used to predict the possible drug and disease links.

Here one of our goal is to investigate the possibility of modeling drug-disease
interactions through modeling drug-indication, drug-action, drug-target and drug-
mechanism interactions without having prior knowledge about drug-disease links. By
doing so, we would construct a deductive reasoning through the following hypothesis:
if two or more drugs have similar interactions (in drug-indication, drug-target, drug-

action and drug-mechanism graphs), they are likely repositionable.

4.2.2 Modeling strategy and results

We created four bipartite graphs and then trained them separately using degree adap-
tive NBNE (with window size = 24 and number of permutations = 20) as explained in
the previous section. We tested the performance of each graph representation individ-

ually and chose drug-action, drug-target and drug-mechanism representations as the
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best candidates for creating the final drug representation. It is important to mention
that it is in fact possible to form a single graph of drug, action, mechanism and target
attributes and find the representations in a single space, but we rather train graphs
separately for three reasons: a) it is much easier to interpret the meaning of embed-
dings for separate graphs than a single graph with complex interactions; b) since graph
learning algorithms approximate complete graph exploration through random walks or
neighborhood permutations, creating multiple representations for huge graphs can re-
duce the learning error and generate better embeddings [Epasto and Perozzi, 2019]; c)
different embeddings have different meanings and can be utilized in different problems.

After extracting node representations (with 128 dimensions), a single representa-
tion with 384 features for each drug is created. In the next step, for each disease we
create a dataset containing the representations (with 384 features) of 315 drugs and a
binary class which is set to 1 if the drug is used in the treatment of the disease and 0

otherwise.

Drug-mechanism Drug-action Drug-target

I I O N N e L e LT

Drug embedding vector

I I HERER

Figure 4.16: After concatenating the embeddings of four graphs, the final drug repre-
sentation is a vector with 384 features.

Twenty two diseases were selected to examine the effectiveness of our method in
finding the possible interactions between drug and diseases. The criteria of choosing
diseases is the number of drugs are currently used to treatment of the disease. This is
due to the fact that diseases with extremely low number of drugs are hard to model.

In order to avoid the curse of dimensionality problem and choosing the most
informative set of variables, the best set of features were chosen using feature ranking
with recursive feature elimination, Support Vector Machine (SVM) with linear kernel
as the estimator and a 5-fold cross validation. After choosing the best set of features,
a 10-fold cross-validation is used to assess the embedding’s quality. We divide the
dataset related to each disease into 10 folds, each time one of them is used for the
validation and the rest for the training. Support Vector Machine, K-nearest Neighbors
and XGBoost were used to model drug-disease interactions. Using XGBoost, as the
algorithm with the best classification results, our method manages to identify the drug-
disease interaction and correctly guess when a drug is or is not used in treatment of

disease. As before, we used AUC-ROC score as the performance metric. As shown in
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Table[4.9] the best results are obtained for Cardiovascular diseases with 86%, Dementia
with 83% and Anxiety with 85% AUC-ROC score.

Disease AUC
Infection 76%
Neoplasm 69%
Depressive disorder 73%
Melanoma 65%
Cardiovascular diseases 86%
Schizophrenia 79%
Lymphoma 2%
Anxiety 85%
Dementia 83%
Clorectal Neoplasms 70%
HIV 58%

Anxiety 85%

Chronic pain 68%
Carcinoma Non-small Cell Long 66%
Luekemia Myeloid Acute 68%
Ovarian Neoplasms 5%
Anxiety 85%

Multiple Myeloma 63%
Pancreatic Neoplasms 57%
Carcinoma renal cell 58%
Heart failure 60%

Breast Neoplasms disorder 58%

Table 4.9: The result of link prediction of drug-disease interactions for 22 diseases using
the combined drug-action, drug-mechanism and drug-target embeddings.

We analyzed the confusion matrix and observed some interesting results. Because
in our method each instance is a combination of drug-action, drug-target and drug-
mechanism interactions, drugs with similar representations have similar interactions.
As a result, false positives (those drugs with similar indication, action and mechanism)
may reveal repositioning opportunities or drug side effects (as they are additional,
usually undesirable, effects of medications which can arise through the same mechanism
of action as the therapeutic effect).

Carvedilol is used for treating high blood pressure and heart failure and was
confused by our model as a treatment of dementia. As mentioned in a study by Wang
et al. [Wang et al., 2011], evidence from their studies reveals that carvedilol interferes
with [ aggregation mechanisms and demonstrates the efficacy of carvedilol treatment

to mitigate AD-type amyloid neuropathology and although this drug has not yet been
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Drug Disease Also confirmed by
Brexpiprazole Dementia [Khalighi et al., 2016]
Amitriptyline Fibromyalgia |Grossberg et al., 2019|
Chlorpromazine Anxeity [Meng et al., 2018]
Brexpiprazole Anxeity [Thase et al., 2019]
Testosterone Enanthate Depression [Bhasin and Seidman, 2019]
Zileuton Depressive disorder [Nam et al., 2021]
Asenapine Depression [Vieta and Montes, 2018|
Clofazimine Lymphoma |Lentz et al., 2019
Ribavirin Lymphoma [Dominguez-Gomez et al., 2019]
Carvedilol Amyloid Neuropathology [Wang et al., 2011]

Table 4.10: A group of the candidates for drug repurposing found by analysing the
false positives related to a link prediction task where the concatenated embeddings of
drug-mechanism, drug-action and drug-target are used to model drug-disease interac-
tions. False positives are those instances which show high similarity with the in-use
medications. These results have also been confirmed in the recent studies.

approved by FDA, their study supports the continued development of carvedilol for
the treatment and prevention of Alzaimer Disease (AD) dementia. Our algorithm
also finds a strong relation between Brexpiprazole and AD dementia. Using this drug
was supported by a recent study which emphasises that it has the potential to be an

efficacious, safe, and well-tolerated treatment for dementia |Grossberg et al., 2019|.

Chlorpromazine which is primarily used to treat psychotic disorders such as
schizophrenia has similar vector to the drugs used in treatment of anxiety and our
model suggests a relation between this drug and anxiety which was also confirmed in
other study carried out by Meng et al. [Meng et al., 2018]. Brexpiprazole, which is
another drug used in treatment of Schizophrenia, shows similar vector representation
to the in-use anxiety drugs. A recent study indicates that adjunctive brexpiprazole
2-3 mg/day is efficacious in reducing depressive symptoms in patients with clinically
relevant anxiety symptoms who have not responded to antidepressant monotherapy
and this drug was well tolerated in patients with clinically relevant anxiety symptoms
[Thase et al., 2019].

Zileuton is an orally active inhibitor of 5-lipoxygenase used for the maintenance
treatment of Asthma. Our algorithm considers the existence of a link between this drug
and depressive disorder, a result that has been confirmed in [Li et al., 2018] which
mentions that Zileuton abrogates LPS-induced depressive-like behaviors and neuro-
inflammation, and enhances response element-binding protein (CREB)/brain-derived

neurotrophic factor (BDNF) signaling in the hippocampus, suggesting that Zileuton
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could have potential therapeutic value for depression. Testosterone Enanthate is an an-
drogen and anabolic steroid (AAS) medication which mainly is used in the treatment of
low testosterone levels in men. In the literature, several recent studies have established
positive role of testosterone in the treatment of depressive symptoms or depression in
hypogonadal subjects [Royer et al., 2018| |[Bhasin and Seidman, 2019]. These results
agree with our data where there is a high similarity between the embeddings of Testos-
terone Enanthate and those drugs used in treatment of depressive disorder. The same
conclusion is valid for Asenapine as it has similar interactions to those drugs are pre-
scribed for treating depression. This has been confirmed by Vieta and his colleague
[Vieta and Montes, 2018| where they conclude that Asenapine is effective in alleviating
the symptoms of depression in patients with bipolar I disorder during mania.

The primary use of Clofazimine is for the treatment of Leprosy, however, several
new studies suggest that it can be beneficial in treatment of a group of cancers in-
cluding variations of Lymphoma [Durusu et al., 2017], [Lentz et al., 2019]. Ribavirin
is used primarily to treat Viral Hemorrhagic Fevers, Hepatitis C and a variety of fevers
such as Lassa fever, Crimean-Congo Hemorrhagic Fever and Venezuelan Hemorrhagic
Fever. Lately, a study conducted by Guadalupe et al. confirmed that Ribavirin can be
proposed to exert growth inhibitory effects on Lymphoma cell lines, particularly Hut78
cells and suggests that this medication has anti-Lymphoma potential, however, they
emphasize that more clinical studies are required to determine the effectiveness of Rib-
avirin as a therapeutic agent for treating lymphoma. [Dominguez-Gomez et al., 2019].
All these results are also confirmed by our method through indicating strong connec-
tions between the generated embedding of each drug and the corresponding diseases
(see Table [4.10).

In this chapter, we presented two novel drug repurposing methods based on graph
learning. First, we showed the benefits of using adaptive sampling and how it helps
generating faster embeddings with at least as high quality embedding as the fixed
permutation strategy. It was also shown that it is possible to analyse the embedding
space of drug-disease-protein graph and explore its special properties which help ac-
celerate the discovery of new uses. Further, it was proven and shown with evidences
that the Shapley space is more linearly separable and also more appropriate for clus-
tering and it can constantly reach better groups quality than the embedding space.
The clusters in Shapley space was then used to discover drugs with similar positive
and negative response factors and consequently resulted in finding more repurposing
opportunities. In the second study, we demonstrated the possibility of learning the
drug representations of drug-action, drug-mechanism and drug-target interactions in

form of multiple independent graphs, creating a new drug embeddings by unifying the
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separately learned drug representations and finally utilizing them in order to predict
drug-disease interactions. Finally, we showed that false positives may be used to find
new uses of medications and to identify repurposing opportunities. In the next chapter,

the conclusion and our plans for future studies are presented.



Chapter 5

Conclusion

Drug discovery is a complex process and often takes several years until a new drug is
mass produced. Before a drug can even go to test process, it most be researched. The
whole process begins with the identification of the target (protein or a pathway which
is involved in a particular disease) for a drug to act upon. In this step, before going
any further, researchers try to make sure that a certain target is actually involved in
the disease. This stage usually takes between 3 to 6 years. Once the target is identified
and validated, the search for finding the substances which have effect on it begins. This
involves the laboratory testing of a tremendous number of compounds, often 10,000
or more, to determine which shows some activity against the target. At this phase,
which is called preclinical studies, it is unlikely that the perfect candidate suddenly
presents itself, but compounds that show promise will be identified. This phase often
takes up to two years. The clinical trials, as the last phase, involve human tests and
and provide information on efficiency and safety. This phase is the longest phase and
can takes between 4 to 7 years.

Since repurposing is a shortcut for this cumbersome process, it has drown a lot
of attention in drug discovery community. Some of new uses of drugs are the result
of some random accident which was reported by patients. The mechanism-of-action is
the function of drug in the cellular machinery and learning mechanisms-of-action is a
crucial for identifying new opportunities for the use of already approved drugs.

Graphs are essential structures that model a variety of real-world problems. For a
drug to be metabolized or act upon a receptor or by an enzyme, it must first be bound
to that enzyme or the receptor protein. On the other hand, each drug treats a disease
or a group of health conditions. Therefore, connections between drugs, proteins, and
diseases suggest that these relations can be represented in a graph structure. Therefore,

discovering the hidden relations between drugs and diseases in a graph structure and

65



66 CHAPTER 5. CONCLUSION

using this information to identify new uses of drugs has recently drawn researchers’
attention.

One recent promising approach to drug repositioning is to take advantage of
machine learning algorithms to learn patterns in biological data related to drugs and
then link them to the potential of treating specific diseases. However, in order to model
graph structure, we first need to find a way to represent it in common structures like
tabular form. One traditional way is to use the adjacency matrix and use it as the
input of machine learning algorithms. Nevertheless, such a matrix is usually sparse,
making it a poor choice due to high memory complexity. Therefore, it is indispensable
to learn dense representations of graphs while maintaining their characteristics in their
original form.

Node representation learning is a recently emerged area that has demonstrated
its efficacy for generating low-dimensional representations of nodes, which leads to in-
creased attention towards this research field. Several approaches have been proposed
during the past few years to learn the node embeddings efficiently, although the ma-
jority suffers from either low-quality node representations or slow training.

The influence of a node is defined as its ability to spread information through
network and affect its neighborhood. In short, ranking nodes based on their influence is
identical to ordering them based on their importance. The current node representation
learning approaches give same importance to all nodes and dedicate same effort to
learn nodes surrounding information which result in a slow training and low-quality
embeddings for influential nodes.

In this work, a new approach for selecting drug repurposing candidates was intro-
duced. We first propose a new graph representation learning algorithm with adaptive
sampling based on nodes’ influence factors. The adaptive sampling strategy help dedi-
cate more learning effort for important nodes and lesser for others, mainly isolated from
the rest of the nodes. This results in fewer training sequences for sparse graphs, leading
to faster learning. We showed that it is possible to reduce training sequences by up to
75% while maintaining learnability. We also demonstrated that it is possible to join
model predictability and explainability by migrating from the original feature space
to Shapley space. After generating the drug-disease-protein embeddings and applying
the Shapley transformation based on the opinion of a Random Forest model trained
on a small proportion of data, clustering and link prediction tasks were performed in
this new space. It was pointed out that diseases with similar response factors are likely
related to similar symptoms, and their drugs are possibly interchangeable. Further-
more, we showed that only having similar response factors is enough to detect groups

of medications with a high chance of interchangeability, speeding up the selection of
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drug repositioning candidates. Furthermore, we examined the possibility of predicting
drug-disease links through learning the interactions existing in the drug-mechanism,
drug-action and drug-target graphs. After training the node vector representations of
each graph separately, the final embeddings were constructed through the concatena-
tion of vectors for each node and subsequently they were used to predict the associated
diseases. Finally we showed that the false positives can indeed be used to find drug
repurposing opportunities.

As mentioned, drug repurposing aims to reduce the time and cost of finding new
drugs. Nonetheless, the whole process of identifying new uses of already known drugs
can still be complex and time consuming. The methods developed during the current
study aim to simplify this complex process and make it possible to explain why a
specific drug can be a good repositioning candidate for a specific health condition.

Understanding the meaning of each latent space variable for an individual or a
group of diseases may reveal even more hidden characteristics of drugs and open up
new ways of explaining why a drug is repositionable for a specific condition. Moreover,
it was shown that efficient sampling could help the model learn more with less data.
The proposed sampling strategy can be applied in other node representation learning
algorithms, although depending on how a specific algorithm works, adapting the node
influence metrics may be necessary to achieve the best results. Therefore, future works
concern deeper analysis of latent space variables, experimenting the adaptive sampling
in other node representation learning algorithms mentioned in the previous chapters,

and testing the effect of other node influence metrics.

5.1 Publications during candidature

1. Jalilifard, A., Veloso D. (2022, July) Drug Repurposing Opportunities in Shapley
Space. In 2022 IEEE World Congress on Computational Intelligence (WCCI).
(Qualis A1)

2. Chen, D., Jalilifard, A., Veloso, A., Ziviani, N. (2020, July). Modeling phar-
macological effects with multi-relation unsupervised graph embedding. In 2020
International Joint Conference on Neural Networks (IJCNN) (pp. 1-7). (Qualis
A1)

3. Jalilifard, A., Veloso, A. Drug Repurposing Through Learning Complex Struc-
tures of Graphs. Under review in the jornal of Expert Systems with Applications
(Impact factor = 8.665).






Bibliography

[Abe et al., 2016] Abe, K., Chiba, Y., Katsuse, O., and Hirayasu, Y. (2016). A case of
parkinson disease with both visual hallucination and pain improved by gabapentin.

Clinical neuropharmacology, 39(1):55--56.

[Adadi and Berrada, 2018] Adadi, A. and Berrada, M. (2018). Pecking inside the
black-box: a survey on explainable artificial intelligence (xai). IEEE access, 6:52138-
-52160.

[Ahmed et al., 2013] Ahmed, A., Shervashidze, N., Narayanamurthy, S., Josifovski,
V., and Smola, A. J. (2013). Distributed large-scale natural graph factorization. In
Proceedings of the 22nd international conference on World Wide Web, pages 37--48.
ACM.

[Aitchison, 1982] Aitchison, J. (1982). The statistical analysis of compositional data.
Journal of the Royal Statistical Society: Series B (Methodological), 44(2):139--160.

[Angles and Gutierrez, 2008] Angles, R. and Gutierrez, C. (2008). Survey of graph
database models. ACM Computing Surveys (CSUR), 40(1):1.

[Anighoro et al., 2014 Anighoro, A., Bajorath, J., and Rastelli, G. (2014). Polyphar-
macology: Challenges and opportunities in drug discovery. J. Med. Chem.,
57(19):7874--78817.

[Asratian et al., 1998] Asratian, A. S., Denley, T. M., and Haggkvist, R. (1998). Bi-

partite graphs and their applications, volume 131. Cambridge university press.

[Atkinson Jr et al., 1975] Atkinson Jr, A. J., Finkel, M. J., Burns, J. J., Hitchings,
G. H., Kemp, B. A., and de Dennis, S. R. (1975). Panel on public service drugs and
new uses for old drugs. Clinical Pharmacology € Therapeutics, 18(5part2):659--662.

[Balasubramanian and Schwartz, 2002] Balasubramanian, M. and Schwartz, E. L.
(2002). The isomap algorithm and topological stability. Science, 295(5552):7--7.

69



70 BIBLIOGRAPHY

[Barrat et al., 2004| Barrat, A., Barthelemy, M., Pastor-Satorras, R., and Vespignani,
A. (2004). The architecture of complex weighted networks. Proceedings of the na-
tional academy of sciences, 101(11):3747--3752.

[Barrenés et al., 2012| Barrenés, F., Chavali, S., Alves, A. C., Coin, L., Jarvelin, M.-
R., Jornsten, R., Langston, M. A., Ramasamy, A., Rogers, G., Wang, H., et al.
(2012). Highly interconnected genes in disease-specific networks are enriched for

disease-associated polymorphisms. Genome biology, 13(6):1--9.

[Barrett et al., 2006] Barrett, T., Troup, D. B., Wilhite, S. E., Ledoux, P., Rudnev, D.,
Evangelista, C., Kim, I. F., Soboleva, A., Tomashevsky, M., and Edgar, R. (2006).

Ncbi geo: mining tens of millions of expression profiles—database and tools update.
Nucleic acids research, 35(suppl 1):D760--D765.

[Baues, 1995] Baues, H. J. (1995). Homotopy types. Handbook of algebraic topology,
pages 1--72.

[Belkin and Niyogi, 2002| Belkin, M. and Niyogi, P. (2002). Laplacian eigenmaps and
spectral techniques for embedding and clustering. In Advances in neural information

processing systems, pages H85--H91.

[Berdigaliyev and Aljofan, 2020] Berdigaliyev, N. and Aljofan, M. (2020). An overview
of drug discovery and development. Future Medicinal Chemistry, 12(10):939--947.

[Berrar, 2019] Berrar, D. (2019). Cross-validation.

[Bhasin and Seidman, 2019] Bhasin, S. and Seidman, S. (2019). Testosterone treat-
ment of depressive disorders in men: Too much smoke, not enough high-quality
evidence. JAMA psychiatry, 76(1):9--10.

[Bhattacharyya, 1943| Bhattacharyya, A. (1943). On a measure of divergence between
two statistical populations defined by their probability distributions. Bull. Calcutta
Math. Soc., 35:99--109.

[Bojchevski et al., 2018] Bojchevski, A., Shchur, O., Ziigner, D., and Giinnemann,
S. (2018). Netgan: Generating graphs via random walks.  arXiv preprint
arXiv:1803.00816.

[Bosco et al., 2019] Bosco, G., Ostardo, E., Rizzato, A., Garetto, G., Paganini, M.,
Melloni, G., Giron, G., Pietrosanti, L., Martinelli, 1., and Camporesi, E. (2019).
Clinical and morphological effects of hyperbaric oxygen therapy in patients with
interstitial cystitis associated with fibromyalgia. BMC' urology, 19(1):108.



BIBLIOGRAPHY 71

[Breiman, 2001] Breiman, L. (2001). Random forests. Machine learning, 45(1):5--32.

[Brown et al., 2006] Brown, J. S., Vittinghoff, E., Lin, F., Nyberg, L. M., Kusek, J. W,
and Kanaya, A. M. (2006). Prevalence and risk factors for urinary incontinence
in women with type 2 diabetes and impaired fasting glucose: findings from the

national health and nutrition examination survey (nhanes) 2001-2002. Diabetes
care, 29(6):1307--1312.

[Bubnova et al., 2019] Bubnova, M., Aronov, D., and Persiyanova-Dubrova, A. (2019).
Effects of rosuvastatin and atorvastatin on blood pressure, cerebral blood flow, en-
dothelial function, angiotensin ii in patients with ischemic stroke-complicated hyper-

tension. Journal of Hypertension, 37.

[Bui et al., 2017] Bui, Q. V., Sayadi, K., Amor, S. B., and Bui, M. (2017). Combining
latent dirichlet allocation and k-means for documents clustering: effect of proba-
bilistic based distance measures. In Asian conference on intelligent information and

database systems, pages 248--257. Springer.

[Burt, 2004] Burt, R. S. (2004). Structural holes and good ideas. American journal of
sociology, 110(2):349--399.

[Cao et al., 2015] Cao, S., Lu, W., and Xu, Q. (2015). Grarep: Learning graph rep-
resentations with global structural information. In Proceedings of the 24th ACM

international on conference on information and knowledge management, pages 891-
-900. ACM.

[Cao et al., 2016] Cao, S., Lu, W., and Xu, Q. (2016). Deep neural networks for learn-
ing graph representations. In Thirtieth AAAI Conference on Artificial Intelligence.

[Car, 2012] Car, D. (2012). Polypharmacology in Drug Discovery. Wiley.

[Chatr-Aryamontri et al., 2015 Chatr-Aryamontri, A., Breitkreutz, B.-J., Oughtred,
R., Boucher, L., Heinicke, S., Chen, D., Stark, C., Breitkreutz, A., Kolas, N.,
O’Donnell, L., et al. (2015). The biogrid interaction database: 2015 update. Nucleic
acids research, 43(D1):D470--D478.

[Chatr-aryamontri et al., 2015] Chatr-aryamontri, A., Breitkreutz, B.-J., Oughtred,
R., Boucher, L., Heinicke, S., Chen, D., Stark, C., Breitkreutz, A., Kolas, N.,
O’Donnell, L., Reguly, T., Nixon, J., Ramage, L., Winter, A., Sellam, A., Chang,
C., Hirschman, J., Theesfeld, C., Rust, J., Livstone, M., Dolinski, K., and Tyers,
M. (2015). The biogrid interaction database: 2015 update. Nucleic Acids Research,
43:D470--DAT78.



72 BIBLIOGRAPHY

[Chen et al., 2015] Chen, T., He, T., Benesty, M., Khotilovich, V., Tang, Y., Cho, H.,
Chen, K., et al. (2015). Xgboost: extreme gradient boosting. R package version
0.4-2, 1(4):1--4.

[Chung, 2010] Chung, F. (2010). Graph theory in the information age. Notices of the
AMS, 57(6):726--732.

[Coleman et al., 2018] Coleman, D. J., Lee, W., Chang, S., Silverman, R. H., Lloyd,
H. O., Daly, S., and Tsang, S. H. (2018). Treatment of macular degeneration with
sildenafil: results of a two-year trial. Ophthalmologica, 240(1):45--54.

[Corsico et al., 2019] Corsico, A. G., Leonardi, S., Licari, A., Marseglia, G., Mi-
raglia del Giudice, M., Peroni, D. G., Salpietro, C., and Ciprandi, G. (2019). Focus
on the cetirizine use in clinical practice: a reappraisal 30 years later. Multidisci-

plinary Respiratory Medicine, 14(1):1--7.

[Cortes and Vapnik, 1995] Cortes, C. and Vapnik, V. (1995). Support-vector networks.
Machine learning, 20(3):273--297.

[Cranston and Yancey, 2020] Cranston, D. W. and Yancey, M. P. (2020). Sparse graphs
are near-bipartite. SIAM Journal on Discrete Mathematics, 34(3):1725--1768.

[Dakshanamurthy et al., 2012] Dakshanamurthy, S., Issa, N. T., Assefnia, S., Se-
shasayee, A., Peters, O. J., Madhavan, S., Uren, A., Brown, M. L., and Byers, S. W.
(2012). Predicting new indications for approved drugs using a proteochemometric
method. Journal of medicinal chemistry, 55(15):6832--6848.

[Danisch et al., 2018] Danisch, M., Balalau, O., and Sozio, M. (2018). Listing k-cliques
in sparse real-world graphs. In Proceedings of the 2018 World Wide Web Conference,
pages 589--598.

[Dawande et al., 2001] Dawande, M., Keskinocak, P., Swaminathan, J. M., and Tayur,
S. (2001). On bipartite and multipartite clique problems. Journal of Algorithms,
41(2):388--403.

[Deepika and Geetha, 2018] Deepika, S. and Geetha, T. (2018). A meta-learning
framework using representation learning to predict drug-drug interaction. Journal
of biomedical informatics, 84:136--147.

[Dominguez-Gomez et al., 2019] Dominguez-Gomez, G., Cortez-Pedroza, D., Chavez-

Blanco, A., Taja-Chayeb, L., Hidalgo-Miranda, A., Cedro-Tanda, A., Beltran-Anaya,



BIBLIOGRAPHY 73

F., Diaz-Chavez, J., Schcolnik-Cabrera, A., Gonzalez-Fierro, A., et al. (2019).
Growth inhibition and transcriptional effects of ribavirin in lymphoma. Oncology
reports, 42(3):1248--1256.

[Donato and Brown, 2019] Donato, A. and Brown, K. (2019). In black africans
with hypertension, amlodipine-based therapy vs perindopril-hydrochlorothiazide im-
proved bp control. Annals of internal medicine, 171(2):JC5--JC5.

[Donner et al., 2018] Donner, Y., Kazmierczak, S., and Fortney, K. (2018). Drug repur-
posing using deep embeddings of gene expression profiles. Molecular pharmaceutics,
15(10):4314--4325.

[Douville and Nath, 2017] Douville, R. N. and Nath, A. (2017). Human endogenous
retrovirus-k and tdp-43 expression bridges als and hiv neuropathology. Frontiers in

macrobiology, 8:1986.

[Durusu et al., 2017] Durusu, I. Z., Hiisniigil, H. H., Atas, H., Biber, A., Gerekgi, S.,
Giileg, E. A., and Ozen, C. (2017). Anti-cancer effect of clofazimine as a single agent

and in combination with cisplatin on u266 multiple myeloma cell line. Leukemia
research, 55:33--40.

[Egozcue et al., 2003| Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., and
Barcelo-Vidal, C. (2003). Isometric logratio transformations for compositional data
analysis. Mathematical geology, 35(3):279--300.

[Ehrt et al., 2016] Ehrt, C., Brinkjost, T., and Koch, O. (2016). Impact of binding
site comparisons on medicinal chemistry and rational molecular design. Journal of
medicinal chemistry, 59(9):4121--4151.

[Ekinci and Ekinci, 2018] Ekinci, A. and Ekinci, O. (2018). Brexpiprazole: A partial
dopamine agonist for the treatment of schizophrenia. Reviews on Recent Clinical
Trials, 13(1):37--44.

|[Enriquez-Marulanda et al., 2017] Enriquez-Marulanda, A., Valderrama-Chaparro, J.,
Parrado, L., Vélez, J. D., Granados, A. M., Orozco, J. L., and Quifiones, J. (2017).
Cerebral toxoplasmosis in an ms patient receiving fingolimod. Multiple sclerosis and
related disorders, 18:106--108.

[Epasto and Perozzi, 2019] Epasto, A. and Perozzi, B. (2019). Is a single embedding
enough? learning node representations that capture multiple social contexts. In The

World Wide Web Conference, pages 394--404.



74 BIBLIOGRAPHY

[Escoli et al., 2018] Escoli, R., Oliveira, R., Santos, P., and Lobos, A. V. (2018). Kid-
ney diseases with ocular involvement: a systematic review. Portuguese Journal of

Nephrology € Hypertension, 32(3):268--278.

[Fiscon et al., 2021] Fiscon, G., Conte, F., Amadio, S., Volonté, C., and Paci, P.
(2021). Drug repurposing: a network-based approach to amyotrophic lateral sclero-
sis. Neurotherapeutics, 18(3):1678--1691.

[Fiscon and Paci, 2021] Fiscon, G. and Paci, P. (2021). Saverunner: an r-based tool
for drug repurposing. BMC' bioinformatics, 22(1):1--10.

[Fullerton et al., 2010] Fullerton, C. A., Busch, A. B., and Frank, R. G. (2010). The rise
and fall of gabapentin for bipolar disorder: a case study on off-label pharmaceutical
diffusion. Medical care, 48(4):372.

[Gamage et al., 2020] Gamage, A., Chien, E., Peng, J., and Milenkovic, O. (2020).
Multi-motifgan (mmgan): Motif-targeted graph generation and prediction. In
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Sig-
nal Processing (ICASSP), pages 4182--4186. IEEE.

[Ganguly and Cambier, 2021] Ganguly, S. and Cambier, T. (2021). Quantum Comput-
ing with Silg Programming: Get up and running with quantum computing with the

simplicity of this new high-level programming language. Packt Publishing Ltd.

[Gao et al., 2018] Gao, K. Y., Fokoue, A., Luo, H., Iyengar, A., Dey, S., and Zhang,
P. (2018). Interpretable drug target prediction using deep neural representation. In
1JCAI pages 3371--3377.

[GNS et al., 2019] GNS, H. S., Saraswathy, G., Murahari, M., and Krishnamurthy,
M. (2019). An update on drug repurposing: re-written saga of the drug’s fate.
Biomedicine € Pharmacotherapy, 110:700--716.

[Grossberg et al., 2019] Grossberg, G. T., Kohegyi, E., Mergel, V., Josiassen, M. K.,
Meulien, D., Hobart, M., Slomkowski, M., Baker, R. A., McQuade, R. D., and
Cummings, J. L. (2019). Efficacy and safety of brexpiprazole for the treatment of
agitation in alzheimer’s dementia: two 12-week, randomized, double-blind, placebo-

controlled trials. The American Journal of Geriatric Psychiatry.

|Grover and Leskovec, 2016a] Grover, A. and Leskovec, J. (2016a). node2vec: Scalable
feature learning for networks. In Proceedings of the 22nd ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, pages 855--864. ACM.



BIBLIOGRAPHY 75

[Grover and Leskovec, 2016b] Grover, A. and Leskovec, J. (2016b). node2vec: Scalable
feature learning for networks. In Proceedings of KDD, pages 855--864.

|Gueorguieva et al., 2017| Gueorguieva, N., Valova, 1., and Georgiev, G. (2017).
M&mfcm: fuzzy c-means clustering with mahalanobis and minkowski distance met-

rics. Procedia computer science, 114:224--233.

[Guymer and Littlejohn, 2019a] Guymer, E. K. and Littlejohn, G. O. (2019a). Phar-

macological treatment options for fibromyalgia. Prevention, 10:00.

[Guymer and Littlejohn, 2019b] Guymer, E. K. and Littlejohn, G. O. (2019b). Phar-

macological treatment options for fibromyalgia. Prevention, 10:00.

[Hamilton et al., 2017a] Hamilton, W., Ying, Z., and Leskovec, J. (2017a). Inductive
representation learning on large graphs. In Advances in Neural Information Process-

ing Systems, pages 1024--1034.

[Hamilton et al., 2017b] Hamilton, W. L., Ying, R., and Leskovec, J. (2017b).
Representation learning on graphs: Methods and applications. arXiw preprint
arXiw:1709.05584.

[Harris, 1981] Harris, E. (1981). Antidepressants: old drugs, new uses. AJN The
American Journal of Nursing, 81(7):1308--1315.

[Hayes et al., 2020] Hayes, K., Warner, E., Bollinger, C., Wright, D., and Fitch,
R. M. (2020). Repository corticotropin injection versus corticosteroids for protection
against renal damage in a focal segmental glomerulosclerosis rodent model. BMC
nephrology, 21(1):1--14.

[Hodos et al., 2016] Hodos, R. A., Kidd, B. A., Shameer, K., Readhead, B. P., and
Dudley, J. T. (2016). In silico methods for drug repurposing and pharmacology.
Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 8(3):186--210.

[Hu and Agarwal, 2009] Hu, G. and Agarwal, P. (2009). Human disease-drug network

based on genomic expression profiles. PloS one, 4(8):e6536.

[Hung et al., 2019] Hung, C.-1., Liu, C.-Y., Yang, C.-H., and Wang, S.-J. (2019). Mi-
graine with active headache was associated with other painful physical symptoms
at two-year follow-up among patients with major depressive disorder. PloS one,

14(4):¢0216108.



76 BIBLIOGRAPHY

[Hurle et al., 2013] Hurle, M., Yang, L., Xie, Q., Rajpal, D., Sanseau, P., and Agarwal,
P. (2013). Computational drug repositioning: from data to therapeutics. Clinical
Pharmacology € Therapeutics, 93(4):335--341.

[Hurley et al., 2006] Hurley, D. J., Turner, C. L., Yalcin, 1., Viktrup, L., and Baygani,
S. K. (2006). Duloxetine for the treatment of stress urinary incontinence in women:

an integrated analysis of safety. Furopean Journal of Obstetrics € Gynecology and
Reproductive Biology, 125(1):120--128.

[Jalilifard et al., 2019| Jalilifard, A., Carida, V., Mansano, A., and Cristo, R. (2019).
Can netgan be improved on short random walks? arXiv preprint arXiw:1905.05298.

[James et al., 2013| James, G., Witten, D., Hastie, T., and Tibshirani, R. (2013). An

introduction to statistical learning, volume 112. Springer.

[Jin et al., 2012] Jin, G., Fu, C., Zhao, H., Cui, K., Chang, J., and Wong, S. T. (2012).
A novel method of transcriptional response analysis to facilitate drug repositioning

for cancer therapy. Cancer research, 72(1):33--44.

[Jin and Wong, 2014] Jin, G. and Wong, S. T. (2014). Toward better drug reposi-
tioning: prioritizing and integrating existing methods into efficient pipelines. Drug

discovery today, 19(5):637--644.

[Jubelt and Berger, 2001| Jubelt, B. and Berger, J. R. (2001). Does viral disease un-

derlie als?: Lessons from the aids pandemic.

[Kato et al., 2015] Kato, S., Moulder, S. L., Ueno, N. T., Wheler, J. J., Meric-
Bernstam, F., Kurzrock, R., and Janku, F. (2015). Challenges and perspective

of drug repurposing strategies in early phase clinical trials. Oncoscience, 2(6):576.

[Kazemitabar et al., 2017] Kazemitabar, S. J., Amini, A. A., Bloniarz, A., and Tal-
walkar, A. (2017). Variable importance using decision trees. In Proceedings of the
31st International Conference on Neural Information Processing Systems, pages 425-

-434.

[Khalighi et al., 2016] Khalighi, H. R., Mortazavi, H., Mojahedi, S. M., Azari-Marhabi,
S., and Abbasabadi, F. M. (2016). Low level laser therapy versus pharmacotherapy in
improving myofascial pain disorder syndrome. Journal of lasers in medical sciences,

7(1):45.



BIBLIOGRAPHY 77

[Kinnings et al., 2009] Kinnings, S. L., Liu, N., Buchmeier, N., Tonge, P. J., Xie, L.,
and Bourne, P. E. (2009). Drug discovery using chemical systems biology: reposi-
tioning the safe medicine comtan to treat multi-drug and extensively drug resistant
tuberculosis. PLoS computational biology, 5(7):¢1000423.

[Kipf and Welling, 2016a| Kipf, T. N. and Welling, M. (2016a). Semi-supervised clas-
sification with graph convolutional networks. arXiv preprint arXiw:1609.02907.

[Kipf and Welling, 2016b| Kipf, T. N. and Welling, M. (2016b). Variational graph
auto-encoders. arXiv preprint arXiw:1611.07308.

[Krakovska et al., 2019] Krakovska, O., Christie, G., Sixsmith, A., Ester, M., and
Moreno, S. (2019). Performance comparison of linear and non-linear feature se-

lection methods for the analysis of large survey datasets. Plos one, 14(3):e0213584.

[Krasselt and Baerwald, 2019] Krasselt, M. and Baerwald, C. (2019). Celecoxib for
the treatment of musculoskeletal arthritis. Faxpert opinion on pharmacotherapy,
20(14):1689--1702.

[Kumar et al., 2019] Kumar, A. P., Lukman, S., and Nguyen, M. N. (2019). Drug

repurposing and multi-target therapies.

[Kwon et al., 2020] Kwon, O.-S., Lee, H., Kong, H.-J., Kwon, E.-J., Park, J. E., Lee,
W., Kang, S., Kim, M., Kim, W., and Cha, H.-J. (2020). Connectivity map-based
drug repositioning of bortezomib to reverse the metastatic effect of galnt14 in lung
cancer. Oncogene, 39(23):4567--4580.

[Lee and Vaithilingam, 2011] Lee, K.-G. and Vaithilingam, I. (2011). Bilateral optic
neuropathy—a rare uraemic manifestation of end-stage renal disease. NDT plus,
4(6):455.

[Lekka et al., 2011] Lekka, E., Deftereos, S. N., Persidis, A., Persidis, A., and Andro-
nis, C. (2011). Literature analysis for systematic drug repurposing: a case study

from biovista. Drug Discovery Today: Therapeutic Strategies, 8(3-4):103--108.

[Lentz et al., 2019] Lentz, F., Reiling, N., Spengler, G., Kincses, A., Csonka, A., Mol-
nar, J., and Hilgeroth, A. (2019). Dually acting nonclassical 1, 4-dihydropyridines

promote the anti-tuberculosis (tb) activities of clofazimine. Molecules, 24(16):2873.

[Li et al., 2019| Li, B., Drozd, A., Guo, Y., Liu, T., Matsuoka, S., and Du, X. (2019).
Scaling word2vec on big corpus. Data Science and Engineering, 4(2):157--175.



78 BIBLIOGRAPHY

[Li et al., 2018| Li, D.-D., Xie, H., Du, Y.-F., Long, Y., Reed, M. N., Hu, M., Suppi-
ramaniam, V., Hong, H., and Tang, S.-S. (2018). Antidepressant-like effect of zileu-
ton is accompanied by hippocampal neuroinflammation reduction and creb/bdnf

upregulation in lipopolysaccharide-challenged mice. Journal of affective disorders,
227:672--680.

[Liberti et al., 2014| Liberti, L., Lavor, C., Maculan, N., and Mucherino, A. (2014).
Euclidean distance geometry and applications. SIAM review, 56(1):3--69.

[Liu and Krishnan, 2021] Liu, R. and Krishnan, A. (2021). Pecanpy: a fast, efficient
and parallelized python implementation of node2vec. Bioinformatics, 37(19):3377--
3379.

[Liu et al., 2010] Liu, X., Ouyang, S., Yu, B., Liu, Y., Huang, K., Gong, J., Zheng, S.,
Li, Z., Li, H., and Jiang, H. (2010). Pharmmapper server: a web server for potential
drug target identification using pharmacophore mapping approach. Nucleic acids
research, 38(suppl 2):W609--W614.

[Liu et al., 2013] Liu, Z., Fang, H., Reagan, K., Xu, X., Mendrick, D. L., Slikker Jr,
W., and Tong, W. (2013). In silico drug repositioning-what we need to know. Drug
discovery today, 18(3-4):110--115.

[Lundberg and Lee, 2017a] Lundberg, S. M. and Lee, S.-I. (2017a). A unified approach
to interpreting model predictions. In Proceedings of NIPS, pages 4765--4774.

[Lundberg and Lee, 2017b] Lundberg, S. M. and Lee, S.-I. (2017b). A unified approach
to interpreting model predictions. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach,
H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural
Information Processing Systems 30, pages 4765--4774. Curran Associates, Inc.

[MacQueen et al., 1967] MacQueen, J. et al. (1967). Some methods for classification
and analysis of multivariate observations. In Proceedings of the fifth Berkeley sympo-

stum on mathematical statistics and probability, volume 1, pages 281--297. Oakland,
CA, USA.

[Makgai et al., 2021] Makgai, S., Bekker, A., and Arashi, M. (2021). Compositional
data modeling through dirichlet innovations. Mathematics, 9(19):2477.

[Massey Jr, 1951] Massey Jr, F. J. (1951). The kolmogorov-smirnov test for goodness
of fit. Journal of the American statistical Association, 46(253):68--78.



BIBLIOGRAPHY 79

[Mathewson, 1982] Mathewson, M. (1982). New uses for old drugs: vasodilators (ceu
home study). Critical care update, 9(11):7.

[Menche et al., 2015] Menche, J., Sharma, A., Kitsak, M., Ghiassian, S., Vidal, M.,
Loscalzo, J., and Barabasi, A.-L. (2015). Uncovering disease-disease relationships

through the incomplete interactome. Science, 347:1257601.

[Meng et al., 2018] Meng, Q., Li, R., Hou, F., and Zhang, Q. (2018). Effects of chlor-
promazine on sleep quality, clinical and emotional measures among patients with

schizophrenia. Clinical neurology and neurosurgery, 165:134--138.

[Meng et al., 2011] Meng, X.-Y., Zhang, H.-X., Mezei, M., and Cui, M. (2011). Molec-
ular docking: a powerful approach for structure-based drug discovery. Clurrent
computer-aided drug design, 7(2):146--157.

[Mikolov et al., 2013a|] Mikolov, T., Sutskever, 1., Chen, K., Corrado, G., and Dean, J.
(2013a). Distributed representations of words and phrases and their compositional-
ity. In Proceedings of NIPS, pages 3111--3119.

[Mikolov et al., 2013b| Mikolov, T., Sutskever, 1., Chen, K., Corrado, G. S., and Dean,
J. (2013b). Distributed representations of words and phrases and their composition-
ality. pages 3111--3119.

[Moradi and Samwald, 2021] Moradi, M. and Samwald, M. (2021). Post-hoc explana-
tion of black-box classifiers using confident itemsets. Fxpert Systems with Applica-
tions, 165:113941.

[Moulignier et al., 2001] Moulignier, A., Moulonguet, A., Pialoux, G., and Rozen-
baum, W. (2001). Reversible als-like disorder in hiv infection. Neurology, 57(6):995-
-1001.

[Mousavi et al., 2020] Mousavi, S. Z., Rahmanian, M., and Sami, A. (2020). A connec-
tivity map-based drug repurposing study and integrative analysis of transcriptomic

profiling of sars-cov-2 infection. Infection, Genetics and Evolution, 86:104610.

[Mursalin et al., 2017] Mursalin, M., Zhang, Y., Chen, Y., and Chawla, N. V. (2017).
Automated epileptic seizure detection using improved correlation-based feature se-

lection with random forest classifier. Neurocomputing, 241:204--214.

[Nam et al., 2021 Nam, H. J., Kim, Y. E., Moon, B.-S., Kim, H. Y., Jung, D., Choi,
S., Jang, J. W., Nam, D.-H., and Cho, H. (2021). Azathioprine antagonizes aber-



80 BIBLIOGRAPHY

rantly elevated lipid metabolism and induces apoptosis in glioblastoma. Iscience,
24(3):102238.

[Noble, 2006] Noble, W. S. (2006). What is a support vector machine? Nature biotech-
nology, 24(12):1565--1567.

[Novac, 2013] Novac, N. (2013). Challenges and opportunities of drug repositioning.
Trends in pharmacological sciences, 34(5):267--272.

[Ong et al., 2007] Ong, L., Cheung, B., Man, Y., Lau, P., and Lam, S. (2007). Preva-
lence, awareness, treatment, and control of hypertension among united states adults

1999-2004. Hypertension, 1(49):69--75.

[Ou et al., 2016] Ou, M., Cui, P., Pei, J., Zhang, Z., and Zhu, W. (2016). Asymmetric
transitivity preserving graph embedding. In Proceedings of the 22nd ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 1105--1114.

ACM.

[Pagadala et al., 2017] Pagadala, N. S., Syed, K., and Tuszynski, J. (2017). Software

for molecular docking: a review. Biophysical reviews, 9(2):91--102.

[Pan and Shen, 2009] Pan, X.-Y. and Shen, H.-B. (2009). Robust prediction of b-factor
profile from sequence using two-stage svr based on random forest feature selection.
Protein and peptide letters, 16(12):1447--1454.

[Pande et al., 2000] Pande, A. C., Crockatt, J. G., Janney, C. A., Werth, J. L.,
Tsaroucha, G., and Group, G. B. D. S. (2000). Gabapentin in bipolar disorder: a
placebo-controlled trial of adjunctive therapy 1. Bipolar disorders, 2(3p2):249--255.

[Peck et al., 2020| Peck, J., Urits, 1., Crane, J., McNally, A., Noor, N., Patel, M.,
Berger, A. A., Cornett, E. M., Kassem, H., Kaye, A. D., et al. (2020). Oral muscle
relaxants for the treatment of chronic pain associated with cerebral palsy. Psy-

chopharmacology bulletin, 50(4 Suppl 1):142.

[Perozzi et al., 2014a] Perozzi, B., Al-Rfou, R., and Skiena, S. (2014a). Deepwalk:
Online learning of social representations. In Proceedings of the 20th ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 701--710.

ACM.

[Perozzi et al., 2014b| Perozzi, B., Al-Rfou, R., and Skiena, S. (2014b). Deepwalk:
Online learning of social representations. In Proceedings of KDD, pages 701--710.



BIBLIOGRAPHY 81

[Pietzner et al., 2021] Pietzner, M., Wheeler, E., Carrasco-Zanini, J., Cortes, A., Ko-
prulu, M., Wérheide, M. A., Oerton, E., Cook, J., Stewart, I. D., Kerrison, N. D.,
et al. (2021). Mapping the proteo-genomic convergence of human diseases. Science,

page eabj1541.

[Pimentel et al., 2019] Pimentel, T., Castro, R., Veloso, A., and Ziviani, N. (2019).
Efficient estimation of node representations in large graphs using linear contexts. In
2019 International joint conference on neural networks (IJCNN), pages 1--8. IEEE.

[Pintelas et al., 2020] Pintelas, E., Livieris, I. E., and Pintelas, P. (2020). A grey-box
ensemble model exploiting black-box accuracy and white-box intrinsic interpretabil-
ity. Algorithms, 13(1):17.

[Pushpakom et al., 2019] Pushpakom, S., Iorio, F., Eyers, P. A., Escott, K. J., Hopper,
S., Wells, A., Doig, A., Guilliams, T., Latimer, J., McNamee, C., et al. (2019).
Drug repurposing: progress, challenges and recommendations. Nature Reviews Drug
Discovery, 18(1):41.

[Ribeiro et al., 2016] Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). " why should
i trust you?" explaining the predictions of any classifier. In Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and data mining,
pages 1135--1144.

[Rousseeuw, 1987] Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the inter-
pretation and validation of cluster analysis. Journal of computational and applied
mathematics, 20:53--65.

[Roweis and Saul, 2000] Roweis, S. T. and Saul, L. K. (2000). Nonlinear dimensionality
reduction by locally linear embedding. science, 290(5500):2323--2326.

[Royer et al., 2018] Royer, T., Michel, B., and Javelot, H. (2018). A case of resistant
depression stabilized by testosterone enanthate in a context of hypoandrogenism.
Med Case Rep, 4(2):71.

[Rudin, 2019] Rudin, C. (2019). Stop explaining black box machine learning models
for high stakes decisions and use interpretable models instead. Nature Machine
Intelligence, 1(5):206--215.

[Shim and Liu, 2014] Shim, J. S. and Liu, J. O. (2014). Recent advances in drug
repositioning for the discovery of new anticancer drugs. International journal of
biological sciences, 10(7):654.



82 BIBLIOGRAPHY

[Siciliano et al., 2019] Siciliano, M., Trojano, L., Trojsi, F., Monsurro, M. R., Tedeschi,
G., and Santangelo, G. (2019). Assessing anxiety and its correlates in amyotrophic

lateral sclerosis: The state-trait anxiety inventory. Muscle € nerve.

[Singh et al., 2009| Singh, S., Kubica, J., Larsen, S., and Sorokina, D. (2009). Parallel
large scale feature selection for logistic regression. In Proceedings of the 2009 SIAM

international conference on data mining, pages 1172--1183. STAM.

[Sun et al., 2017] Sun, P., Guo, J., Winnenburg, R., and Baumbach, J. (2017). Drug
repurposing by integrated literature mining and drug-gene-disease triangulation.
Drug discovery today, 22(4):615--619.

[Szklarczyk et al., 2017] Szklarczyk, D., Morris, J., Cook, H., Kuhn, M., Wyder, S.,
Simonovic, M., Santos, A., Doncheva, N., Roth, A., Bork, P., Jensen, L., and von
Mering, C. (2017). The string database in 2017: quality-controlled protein—protein

association networks, made broadly accessible. Nucleic Acids Research, 45:D362--
D368.

[Tarakad and Jankovic, 2018] Tarakad, A. and Jankovic, J. (2018). Essential tremor
and parkinson’s disease: exploring the relationship. Tremor and Other Hyperkinetic

Movements, 8.

[Thase et al., 2019] Thase, M. E., Weiller, E., Zhang, P., Weiss, C., and Mclntyre,
R. S. (2019). Adjunctive brexpiprazole in patients with major depressive disorder
and anxiety symptoms: post hoc analyses of three placebo-controlled studies. Neu-

ropsychiatric disease and treatment, 15:37.

[Thorman et al., 2020] Thorman, A. W., Reigle, J., Chutipongtanate, S., Shamsaei,
B., Pilarczyk, M., Fazel-Najafabadi, M., Adamczak, R., Kouril, M., Morrow, A. L.,
Czyzyk-Krzeska, M. F., et al. (2020). Accelerating drug discovery and repurposing

by combining transcriptional signature connectivity with docking. bioRxiv.

[Tobinick, 2009a| Tobinick, E. L. (2009a). The value of drug repositioning in the cur-
rent pharmaceutical market. Drug News Perspect, 22(2):119--125.

[Tobinick, 2009b| Tobinick, E. L. (2009b). The value of drug repositioning in the
current pharmaceutical market. Drug News Perspect, 22(2):119--125.

[Utkin et al., 2021| Utkin, L. V., Konstantinov, A. V., and Vishniakov, K. A. (2021).
An imprecise shap as a tool for explaining the class probability distributions under
limited training data. arXiv preprint arXiw:2106.09111.



BIBLIOGRAPHY 83

[van Beekhuizen et al., 2018] van Beekhuizen, H. J., Oost, J., and van der Meijden,
W. 1. (2018). Generalized unprovoked vulvodynia; a retrospective study on the

efficacy of treatment with amitriptyline, gabapentin or pregabalin. Furopean Journal
of Obstetrics & Gynecology and Reproductive Biology, 220:118--121.

[Van der Maaten and Hinton, 2008] Van der Maaten, L. and Hinton, G. (2008). Visu-

alizing data using t-sne. Journal of machine learning research, 9(11).

[Vieta and Montes, 2018| Vieta, E. and Montes, J. M. (2018). A review of asenapine
in the treatment of bipolar disorder. Clinical drug investigation, 38(2):87--99.

[Vogt et al., 2014] Vogt, 1., Prinz, J., and Campillos, M. (2014). Molecularly and
clinically related drugs and diseases are enriched in phenotypically similar drug-

disease pairs. Genome medicine, 6(7):1--17.

[Wang et al., 2016a] Wang, D., Cui, P., and Zhu, W. (2016a). Structural deep network
embedding. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 1225--1234. ACM.

[Wang et al., 2016b] Wang, G., Xu, S., Cao, C., Dong, J., Chu, Y., He, G., and Xu,
Z. (2016b). Evidence from a large-scale meta-analysis indicates eczema reduces the
incidence of glioma. Oncotarget, 7(38):62598.

[Wang et al., 2011] Wang, J., Ono, K., Dickstein, D. L., Arrieta-Cruz, 1., Zhao, W.,
Qian, X., Lamparello, A., Subnani, R., Ferruzzi, M., Pavlides, C., et al. (2011).
Carvedilol as a potential novel agent for the treatment of alzheimer’s disease. Neu-
robiology of aging, 32(12):2321--el.

[Winkelmayer et al., 2001] Winkelmayer, W. C., Eigner, M., Berger, O., Grisold, W.,
and Leithner, C. (2001). Optic neuropathy in uremia: an interdisciplinary emer-

gency. American Journal of Kidney Diseases, 37(3):e23--1.

[Wishart et al., 2008] Wishart, D., Knox, C., Guo, A., Cheng, D., Shrivastava, S.,
Tzur, D., Gautam, B., and Hassanali, M. (2008). Drugbank: a knowledgebase for
drugs, drug actions and drug targets. Nucleic Acids Research, 36:D901--D906.

[Wishart et al., 2018] Wishart, D. S., Feunang, Y. D., Guo, A. C., Lo, E. J., Marcu,
A., Grant, J. R., Sajed, T., Johnson, D., Li, C., Sayeeda, Z., et al. (2018). Drugbank
5.0: a major update to the drugbank database for 2018. Nucleic acids research,
46(D1):D1074--D1082.



84 BIBLIOGRAPHY

[Wold et al., 1987] Wold, S., Esbensen, K., and Geladi, P. (1987). Principal component
analysis. Chemometrics and intelligent laboratory systems, 2(1-3):37--52.

[Woodruff, 2017] Woodruff, K. (2017). Introduction to boosted decision trees. In
Machine Learning Group Meeting.

[Wu et al., 2017] Wu, H., Miller, E., Wijegunawardana, D., Regan, K., Payne, P. R.,
and Li, F. (2017). Md-miner: a network-based approach for personalized drug repo-
sitioning. BMC systems biology, 11(5):86.

[Xia et al., 2021] Xia, F., Sun, K., Yu, S., Aziz, A., Wan, L., Pan, S., and Liu, H.
(2021). Graph learning: A survey. [EEE Transactions on Artificial Intelligence,
2(2):109--127.

[Yan et al., 2019] Yan, C.-K., Wang, W.-X., Zhang, G., Wang, J.-L., and Patel, A.
(2019). Birwdda: A novel drug repositioning method based on multisimilarity fusion.
Journal of Computational Biology, 26(11):1230--1242.

[Yegnanarayana, 2009] Yegnanarayana, B. (2009). Artificial neural networks. PHI
Learning Pvt. Ltd.

[Yonkman, 1959] Yonkman, F. (1959). New drugs for old uses and new uses for old
drugs. Journal-Michigan State Medical Society, 58(6):913.

[Zeng et al., 2019] Zeng, X., Zhu, S., Liu, X., Zhou, Y., Nussinov, R., and Cheng, F.
(2019). deepdr: a network-based deep learning approach to in silico drug reposition-
ing. Bioinformatics, 35(24):5191--5198.

[Zhang et al., 2016] Zhang, W., Bai, Y., Wang, Y., and Xiao, W. (2016). Polypharma-
cology in drug discovery: A review from systems pharmacology perspective. Curr

Pharm Des., 22(21):3171--3181.

[Zhou et al., 2020] Zhou, Y., Hou, Y., Shen, J., Huang, Y., Martin, W., and Cheng, F.
(2020). Network-based drug repurposing for novel coronavirus 2019-ncov /sars-cov-2.
Cell Discovery, 6(1):1--18.

[Zitnik et al., 2018] Zitnik, M., Agrawal, M., and Leskovec, J. (2018). Modeling
polypharmacy side effects with graph convolutional networks. Bioinformatics,
34(13):i457--1466.



Appendix A

The complete list of the identified

groups of similar drugs and diseases

As mentioned earlier, the identified clusters help find groups which likely have reposi-
tionable members. Although during our initial testes we used the elbow method and
set the number of clusters to 11, depending on the level of granularity, it is possible to
use more clusters and hence, generate clusters with smaller size and higher similarities.
The choice of higher or lower number of clusters can be decided based on how flexible
our analysis can be. Lower number of groups results in less similarity and at the same
time more candidates to examine. High number of clusters, on the other hand, means a
more limited search space but a higher chance of finding good repurposing candidates.
Based on the results of our experiments in different levels of flexibility, some of the

related diseases and sets with repositioning possibilities are shown in Tables and
A2

Group Diseases

1 Antiphospholipid antibody syndrome; Chronic obstructive pulmonary
disease; Cluster headaches; Decreased appetite; Diabetes type II; Discoid
eczema; Dyshidrotic eczema; Emphysema; Migraine; Perennial allergy;
Sjogrens syndrome; Support hormone balance; Ulcerative colitis;

Undifferentiated connective tissue disease

2 Asthma; Eczema; Human immunodeficiency virus (HIV); Insomnia; Skin

irritation
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3 Bladder problems; Breakthrough intermenstrual bleeding; Breast cancer;
Chronic lymphocytic leukemia; Factor V leiden; Heart palpitations;
Hyperlipidemia; Inflammation; Menstrual cramps; Muscle cramps;

Neuromyelitis optica; Pain in legs; Peripheral arterial disease; Pneumonia;

Prevent migraine; Restless feeling in legs; Rheumatoid arthritis; Support

digestive health; Support heart health

4 Bipolar I disorder; Bipolar IT disorder; Chronic headache disorder; Cluster
headaches; Difficulty staying asleep; Elevated blood sugar (hyperglycemia);
Emotional lability; Essential tremor; Improve communication; Migraine with
aura; Mood swings; Panic attacks; Persistent depressive disorder
(dysthymia); Post-traumatic stress disorder; Promote relaxation; Ringing in
ears (tinnitus); Schizoaffective disorder; Seizures; Social anxiety disorder;

Support weight loss; Tremor(s)

5 Polycystic ovary syndrome; Eczema; Irregular menstrual periods; Breathing
difficulty with activity; Asthma; Ulcerative colitis; Psoriasis; Lichen sclerosus;
Cluster headaches; Discoid eczema; Sjogrens syndrome; Chronic obstructive
pulmonary disease; Perennial allergy; Antiphospholipid antibody syndrome;
Support hormone balance; Psoriasis on head; Depressed mood; Dyshidrotic

eczema; Emphysema; Crohns disease

Parkinsons disease; Stiffness/Spasticity; Migraine; Nerve pain (Neuralgia)

Complex partial seizures; Stiffness/Spasticity; Epilepsy; Migraine

Hypersalivation; Drooling; Irritable Bowel Syndrome

O |0 || D

Emotional lability; Difficulty staying asleep ; Essential tremor;
Hyperglycemia; Chronic headache disorder; Post traumatic stress disorder;
Mood swings; Bipolar I disorder; Cluster headache; Ttinnitus; Bipolar II
disorder; Seizures; Social anxiety disorder; Migraine with aura; Dysthymia;

Panic attacks; Schizoaffective disorder;

10 Birth control; Cold sensation in feet; Acid reflux; Heart attack (myocardial
infarction); Pain in ankles; Polycystic ovary syndrome; Diabetes type II;
Elevated blood sugar (hyperglycemia); Diabetes type I; Migraine; Prinzmetal

angina; Angina pain; Migraine

11 High blood pressure (hypertension); Tachycardia (fast heart rate); Irregular

heartbeat (cardiac arrhythmia); Atrial fibrillation; Heart palpitations

Table A.1: List of possibly associated diseases clustered through the proposed ap-
proach.
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Group

Drugs

Liraglutide; Naltrexone; Saxagliptin metformin; Warfarin; Sitagliptin; Insulin
detemir; Gliclazide; Clobetasone topical; Sitagliptin metformin;
Empagliflozin; Exenatide; Estradiol norethindrone; Formoterol; Glyburide;
Ketorolac; Cetirizine; Acarbose; Oxycodone; Glimepiride; Nabilone; Glipizide
; Indomethacin; Hydroxychloroquine; Esterified estrogen methyltestosterone;

Ipratropium

Darifenacin; Nitrofurantoin; Hydromorphone; Orphenadrine aspirin caffeine;
Metformin; Azithromycin; Lubiprostone; Nadolol; Fluticasone nasal spray;
Mometasone topical; Hydrocodone; Isradipine; Clindamycin; Triamterene

hydrochlorothiazide; Morphine; Glycopyrrolate; Chlordiazepoxide clidinium;

Amoxicillin; Metoprolol succinate er; Amoxicillin clavulanate; Lactulose;

Polyethylene glycol 3350 with electrolytes; Beclomethasone nasal; Docusate
senna; Albuterol; Candesartan; Tolterodine; Aspirin ; Atenolol; Cephalexin;
Oxycodone; Doxycycline; Potassium citrate; Sulfamethoxazole trimethoprim

cotrimoxazole; Meloxicam; Terazosin; Benazepril; Montelukast; Levofloxacin;

Penicillin; Azelastine

Ethinyl estradiol norgestimate ; Haelan tape; Levalbuterol; Ethinyl estradiol
norethindrone; Dimethyl fumarate; Tiotropium inhaler; Mometasone topical;

Ethinyl estradiol norgestrel; Spironolactone; Clobetasol topical; Desipramine;

Ethinyl estradiol etonogestrel; Halobetasol topical; Ketoconazole topical;

Oxaprozin; Methadone; Warfarin; Imipramine; Fulvestrant; Beta blockers;
Paclitaxel; Topiramate; Sumatriptan subcutaneous; Cisplatin;
Mycophenolate mofetil; Nabumetone; Potassium chloride; Simvastatin;
Vinorelbine; Domperidone; Leflunomide; Ketorolac; Fludarabine; Tamoxifen;

Anastrozole; Mexiletine; Clopidogrel; Atorvastatin; Letrozole; Diclofenac
misoprostol; Piroxicam; Butalbital acetaminophen caffeine; Rituximab;
Methotrexate; Medroxyprogesterone acetate; Hydroxychloroquine;
Capecitabine; Clozapine; Raloxifene; Zolpidem; Dapsone
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Escitalopram; Hydromorphone; Nabiximols; Oxcarbazepine; Metaxalone;
Apomorphine; Entacapone; Chlorzoxazone; Trihexyphenidyl; Zonisamide;
Rotigotine; Verapamil; Quinine; Nabumetone; Dantrolene; Amantadine;
Rasagiline; Desvenlafaxine; Pramipexole; Levodopa benserazide; Cabergoline
; Oxycodone; Meloxicam; Orphenadrine; Safinamide; Levetiracetam;

Ropinirole; Methocarbamol; Pergolide

Baclofen intrathecal pump; Codeine guaifenesin syrup; Valacyclovir;
Propoxyphene acetaminophen; Gabapentin; Fluticasone salmeterol;

Omeprazole sodium bicarbonate; Hydrocodone

Lithium carbonate; Phenytoin; Nabilone; Topiramate; Primidone;
Temazepam; Rizatriptan; Sumatriptan subcutaneous; Clobazam; Buspirone;
Cariprazine; Dextromethorphan quinidine; Reboxetine; Acetaminophen

isometheptene Dichloralphenazone

Hydroxyzine; Escitalopram; Duloxetine; Propranolol; Tramadol;
Brexpiprazole; Fluoxetine; Lorazepam; Morphine; Valproic-acid;
Chlorpromazine; Carbamazepine; Dronabinol; Clonazepam; Cyclobenzaprine;
Sertraline; Pregabalin; Oxazepam; Codeine acetaminophen paracetamol;
Gabapentin; Amitriptyline; Diazepam; Methylprednisolone; Alprazolam;
Carisoprodol; Nortriptyline; Aluminum chloride hexahydrate topical;

Levetiracetam; Botulinum toxin type A; Tizanidine; Venlafaxine; Citalopram

Fentanyl patch; Methylprednisolone; Naltrexone; Hydrocodone
acetaminophen; Diclofenac topical; Celecoxib;Tramadol; Botulinum toxin
type A; Gabapentin;Naproxen; Tizanidine; Ibuprofen-topical;

Cyclobenzaprine; Steroid IV; Amitriptyline; Oxycodone acetaminophen

10

Nitroglycerin topical; Dexlansoprazole; Insulin nph; Esomeprazole; Insulin
regular; Insulin glulisine; Pantoprazole; Metformin; Carvedilo ; Tramadol
acetaminophen; Valproic acid; Nateglinide; Insulin aspart; Rabeprazole;

Insulin glargine; Insulin lispro insulin lispro protamine; Diclofenac topical;
[sosorbide mononitrate; Ketorolac; Cimetidine; Bupropion; Pioglitazone;

Diltiazem; Butalbital acetaminophen caffeine; Lansoprazole;
Medroxyprogesterone acetate; Ranitidine; Amlodipine pioglitazone;
diltiazem; butalbital acetaminophen caffeine; lansoprazole;

medroxyprogesterone acetate; ranitidine; amlodipine
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11

Acetazolamide; Hydroxyzine; Cefdinir; Escitalopram; Naltrexone; Duloxetine;
Morphine; Amoxicillin clavulanate; Lamotrigine; Clonazepam;
Cyclobenzaprine; Sertraline; Aripiprazole; Codeine acetaminophen
paracetamol; Gabapentin; Aspirin; Bupropion; Methylprednisolone;
Alprazolam; Carisoprodol; Amphetamine; Dalfampridine; Botulinum toxin

type A; Tizanidine; Cortisone injection; Zolpidem; Oxycodone acetaminophen

Table A.2: List of the drugs with repositioning possibility found through our approach.
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