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Abstract

Daily-deals sites (DDSs), such as Groupon and LivingSocial, attract millions of cus-
tomers looking for products and services at significantly reduced prices. The challenge
of DDSs is to find the best match between deals and customers while generating as
much revenue as possible. Hence, successful DDSs need to maximize revenue and
increase customer satisfaction. These two problems are investigated in this thesis.

The revenue of DDSs depend how much they charge merchants for each deal
sold and on the number of coupons sold for each deal (aka. deal size). The percentage
charged is a business decision, but the deal size can be predicted. This thesis introduces
a new model for deal size prediction that considers both intra-market competition and
market interplay among deals. The deal size prediction method offers gains in precision
ranging from 8.18% to 17.67% in comparison with state-of-the-art methods.

Maximizing revenue depends on deal sizes and on customers, which most of the
time are reached through email marketing. If customers receive uninteresting, non-
personalized emails on a daily-basis, they stop paying attention to emails and treat
them as spam. When dealing with customer satisfaction, we tackled two problems: (i)
how to reduce the volume of emails sent daily without reducing revenue and (ii) how
to personalize emails.

For reducing the percentage of emails sent, we propose criteria to sort customers
according to their purchase probability and to apply a muti-armed bandit algorithm
to choose which criterion is more appropriate to select the user that should receive the
email. Experiments showed that reducing the number of emails sent by 40% does not
affect the number clicks on deals advertised in the emails.

For the task of email personalization, we model the problem so as to obtain user
feedback on deals of the day as soon as possible. We start emailing deals recommended
by current methods and wait for user feedback. Having feedback, the remaining users
receive better recommendations by reranking current recommendation lists using feed-
back. Experiments show that our algorithms offer gains in precision ranging from 7.9%

to 34.0% in comparison with state-of-the-art recommendation algorithms.
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Chapter 1

Introduction

Couponing is one of the oldest, most effective, and widely used tools to promote
sales [Collard et al., 2001, Belch et al., 2008]. The world’s first coupon was created
by Coca-Cola in 1887. The ticket, mailed to homes throughout the United States of
America and strategically placed in magazines offered potential customers a free glass
of the year-old drink. From 1894 to 1913, approximately 8.5 million coupons were
redeemed nationwide, marking the first coupon campaign a success [Donnelly, 2012].

Nowadays, the online daily deal industry has been experiencing this kind of suc-
cess. Daily-Deals Sites (DDSs) provide online discount coupons for diverse products
and services, including restaurant tickets, theater entries, haircuts, etc., and have been
established in more than 50 countries. A DDS operates as a mediator, where its ad-
ministrator works with local merchants (sellers) to negotiate a deal (product/service)
that is sold to customers (buyers). Just as an example of their huge success, it is known
that around 60% of all online shoppers subscribe to DDSs in the USA [Dholakia, 2012],
and they spent $3.6 billion on these websites in 2012, an increase of nearly 87% over
2011 |Freed and Berg, 2012].

Historically, local business have reached customers through a variety of meth-
ods, including online advertising, direct mail, newspapers, the yellow pages, radio,
television, and promotions. However, these channels are not always available or may
be too costly for most local businesses. Hence, DDSs became a new and important
group-buying alternative for both local business and customers.

While merchants are mainly interested in locally disseminating their brand in
order to increase revenue at low costs, potential customers are seeking discounted prices
for products and services (aka. deals). Hence, the challenge of DDSs is to find and offer
the best deals from merchants that suit customer’s interest (relevance), while generating
as much revenue as possible. In other words, successful DDSs need to mazimize revenue

and increase customer satisfaction. These two problems are investigated in this thesis.
1
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From an economic perspective, the profitability of DDSs depends directly on two
factors: (i) the commission associated with a deal, and (ii) the number of deals that
are actually sold, typically referred as the deal size. While commissions are business-
dependent decisions, an estimation of the number of deals to be sold is a particularly
important information for building successful deals catalogs (i.e. the set of deals active
during a pre-defined period). If the deal size can be predicted, the DDS administrator
can simulate catalogs that maximize the profitability of the DDS.

While being of paramount importance to the success of DDSs, accurately pre-
dicting deal sizes is surrounded by challenges. First, the catalog of deals is usually
available for a limited time frame, which on average varies from 4 to 5 days [Byers
et al., 2012a. Second, deals may compete among themselves for customer preference,
resulting in hesitation and possibly hurting the corresponding sales as well as the over-
all revenue. Finally, the attractiveness of a deal cannot be assessed in isolation, but
rather it is relative to other deals also shown in the catalog.

Despite these challenges, existing solutions for the deal size prediction prob-
lem [Byers et al., 2012a, Lappas and Terzi, 2012] produce global predictors that of-
ten neglect the existence of complex interactions between deals, such as competition
for customer preference. Existing works also assume that characteristics of deals are
equally important. Hence, in the first part of this thesis we propose to model the deal
size prediction problem as a machine learning regression task. The solution is based on
the concept of deal markets, i.e., sets of deals that are likely to attract the attention
of similar customers.

Having an effective catalog of deals, the next step to increase revenue is to ad-
vertise deals. A variety of channels are used to suggest deals to customers, includ-
ing mobile apps, websites, online affiliates, advertising networks, and social networks.
However, the primary approach is yet to send email featuring the deals of the day
[Freed and Berg, 2012|. Considering that each email sent contains a small subset of
all available deals, selecting deals that are relevant to specific customers is essential to
guarantee customer satisfaction. The second problem tackled in this thesis goes into
this direction, and studies which deals should be recommended, when and to whom.

Although there is a variety of recommendation algorithms available, the daily-
deals scenario has characteristics that make the problem particularly challenging. First,
most of the customers of a DDS are sporadic bargain hunters, and thus preference data
is extremely sparse and noisy. Moreover, deals have a short life period, making data
extremely volatile. Finally, customer taste and interest may undergo temporal drifts
as new deals appear. State-of-the-art collaborative-filtering recommendation methods

explore the overlap in customers past consumption behavior and assume that the cat-
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alog is almost static. Such characteristics make it hard for existing recommendation

algorithms to improve on their daily-deals recommendations.

1.1 Research Outline and Questions

Two broad questions motivate the research of this thesis: (i) Can we select a set
of deals that maximizes the revenue of a DDS?, and (ii) Can we improve customer
satisfaction when advertising offers by email? Individual components towards solving
these problems already exist (see Section 2.1 and Section 2.2 for an overview). However,
other aspects, such as how to take advantage of the available deals to learn a predictor
for the number of coupons sold for each deal, or which customers are more receptive
to deal recommendations, have not yet been investigated.

In this thesis, we aim to close some of these gaps, contributing to the long-term
goal of a complete integration of merchants and customers throughout a DDS. In
Figure 1.1, we illustrate the problems investigated in this thesis and how they relate

to the key players in the DDS ecosystem.

Daily-Deal Site Problems

Deal Email Deal
Selection Prioritization Recommendation
Available Customer Customer

Deals History History

? ?
D_eal lWho. Feedback? élWhat.
Size? :
Selected Selected
Catalog Customers Customers
(a) (b) (c)

Figure 1.1: Overview of the DDS problems tackled in this thesis.

In Figure 1.1(a), we show the deal selection problem, which consists in deciding, in
a daily basis, which of the available deals will form the catalog of the day. Our proposed
solution to this problem consists in predicting the number of coupons likely to be sold
for each deal in the catalog — a task referred, from now on, as deal size prediction.
We study the existence of complex interactions among deals when predicting deal size,

raising the following research questions related to the Deal Selection Problem:
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RQ1 How can we predict deal size considering Market Interplay and Intra-Market

Competition?

In DDS, a Market is represented by a group of deals offering products or services
that attract the interest of a similar set of customers, such as “Restaurants” or “Hair
Services”. Market Interplay identifies deals that belong to different markets but can
positively influence the sales of each other. For example, catalogs featuring deals on
eye ware and services of an eye exam may influence customers in buying both deals
simultaneously. Market competition, in turn, happens inside the same market, when
two merchants selling a coupon for the same or similar products have a negative impact
on the sales of one (in this case, it will depend on the budget of the customer and the
prices of the deals) or both, as customers might find it difficult to pick one and end up
buying none.

It is hard to tackle these problems when predicting the deal size without taking
the market into account . Hence, our strategy is to separate deals into markets. Note
that markets here differ from the predefined categories of products defined by the
DDSs. When a merchant wants to feature a deal, he needs to classify the deal within a

category, even if it is “Other”. Markets can be seen as a more flexible set of categories.
RQ2 How can we identify Markets?

We propose a method to separate deals into markets assuming that deals within
the same market are likely to be described using similar terms. For instance, offers
associated with “Gyms” may be described using terms such as “class”, “fit”, and “body”,
while offers associated with “Hair Services” may be describe using terms such as “hair”,
“salon”, and “look”.

Given that, we first assess the descriptive and discriminative power of deals tex-
tual content by using heuristics previously published in the context of indexing Web
pages and classifying social media. We then use a probabilistic topic model, namely
Latent Dirichlet Allocation (LDA), to discover markets.

Given that we are able to find meaningful markets of deals, we then focus on
modeling the whole deal size prediction problem as a set of sub-problems. In particular,
we propose to build a different prediction model for each market by addressing the

following question:
RQ3 How Markets Identification help to model Deals Interplay and Competition?

After identifying markets, we proposed to use multiple specialized Support Vector

Regressor (SVR) predictors, where each predictor is dedicated to a market. Note that,
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the specialized SVR predictor outcomes the deal size of an individual deal. To couple
with the complex interactions among deals, we propose an expectation-maximization
algorithm approach to model market interplay and intra-market competition while
minimizing the prediction error.

Figure 1.1(b) illustrates the second problem investigated in this thesis is related to
Email Prioritization. In particular, we deal with customer satisfaction by focusing on
the emails sent to customers alerting them to products and services with big discounts
for a limited time. In this scenario, we deal with two different problems: (i) which and
how many customers should receive the alerts and (ii) which deals should compose the

emails. From these two problems, the following research question arouse:
RQ4 How can we identify customers with a high probability of clicking on email deals?

This research question is related to the customer prioritization problem (Fig. 1.1
(b)). The customers with high probability of clicking offers should be the first to receive
emails. There are many evidence that can give hints of whether a customer will click
the offer or not, and they can be used as sorting criteria to email delivery. First, we
identify some of these evidence, including the number of past purchases, days since last
purchase, customer similarity with the active catalog, and sort customers according
to them. Second, we model the task of determining the best sorting criterion as a
reinforcement learning problem. Specifically, we use Multi-Armed Bandits (MAB),
which is a special class of sequential optimization problems derived from the more
general paradigm of Reinforcement Learning [Sutton and Barto, 1998|. Looking at
the results obtained with the algorithm, we can choose the best trade-off between the
number of emails sent and number of customer clicks.

Fig. 1.1(c) illustrates the Deal Recommendation problem, which is related to the

content of each email. Regarding this problem we raise the following research questions:
RQ5 How can we suggest more appealing deals?

State of the art collaborative filtering algorithms do not perform well in DDS
scenarios due to the three challenges previously mentioned: (i) most of the customers
of a DDS are sporadic bargain hunters, and thus past preference data is extremely
sparse and noisy; (ii) DDSs work with daily catalogs that are very dynamic, and hence
data is extremely volatile and scarce; (iii) customer taste and interest may undergo
temporal drifts.

In this thesis, we propose new methods to address these challenges based on a

simple idea: get customer feedback on the active catalog as soon as possible.
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RQ6 How can we get customer feedback about current catalog?

In order to collect feedback from customers, we model the relationship among
customers as a co-purchase graph, where nodes represent customers and edges a com-
mon deal purchased in the past. Based on the network, we use centrality metrics to
sort customers that are more likely to provide feedback and share similar tastes with
other customers.

The recommendation process is modeled as a sequential optimization problem,
and again we use the Multi-Armed Bandit setting to sequentially run the recommen-
dations. However, instead of modeling the arms as sorting metrics, we model the arms
as customers. Customers are ordered according to a single criterion, which initially
could have been any of those previously tested. However, one important part of the
method is to augment the network to rerank deals. Hence, the probability of clicking
the email has to be as high as the “influence” of the customer in the network, better

represented by centrality metrics.

1.2 Thesis Contributions

All contributions of this thesis are strengthened by the fact that all experiments were

performed in real-world datasets of DDSs. The main contributions of this thesis are:

Contributions in Deal Selection:

e An extensive analysis of the textual features of three datasets from world known

DDS, namely, (i) Groupon!, (ii) Living Social? , and (iii) Peixe Urbano3.

e A content-based strategy to separate deals into markets that exploit the structure

of each deal.

e A method for deal size prediction that takes into account both market interplay

and intra-market competition.

e A systematic set of experiments showing that our solutions offer gains in precision

ranging from 8.18% to 17.67% when compared against existing solutions.

Thttp: //www.groupon.com
2http:/ /www.livingsocial.com
3http://www.peixeurbano.com
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Contributions in Email Prioritization:

e A framework for the assessment of the click rate on emails at a sequential per-

sonalized email recommender system.

e An empirical evaluation of the trade-off between the number of emails sent to

customers and the corresponding click rate.

Contributions in Deal Recommendation:

e A characterization of a real co-purchase network, in which the nodes represent
customers and edges connect customers that bought at least one common coupon

in the past.

e Two sets of distinct criteria to provide an order to send personalized emails to

customers.

e Two exploration-exploitation strategies for the problem of selecting the most

relevant offers to put within emails by exploiting feedback from customers.

e An empirical evaluation of our algorithms using real data obtained from a large
daily deals website show gains in precision ranging from 7.9% to 34.0% in contrast

to state-of-the-art recommendation algorithms.

Time Performance:
e In deal selection, the key steps of our solution are computed off-line.

e In email prioritization, we train the recommender off-line and compute the deal

recommendations online.

e In deal recommendation, the most costly steps are computed off-line (i.e., sorting
customers and training the recommender) and only the email recomendations are

built online.

1.3 Thesis Outline

The remainder of this thesis is organized as follows:

e Chapter 2 is divided in two parts, and presents background and related work

on both Daily-Deals Sites and Recommender Systems. The first part introduces
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basic concepts on the DDS business model and a review of the relevant academic
literature. This discussion is followed by a definition of the deal size prediction
problem and previous work on the matter. Next, a characterization of a real
world DDS, namely Peixe Urbano, is performed. This dataset is used throughout
this thesis. The second part presents the main tasks related to Recommender
Systems and a taxonomy based on the nature of data used to build the recom-
mendation. It also describes how the recommendation problem can be modeled
as a Multi-Armed Bandit problem (MAB). In particular, related work on MAB

recommendation algorithms is discussed.

Chapter 3 shows the method proposed to tackle the deal size prediction task. In
particular, we discuss the descriptive and discriminative power of deal textual
features, and present other features associated with deals, and also discuss the
approach proposed to separate deals into markets. Furthermore, we detail our
solution to infer deal size that is modeled as a machine learning regression task.
Our solution takes into account both the market interplay and the intra-market
competition when predicting the size of a deal. We finish this chapter by pre-

senting the performance of our method in contrast to state-of-the-art methods.

Chapter 4 shows a framework to identify the best order to send personalized
emails to customer to maximize the click through rate. We first present a set
of intuitive criteria and then detail our MAB-based framework to sequentially
decide the best criteria. Finally, we present a detailed experimental analysis of

our solution.

Chapter 5 presents our approach to improve deals recommendations sent to
customers by exploiting preference feedback. We start discussing exploration-
exploitation strategies. Next, we present our solution to split customers in the
sequential recommendation problem into two groups, i.e., those that will partic-
ipate during the exploration and exploitation phases. We also discuss how the
recommendations sent are changed according to customer feedback provided in
the exploration phase. We finish this chapter presenting a discussion on the per-

formance of our approach in contrast to state-of-the-art recommender systems.

Chapter 6 presents a summary of our contributions and points out possible di-

rections of future research.



Chapter 2

Background and Related Work

This chapter is divided into two parts. The first part presents the Daily-Deal ecosystem
by detailing each player, namely, Daily-Deal Site, Merchant, and Customer, and how
they interact with each other. It also reviews the literature on DDS, emphasizing the
deal size prediction problem, which refers to estimating the number of coupons sold by
a deal. The first part finishes with a description of a real world DDS purchase dataset,
i.e., Peixe Urbano, used in the experiments throughout this thesis. The second part is
related to Recommender Systems, and shows a taxonomy based on the nature of data
used to build the recommendation. It also describes how the recommendation problem
can be modeled as a Multi-Armed Bandit (MAB) problem and reviews the literature

on MAB recommendation algorithms.

2.1 Daily-Deals Sites

The daily-deals business! is a group-buying concept based on a synergistic view: help-
ing local-business to advertise their products and services while providing customers
significantly discounted offers (aka. deals). The daily-deals concept has been around
for almost a decade, and started gaining popularity in July 2004 with the launching
of Woot.com.? Woot originally presented one offer a day, which remained active until
either it was sold out or 24 hours elapsed. In early 2010, Woot was acquired by Amazon
and its model changed in a way that, if a product sold out fast enough, a new product

replaced it immediately.

'In the literature, daily-deals are also referred as collective buying, group buying, deal-of-the-day,
one deal a day, flash sales, and online discount vouchers.
Zhttp://www.woot.com
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Following this trend, in 2008 Groupon entered the market and became the fastest
online company to reach a billion-dollar valuation [Donnelly, 2012|. LivingSocial was
launched in 2009, and nowadays the two companies are the top leaders in the daily-
deals business in the US. In Brazil, Peixe Urbano has been launched in 2010 and is the
leader in the daily-deals segment in the country.

Most of daily-deals sites (DDSs) work directly with local merchants and online
retailers to offer products and services with significantly discounted prices when com-
pared to recommended retail prices. Typically, a minimum and maximum number of
deals are made available, and initially offered for 24 hours. DDSs are currently chang-
ing this strategy and increasingly offering longer deal buying periods to increase sales
performance, besides allowing more than one deal to run in a single market at the
same time (i.e., two merchants offering the same or very similar products at the same
time). Common deals negotiated at DDSs include, for example, health and fitness,
restaurants and bar, salons and spas related products.

In this model, instead of purchasing an offer directly from the retailer, customers
purchase the product or service from the DDS, which retains customer data. Once the
minimum number of deals has been sold, i.e. the deal tipping point has been reached,
the DDS charges the customers’ credit card and the deal is sent as an electronic voucher
redeemable at the retailer or service provider. The promotional value of the vouchers
has an expiration date, and after that period the value can be discounted from the deal
original price or is lost, depending on the country policy.

An online coupon is often used as a key marketing and advertising technique.
In traditional internet advertising, which includes sponsored search, contextual ads
and branding ads, the ad network will charge advertisers even for a few number of
conversions (for a survey on Internet Advertising see Evans [2008]). In contrast with
this pricing model, DDSs receive their payment only upon satisfying the minimum
number of conversions before the deal expiry (i.e. when the deal reaches the tipping
point). As a consequence, if the deal does not tip, the DDS receives no payment
and misses the opportunity of advertising other offers from the same merchant, losing
revenue. Otherwise, if the deal exceeds the minimum limit, the DDS receives a payment
that is given by the product of the number of conversions and fee per transaction, which
is similar to the computational advertising model.

In Figure 2.1, we present a schematic view of the Daily-Deals Ecosystem. There

are three main players:

e Daily-Deal Site provides a mechanism that enables merchants to promote their

products or services to customers. The DDS acts as an intermediary, selecting
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- Consumer Information
- Preferences/Tastes

- Performance-based Payment
- Deal Description

Daily-Deal Site

Performance Feedback Relevant Deals
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Merchant - Products/Services Customer

- Convertions
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Figure 2.1: The Daily-Deal Ecosystem.

the most expected profitable offers from local businesses and sending them to
customers using a variety of delivery channels, such as email, websites, social
networks, affiliate programs, and internet advertising. The revenue of the DDS
is proportional to the number of coupons sold and the fee associated with each
deal.

e Merchant requires spaces to place its discounted offers on delivery channels of
DDSs. The potential advantage of offering deals on DDSs is large-scale advertis-
ing. Discounted goods can benefit merchants through advertising, by exposing
them to new customers and allowing an online “buzz” [Byers et al., 2012b|. The
merchant is charged only if his deal tips, i.e., if the minimum number of deals is

sold.

e Customer creates a profile in a DSS, containing his/her geographical location,
email account and possibly topics of interest, which are used to build his/her pref-
erences. This profile, the current catalog, the geographical information, among
other factors, may serve as key evidence to determine which deals a customer will
receive. Note that the exact method is not unique and may vary from one DDS

to another.

2.1.1 Research Problems in DDSs

A literature review on problems related to DDSs shows that most works focus on
analyzing their business model and its advantages and drawbacks to the three main
players, namely, DDSs, merchants, and customers. Works discussing computational
problems related to DDSs are much more scarce, mainly due to lack of data. Although
Groupon and LivingSocial have Application Programming Interfaces (API) to access
data, all researchers can get is what is available on the website. Richer information,

such as the purchase history, are not publicly available. For this reason, most relevant
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research questions about DDSs computation problems need to be simplified due to lack
of data. One of the main advantages of this work is that, as we have access to the
purchase history, a richer and more sophisticated analysis of DDSs problems can be
performed.

Having said that, this section starts discussing two computational problems that
have been investigated in this domain, namely revenue maximization and the propa-
gation effect of deals in social networks. Regarding revenue maximization, deal size
prediction is the main problem discussed, and it is the first step to create a deal cata-
log. It corresponds to the first problem studied in this thesis, and is discussed in detail
in Section 2.1.2. In short, given a set of candidate deals, when one wants to create a
single-day catalog, deal-size is used to help in the deal selection problem. When various
days and the deals interactions among these days are considered, deal size prediction
helps to solve the deal scheduling problem [Lappas and Terzi, 2012].

Concerning the propagation effect of deals in social networks, Byers et al. [2012a]
assessed the impact that a deal has on the merchant’s subsequent ratings in social
review sites such as Yelp. In this first work, the authors observed that a negative side
effect for merchants offering deals at Groupon was that, on average, their Yelp ratings
decline significantly.

In a subsequent work [Byers et al, 2012¢|, they revise their conclusions and
suggested that reviews from Groupon customers are lower on average because they
correspond to real, unbiased customers. In contrast, the general body of reviews on
Yelp contain a fraction of reviews from biased and even potentially fake sources.

Park and Chung [2012], in turn, studied how deals propagate through the Twitter
microblogging service. They concluded that daily-deal sharing on Twitter happens
most often in the morning and around the middle of the week, and the deals offered
in multiple locations tend to be shared more frequently. They also provided evidence
that sharing deals in Twitter improves the deals sales performance, and they named
this phenomenon eWOM (Electronic Word Of Mouth).

Apart from the computational problems, as already mentioned, a variety of works
focus on the DDS business model, discussing their effectiveness, identifying possible
drawbacks, and suggesting ways to improve its sustainability. They also study effective
marketing strategies and customer behavior. Although these works are not the main
focus of this thesis, understanding the nature of DDSs may give us insights to create
solutions to the computational problems discussed later.

From a business perspective, Byers et al. [2011] examined the business model
of Groupon and presented evidence that it is behaving strategically to optimize deal
offerings, giving customers incentives other than price to make a purchase, e.g., deal

features, limited inventory, and deal duration.
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As this industry matures, Byers et al. [2012b] raised questions about the health
of DDSs business model, focusing on understanding the sustainability and long-term
outlook of DDSs. They concluded that using customer demographic information as
evidence to better target consumers to deals and offering more appropriate incentives
for salespeople are crucial for the health of business.

Regarding the merchant, one line of study investigates and identifies the pros and
cons of using DDSs as marketing channels. In Kumar and Rajan [2012|, the authors
studied two aspects of using coupons as a marketing strategy: (i) whether they provide
short- and long-term profitability, and (ii) whether they bring new customers for the
business. They concluded that coupons yield profits for the business and also discussed
that coupons ensure customer acquisition in specific business categories. In Farahat
et al. [2012], in turn, the authors were interested in understanding the factors that
make merchants repeatedly run deals over time.

An empirical analysis of the experience of businesses that used Groupon to pro-
mote their goods was carried out on Dholakia [2010]. They conducted a survey-based
study of 150 businesses that had been run Groupon promotions between June 2009 and
August 2010. They reported that the promotion was profitable for 66% and unprof-
itable for 32% of respondents. They also presented evidence that the treatment given
by merchant’s employees to customers is the most important factor for the success of
a Groupon promotion.

Finally, a distinct line of work focuses on understanding customers acceptance of
DDSs and customer loyalty. The authors in Krasnova et al. [2013] studied customers
behavior on DDSs. In particular, they addressed the determinants of customer loyalty.
Their main finding was that customer loyalty is mainly driven by, as expected, monetary
incentives, i.e., the opportunity to gain better quality and save money. However, they
also stated that the customer loyalty can be promoted at the presence of benefits
associated to deals, such as novel and exclusive goods.

In Li and Wu [2013|, the authors investigated shopping behavior in DDS. In
particular, they identified the exposure of the total number of vouchers sold in real-
time as a key factor that influences new buyers to make a purchase. They also suggested
that messages about deals sent throughout social network websites, such as Facebook

and Twitter, generate a word-of-mouth effect that influence purchase decision.

2.1.2 Predicting Deal Size

The deal size prediction problem refers to inferring the expected number of coupons
sold by a deal. The problem was first proposed in Byers et al. [2012a] and then extended
in Lappas and Terzi [2012], Ye et al. [2012].
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Among other contributions, such as considering how “soft incentives” affect the
revenue of Groupon and LivingSocial, Byers et al. [2012a] studied the predictability of
the deals size using deals features. In particular, they modeled the deal size prediction
problem as a linear combination of deals features and used ordinary least squares re-
gression to fit their model. The main difference between Byers et al. [2012a] and our
model is that their predictor is learned from the whole catalog with no distinction of
business markets. Hence, they do not take into account market interplay and compe-
tition. Our approach employs multiple predictors, where each predictor is specialized
to predict the size of deals belonging to a given market. In a second phase, we com-
bine these individual models. We used their model as a baseline of comparison in our
experiments.

In Lappas and Terzi [2012], the authors used a regression method to estimate
the deal size. They also learn a specific model per market and employ the following
features: (i) deal location (i.e., city or area for which the deal is available), (ii) business
reputation (i.e., global traffic rank and website’s reputation from Alexa?), (iii) the
price of the deal, (iv) the price after the discount, (v) the tipping point of the deal,
(vi) seasonality (i.e., period of the year when the offer is made available). Further,
the authors proposed to extract terms from deal description and used a hierarchical
clustering algorithm that is a combination of LDA [Blei et al., 2003] and a flat clustering
algorithm based on Kullback-Liebler distance [Pinto et al., 2007| to separate deals into
markets. Different from their work, we analyzed the deal structure to determine the
best set of descriptive/discriminative terms and to assess a proper weighting scheme
for these terms. This work is also used as a baseline in our experiments.

Ye et al. [2012] presented an investigation of the group purchasing behavior of
daily deals in Groupon and LivingSocial, and introduced a predictive dynamic model
of deal size prediction. Their focus was inferring the popularity of deals as a function
of time, i.e., they were interested on sequential prediction of deal size by assuming that
the deals are available to the predictor as streaming data. A key difference from our
deal size predictor is that we infer deal size at the moment that deals are included in
the catalog. As expected, we measure our prediction error at the moment the deal

expires, by computing the difference between real deal size and predicted deal size.

2.1.3 Peixe Urbano: Understanding the dataset

The experiments were performed using a real-world dataset obtained from Peixe Ur-

bano, the largest DDS in Brazil. The dataset comprises a sample of a 2-month period

3http://www.alexa.com
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with 455 deals. Although we did have access to a bigger dataset, a preliminary study
showed that purchases tend to follow a pattern within a given month. The results
of these experiments cannot be shared due to confidentiality, but the sample gave us
flexibility to perform a much larger set of studies. In the method that use this dataset,

31 days were used for training and the next 30 for test.

However, a dataset larger than the one described above was used in one exper-
iment: deal size prediction. For this experiment, two public datasets were already
available for the task. In order to make Peixe Urbano comparable to these two, we
increased the time period for one year (2012). In this second version of the dataset, we

have a sample that contains 4,309 deals.

In Figure 2.2, we illustrate why DDS scenarios present a big challenge to current
recommendation algorithms. We present, for each testing day, the normalized volume
of new deals and On average, 30% of deals arrive to the catalog every day, and remain

valid, on average, for 4 days.
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Figure 2.2: Dynamic nature of the catalog: number of old and new deals for each test
day.

In Figure 2.3, we show the Cumulative Distribution Function (CDF) of purchases.
We see that more than 50% of the customers purchased only one deal, while around 80%
of the customers purchased at most 2 deals. On average, each customer purchases 1.36
deals, making data extremely sparse if compared with more studied recommendation
scenarios, such as NetFlix (with 208 ratings per user) and MovieLens (with 166 ratings

per user).

From Peixe Urbano we obtained data using an API that was made available to
us. Textual features are composed of terms in Portuguese, and the 4,309 deals were
expressed using 31,163 distinct terms. In Chapter 3, we present an extensive analysis
of the descriptive and discriminative power of textual features present in deals for Peixe

Urbano used in the experiments that validates our deal size prediction method.
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Figure 2.3: (Color online) Cumulative Distribution Function.

2.2 Recommender Systems

The rapid growth to the content available on the Web and the emergence of e-commerce
has led to the development of recommender systems |[Resnick and Varian, 1997]. A
recommender system is a personalized information filtering technology that pro-actively
suggests items to customers based on explicitly declared preferences, e.g., ratings, or
implicitly observed actions, e.g., purchase history. Recently, recommender systems
have been used in a variety of applications, such as to suggest movies |Choi et al.,
2012], TV programs |Barragans-Martinez et al., 2010], or music [Aizenberg et al., 2012]
a customer will find enjoyable; and to identify news of interest |De Francisci Morales
et al., 2012, or products to buy [Schafer et al., 1999].

In this thesis, we are interested on a recommendation task that uses email as a
delivery channel to suggest a list of relevant deals (items) to target users (customers).
Formally, the recommendation function 4 : C x D - R maps pairs of customer/deal to
real numbers indicating the relevance of this deal to the customer, where U is the set
of customers, and D is the set of deals.

The success of email recommendation has been already experienced at Groupon.
In September 2013, they reported that direct email is the delivery responsible for
almost 40% of all transactions in their largest market, i.e., North America [Groupon,
2013]. They also reported that email personalization has driven a nearly 30% lift in
the North America email purchase rate [Groupon, Inc, 2012|, and in markets with
high deal density, such as Chicago, personalized emails have a 50% higher purchase
rate |Groupon, 2012].

In Figure 2.4, we present an overview of the recommendation process in terms
of inputs and outputs. As the input, we may have a rating matrix that contains the

preferences of customers for items as a rating number in a given scale, e.g., stars in the
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[1,5] scale. Note that if we have only implicit feedback, such as the purchase history,
we use a binary matrix, where 1 entries refer to items previously bought and 0 entries to
items not bought. A second type of entry is related to items content. Specifically, given
a set of features F' = {f1, f2,..., fn}, each item is represented by F. As an example,
the items could be represented by the words that describe them, and the F' set would

be the words vocabulary.
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Figure 2.4: The recommendation process.

Regarding the output of Recommender Systems, they are used to either predict
whether a particular customer will like a particular item (prediction problem) or to
identify a set of IV items that will be of interest to a certain customer (top-N recom-
mendation problem) [Deshpande and Karypis, 2004]. The focus of this thesis is on a
particular class of top— N recommendation algorithms that build the recommendation
model by analyzing the similarities between the various customers using their purchase

history, as detailed in the next section.

2.2.1 Categories of Recommendation Algorithms

Regardless of the recommendation task being considered, recommendation algorithms
can be classified as non-personalized and personalized. The most common and simple
non-personalized estimator is the Most Popular (aka. TopPop — Top Popular) algo-
rithm, which suggests the most popular items to any customer, irrespective to his or her
tastes. Typically, this algorithm serves as baseline to more sophisticated personalized

algorithms.
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Personalized recommender systems algorithms are classified in one of three cate-
gories [Adomavicius and Kwon, 2009]: (i) content-based, (ii) collaborative-based, and
(iii) hybrid approaches. In the following sections we detailed each category considering

their pros and cons in the DDS domain.

2.2.1.1 Content-based Approaches

In content-based recommender systems, the customer receives items similar to the
ones he preferred in the past. In particular, content-based methods estimate the utility
u(a, 1) of an item 7 for target customer @ using the utilities u(a, iy ) assigned by customer
a to items 7 € I that are “similar” to item 7. In the context of DDSs, for instance, in
order to suggest deals to customer a, the content-based recommender system tries to
understand the commonalities among the deals customer a has purchased in the past
(specific merchants, demographic information, terms in deals description, etc.). Hence,
only the deals that have a high degree of similarity to customer’s tastes are suggested.

Content-based algorithms are not suited to our scenario. In our application,
namely personalized email recommendation, there is a high percentage of customers
for which we have a poor profile, i.e., almost no information from past purchases.
This happens for two reasons. First, as presented in Dholakia [2010], almost 80% of
customers in DDSs are new. Second, customers are able to register on DDS to receive
recommendations presenting just their email address and, again, in this case we have
no information about their tastes. Another weakness of content-based approaches is
over-specialization [Adomavicius and Tuzhilin, 2005, Barragans-Martinez et al., 2010].
Since most of the customers in DDS bought just one deal in the past, content-based
approaches would restrict customers to receive recommendations of deals similar to

those few already experienced.

2.2.1.2 Collaborative-filtering Approaches

The basic assumption of collaborative filtering approaches is that customers who have
similar preferences in the past are likely to have similar preferences in the future.
Typically, Collaborative-Filtering (CF) techniques involve matching the preferences of
the target customer with the preferences of similar customers (nearest neighbors) to
produce suggestions of items not yet seen by the target customer [Adomavicius and
Tuzhilin, 2005]. Note that here there is no need of customer profiles (e.g. location, age,
etc) nor contents metadata (description, price, etc), making CF domain independent

strategies.
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Traditionally, CF systems consider explicit feedback from customers as their pref-
erences, e.g., the number of stars a customer gives to a movie [Bennett and Lanning,
2007]. This type of data is unavailable in DDS scenarios, and we focus here on implicit
feedback strategies. Implicit feedback CF strategies have been proposed in variety of
scenarios [Oard et al., 1998, Kelly and Teevan, 2003, Rendle et al., 2009, Davidsson
and Moritz, 2011]. We look into details on the works of Hu et al. [2008] and Shi et al.
[2012], given that both strategies are representative of the state-of-the-art algorithms
when only implicit feedback is available.

The Weighted Regularized Matrix Factorization (WRMF) algorithm is a matrix
factorization model for item suggestion based on implicit feedback data [Hu et al., 2008].
WRMF is formulated as a regularized Least-Squares problem, in which a weighting
matrix is used to differentiate the contributions of observed interactions (i.e., positive
feedback) and unobserved ones. Shi et al. [2012], in turn, proposed Collaborative Less-
is-More Filtering (CLIMF). The algorithm aims at optimizing Reciprocal Rank (RR)
for top-N recommendation in domains with binary relevance data. In these domains,
the interaction between customers and items is stored using a single bit, i.e., a bit “1”
when the interaction exists and “0” otherwise.

Regarding CF strategies for recommendation in DDSs, the authors in Ebrahimi
et al. [2012] claimed to have addressed the problem. However, as they did not have ac-
cess to a real purchase dataset, they simulate a daily-deal dataset using a subset of the
Yelp Academic Dataset |[Yelp, 2012|. In particular, they selected businesses from Yelp
that have run a deal on Groupon, excluding all other business. Since Yelp customers
provide ratings to business, they use these ratings as ground-truth data and informa-
tion from profile of Yelp customers to enrich a traditional CF strategy [Herlocker and
Konstan, 2002]. Note that explicit feedback like ratings are unavailable in all DDSs
considered in this thesis, namely, Groupon, LivingSocial, and Peixe Urbano.

The authors exploit context information about the customer’s product or service
preferences to predict daily-deal categories relevant to customers as follows. First, they
identify similarities among customers using the Pearson Correlation Coefficient, and
consider the value 0.7 as the threshold that defines positive correlation between cus-
tomers. Second, their algorithm aggregates the ratings to product or service categories
given by similar customers to the one who will receive the recommendation. This infor-
mation is used to predict the rating of the corresponding product or service category
according to this customer. Their algorithm recommends categories with predicted
ratings equal to or greater than 4. Other algorithms for DDS recommendation are
described in Section 2.2.2, as they use the multi-armed bandit strategies explained in

the next section.
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The first difference between our recommendation strategy and Ebrahimi et al.
[2012] is that they are interested in suggesting categories of daily-deals to customers.
Another difference is that they model the recommendation task as a rating prediction
problem, whereas in our work we are interested on building a ranked list of deals.
Finally, they assume context-based features, e.g. deal category, which are unavailable
in our dataset.

A particular problem that CF approaches are unable to handle is the arrival of
new items, i.e., new items are regularly added to recommender systems. Since CF
algorithms rely on customer’s preferences to make suggestions, the system will not be
able to recommend an item until it is purchased by a substantial number of customers.
This problem is aggravated in DDS recommendation because, behind the fact that new
items are daily added to catalog, a considerable portion of items are also removed from

catalog on a daily basis.

2.2.1.3 Hybrid Approaches

In Table 2.1, we present a characterization of hybrid methods, as proposed by Burke
[2002a]. A variety of recommendation algorithms use a hybrid approach by combining
collaborative filtering and content-based methods, which helps to avoid certain limi-
tations of content-based and collaborative systems [Barragans-Martinez et al., 2010,
Burke, 2002b]. Besides the aforementioned characterization of hybrid methods, Burke
[2002a| also presented empirical comparison with pure strategies, i.e., CF and content-
based strategies. These strategies include refining recommendations from other al-
gorithms or switching from one recommender to another according to some criteria.
Adomavicius and Tuzhilin [2005] also discussed different ways to combine the afore-

mentioned techniques into a hybrid recommender system.

2.2.2 Recommendation as a Multi-Armed Bandit Problem

A multi-armed bandit (MAB) algorithm is a sequential decision making process un-
der uncertainty. Bandit problems involve taking a decision in each timestep ¢, e.g.,
deciding which customer should receive an email or which news article should be rec-
ommended to a new website visitor. MABs have been studied by statisticians for a
long time [Robbins, 1952]. Recently, this type of algorithms have been used in recom-
mendation scenarios such as news articles [Li et al., 2010a], advertisement [Chakrabarti
et al., 2008|, and movies |Zhao et al., 2013]. The following sections present an overview
of MAB literature (Section 2.2.2.1), the MAB algorithms relevant to our work (Sec-
tion 2.2.2.2), and MAB recommendation algorithms (Section 2.2.2.3).
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Table 2.1: Hybridization Strategies for Recommender Systems

Hybridization Strategy Description

Cascade Final recommender refines the recommendations
given by another.

Weighted The scores of many recommenders are combined together
to produce a single recommendation.

Switching The algorithm switches between recommender methods
depending on the current situation.

Mixed Recommendations from a variety of distinct recommenders
are presented at the same time.

Feature combination Features from different recommendation data sources
are combined into a single algorithm.

Feature augmentation  Output from one algorithm is used as an input feature
to another.

Meta-level The model learned by on recommender is used as input
to another.

2.2.2.1 The Multi-Armed Bandit Problem

Multi-armed bandit problem is a special class of sequential optimization problems de-
rived from the more general paradigm of Reinforcement Learning [Sutton and Barto,
1998] and were introduced in the seminal paper of Robbins [1952]. The paradigm of
Reinforcement Learning (RL) is situated in between supervised learning and unsuper-
vised learning, and deals with learning in sequential decision making problems where
there is limited feedback [Kaelbling et al., 1996].

A key aspect that differentiates RL from other machine learning paradigms is
that the learning process is performed as a trial and error strategy [Sutton and Barto,
1998]. Hence, RL should not be seen as a specific class of learning methods, but rather
as a learning problem or a paradigm. In Figure 2.5, we illustrate the basic cycle of
Reinforcement Learning paradigm. This class of algorithms allows an agent to interact
with an unknown environment over a series of timesteps, observing the current state of

the environment, taking actions, and receiving as feedback only a scalar reward signal.

Action

Reward
State

Figure 2.5: The Reinforcement Learning Paradigm.
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In a variety of complex domains, RL is the only feasible way to train a program
to perform at high levels. For instance, if we want to build a machine that learns to
play chess. It would be unfeasible to use a supervised learner for two reasons: (i) first,
the cost to have a teacher that take us through many games and point out the best
move for each position is prohibited, (ii) second, in many situations, there is no such
thing as the best move; how good is a movement depends on the moves that follow.
The goal of the agent in this context is to perform actions that maximize cumulative

reward, i.e., the reward signal in the long run.

In this thesis we are particularly interested in the Multi-Armed Bandit Problem
(MAB) [Robbins, 1952|. Historically, the name “bandit” comes from an imaginary
gambler playing a K slot machine in a casino. The gambler may pull an arm from any
of the slot machines. Each time an arm is pulled, a random reward, independent from
any previous rewards, is returned. The arms are also assumed to be independent from
each other. The gambler objective is to accumulate as much reward as possible in the

long run.

Formally, a multi-armed bandit setting is described as: Let K refer to the number
of arms that the decision-maker can pull. At each time step ¢, the agent pulls arm ¢,
and an associated reward r;, is returned. The rewards are drawn from an unknown
distribution of arm ;. The process repeats for a horizon 7" > 0 until it ends. The

decision-maker objective is to maximize the sum of rewards.

For instance, let us consider the problem of determining the best order to send
personalized recommendations to customers modeled as a MAB. Here, we have K
possible distinct criteria to order customers (arms) and we want to discover the best
one. In order to send an mail, the MAB algorithm needs to choose a criteria. For each
email sent, an associated positive reward is returned if there is a click, or no reward is
returned if the customer ignores the email. The process repeats for a maximum horizon
equals to the total number of customers. Finally, the objective is to maximize the click

through rate on recommendations.

As already explained, a multi-armed bandit algorithm, also called a multi-armed
policy, is a strategy that determines the sequence of arms chosen in order to deliver a
maximal reward at each time step ¢, and, ultimately, maximizes the cumulative reward.
However, MABs search for the best trade-off between learning about the options (ex-
ploration) and using the current knowledge to make the best choice (exploitation). In
order to maximize the cumulative reward in the long run, the key challenge in bandit
problems is the need for balancing exploration and exploitation, also known as the

Ezploration/Exploitation Dilemma.
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2.2.2.2 MAB Algorithms

Multi-Armed Bandit setting has been used to tackle the exploration-exploitation prob-
lem in machine learning and statistics [Berry and Fristedt, 1995, Jun, 2004, Audibert
et al., 2009, Bubeck and Cesa-Bianchi, 2012|. Traditionally, the focus of MAB re-
search is on context-free algorithms, which model situations where no side information
is considered and the reward depends only on the action taken. In contrast, contextual
multi-armed bandit algorithms are strategies that take context (side information) into
account to choose an action from a set of possible actions to maximize the total rewards
of chosen actions. In this section we focus on context-free algorithms.

A simple and widely used algorithm for MAB problem is the e-greedy algo-
rithm [Thompson, 1963|, which receives a parameter e responsible for balancing the
exploration and exploitation phases. At each time-step t = 1,2,..., the algorithm
follows a greedy approach (i.e., it chooses the arm with the highest estimate) with
probability (1 - ¢€), and it chooses a random arm with probability e. More formally,

given the initial empirical means i1 (0),. .., tx(0),

l-e+¢/K, ifarg max;-1,_. r fj (t)
¢/K, otherwise

pi(t+1) :{

where p;(t) stands for the probability of selecting arm i in round ¢. Cesa-Bianchi and
Fischer [1998] presented several variants of e-greedy in which the value of € decreases
over time. In an earlier empirical investigation, Vermorel and Mohri [2005] did not
find any practical advantages in varying €. Therefore, in the methods proposed here
we consider only fixed values of e.

A special scenario of MAB is the budget-limited multi-armed bandit problem,
first presented in Guha and Munagala [2007] and then generalized in Tran-Thanh
et al. [2010]. It assumes that arms actions are costly, and constrained by a fixed-
budget. Since the budget is predefined, the problems’ duration is finite, and the ideal
exploitation is not obtained by pulling the optimal arm repeatedly, but combinations
of arms that maximize the reward within the budget. Because of that, the reward for
all arms must be estimated, as any of them can appear in the optimal combination.

A common strategy to tackle the budget-limited multi-armed scenario is the e-
first [Tran-Thanh et al., 2010]. In this strategy, the first ¢ budget B is dedicated to
exploration, and the remaining 1-¢ to exploitation. Hence, exploration and exploitation
are done in separate phases, i.e., only when exploration finishes exploitation starts. The
optimal solution of the budged learning problem is NP-HARD even when at most one
play is allowed per arm [Madani et al., 2004], and when the cost to play an arm is
unitary [Goel et al., 2006].



24 CHAPTER 2. BACKGROUND AND RELATED WORK

Overall, greedy MAB algorithms typically perform well in a variety of applica-
tions [Sutton and Barto, 1998, Vermorel and Mohri, 2005, Kuleshov and Precup, 2010]
when the running time horizon is finite. A drawback of the e—greedy algorithm is that
when it explores it chooses equally among all criteria. There is no explicit preference
for specific choices, and the worst-appearing criterion or the next-to-best are equally
likely to be explored. Hence, other MAB techniques, which also focus on theoretical
optimal-convergence guarantees, were introduced in Auer et al. [2002].

The authors presented a class of MAB algorithms called upper confidence bound
(UCB) that are a simpler and more elegant implementation of the idea of optimism
in the face of uncertainty, proposed by Lai and Robbins [1985|. There are many
algorithms that implements UCB-based strategies. For instance, in Auer et al. [2002],
the authors presented the UCB1 and UCB2 algorithms that assumes arbitrary set of
reward distributions.

In this thesis, we use the UCB-Normal algorithm proposed in Auer et al. [2002],
which assumes normally distributed reward distributions with unknown mean and vari-
ance. From now on, we refer to it just as UCB. The algorithm chooses criterion ¢; if,
until time step ¢, the corresponding arm has been played less then [8logt| times. Oth-

erwise, (i.e., if all arms have been played more than [8log?| times) it chooses arm ¢;

| ke xR2(c;)  log(t -1
Rt(ci) +\l 16 x qc; kcl.i’]f’t (CZ) x Og(kt ) (21)

that maximizes:

03
where g, is the sum of squared rewards obtained from criterion/arm ¢;, and k., is the

number of times criterion ¢; has been chosen so far. A drawback of these approaches

is that when the number of arms is big, exploration becomes difficult.

2.2.2.3 MAB Recommendation

Traditional recommender systems, such as those based on collaborative-filtering,
content-based, and hybrid techniques, provide relevant suggestions by leveraging cus-
tomer’s taste as demonstrated by their previous applications (see Section 2.2.1). How-
ever, in many Web-based scenarios, e.g., daily-deals, datasets suffer frequent changes,
with items popularity also changing over time. Furthermore, a large number of cus-
tomers do not offer or disclose personal information neither past consumption [Li et al.,
2010a]. These issues make traditional recommender systems difficult to apply, as shown
in previous literature [Chu and Park, 2009].

Hence, it is indispensable to learn good matches between customer interest and

available items when one or both of them are new. However, acquiring such information
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may be costly and reduce customer satisfaction in the short term, which leads to two
possible competing goals: gathering information to provide a good match between cus-
tomer and items, and maximizing customer satisfaction in the long run. This problem
is indeed an instance of the previously mentioned exploration-exploitation dilemma.

The previous section presented three well-known MAB algorithms to tackle this
problem. They started to be applied recently in the recommendation scenario, but in
most cases under a new paradigm, named context-aware MABs. Context-aware multi-
armed bandits* have been applied to a variety of problems, including Web content
optimization [Li et al., 2010a], Web documents ranking [Radlinski et al., 2008], online
advertisement [Chakrabarti et al., 2008, Li et al, 2010b|, and movie recommender
systems [Bouneffouf et al., 2012].

Most MAB algorithms applied to recommendation follow this paradigm, and
model the recommendation task as a MAB where the items to be recommended are the
arms and the customers, represented as feature vectors, are the context. In particular,
the customer (context) is revealed at each time step. For instance, the news recom-
mender systems proposed in Li et al. [2010a] encode customer context as a combined
vector of demographic information, geographic features, and behavioral categories, and
encode news articles by a vector of categories including URL and editor categories.

In this same direction, the authors in Chakrabarti et al. [2008] described a contex-
tually advertising system that combines ad relevance with both historical impression
and click information using a logistic regression model. In Li et al. [2010b], the authors
presented another work in contextual advertising systems focusing on strategies to bal-
ance the long-term impacts of exploration and exploitation on the system performance.
Mahajan et al. [2012], in turn, proposed a UCB-based contextual bandit algorithm to
estimate average rating for comments.

One of the few works that use “context-free” MAB for recommendation is Zhao
et al. [2013]. They investigated the customer cold-start problem, and were also inter-
ested in understanding how the preferences of old customers change over time. The
authors addressed the recommendation problem under the matrix factorization frame-
work as a pure collaborative filtering algorithm. They did not consider content features
either from customer or item, i.e., they did not explore any contextual information.
Note that at first the problem we solve here could be seen as an item-cold start problem.
However, the main difference is that our items frequently appear but also frequently

disappear, and this short life time needs to be considered by the method.

4In the literature, context-aware bandits are sometimes called contextual bandits, associative
bandits, bandits with side information, bandits with covariate, and associative reinforcement learning.






Chapter 3

Predicting Deal Size

In this chapter, we propose a method to improve the effectiveness of the deal size
prediction task in order to help DDS administrators to better select the catalog of
deals, maximizing profitability.

As already mentioned, there are two main challenges in this task. First, the
catalog is usually available for a limited time frame, which may vary, on average, from
4 to 5 days |Byers et al., 2012a|. This may compromise the amount of historical data
that is available for learning predictors, harming the effectiveness of algorithms such
as Support Vector Regressor (SVR) [Drucker et al., 1997, Basak et al., 2007]). Second,
deals may compete among themselves for customer preference, resulting in hesitation
and possibly hurting the corresponding sales as well as the overall revenue.

Despite these challenges, existing solutions to deal size prediction [Byers et al.,
2012a, Lappas and Terzi, 2012] often neglect the existence of complex interactions
between deals (see Section 2.1.2 for a literature review on these methods). The attrac-
tiveness of a deal cannot be assessed in isolation, but rather it is given in relative terms
when compared to other deals that are also shown in the catalog [Ariely, 2008]. The
main difference between the method proposed here and previous work is that it takes
these interactions into account, i.e., when predicting deal size we consider not only the
isolated deal, but all the other deal options in the current catalog.

The solution proposed relies heavily on the existence of different markets. A
market is defined as a set of deals that are likely to attract the interest of a similar
group of customers. According to this definition, deals within the same market may
compete for preference of the same customers. On the other hand, deals in different
markets might help each other boost their sales. In our algorithm, we propose to
consider the aforementioned situations at the same time to improve the efficacy of deal

size prediction.

27
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Figure 3.1: A catalog of deals that are shown to potential customers. Some deals may
compete for the preference of the customers, while other deals may leverage the interest
to other deals.

In Figure 3.1, we present an illustrative example of the existence of competition
and complementarity between deals. Consider a commonly observed case in which
a customer is looking for discounts in restaurants and has a limited budget of $50.
Considering the catalog illustrated, he/she would chose between an Italian dinner or a
Kebab, but he/she is unlikely to increase his/her budget in order to buy both deals. An
even worse possible outcome may happen when the similarity between the two services
is so high that causes hesitation, and the customer quits the DDS without buying any
of the competing deals. As a result, apparently good deals may be less effective than
expected. Turning our attention to complex deal interplay, consider a customer that
buys a coupon for an eye exam. He/She will probably need to buy an eyewear too,
and having both deals in the same catalog might mean a double sale.

In Figure 3.2, we present our method to tackle the deal size prediction problem.
Given a catalog, we first create representations of deals based on terms describing them,
as detailed in Section 3.1.1. Next, the deals serve as input for a Market Identification
process, details in Section 3.2. Note that DDS market specialists manually separate
deals into categories (markets), such as restaurants, entertainment, and fitness. This
is a costly and labor-intensive process which assigns deals to predetermined categories.
However, these categories may be excessively broad, not reflecting our definition of
market. For this reason, we proposed an automatic approach to automatically separate
deals into markets, assuming that deals in a specific market are likely to be described
using a similar vocabulary.

The markets are created using a topic identification method, namely Latent
Dirichlet Allocation (LDA) [Blei et al., 2003]. Having markets, the deal size prediction
phase starts, as detailed in Section 3.3. For each market we produce an SVR deal
size predictor which receives as input features such as coupon price, discount, starting
day, etc, and outputs the estimated number of coupons sold for the corresponding deal.

Partitioning the full set of deals into smaller subsets (i.e., markets) drastically decreases
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Figure 3.2: An overview of the proposed approach for deal size prediction.

v

the variance associated with features and deal sizes. As a result, the amount of train-
ing resources needed to build effective SVR predictors is also decreased, mitigating
problems due to lack of historical data.

Having deal sizes predicted for specific markets, competition between deals within
the same market is taken into account by normalizing the representativeness of the
market (i.e., the expected number of coupons sold considering all deals in the market)
by the number of competing deals. Therefore, the size of each deal is re-scaled in order
to reflect the impact due to the competition for customer preference. More specifically,
the normalizing factor associated with each deal is obtained using an Expectation-
Maximization approach which minimizes the prediction error by considering (i) features
associated with the target deal we are predicting the size, and (ii) features associated

with the other deals in the same market.

3.1 Data and Feature Engineering

In this section, we start by describing the three datasets used in our experiments
to assess the performance of deal prediction methods. Namely, we detail Groupon,
LivingSocial, and Peixe Urbano datasets. We also present textual and non-textual

features available on the datasets used.

3.1.1 Dataset Description

Our goal is to evaluate our solutions to deal size prediction on ground-truth data. We
expended significant time, effort, and resources to obtain high quality data from daily
deals sites, which shall be made available at publication time (except Peixe Urbano
dataset). We look at data from three major DDSs: Groupon (GP), LivingSocial (LS),
and Peixe Urbano (PU).
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For Groupon and LivingSocial we used their respective APIs to expand two exist-
ing public datasets |Byers et al., 2012a|. These datasets were crawled during different
time periods. For Groupon, the crawling process started on Jan-3rd-2011 and fin-
ished on Jul-3rd-2011, resulting in 16,409 deals. For LivingSocial, the crawling process
started on Mar-21st-2011 and finished on Jul-3rd-2011, resulting in 2,610 deals. These
original datasets were expanded by collecting the textual content of all deals.

The new datasets include, apart from the original meta-data such as coupon
price, coupon discounted price, starting day of the week, among others, features that
will help to separate deals into markets, such as merchant’s name, title, highlight, and
description. The textual features are composed of terms in English. The vocabulary
contains 119,525 distinct terms for Groupon and 19,102 distinct terms for LivingSocial.
The third dataset is Peixe Urbano, already described in Section 2.1.3. We used the
larger Peixe Urbano dataset, which has 4,309 deals described by 31,163 distinct terms.

As detailed in the following sections, Peixe Urbano does not contain any informa-
tion about deals categories, such as Restaurant, Food or Beauty. On the other hand,
Groupon deals are grouped into 12 categories and LivingSocial into 11 categories. The

distribution of deals among categories is highly skewed in both cases, as detailed later.

3.1.2 Textual Features Associated with Markets

The first step of the method proposed in this chapter is to separate deals into markets.
We start by describing a deal according to a set of terms associated with it, as we believe
that deals within the same market are likely to be described using similar terms. We

represent a deal using the following features:

e Merchant’s name: terms appearing in the name of the merchant associated with

deal d are used to represent d.
e Title of the deal: terms appearing in the title of deal d are used to represent d.

e Highlight of the deal: terms appearing in the highlight summary of deal d are

used to represent d.

e Description of the deal: terms appearing in the description of deal d are used to

represent d.

e Bag-of-words: all textual features are taken as a single document, thus, the same

terms in different features are represented by the same element in the vector.
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Table 3.1: Number of distinct terms within each feature for Groupon (GP), LivingSocial
(LS), and Peixe Urbano (PU).

Average Maximum
GP LS PU GP LS PU
Name 263 244 2.38 10 8 7
Title 8.63 541 11.44 23 13 27
Highlight 11.67 - 52.56 37 - 139
Description 132.02 57.24  93.49 351 101 196
BoW 135.75 58.06 123.79 361 103 244

Concatenation 154.65 65.23 161.37 381 111 329

e Concatenation: all textual features are concatenated in a single vector, and hence

the same terms in different features are considered different elements in the vector.

In Table 3.1, we show the average and maximum number of distinct terms in
each feature of the deal after eliminating stop-words and performing stemming. For
english datasets, i.e. Groupon and LivingSocial, we used the Porter algorithm [Porter,
1980] to stem words. For the portuguese dataset, i.e. Peixe Urbano, we used the
stemming algorithm proposed in Orengo and Huyck [2001]. As expected, we used
different stopwords lists for each language. Typically, the Groupon and Peixe Urbano
datasets contain more terms on average than LivingSocial dataset. We believe that the
difference is related to the minimum number of characters that each website requires
from merchants to describe a deal. We evaluate to which extent these features can
separate markets by analyzing their relative quality using metrics of descriptive and

discriminative power presented in Fernandes et al. [2007] and Figueiredo et al. [2009].

Assessing the Descriptive Power of Feature

The assessment of the descriptive power of each feature is based on a heuristic metric
called Average Feature Spread, or simply AFS, which is computed as follows. Let D
be the collection of deals, and s be a feature associated with a specific deal d € D (e.g.,
merchant’s name, title, description or highlight). A term ¢ must appear in at least one
feature s € d. The term spread, denoted by T'S(t,d), is a function that returns the

number of features of d in which the term ¢ appears, and is defined as:

1 tes
TS(t,d) = i, wherei = (3.1)

sed 0 otherwise
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The intuition behind TS (¢,d) is that the larger the number of features containing
term ¢, the more term t represents deal d. Next, we specify the Feature Spread of a
feature s associated with a deal d, F'S(s,d), as the average term spread across all terms

in feature s. Assuming |s| as the number of distinct terms in feature s, we have:

FS(s,d) = ZM

tes |S|

(3.2)

This heuristic asserts how much feature s represents deal d, thus being an estimate
of the descriptive power of feature s regarding an arbitrary deal d. Hence, the overall
descriptive power of feature s in the D is given as the average feature spread when
considering all deals in D. This metric is called Average Feature Spread of feature s,

or simply AFS(s), and is given as:

Y FS(s.d)

AFS(S) = C@T

Assessing the Discriminative Power of a Feature

The assessment of the discriminative power of each feature is based on a heuristic metric
called Average Inverse Feature Frequency (AIFF). The AIFF metric is a variation of
the IDF metric |[Baeza-Yates and Ribeiro-Neto, 2011|, which is called Inverse Feature
Frequency (IFF). Given a feature s occurring in |D| deals, and a term ¢ that appears

in at least one deal in D, the IFF(t,s) is given as:

IFF(t,s) = log (f7"€|+i|t73)) (3.4)
where freq(t,s) refers to the number of deals in D in which the term ¢ appears in
feature s.

The IFF metric estimates how much information holds the appearance of a given
term in a given feature. The intuition is that terms appearing too frequently in a
feature are poor to discriminate deals. Hence, we define the Average Inverse Feature

Frequency of feature s, or simply AIFF(s), as:

S IFF(t,s)

AIFF(s) = tT (3.5)

where |Vi| is the number of distinct terms appearing in feature s when all deals in D

are considered.
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In Table 3.2, we show AFS and AIFF values associated with each of the four
textual features considered. As observed, merchant’s name is the most descriptive and
discriminative feature, followed by title of the deal. Surprisingly, the description of the

deal is the less descriptive feature.

Table 3.2: AFS and AIFF values associated with each feature for Groupon (GP),
LivingSocial (LS), and Peixe Urbano (PU).

AFS AIFF
GP LS PU GP LS PU

Name 311 238 348  9.06 7.28 7.49
Title 246 193 255 880 7.09 7.05
Highlight 184 -~ 168 849 - 6.93
Description 114 095 035 892 6.66 6.85
BoW 2.14 1.86 228 891 6.67 6.81

Concatenation 2.01 0.88 2.14 886 6.80 6.97

3.1.3 Features Associated with Deal Size

The second part of the proposed method is to perform deal size prediction. This section

describes the features available for that, namely:

e the price of the deal,

the price after the discount,

the tipping point of the deal (i.e., minimum number of coupons that must be sold
to enable the deal), (Not available for Peixe Urbano dataset.)

a boolean value that indicates if the deal is running for multiple days or not,

a boolean value that indicates if the deal is featured in the site or not,

a boolean value that indicates if the deal inventory is limited or not,

the day of the week in which the deal started,

the category of the deal,

the city in which the corresponding merchant is located.
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Our basic assumption is that the values of such features strongly depend on the
market that the corresponding deal is associated with. Assuming the category of the
deal as being a coarse approximation for their markets, in Tables 3.3 and 3.4, we show
number of deals and price variation according to Groupon and LivingSocial categories
(recall that Peixe Urbano does not have categories). The last line contains the statistics
for all deals, i.e., ignoring categories.

In Table 3.3, we present statistics for all 12 Groupon categories, which contain
16,409 deals. We see that the distribution of deals among categories is highly skewed.
The “Nightlife” category is the smallest category in terms of number of deals with 272,
whereas the category “Restaurants” is the largest with 2,893 deals. When analyzing
minimum, average, and maximum price statistics among categories, we conclude that
they are very different from one category to another. For instance, the average price
among deals in “Restaurants” is US$ 32.51, whereas the average price of deals related
to traveling products is much bigger, US$ 402.31. For all categories, we see that there
is a large gap between the minimum price and the maximum price of deals. When
considering the maximum price, the “Nightlife” and “Education” categories have the

smallest minimum price.

Table 3.3: Price variation associated with Groupon categories.

Category Min. Avg. Max.

# Deals Price  Price Price
Restaurants 2,893 4.00 32.51 3000.00
Food & Drink 1,165 4.00 44.41 2044.00
Arts & Entert. 2,932  4.00 99.98 3649.00
Health & Fitness 2,108  8.00 264.39 6000.00
Nightlife 272 8.00 39.66  350.00
Automotive 376 9.00 127.65 3199.00
Prof. Services 626 10.00 190.34 5300.00
Travel 404 10.00 402.31 4950.00
Shopping 2,249 10.00 89.18 2699.00
Home Services 364 10.00 233.66 2500.00
Beauty & Spas 2,468 10.00 201.35 5825.00
Education 552 10.00 147.73  950.00
All 16,409  4.00 135.50 6000.00

In Table 3.4, we present statistics for all 10 categories referring to LivingSocial
dataset, which contains 2,610 deals. As previously discussed for Groupon dataset, we
also see that the distribution of deals among categories is highly skewed for LivingSocial

dataset. The “Education” category is the smallest in terms of number of deals with
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30, whereas the category “Restaurants” is the largest with 642 deals. Different from
Groupon, for LivingSocial the minimum price for a specific category is far from the
average minimum price. For instance, “Escapes” category have a minimum price equals
to 115.00, while the average price for all deals is just 6.00. Another conclusion that can
be outlined here is that the maximum price statistic among categories is very different
from one category to another. For instance, the maximum price of “Specialty Food” is

125.00, while the maximum price for “Entertainment” category is 9,606.00.

Table 3.4: Price variation associated with LivingSocial categories.

Category Min. Avg. Max.

# Deals  Price  Price Price
Specialty Food 139 6.00 22.47  125.00
Entertainment 642 7.00 121.21 9606.00
Retail 158 10.00 61.21  709.00
Restaurant 425 10.00  33.47  350.00
Services 306 12.00 138.35  750.00
Beauty 463  15.00 219.18 2200.00
Health 336 20.00 256.86 5400.00
Education 28  30.00 106.71 180.00
Getaway 30  45.00 420.86 2060.00
Escapes 83 115.00 923.56 6960.00
All 2,610 6.00 164.16 9606.00

3.2 Identifying Deals Markets

As already discussed, discovering meaningful markets from textual features associated
with deals is an important step for subsequent deal size prediction. In the previous
section we investigated if terms associated with a deal could be used to separate mar-
kets, and we know they can. In this section, we show how those features can be used
as input for a LDA based topic-identification strategy to separate deals into markets,
as detailed in Section 3.2.1.

We define a market as a set of deals that are likely to attract the interest of
a similar group of customers. Therefore, given that customers have a limited budget,
deals belonging to the same market are more likely to compete for customer preference.
A clear strategy to market identification would be to analysed the purchase history, in
order to separate deals that were purchased by a similar set of customers. Unfortu-

nately, such historic data is very limited due to the scarceness of recurrent or regular
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customers, that is, typical DDS customers are bargain hunters and perform sporadic
purchases.

Another possible strategy would be to interpret deal category as a market, such
as Restaurant or Travel. However, as already discussed earlier, this approach has many
drawbacks, such as deal categories being fixed and unbalanced, and not even existing
for Peixe Urbano. Experiments showed that using categories instead of markets for
deal size prediction leads to poorer results.

Therefore, we propose an alternative strategy to market identification by em-
ploying Latent Dirichlet Allocation, or simply LDA [Blei et al., 2003, to elicit latent
markets from textual features associated with deals. The proposed strategy is described
in Section 3.2.2.

3.2.1 Deals Representation

The inputs for the LDA method used to separate deals into markets are deal vec-
tors. Given a specific feature s, we represent an arbitrary deal d as a vector in a
n—dimensional space {t1,ts,...,t,}, where n is the number of distinct terms appearing
in feature s. The six features introduced in Section 3.1.2 are used to represent a deal.
Further, in order to assess to how extent terms and deals are related to each other, we

also consider and evaluate different term weighting schemes:

e TS: the weight assigned to term t is given as T'S(¢,d), which is the spread of ¢

in deal d, and captures its descriptive power.

TS x IFF: the weight assigned to term ¢ is given as the product T'S(t,d) x
IFF(t,s), and simultaneously captures descriptive and discriminative powers of
t.

e TF: the weight assigned to term ¢ is given as freq(t, s), which returns the number

of times t appears in feature s.

TF x IFF: the weight assigned to term ¢ is given as the product freq(t,s) x
IFF(t,s).

3.2.2 Identifying Latent Markets

This section shows how we identify markets using Latent Dirichlet Allocation (LDA),
a method for latent topic identification. LDA is an appropriate method for this task

because we assume that deals belonging to the same market are likely to be described
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using similar terms. When a merchant writes a deal, he has certain terms in mind.
For instance, if he runs a Chinese restaurant business, possible terms used to describe
a deal may include but are not limited to “restaurant”, “food”, and, more specifically,
“Chinese food”. On the other hand, if the merchant runs a gym, he may describe a
deal for discounts in a gym plan using terms such as “class”, “fit”, and “body”. Before
showing how we used LDA, we give a brief description of the method.

Probabilistic topic models, such as LDA, are a suite of algorithms whose aim
is to discover the hidden thematic structure, i.e. topics, in a large collection of doc-
uments [Blei et al., 2003|. The aim of LDA is to identify latent topics in document
collections. In our scenario, documents are deals and we interpret a topic as a market.
Formally, a probabilistic topic model captures this intuition in a statistical framework,
which allows examining a set of documents and discovering, based on the occurrence
of their words, the topics itself and the distribution of topics among the documents.

LDA allows documents to have a mixture of topics. A topic is defined as a
distribution over a fixed vocabulary. For instance, the mentioned sports topic has
words about sports with high probability and the economy has words about economy
with high probability. LDA assumes that these topics are specified before any data has
been generated. Hence, for each document in the collection, it generates the words in

a two-stage process:

1. Randomly chooses a distribution over topics
2. For each word in the document

e Randomly chooses a topic from the distribution over topics in step 1.

e Randomly chooses a word from the corresponding distribution over the vo-

cabulary.

In order to describe LDA from a probabilistic modeling perspective, we start by
defining the following notation. Topics are represented as [31.x, where each [ is a
distribution over a vocabulary. For each document d € D, LDA associates a vector 4
to represent the topic proportions in d, where 6, is the topic proportion for topic £ in
document d. We also define the vector z,4, for each document d, where z4,, is the topic
assignment for the nth word in document d. Finally, the observed words for documents
d are vectors wg, where wg, is the nth word in document d.

In Figure 3.3, we use this notation to present the probabilistic assumptions behind
LDA using a graphical model. We use a plate notation to describe LDA as proposed

in Blei et al. [2003]. Plates are represented using rectangles and indicate replicated
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variables, for instance, K topics and D documents. Traditionally, graphical models
use unshaded nodes to refer to hidden variables, such as topics, and topic proportions.
On the other hand, observed variables, such as document words, are represented us-
ing shaded nodes. An edge from variable A to variable B means that variable B is
conditional dependent on variable A. For instance, LDA model states that the distri-
bution of observed words within a document is dependent on how much each topic is

represented by a document.

Qa <«—— Proportions parameter

é&d <«—— Per-document topic proportions
Topic Parameter ——» TIQ Zam * Per-word topic assignment
Topics =ﬂk<5 (O Wan < Observed word
K N D

Figure 3.3: Diagram of the LDA graphical model. Each node is a random variable.
The unshaded nodes refer to the hidden variables, i.e., the topics, assignments, and
topic proportions. The shaded nodes refer to the observed nodes, i.e. the words of
documents. The rectangles are “plates” and indicate replicated variables. Hence, the
N plate represents the set of words within documents, the D plate represents the
collection of documents within the collection, and the K plate represents the set of
given topics.

In order to derive the joint distribution of the hidden and observed variables
already mentioned, we can use the dependencies between these variables as presented
in Figure 3.3. In the following, we present the joint probability distribution of all
variables proposed in LDA model:

K D N
p(Sik, b1:p, 21:0, WD) = Hp(ﬁz‘) Hp(ed)(l—llp(zd,nwd)P(wd,nleKy Zd,n))
i=1 d=1 n=

LDA was already used to solve several problems, including matrix factoriza-
tion [Agarwal and Chen, 2010|, influential user identification [Weng et al., 2010], tag
recommendation [Krestel et al., 2009], and word sense disambiguation |[Boyd-Graber
et al., 2010]. In our particular case, identifying market using the LDA strategy has
a series of advantages, such as the robustness to cold start since it is not based on
historic data.

In our model, a deal can be described as a mixture of different topics that are
related to terms picked by the merchant, and these topics reflect the merchant’s view

of her business market. Given this assumption, we interpret latent topics discovered
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by an LDA algorithm as being markets. More specifically, each deal d in the catalog of
the day is associated with a k—dimensional market distribution 8y ,,, which encodes the
fraction of terms in d that relates to market m (where k is an input parameter and gives
the number of markets to be identified). In other words, our LDA analysis outputs the
topic/market proportions 6,,, for each deal in the catalog of the day. For simplicity,
we assume that deal d belongs to the market for which the highest proportion 04, is

observed.

In Table 3.5, we show markets identified from the Groupon dataset using this
LDA formulation. Recall that we interpret each topic as a market. As we can see,
LDA finds meaningful markets. Since a market is a probability distribution over the
entire vocabulary, we also present the top ten words related to each market. Another
conclusion here is that the top ten words of each topic often are semantically related

among each other.

Table 3.5: Top ten terms from each of £ = 5 markets in the Groupon dataset. Such
markets were identified from the highlight of the deal, and using TS x IFF as the
weighting scheme. Each column is labeled with an “interpretation” of the corresponding
market. All markets are easily interpretable.

“Gym”  “Hair Salon” “Sports” “Dentistry” “Ice Cream”

class salon camping dental tour
fit hair week teeth chocolate
body look sport care cake
train services day value sweet
workout cut academia  whitening ice
boot haircut value smile cream
gym treatment football white adventure
month make young today paintball
art lock kick day guide
session  conditioner soccer dentistry indoor

3.3 Predicting Deal Size

This section presents the proposed deal prediction model based on markets. First, we
employ multiple SVR predictors, where each SVR predictor is specialized to predict the
size of deals belonging to a given market. Then, we employ an iterative Expectation-

Maximization procedure in order to exploit competition among markets.
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3.3.1 Specialized SVR

Support Vector Regression [Drucker et al., 1997, or simply SVR, is an established non-
linear regression technique that has been applied successfully to a variety of predictive
problems. In order to apply SVR to deal size prediction, we represent deals as follows.
Let D = {D,,,, Diny,--., D, } be the collection of all past deals, and each D,,, =
{dy,ds,...,d,} be a partition of D composed of all ¢ deals that belong to market m,.
Further, each deal d; is represented as a feature-vector, where the constituent features
are those discussed in Section 3.3.

The training-set that is used to build an SVR predictor to market m; is composed
of deal/size pairs of the form {(di, s1), (da, 52), ..., (dg, S¢) }, i.e., each pair is composed
of a deal d; € D,,, and its corresponding size s;. The specialized SVR predictor is a
proper combination of features that estimate size s; for an arbitrary deal d; € D,,,. More
specifically, for each deal d;, an estimating function takes the form f(d;) = (w, ®(d;))+b,
where w ¢ R", b c R, and ¢ denotes a non-linear transformation from $R" to high-
dimensional space. The SVR objective is to find the minimum value of w and b by

solving the following regularized optimization problem:
I
min s w w+CY &(w;dj, s;). (3.6)

E(w;d;,s;) = max(|wde - sj| —e, 0)? (3.7)

where C' > 0 is the regularization parameter, and (3.7) is the e-insensitive loss function
associated with (d;,s;). The parameter e is given so that the loss is zero whether
|wTd; — s;| > € [Smola and Scholkopf, 2004]. The intuition here is that we do not care
about errors as long as they are less than €, but any deviation larger than this are not
accepted. We use a radial basis function (RBF) as the transformation function ®, and
all other parameters were chosen by using cross-validation within training set [Mitchell,

1997).

3.3.2 Exploiting Deals Interactions — The CPMB Model

The specialized SVR predictor does not take into account competition that may exist
between deals in the catalog. For instance, deals in the catalog of the day, denoted
as S, may compete with each other. As a result, SVR predictions may become over-
estimated. In order to model competition, we first partition the catalog into £ markets,
so that S = {Sp,,Smy,---Sm, ). All deals ¢ € S must be assigned to one of these

markets, and we say that Sy, is the market for which deal d; is assigned to (i.e.,
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d;j € Sy, implies that S,,, = Sg;). Given the SVR prediction f(q) for all deals ¢ € S,
the estimated size of deal d; € S is given as a combination of two factors — the SVR

prediction for d;, and an average factor that encompasses all deals within the same

VZS: f(q) x p(Sa,)
o(d;) = ax —2 o +(1-a) x f(d;) (3.8)

market:

where o = 0.5 in order to weigh equally both factors, and p(S4,) is an unknown pa-
rameter which re-scales the representativeness of market Sq;. The values of p(S;) are
initialized as the mean number of deals that belongs to S; in training data. We em-
ploy an Expectation-Maximization procedure using the training-set in order to find the

value for p(Sy;) that minimizes the loss function:

RMSE(y. ) =\/ ~ ¥ (i~ 4. (3.9)

where n is the number of predictions performed, and y; and g; are respectively, the
actual and the predicted deal sizes. We name this prediction model as CBPM, standing
for Competitive Business Market Predictor, and we evaluate its effectiveness in the next

section.

3.4 Experimental Results

The experiments performed in this section use the collected datasets introduced in
Section 3.1.1 following the Interleaved Test-Then-Train methodology [Bifet et al., 2010],
where each deal in the catalog on day t is evaluated, and then included into the historical
data that becomes available at day ¢+ 1. Our intention is to mimic as close as possible
the production system of a DDS (i.e., we are considering that a DDS predicts deal
size of each available offer in the beginning of the day, and overnight they incorporate
previous data into the training-set, in order to predict the deal sizes in the next day).

We evaluate the effectiveness of our models using the Root Mean Squared Error
(RMSE) [Salkind, 2010]. As shown in Equation 3.9, g, is the predicted value of i-th
sample, while y; is the corresponding true value. Finally, n is the number of instances
in the dataset for which the prediction is performed. The results reported correspond
to an average over all days. Significance tests were performed (p<0.05) and the best

results for each dataset are shown in bold.
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As already mentioned in Section 2.1.2, we compare our model in contrast to the

following baselines:

e Global Predictor (GLPR) [Byers et al., 2012a] — The predictor is learned from
the whole training-set, ignoring the existence of markets. The size of an arbitrary
deal g is given as:

o(q) = 2P0+ Pixti (3.10)

where features f; correspond to the ones discussed in Section 3.1.3, and the corre-
sponding weight f; is found using the Ordinary Least Square algorithm [Mitchell,
1997].

e One Predictor per Business Market (OPBM) [Lappas and Terzi, 2012] - The
predictor is learned using an SVM-based regression method proposed by Shevade
et al. [2000], and employing the following features: (i) deal location (i.e., city or
area for which the deal is available), (ii) business reputation (i.e., global traffic
rank and website’s reputation from Alexal), (iii) the price of the deal, (iv) the
price after the discount, (v) the tipping point of the deal, (vi) seasonality (i.e.,
period of the year when the offer is made available). Further, the authors pro-
posed to extract terms from deal description and used a hierarchical clustering
algorithm that is a combination of LDA [Blei et al., 2003] and a flat clustering al-
gorithm based on Kullback-Liebler distance to separate deals into markets [Pinto
et al., 2007].

3.4.1 Weighting Schemes, Deal Representation, and Markets

This section examines the impact of different weighting schemes on the effectiveness
of deal size prediction. We start presenting the results of each dataset separately, and
then, we discuss and compare results among datasets.

In Figure 3.4, we present the performance of our approach in contrast to baselines
already mentioned when considering Groupon. The error is presented as a function of
the number of markets. Each line within the graph refers to a specific weighting scheme
as described in Section 3.2.1. We see that the performance of baselines is independent
of the number of markets. We first discuss the deal representation as using terms
from Merchant’s Name, Title, and Concatenation features. Here, all weighting schemes
present a decrease in error as the number of markets increase, and the best performance

is given by T'S and TF schemes. Now, we consider the Highlight, Description, and BoW

Thttp: //www.alexa.com
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schemes. When using Highlight, the T'S x IFF is better than TF x IFF scheme when
considering less than 50 markets. However, after 50 markets, the opposite happens,
i.e., the TF x IFF scheme present a better performance than TS x IFF scheme. A

similar behavior happens in both Description and BoW deal representations.
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Figure 3.4: RMSE numbers for Groupon with varying number of markets.

In Figure 3.5, we analyze the RMSE values for LivingSocial as a function of the
number of markets. Note that the deals from LivingSocial dataset do not present the
highlight feature. We have here a similar behavior as presented in Groupon, i.e., the
best values refers to T'S and TF schemes. Different from Groupon, in some scenarios
our performance is worst than those from baselines. For instance, when considering
terms from Merchant’s Name and the TS x I[FF as weighting scheme, the performance
of baseline GLPR for more than 80 markets is better. We also can see a similar behavior
for Title, however, with more than 60 markets. Another difference from Groupon is

that when we increase the number of markets the performance gains are smaller than
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in the previous dataset. In general, we have the best performance when considering

less than 30 markets with almost all deal representations.
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Figure 3.5: RMSE numbers for LivingSocial with varying number of markets.

In Figure 3.6, we present the performance of our method in Peixe Urbano. As

the case of Groupon, we have here all 6 features, i.e., Merchant’s Name, Title, High-

light, Description, BoW, and Concatenation. For small values of number of markets,

usually less than 10 markets, we present a performance worst than our baselines. We

have a special scenario for description, in which we have gains over the baseline when

considering more than 60 markets. Typically, our errors decrease as the number of

markets increase. As we already discussed for Groupon and LivingSocial, we have the

best performance when using the weighting schemes TS and TF, independently of the

feature used.
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Figure 3.6: RMSE numbers for Peixe Urbano with varying number of markets.

We now consider all datasets and analyze the impact that different ways of rep-
resenting the deals have on the prediction performance. Results obtained using De-
scription are, usually, the best ones in all datasets. Note that this is consistent with
our textual analysis shown in Tables 3.1 and 3.2. Hence, the larger amount of content
clearly favors Description as source of data when compared to other textual features.
The content size may also explain the good performance of description given that we
separate deals into markets using LDA, which is known to work better in the presence

of more co-occurrence between terms [|Blei et al., 2003].

Considering the other two features, Title usually outperforms Highlight in
Groupon. In spite of the smaller amount of content present on Title, it shows big-
ger AFS (descriptive power) and AIFF (discriminative power) than Highlight, which
turns out to be more dominant factors for prediction accuracy. On the other hand, Title

presents a similar performance compared to Highlight in Peixe Urbano, independently
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of their difference in amount of content. Hence, other aspects than quality-related ones
(e.g., amount of content, discriminative power, and descriptive power) that should
be taken into account to assess deal content, are subject to future work. Note that,
Highlight is unavailable in Living Social.

Regarding the results achieved using both feature combination strategies, i.e.
Concatenation and BoW, we found that Concatenation is less sensitive to the number
of markets in Groupon and, on the other hand, BoW is less sensitive when considering
Living Social. When considering Peixe Urbano, both combinations are sensitive to the
number of markets. However, in most of our results both strategies presents better
performance when compared to the baselines.

Analyzing the comparative performance of our methods when considering all
three datasets, we show that, for any give feature (or feature combination), the results
in Living Social are much better than in the other datasets. For instance, when con-
sidering Title, the values in RMSE ranges from 1.14 to 1.043 in Living Social, from
1.355 to 1.15 in Groupon, and from 1.355 to 1.16 in Peixe Urbano. Since we take into
account, textual features to separate deals into markets, it is also important to note
that we are able to improve prediction accuracy on both English (Groupon and Living
Social) and Portuguese (Peixe Urbano) datasets. In other words, our model correctly

predicts deal size independently of the language used.

3.4.2 Overall Effectiveness

In Table 3.6, we present the RMSE numbers of our method and baselines. We conduct
deal size prediction experiments combining each term weighting scheme with each
textual feature (and feature combination) deal model. Given the results shown in
Figures 3.4, 3.5, and 3.6, the overall conclusion is that our proposed model presents
better effectiveness, in terms of RMSE, than both baselines. When comparing our
model against the two baselines, we reach gains of 17.67%, 9.60%, and 11.77%, in

Groupon, Living Social, and Peixe Urbano, respectively.

3.4.3 Local vs Global Predictors

We also investigate the effect on prediction effectiveness when training a specific pre-
dictor for each market, rather than using a single predictor. Specifically, we define
A-difference as the difference, in terms of RMSE, between a single, global predictor
(for all markets) and multiple, specific predictors for each market. Hence, a positive

difference means that using a market-specific predictor is better than using a single
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Table 3.6: RMSE numbers for our model CBMP and for the baselines: GLPR and
OPBM. For each dataset, we present our best result considering all combinations of
weighting scheme, feature space, and number of markets. For all three datasets the
best results were obtained when using T'F as weighting scheme and representing deals
by concatenating the terms. For Groupon (GP) the best number of markets was 50,
whereas for Living Social (LS) and Peixe Urbano (PU) the best number was 30.

CPMB GLPR Gain (%) OPBM Gain (%)

GP 1.1332 1.3764 17.67 1.3544 16.33
LS 1.0203 1.1287 9.60 1.1112 8.18
PU 1.1430 1.2956 11.77  1.2575 9.11

predictor for all markets, and, obviously, a negative difference means the opposite.

Here, we use the deals categories as markets.

In Figure 3.7, we present the average results over all deals for Groupon and
LivingSocial datasets.? For both datasets, we have that most of the observed differences
are positive, thus, it is usually better using a market-specific predictor than a single
predictor for all markets. The negative results are probably a consequence of the

distribution of deals among categories, which is very skewed, as showed in Tables 3.3

and 3.4.
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Figure 3.7: Market-specific prediction model vs. global model.

2Since category information is unavailable for Peixe Urbano, we leave this dataset out.
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3.5 Time Performance

In this section we discuss the time performance of our proposed approach for deal size
prediction, and analyze the four main steps of the process illustrated in Figure 3.2
on Page 29. The first step, extracting terms from deal textual content, is linearly
dependent on the number of deals n and terms t describing a deal, i.e., O(nt). The
second step, clustering deals into markets, uses Latent Dirichlet Allocation (LDA) to
find clusters. The running time of the LDA method is O(no), where o is the number
of topics [Sontag and Roy, 2011]. The third step refers to training a Support Vector
Regressor (SVR) for each market. We used the implementation available in the Scikit-
learn package.® The time complexity of the SVR method is O(fn), where f is the
number of features. Finally, the last step of our approach is to re-scale the SVR
predictions using our Expectation-Maximization (EM) algorithm. This step is linearly
dependent on the number of deals and the maximum number of iterations that EM is
allowed to execute. Thus, the running time of the algorithm is O(nz), where i is the
maximum number of iterations. All steps previously described are computed off-line,

and the total running time is O(fn).

3.6 Final Remarks

This chapter proposed the CBMP model, a new model to predict the size of a deal,
i.e., the number of coupons that are expected to sell. This task is crucial to DDS
administrators in order to help them simulating different sets of catalogs that maximize
the DDS profitability. Our prediction model takes into account competition among
deals while performing predictions, being this the main reason for its superiority when
compared against state-of-the-art baselines. These interactions may lead to: (i) deals
that compete for customer preference (possibly decreasing their sizes), or (ii) deals that
complement other deals (possibly leveraging their sizes). To address the interaction
among deals, we introduce the concept of market, which is defined as a set of deals that
attract the interest of customers with similar preferences. We first propose a content-
based method to identify markets by exploring deal structure. Additionally, we present
an expectation-maximization algorithm that models market interplay and intra-market
competition by minimizing the error in prediction. By conducting experiments on three
real datasets, we obtained gains that range from 8.18% to 17.67% over previously

proposed methods.

Shttp://www.scikit-learn.org



Chapter 4

Prioritizing Emails with
Multi-Armed Bandits

In this chapter, we study the email prioritization task, i.e., how can we select a subset
of all customers to send email that are more likely to click on email offers. In Figure 4.1,
we present the abuse-unsubscribe, open, and click rates of emails sent by DDSs and

average number from other ecommerce sites.
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Figure 4.1: Abuse/unsubscribe, open, and click rates. Data obtained from MailChimp
website.

We can see from Figure 4.1 that, although the number of emails sent by daily
deals websites is possibly far in excess, the abuse-unsubscribe rate associated with
DDSs is very low. However, as emails are sent in a daily-basis, customers do not give

these alerts immediate attention. This is reflected in the open and click rates. Open

49
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and click rates are significantly lower for daily deals websites, and this may be a result
of the large number of (unnecessary) emails sent to customers. Therefore, a possible
strategy to increase click rates of daily deals websites is to decrease the number of
alerts sent to customers, in a way that they receive only useful alerts and are more
likely to click on them.

The main goal of the method proposed in this chapter is to increase the perceived
value associated with daily deals alerts by predicting the customers that will actually
open and click the offers in the corresponding email. We propose a method that ranks
customers in a way that those appearing first in the ranking are more likely to open
and click the email. The lower in the ranking, the lower the probability of a customer
receiving the email. This strategy contributes to more sustainable and effective email
marketing.

There are many evidence or features that can give hints of whether a customer
will click the email or not. For instance, a customer who has bought the same deals as
other customers may be interested in alerts on other deals already purchased by these
customers. Or, a customer who has bought a deal recently is less likely to purchase
another deal in the near future. Also, certain customers may be interested only on
buying deals falling within a given price range (or within a discount range). Thus, we
may sort customers in different ways using different criterion.

Selecting the best sorting criterion is a challenging task, as it may vary as a
function of the deals available in the catalog of the day. Hence, it is necessary to
continuously explore all possible criteria, performing an explicit trial-and-error search
for the best criterion to apply at each moment (i.e., we need to constantly monitor the
performance of each criterion, in order to select the one providing the highest reward
at the moment).

We model this task as a reinforcement learning problem Sutton and Barto [1998]
in which the goal is to accumulate rewards from a payoff distribution with unknown
parameters that are learned sequentially. We employ multi-armed bandit algorithms
(e.g., e—greedy |[Thompson, 1963|, and upper confidence bound [Auer et al., 2002|) as a
way to map customers to criteria, so as to maximize the click rate by selecting the best
criterion to apply at each time step. In, Figure 4.2, we present the method proposed
to solve the sequential task of sending emails.

Note that the multi-armed bandit scenario is the most appropriate here, since at
a given time ¢, we have no information about which criterion is the best to sort cus-
tomers. Specially in online scenarios, the MAB approach allows us to learn, according
to the current conditions of the dataset, the best criteria to apply testing all of them

concomitantly.



4.1. CRITERIA FOR SORTING CUSTOMERS 51

In Figure 4.2, we show that each arm represents a sorting criterion and at each
time step t the MAB decides which arm should be used to sort customers. The top
customer according to that criterion is selected to receive an email. According to the
selected customer, a state-of-the-art recommendation algorithm generates deal recom-
mendations, and the top-5 deals are sent by email. Every time a customer clicks a
deal in the email sent the system receives a reward, which helps the MAB algorithm
choosing the criterion which should be used to choose the next customer. The sorting

criteria (i.e., the arms) are detailed Section 4.1.
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Figure 4.2: Overall representation of the sequential personalized email recommenda-
tion.

4.1 Criteria for Sorting Customers

We exploit two types of sources of evidence that (intuitively) suggest those customers
that seem more likely to click the email: aggregates statistics and past history and

catalog portfolio, as explained next.

4.1.1 Aggregated Statistics

Statistics derived from previous customer activities may be used as evidence of receiving

clicks:
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e Number of purchases already performed (¢;) — customers that purchase deals
frequently are more likely to click (and to buy) again than customers that perform
sporadic purchases. Thus, the likelihood of receiving a click from an arbitrary

customer z is simply given as:

c1(x) = # purchases performed by x (4.1)

e Days since the last purchase (¢3) — customers that have bought a deal recently
are less likely to click (and to buy) again in the near future. Thus, the likelihood

of receiving a click from an arbitrary customer x is simply given as:

co(z) = # days since last purchase performed by x (4.2)

e Savings (c3) — daily-deals websites are intended to provide discounts on prod-
ucts/services to customers. Hence, the sum of money that a customer save when
using a daily-deals website (i.e. his/her savings), can be interpreted as a proxy
to the likelihood of being interested on new discounts. From market research this
group of customers is known as “heavy customers” and merchandising efforts are
focused on them [Wansink and Park, 2000]. The likelihood of receiving a click

from an arbitrary customer x is given as:

cs(x) = Y Y~ Pa (4.3)

deD,

where D, is the set of deals previously bought by customer z, 7, is the original

price of deal d, and ¢, is the discounted price of deal d.

4.1.2 Past History and Catalog Portfolio

Customer past history and the possible interactions with deals composing the current

catalog may also be used as evidence of receiving clicks:

e Average price (c4), average discount (cs5), and average discount percentage (cg) —
given the previous purchases of customer x and the average price associated with

these purchases, p(z), the likelihood of receiving a click from z is given as:

1
ca(z) = @) =l st. VzeC:|u(x) - 2| > |u(x) -yl (4.4)
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where C is the current catalog, and y and z are variables representing the prices
associated with the deals in C. Similarly, we may also take into account the dis-

count and the discount percentage associated with deals in the current catalog C.

e Customer preference/taste (¢;7) — given the past history associated with customer
x, we employ state-of-the-art recommendation algorithms, such as WRMF (see
Section 2.2.1), to estimates the likelihood of a specific deal being relevant to z.
More specifically, a score is associated with each deal in the current catalog C,
and indicates the relevance of the deal to customer x. In this context, we denote
the average score associated with customer x as u(x), and the corresponding
variance as o(z). Intuitively, high values of u(z), in addition to high values of
o(z), suggest that some deals in C are indeed relevant to x. In contrast, low
values of p(x) with low values of o(z), indicate that deals in C are unlikely to be
relevant to customer z, thus decreasing the likelihood of receiving a click from =z,
which is given as:

cr(x) = p(x) - o(x) (4.5)

4.2 Multi-Armed Bandit Algorithms

In our context, the multi-armed bandit problem is defined as follows. Each time step
we want to send an alert, we must choose one of the criteria discussed in the last
section. The chosen criterion is used to sort the customers in order to decide who is
more likely to click the email featuring the deals. We assume that a reward is acquired
after deciding the customer that will receive the email, depending whether the customer
actually clicked the email or not. The objective is to choose a sequence of criteria that
accumulates as much reward as possible, while considering a fixed number of steps (i.e.,
the number of customers to whom we will send the email).

We also assume that at each time step ¢, we have access to an estimate of the
reward associated with each criterion. Such reward estimate, denoted as R(c¢;), is

given as the average reward accumulated so far, that is:

r+ro+...+7g

Rt(ci) = 2

(4.6)

where criterion ¢; has been chosen £ times so far, and r; is the reward obtained at each

time ¢; was the chosen criterion, and is defined as:

1/n  if the customer clicked the email
r;=
’ 0 otherwise
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where 7 is the number of purchases in current testing day. Hence, the cumulative
reward for each testing day is 1.0.

The greedy algorithm is to always select the criterion associated with the highest
reward estimate at each time step. We say that such algorithm fully exploits the
current reward estimates. However, as time passes these estimates become more and
more uncertain. If, despite not being the best guess at the moment, a different criterion
is chosen, then we say that we are exploring other options because this would improve
the reward estimates associated with the other possible criteria. Thus, exploration
is related to the “pursuit of information” in order to decrease the uncertainty in the
reward estimates, while exploitation is related to maximize the immediate reward by
performing greedy choices. There is a trade-off between exploration and exploitation,
and multi-armed bandit algorithms differ among themselves in the way they balance
exploration and exploitation.

We used two algorithms to prioritize emails: the e-first and the Upper Confidence
Bound Algorithms, both described in Section 2.2.2.2. These algorithms were compared
to prioritizing the emails using each criterion isolated, without the MAB strategy.

This is because not a lot of works have discussed this problem in the literature.
Similar versions of the problem were already addressed, but usually from a customer
perspective for filtering junk messages. For example, Yoo et al. [2009] were the first
address the personalized email prioritization problem, which consists in predicting the
importance of email messages. In other words, they were interested in providing a
ranked list of emails sorted by an importance score, which is a customer-dependent

metric.

4.3 Experimental Evaluation

In this section we empirically analyze the performance of multi-armed bandit algo-
rithms for the sequential personalized email recommendation for Peixe Urbano. We
used the 2-months version, as detailed in Section 2.1.3.

We are interested in evaluating how fast the algorithms decide the best criterion
to apply at each time step. Our basic evaluation measure is the cumulative reward, as
we want to maximize the number of clicks received (i.e., reward) while minimizing the
number of emails sent. Here we send emails to only a fraction of the customers. The
fraction of the customers that receives emails is computed using all users from training
data. Then, we calculate the fraction of clicks that were indeed captured (note that

some clicks may be missed, since we are not sending emails to all customers). This
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number is accumulated on a daily-basis, so that we have the cumulative reward up
to day t. Due to data sensitivity, the values of reward reported in this section were
normalized by the total number of email clicks for a given day, so that the maximum
reward for a day is equals to 1.

Finally, we assume that all clicks received up to day t are incorporated into the
historical data available at day t+1 (i.e., past history of the customers), and can be used
as input to the WRMF recommendation algorithm, which sorts the deals according to

the target customer and send the top-5 by email.

4.3.1 The Independence of Sorting Criteria

This first experiment shows how similar are the rankings generated by different sorting
criteria. This is important because MAB algorithms assume that the arms are inde-
pendent from one another. We use a rank correlation metric, namely Kendall Tau, to
measure the extent to which the order of the observations (or customers) in a ranking
A differs from the order of the observations in B, as defined in Equation 4.7. Given
two pairs (a; € A, by € B) and (ag € A, by € B), they are considered concordant if a; < b;
and as < by, and discordant otherwise. As all pairs are compared among themselves,

the total number of pairs is %, where n is the number of observations.

|concordant pairs| - |discordant pairs|
T =

(4.7)

|total number of pairs|

If all pairs are concordant, 7 = 1.0, that is, customers appear exactly in the same
order in both A and B. If the pairs are all discordant, 7 = —1.0, that is, customers are
in exactly the opposite order. If there are equal numbers of concordant and discordant
pairs then 7 = 0.0 and there is no relationship between the rankings. In Table 4.1, we
show all the values of 7 are very close to 0, showing that the rankings generated are
not correlated. As previously discussed, this result attests the utility of the several

considered centrality rankings as arms within our MAB approach.

4.3.2 Recommendation Experiments

In Figure 4.3, we present the upper bound and the actual performance of multi-armed
bandit algorithms. Particularly, in Figure 4.3 (a), we present the upper bound perfor-
mance of the algorithms, and the fraction of emails sent is 10%. Further, we assume
that one of the criteria is perfect, putting in the top of the ranking customers that
clicked in the deals. The remaining 6 criteria, on the other hand, are fool and inef-

fective, putting in the top of the rank customers that did not click in the deals. For
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Table 4.1: Kendall Tau considering rankings Generated by different Centrality Mea-
sures

Less  Savings Avg. Avg. Avg. Disc.  Customer

Recent Price  Discount Percentage Preference
Total 0.032 0.070  0.025 -0.018 -0.021 0.014
Purchases
Less 1.000 0.042  -0.013 0.012 -0.022 0.008
Recent
Savings 1.000  0.033 0.016 -0.011 0.010
Avg. 1.000 0.025 0.018 0.012
Price
Avg. 1.000 -0.012 0.009
Discount
Avg. Disc. 1.000 -0.016
Percentage

this experiment we evaluate UCB and e—greedy algorithms (with e varying from 0.10
to 1.00). The objective of this experiment is to assess whether the algorithms are able

to select the best criterion.
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Figure 4.3: (a) Upper bound performance for 10% of emails sent (b) Actual performance
for 10% of emails sent. (c¢) Actual performance for 50% of emails sent.

The UCB algorithm is the best performer. This happens because UCB do not
randomly choose the criterion. Instead, it prefers the criterion that is closest to the
best one. The e—greedy algorithm, on the other hand, needs to randomly explore other
options (criteria), and in this case it often chooses one of the poor criteria. Further,
the best value for € may vary with the number of emails sent.

In Figures 4.3 (b) and (c), we show the actual performance of the algorithms,
i.e., for this experiment we used the criteria discussed in Section 4.1. The results were
different from the previous experiment. Specifically, 0.1-greedy algorithm was the best

performer, followed by 0.5—greedy and UCB algorithms. Note that the performance
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of the algorithms tend to become closer as more emails are sent, since in this case less
clicks are missed. Finally, the performance increases with the number of emails sent.
In Table 4.2, we show the cumulative reward associated with the criteria discussed
in Section 4.1 when they are used independently, and compares these number with
those obtained when sending emails using two versions of e-first strategy with three
different parameters and the UCB. These numbers refer to a period of 30 days. Note
that sending all emails leads to the total reward (i.e., 30.00), since no clicks are missed
no matter the sorting criterion used. By decreasing the number of emails sent, we can

compare the cumulative reward obtained by each criterion.

Table 4.2: Cumulative reward associated with each criterion as a function of the number
of emails sent.

Fraction of c1 Co cs ca cs Cé cr | €(0.1) €(0.5) €(0.9) UCB
emails sent

10% 1.77 4.72 3.41 2.63 2.15 1.90 4.65 5.01 4.43 3.56 4.55
50% 8.18 1942 1813 13.60 13.01 15.04 17.89 | 21.58 20.30 18.82 20.45
90% | 24.04 2854 27.70 27.30 27.23 27.10 27.82 | 28.57 28.02 27.33 28.36
100% | 30.00 30.00 30.00 30.00 30.00 30.00 30.00 30.0 30.00 30.00 30.00

As observed, ¢ and ¢; are among the best overall criteria, while ¢; and c5 are
among the worst (although this may vary depending on the number of emails sent).
Note that the MAB algorithms are always superior to the isolated criterion when the
fraction of emails sent is low, namely 10% and 50%. When these fraction of emails sent
increases to almost all customers, the differences decrease, but e-first with parameter
0.1 still obtains more rewards than the isolated criterion.

In Figure 4.4, we show the fraction of times a specific criterion was chosen using
UCB algorithm for each testing day. Here, the fraction of emails sent is 50%. The
three best criteria that are chosen more frequently are co, ¢7, and c3, which are the
best criteria according to Table 4.2. The UCB algorithm stats the process by assessing
the expected reward and the confidence of this assessment. Thus, for the first days
of test, it tries all arms. Once the UCB algorithm define high confidence on expected
rewards for each arm, it tends to ignore inefficient arms and privileges those that
return higher rewards. For instance, we can see in Figure 4.4 that UCB algorithm
almost ignores arms cy, ¢4, c5, and cg in the last testing days.

In Figure 4.5, we show the fraction of times a specific criterion was chosen, arm
usage, by the e—greedy algorithm as a function of testing days. As in Figure 4.4, we
also consider here the fraction of emails sent is 50%. We present the arm usage for
different values of €. In Figures 4.5 (a), (b), and (c), we use € = 0.10, € = 0.50, € = 0.90,
respectively. For low values of € the e—greedy algorithm rarely explores other criteria,

focusing most of the time on the best-performing criterion. As a result, the two criteria
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Figure 4.4: Fraction of times that a specific criterion (i.e., arm) was chosen using the
UCB algorithm.

that are chosen more frequently are ¢ and c¢; (see Fig 4.5 (a)). Note that this is the
same behavior as UCB algorithm that we previously discussed. As time passes, the
algorithm converges to an efficient combination of these two criteria. Increasing the
value of e enables other criteria to be explored (see Fig 4.5 (b)). In particular, for
higher values of € all criteria tend to be used in equal proportion, since in this case the
best criterion is being chosen with a low probability(see Fig 4.5 (c)).

In Figure 4.6, we present the cumulative reward in terms of the fraction of emails
sent. We concern here the trade-off between maximizing the cumulative reward while
minimizing the number of emails sent to the customers. For this experiment, we assume
that the upper bound performance is given by always choosing a perfect arm (i.e., a
criterion that always lead to a click). Observe that we cannot send less than 40% of the
emails without compromising reward. The performance of 1.00—greedy algorithm lies
exactly in the diagonal since this algorithm randomly explores all criteria. The best
performer is the 0.10-greedy algorithm, which enables a 10% reduction in terms of the
number of emails sent, without compromising reward. If a small reduction in terms of
reward is allowed (e.g., less than 10%), then we may avoid sending about 30-40% of

the emails.

4.4 Time Performance

In this section we discuss the time performance of our proposed approach for email
prioritization, and analyze the three steps of the process presented in Figure 4.2 on
Page 51. All steps depend on the number of customers ¢ and, unless stated otherwise,
are calculated off-line. The first step concerns a sorting algorithm, which runs in

O(clogc). The MAB algorithm, presented in the second step, is linear in ¢. The third
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Figure 4.5: Fraction of times that a specific criterion (i.e., arm) was chosen using the
e—greedy algorithm. (a) € =0.10. (b) € =0.50. (c) € =0.90.

step, which refers to the recommender, has two phases. First, we train the recommender
off-line and then make recommendations online. Training the recommender depends

on ¢ and the number of non-zero observations N in the customer/deal matrix. We
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Figure 4.6: Trade-off between number of emails sent and cumulative reward.

used the WRMF algorithm available in the MyMedial.ite package.! The running time
of the WRMF algorithm is O(c+ N) [Hu et al., 2008]. The online part of the method
depends on the number s of customers selected to receive emails, and is O(s), where
s < ¢. The overall running times of the off-line and online methods are O(c+ N) and

O(s), respectively.

4.5 Final Remarks

This chapter discussed the important problem of adding value to daily-deals recom-
mendation. Strategies to daily-deals recommendation usually relies on email marketing,
and the perceived value of these emails are seriously compromised given the large num-
ber of emails sent to customers. We proposed an alternative strategy that sends emails
featuring the daily-deals only to those customers that are more likely to click.

We introduce several criteria that can be used to sort customers based on ag-
gregated statistics and past history. The best criterion at a given time step is not
known in advance and may vary with time. We employ two well-known multi-armed
bandit algorithms in order to chose the best-performing criterion at each time step,
and evaluate their performance on real data.

The best algorithm deals efficiently with the trade-off between maximizing the
cumulative reward and minimizing the number of emails sent to customers. More
specifically, for the Peixe Urbano dataset, it enables a 10% reduction in terms of the
number of emails sent without affecting reward. If a small reduction in terms of reward

is allowed (i.e., 10%), then we may avoid sending about 30-40% of the emails.

http: //www.mymedialite.net



Chapter 5

Improving Daily Deals
Recommendation with Suggestion
Feedback

DDSs work with daily catalogs of deals, and their main advertising strategy is still
email [Freed and Berg, 2012]. Every day they send registered customers featured deals
that, if non-personalized, are commonly viewed as spam. In order to provide more
relevant and appealing deals recommendations, current recommender systems need to
learn to address three main challenges. First, most of the customers of a DDS are
sporadic bargain hunters, and thus past preference data is extremely sparse and noisy.
Second, deals have a short life period, and hence data is extremely volatile and scarce.
Finally, customer taste and interest may undergo temporal drifts.

This chapter presents new methods to address these challenges based on a simple
idea: get customer feedback on active catalogs as soon as possible. In the proposed
methods, customer feedback is obtained by using a Multi-Armed Bandit (MAB) algo-
rithm, which is a special class of sequential optimization problems derived from the
more general paradigm of Reinforcement Learning [Sutton and Barto, 1998, Kaelbling
et al., 1996|. In a MAB setting, an agent interacts with the environment and, for each
time slot, it is required to take one from a set of possible options (arms). For each
choice, the environment returns a reward (positive or negative) to the agent. MAB
searches for the best trade-off between learning about the options (exploration) and
using the current knowledge to make the best choice (exploitation). The final goal of
MAB algorithms is to maximize the cumulative reward in the long run, and the key

challenge in bandit problems is the need for balancing the exploration and exploitation.

61
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The proposed method is based on a greedy exploration and exploitation strat-
egy |Kaelbling et al., 1996|, which decides which arm to pull, i.e., which customers
should give/receive feedback and when. The idea is to ask for feedback to those cus-
tomers that are likely to provide it, and then exploit the gathered feedback with cus-
tomers that are likely to benefit from it. In this scenario, each customer is an arm and
a positive reward is given if the customer clicks an offer sent by email and provides
feedback. Considering this strategy, two big questions need to be answered: how to
identify which customers should belong to the exploration and exploitation groups, and
how to improve current recommended deals with customer feedback.

In order to divide customers into two groups, we first modeled the problem using a
co-purchase graph that evolves as customers purchase deals. In the co-purchase graph,
each node represents a customer and an edge is created if the corresponding customers
purchase the same deal. Intuitively, a deal becomes more likely to be relevant to a
particular customer if he/she is close to customers that have also purchased this deal.
Given this scenario, customers become important to the exploration phase according
to their purchase probability and centrality in the graph, i.e, the more connected they
are, the more they buy and the more customers they can influence.

We use a set of complex network metrics [Albert and Barabéasi, 2002, Boccaletti
et al., 2006] that reflect these desired properties to sort customers. Based on that
we choose which customers should give and which customers should receive feedback.
After customer feedback is obtained in the exploration phase, rankings of traditional

collaborative filtering algorithms are reordered to reflect the new feedback.

5.1 Explore-then-Exploit Recommendation

This section describes how we modeled our recommendation approach as an explore-
then-exploit process. The entire recommendation process is repeated daily and the

sequential steps are:

Sorting Customers We start the process by sorting customers that (i) are more
likely to provide feedback, and (ii) share similar tastes with many others (i.e.,

their feedback is likely to benefit other cutomers).

Splitting Strategy Once we sort customers, we are now interested on splitting cus-
tomers into two distinct sets: (i) customers that we ask feedback on the current
catalog, and (ii) customers that will receive improved recommendations based on

the previously gathered feedback.



5.1. EXPLORE-THEN-EXPLOIT RECOMMENDATION 63

Exploration Once we determine the set of customers that will provide feedback on
the current catalog, in this step we send recommendations to this set and store

their click feedback.

Exploitation Once we gather feedback on the current catalog, in this step we use this

feedback to send improved recommendations to exploitation customers.

In the following sections we detail each step of our approach.

5.1.1 Sorting Customers

This step starts by building a co-purchase network as illustrated by a small example
in Figure 5.1. The co-purchase network is built from purchase historical data. The
network is represented by an unweighted undirected graph, where each node represents
a customer and each edge connecting two customers represents a deal purchased by

both customers.

Co-purchase network

Purchase history Sorted customers
Customer| Deal @ C37
€10 dq C19
€37 | da,dao Co
C71 d20 —> —e—>
C13
C9 d
C71

ci13  |da
C19 dl } d20 @‘@ C10

Build co-purchase Sorting
network customers

Figure 5.1: Sorting customers according to their purchase history data.

In Figure 5.1, we show six purchase records involving six customers and three
deals. For instance, customer c3; bought deals dy and dyy. This purchase history data
leads to the co-purchase network shown in Figure 5.1. As an example, customers ¢y
and c19 bought deal d;, thus they are connected in the co-purchase network. Here, we
sort customers according their degree in the co-purchase network.

Since we have the co-purchase network, we are able to sort customers. As sorting
criteria we want that two properties be satisfied, i.e., we want separate customers

that (i) are more likely to provide feedback (i.e., to purchase a deal), and (ii) share
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similar tastes with many other customers (i.e., their feedback is likely to benefit other
customers).

These two properties are more evident in customers that are central in the co-
purchase network, where central means customers that have higher score in a given
network centrality metric as described in the following. We employ five representative
network centrality metrics [Freeman, 1979, Bonacich, 1987, Borgatti, 2005| to sort

customers:

e The Degree of a customer is defined as the number of other customers having
similar taste to her, that is, the number of customers she is directly connected
to in the co-purchase network. This metric may be related to the probability of

purchase (the higher the degree, the higher the odds of a purchase).

e The Betweenness of a customer, which is also called socio-centric betweenness
centrality, is computed as the fraction of shortest paths between all pairs of
customers that pass through the customer of interest. As expected, customers
that have a high probability of occurring on a randomly chosen shortest path
between two customers are said to have high betweenness centrality. A formal
definition of the betweenness centrality b, of target customer u is given by the
summation of the number of geodesic paths between any two nodes s and ¢
through u, normalized by the total number of geodesic paths between s and ¢,
given by: »

by = = (5.1)
s#FVEL QSt
where 05t is the total number of shortest paths from node s to node ¢ and 65 is

the number of those paths that pass through w.

e The FEigenvector of a customer is defined in a circular manner. In particular,
the eigenvector centrality of a node is proportional to the sum of the centrality
values of all its neighbors. In our co-purchase network, a central node is char-
acterized by her connectivity to other important nodes. In this case, a central
customer corresponds to a well-connected node and has a dominant influence on
the surrounding sub-graph. We specify the eigenvector centrality in terms of the
adjacency matrix of our co-purchase network. Let v; be the iy, element of vector
v, representing the centrality of node 7, where N (i) is the set of neighbors of node
7 and let A be the n xn adjacency matrix of the undirected co-purchase network.

In matrix notation we have:

Ae = Je, (5.2)
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where e is an eigenvector of A, and A is its associated eigenvalue. Typically the

largest eigenvalue is the preferred one.

e The PageRank of a customer is defined recursively and depends on the value of
the PageRank of her neighbors. Formally, the PageRank of a customer u; is given
by:

U
Ut:aZAtjkTZt-’_B? (53)
J j

where k;“t is the out-degree of node j. This normalization is done to obtain a

stochastic matrix (either all the columns or all the rows sum to one).

e The Clustering Coefficient of a customer denotes how close its neighbors are to
forming a clique (i.e., a complete graph). Formally, it is defined as the ratio
between the total number of connections among the neighbors of target customer
u; and the total number of possible connections between her neighbors, which is

given by:
L

@7

where L is the number of actual links between the neighbors of u;, and n stands

Cy, = (5.4)

for the number of neighbors of w;.

5.1.2 Splitting Customers

Having a sorted list of customers obtained in the previous step, we separate them into
exploration and exploitation sets. The process of separating customers into explo-
ration and exploitation sets may employ one of the strategies discussed in the following
paragraphs.

In Figure 5.2, we illustrate the two proposed splitting strategies following the
same previously presented small example. The input of both strategies is showed in
Figure 5.2(a) and refers to the array of customers sorted by their degree in the co-
purchase network. The two strategies are Full Explore and k-Way Merge.

The Full Explore strategy sort customers following the order imposed by the
corresponding centrality metric. In this case, most central customers (wrt. a specific
centrality metric) receive email messages first, and are thus fully explored. This is the
strategy initially proposed by Lacerda et al. [2013|, and is used as a baseline in this
work. We refer to this strategy as FE (Full Explore).

Since we have the sorted customers given by the Full Explore strategy, we split

them following an e-first strategy |[Tran-Thanh et al., 2010], where a pure exploration
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Figure 5.2: Strategies for balancing the exploration and exploitation sets. Fully ex-
ploring central customers, or merging them into exploration and exploitation. In this
example, we use k =2 (i.e. the size of each chunk) in the k-Way Merge strategy.

phase is followed by a pure exploitation phase. In this case, given a total of N cus-
tomers, the exploration phase comprises € x N customers, while the exploitation phase

includes the remaining (1 —€) x N customers.

In Figure 5.2(b), we present the final split returned by the Full Explore strategy.
In particular, we consider € = 0.5, i.e., we equally split customers between the explo-
ration and exploitation sets. Hence, the exploration set is given by customers c37, c9,
and cy and the exploitation set is given by customers c;3, ¢71, and ¢1g. The Full Explore
strategy considers the customers sorted by the original sorting criterion (e.g., Degree)

and split them according to the given € value.

The strategy of fully exploring central customers has a limitation. As the co-
purchase network is expected to have a very low diameter, central customers have
high probability of being connected. For instance, if we explore the feedback given
by the two most central customers in the network, the probability of both having a
high number of common neighbors is very high. In this case, exploring both customers
might be ineffective since their feedback is likely to be redundant. In fact, feedback
from only one of these customers would be enough, as it benefits a set of customers
very similar to the one influenced by the feedback of the other customer. In addition,

central customers are likely to benefit the most during exploitation.

To avoid the possible redundant feedback we propose to alternate central cus-
tomers into exploration and exploitation sets using a k-Way Merge algorithm. We
refer to our algorithm as KWM (k-Way Merge) for short. Specifically, customers are
arranged into chunks, so that some chunks are composed by central customers while
other chunks contain more peripheral customers. These chunks are then merged into
a single list of customers by alternating them, ensuring that both exploration and ex-
ploitation sets contain central customers. The k-Way Merge strategy also use the e-first

strategy to split customers between the exploration and exploitation sets.
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In Figure 5.2(c), we present the two phases of the k-Way Merge strategy. First
we consider that the size of each chunck is 2, i.e., k = 2. Hence, we have three chunks,
namely, (i) cs7, c19, (ii) co, c13, and (iii) ¢71, c19. On the right side of Figure 5.2(c), we
present the resulting merge of these chunks. Here, we also consider € = 0.5 and split
the final merged rank half for exploration and half for exploitation. Hence, the k-Way
Merge strategy returns customers cs7, cg, and c7; for exploration and customers cig,
c13, and ¢y for exploitation. In this example, we avoid a possible redundant feedback

from customers c37; and c19 because they are now in different sets.

5.1.3 Exploration

Since we split customers into exploration and exploitation sets, in this section we detail
how we proceed to recommend deals for exploration set of customers. As already
mentioned, during exploration step we intent to gather feedback from customers to
improve the performance of recommendation for exploitation customers.

The Exploration phase consists of obtaining feedback from customers with regard
to the deals of the day. Customers in the exploration set receive recommendations using
the baseline recommender algorithm alone, i.e., no feedback is considered, featuring the
current deals in the catalog. After that, the algorithm waits for feedback from these
customers. Having gathered feedback from customers in the exploration set, the co-
purchase network is updated and the exploitation phase starts.

In Figure 5.3 we illustrate the exploration phase of our approach. Here we are
considering the Full Explore strategy to select customers to exploration set. The cus-
tomers selected for exploration are cs7, ¢19, and ¢g. For each timestep ¢, where 1 <t < 3,
we select the target customer ¢; to send recommendations and capture their feedback
f+. The feedback is used to update the co-purchase network. For instance, in Figure 5.3,

we create two edges between customers (c1g, ¢71) and (¢q9, o).

5.1.4 Exploitation

Having send recommendations for all customers in exploration set, we start the Ex-
ploitation phase of our approach. In the Exploitation phase, all customers receive a
message featuring a list of deals. Given the ranked list of deals initially produced
by the baseline recommendation algorithm for a particular customer, we incorporate
the feedback obtained in the co-purchase network in order to further personalize the
ranking toward the potential interests of this customer. Specifically, given a target

customer, deals in the current catalog that were purchased by her neighbors (in the



68 CHAPTER 5. IMPROVING RECOMMENDATION WITH FEEDBACK

Updated
co-purchase

S network
Catalogue
(en),
Exploration <

customers i 1 '
] 1
—» 1]|C37 @ 1 :
2|C19 | —e—> | Recommender | —@—> | email | ———¢——— :
1
1

()
1
1
7
Select target Send deal Capture feedback f: @ @ ’
customer Ct, recommendations to update co-purchase
1<t<3 network

Figure 5.3: Recommendation process for customers in the exploration set. The entire
process is repeated for each target customer c¢;, where 1 <t < 3.

updated co-purchase network) are placed ahead of all other recommended deals for this
customer.

In Figure 5.4 we illustrate the exploitation phase of our approach. Here we are
also considering the Full Explore strategy to select customers to exploitation set. The
customers selected for exploitation are ci3, ¢71, and c¢j9. For each timestep ¢, where
4 <t <6, we select the target customer ¢; to send recommendations. Different from the
process during exploration, here we used the update co-purchase network to re-rank
the recommendations built by the recommender algorithm.

Exploration and exploitation are sequentially performed, i.e., every testing day
starts with the exploration phase, which is then followed by the exploitation phase.
In the end of each testing day, all purchases are used to update the historic data H,
and the explore-then-exploit process is repeated. In the next section, we assess the

recommendation effectiveness of our approach on a sample of real DDS usage data.

5.2 Experimental Evaluation

In this section we assess the effectiveness of our proposed algorithms. First, we present
a detailed analysis of the dataset used in our experiments. This analysis is followed
by experiments showing the differences in effectiveness between the proposed sorting
criteria and splitting strategies. Finally, we show the results obtained by the proposed
explore-then-exploit algorithms according to different parameter configurations.

Our evaluation follows the Interleaved Test-Then-Train methodology [Bifet et al.,

2010]. We first evaluate all recommendations a customer receives on day t considering
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Figure 5.4: Recommendation process for customers in the exploitation set. The entire
process is repeated for each target customer c¢;, where 4 <t < 6.

as training data all history from first day until day t—1. When considering testing day
t+1, we follow the same methodology, i.e., we evaluate all recommendations a customer
receives on day t + 1 and we consider as training data all history from first day until
day t. This process follows for all testing days. The results to be reported correspond
to an average over all testing days. Statistical significance was verified using a t¢-test
(p<0.05) and the best results, including statistical ties, are shown in bold.

An effective ranked list of deals should place relevant deals in the top positions,
since these are the positions more likely to be clicked by the customers |Feng et al.,
2007]. Therefore, we discuss the recommendation performance of our proposed algo-

rithms in terms of standard evaluation metrics, namely precision, MAP and MRR.

5.2.1 Dataset

The experiments were performed using a real-world dataset obtained from Peixe Ur-
bano. We used a sample of the 2-months version with 455 deals. The first 31 days
were used to build the initial co-purchase network, and the last 30 days were used to

test our algorithms.
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In Figure 5.5, we show the evolution of the co-purchase network, in terms of
the number of nodes and edges composing the network over time. On the left side
we present the number of nodes (i.e. customers) added, and on the right side, we
present the number of edges added (i.e. purchases). We present the evolution of graph
properties as a function of testing days. From the plot, we can see that the number of
new nodes added ranges from 16,976 to 31,280 and the number of new edges increases
from 6,681,262 in first testing day to 16,648,608 in the last testing day. In the DDS
scenario, we have both new customers and new deals available on a daily-basis, and
both the number of nodes and the number of edges are always increasing throughout
testing days. We can also see that the increment in the number of new nodes and new

edges follows a similar growth rate.
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Figure 5.5: Co-purchase network evolution: nodes and edges added during the testing
days.

5.2.2 Evaluation Results

The proposed explore-then-exploit algorithms for daily-deals recommendation are eval-
uated considering four dimensions: (i) the fraction € of users to be explored, (ii) the
recommendation algorithm used during the process (see Section 3.2), (iii) the five dif-
ferent criteria used to sort customers, and (iv) the two strategies used to separate

customers into exploration and exploitation.

5.2.2.1 Framework Validation

In this section, we attempt to validate the recommendation framework proposed in

Section 5.1. In particular, we aim to answer the following research questions:
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Q1 How do existing recommendation algorithms perform in a DDS scenario?

Q2 Can we improve the performance of existing recommendation algorithms using

our explore-then-exploit approach?

In order to answer question Q1, in Figure 5.6, we show the performance of our
explore-the-exploit framework on top three representative recommendation algorithms
from the literature, namely, MP, WRMF, and CLiMF. Performances is given in terms
of MAP (Figure 5.6a), MRR (Figure 5.6b), and Precision (Figure 5.6c) as we vary
the e parameter. Recall that the larger the value of ¢ the more customers are used
for exploration. To assess the effectiveness of our approach at improving existing
recommendation algorithms, we executed 100 runs for each € value, and in each run we
randomly split users into exploration and exploitation. Therefore, we have 100 results
for each € value, from which we calculate the average. In Figure 5.6, our explore-the-
exploit framework is applied with the Betweenness sorting criterion (see Equation (5.1))
and the k-Way Merge splitting strategy, proposed in Section 5.1.2. Results for other

sorting criteria and splitting strategies are discussed later in this section.

Betweenness

Betweenness

Betweenness

0.2
MP —— Mp —— | MP ——
04 WRMF 04 WRMF WRMF
03 CLIMF 0.3 CLIMF 5 CLIMF s
o o D
S 02 | € R
0.1 _
0 0 0
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
e € 3
(a) (b) (c)

Figure 5.6: (Color online) MAP, MRR and Precision numbers for Most Popular,
WRMF, and CLiMF.

By contrasting the three recommendation algorithms when € = 0 in Figures 5.6
(a) (b) (c), we observe that MP is consistently the most effective, following by WRMF
and then by CLiMF. This result is strictly different from the performance of these
algorithms as reported in the literature. Recalling question Q1, we observe that the
considered algorithms generally underperform in a DDS recommendation scenario. In-
deed, WRMF is regarded as the state-of-the-art in recommendation scenarios with
implicit feedback. This may happen because (i) data is extremely sparse compromis-
ing collaborative filtering algorithms, and (ii) the daily-deals recommendation scenario
is more dynamic than typical recommendation scenarios in the sense that deals are

volatile and new deals are constantly appearing.
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Regarding question Q2, we observe that all three recommendation algorithms
are improved by our proposed framework as € increases, with a peak around € = 0.3.
This result is consistent for different instantiations of our framework. In particular,
Figure 5.7 provides a breakdown visualization of the performance in terms of MAP of
our framework for different sorting criteria (besides Betweenness, we consider Degree,
Eigenvector, Clustering Coefficient, and PageRank as sorting criteria, as introduced
in Section 5.1.1) in each row and the three considered recommendation algorithms in
each column.! In addition, besides the overall performance of our framework (i.e. the
performance computed for all customers shown in blue in Figure 5.6), we also show its
performance on the set of exploration customers (red in the figure) and on the set of
exploitation customers (green in the figure).

From Figure 5.7, we first observe that the performance our framework on the ex-
ploited customers is naturally superior than its performance on the exploration users,
in which case the underlying baseline recommendation algorithm is applied without
any feedback. Indeed, as observed from the red curves the exploration performance is
generally independent of the € parameter. The exploitation performance on the other
hand increases as the amount of feedback (i.e. the value of epsilon) increases, as de-
picted by the green curves. This behavior is consistent for all considered sorting criteria
and baseline recommendation algorithms. Note, however, that simply exploiting more
feedback does not necessarily guarantee the best overall performance as shown in the
blue curves. Indeed, we observe that a value of € » 0.3 is generally the best trade-off
between exploration and exploitation for all the considered instantiations of our frame-
work, in which case the observed overall gain on top of the three recommendation
baselines is maximized. Overall, these results answer question Q2 by further attesting

the effectiveness of our explore-then-exploit framework for DDS recommendation.

5.2.2.2 Analytical Results

The previous section demonstrated the effectiveness of our proposed framework at
improving the performance of three representative recommendation algorithms from
the literature in a DDS scenario. In this section, we further investigate the reasons
behind the effective performance of our framework. In particular, we aim to answer

the following research questions:

Q3 What is the impact of different criteria for sorting customers?

Q4 What is the impact of our proposed k-Way Merge splitting strategy?

'Results in terms of MRR and Precision show similar trends and are omitted for brevity. A
complete analysis in terms of these three evaluation metrics is provided in Section 5.2.2.2
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Figure 5.7: (Color online) MAP numbers obtained considering exploration, exploita-

tion, and their combined values.
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To answer these three research questions, Tables 5.1 and 5.2 provide a full break-
down analysis of our framework in terms of MAP and MRR, respectively. In each
table, we show the performance of our framework on top of the MP recommenda-
tion algorithm, which was the best performing baseline in Section 5.2.2.1, for different
choices of sorting criteria, splitting strategy, and the € parameter. As sorting criteria,
besides of aforementioned Betweennes, Degree, Eigenvector, Clustering Coeflicient and
PageRank, introduced in Section 5.1.1, we further consider a Random sorting criterion
as a baseline. To assess the effectiveness of our proposed KWM splitting strategy, we
compared to FE strategy proposed by Lacerda et al. [2013]. Regarding the e values,
recall that e = 0 corresponds to the performance obtained by the MP baseline, without
using any feedback information. For each performance number, we use the symbols A
and o to indicate significant improvement and statistical ties, respectively, according to
a t-test with p < 0.05. We also use symbols 1, | and e to indicate that the correspond-
ing result is an improvement, decline, or remained the same considering the previous
e value. Finally, at the bottom of each table we provide summary figures for average
gain of our framework compared to the MP baseline, as well as the average and the
highest gains of KWM compared to the FE splitting strategy.

In Section 5.2.2.1, we showed that our proposed framework consistently improves
on top of the different recommendation baselines for various choices of sorting criteria.
To address question Q3, we further investigate the impact of each of these criteria on
the performance of our framework. From Tables 5.1 and 5.2, we first note that the use of
centrality metrics as sorting criteria is of utmost importance. Indeed, using the Random
baseline as a sorting criterion results in negligible and no significant improvements
compared the MP baseline with no feedback (e = 0). In contrast, all of the proposed
sorting criteria based on centrality metrics significantly improve on top of MP for
both MAP and MRR (Tables 5.1 and 5.2, respectively). In terms of MAP Tables 5.1,
the Betweenness sorting criterion is the most effective for both FE (MAP = 0.264)
and KWM (MAP = 0.267) splitting strategies. In terms of MRR 5.2, Betweenness
performs the best with FE (MRR = 0.273), whereas Clustering Coefficient performs
the best with KWM (MRR = 0.272). For both MAP and MRR, the best performance
is consistently obtained with € = 0.30. Recalling question 3, these results show that
the customers sorting criterion has a significant impact on the performance of our
explore-then-exploit recommendation framework, with Betweenness given the overall
best performance. In particular, for the range of e values, Betweenness gives a 19%
improvement in terms of MAP on top of MP when using the FE splitting strategy,
and 21.3% when using the KWM strategy. In terms of MRR, the average gains for
Betweenness are 8.8% and 20.8% with FE and KWM, respectively. In terms of highest
gains, KWM splitting strategy givens improvements in terms of MAP that range from
28.26% to 34.00%, and in terms of MRR the gain range from 27.79% to 32.79%.
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5.2.2.3 The Impact of Sorting Criteria

A natural question for further improving the performance of our proposed framework is
whether we could combine multiple sorting criteria as arms within our MAB approach.
In the following we analyze the impact of different sorting criteria. We used the five
aforementioned centrality metrics sort customers. This first experiment shows how
similar are the rankings generated by different criteria. This is important because
MAB algorithms assume that the arms are independent from one another. We use
a rank correlation metric, namely Kendall Tau, to measure the extent to which the
order of the observations (or customers) in a ranking A differs from the order of the
observations in B, as defined in Section 4.3.1. In Table 5.3, we show all the values
of 7 are very close to 0, showing that the rankings generated are not correlated. As
previously discussed, this result attests the utility of the several considered centrality

rankings as arms within our MAB approach.

Table 5.3: Kendall Tau considering rankings Generated by different Centrality Mea-
sures

PageRank Betweenness Clustering EigenVector Degree

Coefficient
PageRank 1.00000 0.00365 -0.00128 0.00017 -0.00053
Betweenness 0.00365 1.00000 -0.00069 0.00042 0.00048
Clustering Coefficient  -0.00128 -0.00069 1.00000 -0.00204 -0.00148
EigenVector 0.00017 0.00042 -0.00204 1.00000 -0.00011
Degree -0.00053 0.00048 -0.00148 -0.00011 1.00000

5.2.2.4 The Impact of Splitting Strategies

To address question Q4, we contrast the performance of our framework using KWM
splitting strategy introduced in Section 5.1.2 to its performance using the FE strategy
proposed by Lacerda et al. [2013| across the five considered sorting criteria. From
Tables 5.1 and 5.2, we observe that the KWM strategy consistenltly improves compared
to FE for almost all sorting criteria and values of €. The average gains in terms of MAP
range from 1.8% to 10.0% and are significant in most cases (the only exception are
when using the Betweenness and Clustering Coeflicient sorting criteria, in which cases
the average gains are not significant). In turn, the highest MAP improvements range
from 4.5% (Betweenness) to 21% (Degree). In terms of MRR, the average gains range
from 1.7% to 10.11%, once again significant in most cases, except for Betweenness and
Clustering Coefficient. Similarly to the MAP results, the highest gains in terms of
MRR range from 5.3% (Betweenness) to 20.1% (Degree). Recalling question Q4, these
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results attest the effectiveness of our proposed KWM splitting strategy and its positive
impact on the overall performance of our recommendation framework.

To understand the improved benefits of the KWM splitting strategy, we compare
the ranking of customers when using different k values and the impact of this rankings
generated co-purchase network. Remember that the k parameter refers to the size
of each window in the latter strategy. In particular, the fixed-size window splitting
strategy was proposed based on the hypothesis that, in highly connected graphs, central
users are usually connected to a large number of common users, and hence receiving
feedback only from central users may not be the most effective approach. In other
words, we hypothesize that the more dispersed the explored customers the more their
feedback will influence the remaining customers.

In Figure 5.8, we show evidence that supports this hypothesis. For each graph,
we measured the density of the subgraph used during the exploration phase, i.e., built
from users {uy,us,...,up-1}. The density of a graph G is given by the fraction of the
number of edges in G and the maximal possible number of edges in G. Since our graph

is undirected, the density is computed as:
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Figure 5.8: Density of the subgraphs versus window size k. We consider the graph
generated during the exploration phase by different ordering metrics.

The denser the sub-graph, the higher the probability of two central users having
a large number of common neighbors. In the first graph, for different values of € (which

have direct impact on the size of the subgraph used in the exploration phase), we show
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how the density of the graph decreases as we reorder users by interposing different fixed-
size windows. The larger the size of the window, the less dense the graph becomes, and
hence the probability of user feedback affecting different users increases. This result
demonstrates the potential benefit of our k-Way Merge strategy for splitting users
into exploration and exploitation groups. In the next section, we thoroughly assess the

effectiveness of our explore-the-exploit approach in an online recommendation scenario.

5.3 Time Performance

In this section we discuss the time performance of the proposed approach for deal
recommendation, and analyze the four steps of the process presented in Section 5.1.
We start by sorting customers off-line according to their purchase history data as
illustrated in Figure 5.1 on Page 63. This step is divided into three phases: building
the co-purchase graph, calculating the centrality metrics and sorting users according
to the metrics. The cost to build the graph is O(c + n), where ¢ is the number of
customers and n is the number of deals. The centrality metrics were calculated using
the implementations available in the SNAP library.? The most expensive metric is
Betweenness, which is O(c? log c+ce), where e is the number of edges of the co-purchase
network. The phase of sorting customers is O(clogc). The overall complexity of the
sorting step is O(c?logc + ce). The sorting step is performed off-line.

The second step of our approach is the splitting strategies to separate customers
into exploration and exploitation sets, illustrated in Figure 5.2 on Page 66. Our Full
Explore strategy is O(1) because it does not re-rank the previously computed ranking
of customers. The k-Way Merge strategy is O(cklogk) [Knuth, 1973|, where k is the
number of chunks. The splitting step is performed off-line.

The third step of our approach is the recommendation process for customers
in the exploration set, illustrated in Figure 5.3 on Page 68. The recommender is
built off-line using the implementation available in the MyMediaLite package.? The
most expensive recommendation algorithm used in our investigation is WRMF', which
is O(c+ N), where N is the number of non-zero observations in the customer/deal
matrix [Hu et al., 2008]. The online part of this step refers to sending emails for each
customer and updating the co-purchase network. The running time to send emails is
O(c). The running time to update the co-purchase network is O(p), where p is the
number of co-purchases that happened during exploration.

The last step of our process is the recommendation process for customers in the
exploitation set, illustrated in Figure 5.4 on Page 69. We used the recommender trained

during exploration to compute recommendations. Hence, the additional step here is

http://www.snap.stanford.edu/snap/
3http://www.mymedialite.net
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the re-ranking of recommendations using the co-purchase network. This is a sorting
step that is O(rlogr), where r is the number of deals recommended to customers. The
overall running time of the off-line and online methods are O(c?logc + ce) and O(c),

respectively.

5.4 Final Remarks

In this chapter, we focused on the important problem of suggesting relevant and ap-
pealing products and services to potential customers, considering the particularly chal-
lenging scenario of daily-deals recommendation. Specifically, we consider the task of
sending personalized email messages featuring potentially relevant deals to users. In
this case, we can impose a restriction on the order that users receive their messages,
that is, some users receive their messages before others.

We propose explore-then-exploit recommendation algorithms that are devised
to: (i) gather feedback from users that receive their messages first (i.e., during the
exploration phase), and (ii) use the gathered feedback in order to send personalized
messages to the remaining users (i.e., during the exploitation phase). An important
advantage of our method is that it is agnostic in terms of the recommendation algorithm
used, i.e., we are able to use any recommendation algorithm proposed in the literature.

There is a trade-off between exploration and exploitation, in the sense that the
more customers are explored, more feedback is gathered but less feedback is indeed
used. To deal with this trade-off, we propose sorting customers according to their
centrality in an evolving co-purchase graph, considering that more central customers are
those that share the same taste with more customers. According to different centrality
metrics, we split customers into exploration and exploitation by taking into account
how central they are in the current co-purchase network, so that we achieve a proper
balance between the amount of feedback acquired during exploration and the amount
of feedback indeed used during exploitation.

We use a sample of the 2-month real data obtained from Peixe Urbano, the
largest daily-deals site in Brazil, and show that: (i) the recommendation performance of
existing algorithms is no better than the naive strategy of suggesting non-personalized
deals for all customers (i.e., all customers receive the same email featuring the same
deals), and (ii) the proposed exploration-exploitation algorithms are effective and well-
suited to the DDSs recommendation scenario, providing improvements ranging from

7.9% to 34%.



Chapter 6

Conclusions and Future Work

Daily-Deals Sites (DDSs) provide online discount coupons for diverse products and
services, and operate as a mediator between local merchants and customers. This
thesis focused on two problems related to the Daily-Deals business: how to maximize
revenue and increase customer satisfaction. We proposed three different methods to
deal with the challenges associated with these problems, namely deal size prediction,
email prioritization and deals recommendation.

The problem of deal size prediction, i.e., predicting the number of coupons a
deal is expected to sell, is crucial to DDS administrators. With this information,
administrators can simulate different sets of catalogs, choosing the one that maximizes
profitability. The drawback of current methods in the literature is that they ignore
complex interactions between deals, an issue solved by the method proposed here.

A variety of channels are used to suggest deals to customers in DDSs, but the
primary approach is yet to send email featuring the deals of the day [Freed and Berg,
2012]. As customers are overloaded with non-personalized daily messages, with time
they start considering these messages as spam. In order to avoid that, the second
problem solved in this thesis is prioritizing emails, i.e.. choosing which customers
should receive emails first (or at all) according to their probability of clicking the
emails.

Finally, our last method tackles the problem of the email content, i.e., the con-
tent of the recommendations sent. Although there is a variety of recommendation
algorithms available, the daily-deals scenario has characteristics that make the prob-
lem particularly challenging, including extremely sparse, noisy and very dynamic data.
We solve this problem by proposing a method that benefits from customer feedback to
improve recommendations.

The remainder of this section shows the main contributions and conclusions of

this thesis, and discusses various directions of future research.
1
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6.1 Summary of Contributions

This section summarizes the main contributions of this thesis.

The exploitation of Markets to tackle deal interaction: When simulating deals
catalogs, DDS administrators have difficulties in dealing with complex interactions
among deals, as explained in Chapter 3. This is also true for automatic methods for
deal size prediction. The two main types of interactions are: (i) deals that compete
for customer preference (possibly decreasing their sizes), or (ii) deals that complement
other deals (possibly leveraging their sizes). We dealt with this problem by using
the concept of Markets, which is defined as a set of deals that attract the interest of
customers with similar preferences. As showed in Section 3.2, we proposed a content-
based method to identify markets by exploring deal structure, and showed that their

use minimizes deal prediction error.

A new method for Deal Size Prediction: Still in Chapter 3, we incorporated the
concept of markets when automatically predicting deal size. In Section 3.3, we gen-
erated different predictors for different markets, and then presented an expectation-
maximization algorithm that models market interplay and intra-market competition
by minimizing the error in prediction. The results showed that the method outper-

forms current state-of-the-art methods that do not consider deals interactions.

Criteria to sort customers according to their probability of email click: In Chap-
ter 4, we introduced several criteria that can be used to sort customers based on ag-
gregated statistics and past history according to their intention to click a link and
buy a product. The best criterion at a given time step is not known in advance and
may vary with time. In isolation, the time since the last purchase showed to have a
high predictive power, but it was combined with other criteria in a multi-armed bandit

strategy to prioritize emails online.

A new method for Prioritizing Emails: Strategies to daily-deals recommendation
usually rely on email marketing, and the perceived value of these emails is seriously
compromised given the large number of non-personalized emails sent to customers.
Given different criteria to sort customers according to their intention to buy, in Sec-
tion 4.2 we proposed an alternative strategy that sends emails featuring the daily-deals
only to customers that are more likely to click the email using different multi-armed

bandit algorithms to decide the order and the number of emails that should be sent.
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Results showed that we can significantly reduce the number of emails sent while keeping

the same number of clicks.

The exploitation of Customer Feedback for DDS Recommendation: In Chap-
ter 5, we tested whether customer feedback on current deals at the catalog can improve
the recommendation in DDS scenarios. We did that by modeling the problem using a

co-purchase graph, and concluded feedback is indeed important.

A new method for DDS Recommendation: Having customer feedback, we tackled
the problem of suggesting relevant and appealing products and services to potential
DDS customers via email in Section 5.1. We propose exploration-exploitation recom-
mendation algorithms devised to: (i) gather feedback from customers that receive their
messages first (i.e., during the exploration phase), and (ii) use the gathered feedback
in order to send personalized messages to the remaining customers (i.e., during the
exploitation phase). There is a trade-off between exploration and exploitation, in the
sense that the more customers are explored, more feedback is gathered but less feed-
back is indeed used. The method showed that the recommendations performed are

better than using stand-alone state-of-the-art recommendation algorithms.

Use of Peixe Urbano real-world dataset: Throughout Chapters 3, 4 and 5, the
proposed methods were tested in a real-world dataset provided by Peixe Urbano. In
some cases, finding baselines for our methods was not trivial, since most problems in
DDS are not studied due to lack of real-world data.

6.2 Summary of Conclusions

In this section, we summarize the main conclusions drawn from the evaluation of our
three methods proposed in Chapters 3, 4 and 5. The results corroborate with our

initial goal, which was to maximize DDSs revenue and improve customer satisfaction.

Deals Interaction and Markets: A characterization of deals showed that the terms
used to describe them can discriminate deals into markets. These markets are used to
create separate models for deal size prediction for each market. These different models
can then be combined to improve deal size predictions while taking deals interactions
into account. Experiments on three real datasets showed the proposed method obtained
gains in root mean squared error that range from 8.18% to 17.67% over previously

proposed methods.



4 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Prioritizing Emails: We model the problem of prioritizing email as a sequential de-
cision problem, and employed two well-known multi-armed bandit algorithms as a way
to map customers to criteria, in order to maximize the click rate by selecting the best
criterion to apply at each time step. The best algorithm deals efficiently with the trade-
off between maximizing the cumulative reward and minimizing the number of emails
sent to customers. For Peixe Urbano, the proposed method enables a 10% reduction
in terms of the number of emails sent without affecting reward. If a small reduction in
terms of reward is allowed (i.e., 10%), then we may avoid sending about 30-40% of the

emails.

Email Recommendation in DDSs: When tackling the problem of suggesting rele-
vant and appealing products and services to potential DDS customers via email, we
also used multi-armed bandit algorithms. First, we modeled the problem as a co-
purchase graph, and worked with information provided by the graph in two phases.
First, we sorted customers according to their centrality in an evolving co-purchase
graph, considering that more central customers are those that share the same taste
with more customers. According to different centrality metrics, we divide customers
into exploration and exploitation by taking into account how central they are in the
current co-purchase network, so that we achieve a proper balance between the amount
of feedback acquired during exploration and the amount of feedback indeed used during
exploitation. Experiments in the Peixe Urbano dataset showed that: (i) the recom-
mendation performance of existing algorithms is no better than the naive strategy of
suggesting non-personalized deals for all customers (i.e., all customers receive the same
message featuring the same deals), and (ii) the proposed exploration-exploitation algo-
rithms are very effective and well-suited to the daily-deals recommendation scenario,

providing improvements in precision ranging from 7.9% to 34.0%.

6.3 Directions for Future Research

This section discusses possible directions for future research, directly inspired by or
stemming from the results of this thesis. These directions cover topics related to deal

size prediction, email prioritization and daily-deals recommendation.

Deal Features In Chapter 3, we used only textual features to represent deals and
LDA to identify deal markets. However, markets can be characterized by more than
the vocabulary used to describe them. For instance, in Tables 3.3 and 3.4, we observe

that the average price of deals is also very different among markets. Hence, it might
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be interesting to describe deals through textual and non-textual features. One idea to
model this problem is, for each market, to build a representative vector that contains,
for example, the average value of all non-textual features. In a second step, we can
combine the textual vector of each deal with the representative vector of the market
it belongs to. In this case, we can build a single predictor, since markets are already
represented in the deal vectors. A possible advantage of this approach is that we need

to learn only one SVR for all deals.

Deal Structure In Chapter 3, we exploit the structure of deals, i.e., title, merchant’s
name, description, and highlight to describe them. We used a previously proposed
heuristic to assign weights to terms present in each structure. However, this heuristic
was not proposed to assess term weighting for collections of deals. We could investigate
other methods to assign weights to terms or to select only terms useful to identify deal
markets. A machine learning algorithm could be used for this purpose. For instance,
in Lacerda et al. [2006], the authors proposed a Genetic Programming framework to
explore different weight schemes of advertising structure in the computational adver-
tising context. Another possible line of investigation is to learn a model to classify the
terms according to their importance in describing deals, given the market identification
task.

Multiple Market Assignment In Chapter 3, we have used a Latent Dirichlet Alloca-
tion (LDA) strategy to identify markets in our framework of deal size prediction. We
assign each deal to the most representative market. However, a deal may be present
in more than one market. For instance, a deal may belongs to markets “restaurants”
and “Chinese food”, or “beauty” and “hair cut”. Hence, the idea is to study a more
flexible assignment of deals to markets allowing a deal to be present in more than one
market. We could use simple strategies to cluster deals and, for each deal, compute its

proximity to the centroid of clusters.

Learning to Rank Criteria In Chapters 4 and 5 we sort customers using a single
criterion. In Chapter 4, the sorting criteria were related to the domain of DDS, such as
last purchase date and total number of purchases. In Chapter 5, our criteria were based
on centrality metrics, such as pagerank and betweenness. In both cases, we assigned a
weight given by a single criteria to each user. However, we could use more than one
criterion and apply different learning to rank algorithms to combine the weights output
by each criterion. The idea is that different orders provided by the learning to rank
algorithms would be the arms, and the MAB algorithm would learn their best order.
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Creating Deals Catalogs In Chapter 3 we argument that the deal size prediction
problem may be used to select a set of deals that are the most profitable, but we did
not propose a systematic way to create this catalog. Both deal selection (considers one
day) and deal scheduling (considers interactions among deals in different days) can be
performed. The current solutions can be directly used for deal selection, but it can

also be adapted to perform deal scheduling in multiple days.

Contextual Multi-Armed Bandit Algorithm Chapter 4 and 5 used multi-armed
bandit algorithms for sequential decision problems, namely prioritizing emails and the
search for feedback. However, both algorithms did not take into account any context
about the task, as done by the recommendation algorithms described in Section 2.2.2.
In our context, we could consider the current catalog as context for the recommender.
For the prioritizing email task, the idea would be to sort user according to purchase
history and the current catalog. For getting user feedback, we would also look at the

most central users that would give feedback for the current catalog.

Combining Purchase Probability and Feedback The methods presented in Chap-
ters 4 and 5 could be integrated in a way that we would reduce the number of emails
sent while obtaining as much feedback as possible, improving the recommendation in
the emails. For that, we would have to investigate which criterion could simultaneously
return users with high purchase probability and chance of providing feedback. A naive
solution for this problem would be to use linear combinations of the criteria used in
both methods.
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