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Resumo

Modelos de predicao estao se mostrando importantes para a tomada de decisao na UTI,
porém eles geralmente apresentam o problema da caixa preta porque nao fornecem a in-
formacao da logica envolvidas nas previsoes especificas do paciente. Ja existem técnicas
capazes de analisar os modelos e gerar explicacoes valiosas sobre o seu funcionamento.
Porém, uma vez que o modelo é gerado, é importante garantir que ele continuara a mesma
logica de predicao originalmente pretendida. Sabendo que complicagoes podem ocorrer
a qualquer momento durante a permanéncia do paciente na UTI, construimos nossos
modelos de aprendizado de maquina utilizando atributos obtidas a partir dos dados ad-
ministrativos, resultados laboratoriais e sinais vitais do paciente, disponiveis na primeira
hora apos a sua admissao na UTI. Para construir modelos que continuem a funcionar como
originalmente projetados, primeiro propomos medir (i) como as explicagdes fornecidas va-
riam para diferentes entradas (ou seja, robustez) e (ii) como as explicagoes fornecidas
mudam com modelos construidos a partir de diferentes subpopulagoes de pacientes (isto
é, estabilidade). Posteriormente, empregamos essas medidas como termos de regulariza-
¢ao que sao acoplados a um procedimento de selecao de atributos de modo que o modelo
final fornega previsoes com explicagoes mais robustas e estaveis. Os experimentos foram
conduzidos em um conjunto de dados contendo 6.000 internacoes na UTI de 5474 paci-
entes. Os resultados obtidos em uma coorte de validacao externa de 1069 pacientes com
1086 internagoes em UTI mostraram que a selecao de atributos com base na robustez
levou a ganhos em termos de poder preditivo que variaram de 6,8% a 9,4%, enquanto
a selecao de atributos com base na estabilidade levou a ganhos que variaram de 7,2% a
11,5%, dependendo da complicacao. Nossos resultados sao de importancia pratica, pois
nossos modelos preveem complicagoes com grande antecipagao, facilitando intervengoes

oportunas e protetoras.

Palavras-chave: Aprendizado de maquina. Ciéncia de Dados Médicos. Explicabilidade

do modelo. Regularizagao.



Abstract

Predictive models are proving to be important for decision-making in the ICU, but they
often present the black box problem because they do not provide the information from
the logic involved in patient-specific predictions. There are already techniques capable
of analyzing the models and generating valuable explanations about their functioning.
However, once the model is generated, it is important to ensure that it will continue with
the same prediction logic originally intended. Knowing that complications can occur at
any time during a patient’s ICU stay, we built our machine learning models using features
obtained from the patient’s administrative data, laboratory results, and vital signs, avai-
lable within the first hour after admission to the ICU.This enables our models to provide
great anticipation because complications can occur at any moment during ICU stay. To
build models that continue to work as originally designed we first propose to measure (i)
how the provided explanations vary for different inputs (that is, robustness), and (ii) how
the provided explanations change with models built from different patient sub-populations
(that is, stability). Second, we employ these measures as regularization terms that are
coupled with a feature selection procedure such that the final model provides predictions
with more robust and stable explanations. Experiments were conducted on a data set
containing 6000 ICU admissions of 5474 patients. Results obtained on an external vali-
dation cohort of 1069 patients with 1086 ICU admissions showed that selecting features
based on robustness led to gains in terms of predictive power that varied from 6.8% to
9.4%, whereas selecting features based on stability led to gains that varied from 7.2% to
11.5%, depending on the target complication. Our results are of practical importance
as our models predict complications with great anticipation, thus facilitating timely and

protective interventions.

Keywords: Machine Learning. Medical Data Science. Model Explainability. Regulari-

zation



Lista de Figuras

2.1
2.2

3.1
3.2

4.1

4.2

4.3

5.1

5.2

5.3

5.4

Classificacao dos atributos de acordo com a soma das magnitudes - SHAP . . 22
Curva ROC gerada através da Tabela 2.1 . . . .. ... ... ... ... ... 23
Subconjunto de atributos usados para o aprendizado dos modelos . . . . . . . 33

Configuragao de previsao precoce: os atributos estao disponiveis na primeira
hora apods a admissao na UTI, mas os rotulos (complicagdes) podem ocorrer a
qualquer momento durante a permanéncia na UTI. Os dados sao divididos em

conjuntos de desenvolvimento e validacao. . . . . . . . ... .. .. ... ... 33

Entradas semelhantes (pacientes) sao dadas ao modelo e, se as explicagoes
correspondentes sao semelhantes, a robustez do conjunto de recursos ¢ alta. . 37
Os modelos A e B empregam o mesmo conjunto de atributos, mas sao treinados
em duas populagoes ligeiramente diferentes A e B. Entao, as mesmas entradas
(pacientes) sdo dadas aos modelos A e B, e se as explicagdes correspondentes
forem semelhantes, entao a estabilidade do conjunto de atributos é alta . . . . 38
O processo de regularizacao proposto. Os atributos sao selecionados de forma
iterativa, maximizando a robustez ou a estabilidade do modelo. O modelo final

¢ usado para prever as complicagoes. . . . . . . ... 39

Heatmap dos modelos que preveem Delirium. A cor indica a distribuicao dos
valores AUROC para aos modelos: o azul esta associado a valores baixos do
AUROC enquanto o vermelho esta associado com valores mais altos. Superior
— dados de treinamento usando o cross-validation. Inferior — dados de validagao. 43
Heatmap dos modelos que preveem VAP. A cor indica a distribuigao dos valores
AUROC para aos modelos: o azul esté associado a valores baixos do AUROC
enquanto o vermelho esta associado com valores mais altos. Superior — dados
de treinamento usando o cross-validation. Inferior — dados de validagao. . . . 44
Heatmap dos modelos que preveemn CLABSI. A cor indica a distribui¢ao dos
valores AUROC para aos modelos: o azul estd associado a valores baixos do
AUROC enquanto o vermelho esta associado com valores mais altos. Superior
— dados de treinamento usando o cross-validation. Inferior — dados de validagao. 45
Heatmap dos modelos que preveem Mortalidade. A cor indica a distribuic¢ao
dos valores AUROC para aos modelos: o azul esta associado a valores baixos do
AUROC enquanto o vermelho esté associado com valores mais altos. Superior

— dados de treinamento usando o cross-validation. Inferior — dados de validagao. 46



9.9

5.6

2.7

5.8

Classificagao dos atributos de acordo com a soma das magnitudes - SHAP para
a predicao da mortalidade . . . . . . . . ... ... Lo
Classificacao dos atributos de acordo com a soma das magnitudes - SHAP para
a predicao da mortalidade, utilizando a regularizacao baseada na estabilidade .
Classificagao dos atributos de acordo com a soma das magnitudes - SHAP para
a predicao da mortalidade, utilizando a regularizacao baseada na robustez
Espaco de decisao dos modelos de previsao da mortalidade. Superior — A
utilidade do modelo é fornecida exclusivamente pela AUROC. Inferior — A

utilidade do modelo é dada pela Estabilidade da Explicagao (Equacao 4.2.) . .

48

48

o1



Lista de Tabelas

2.1

3.1
3.2
3.3

5.1
5.2

5.3

5.4

5.5

Instancias geradas por um classificador probabilistico . . . . . . . .. ... .. 23
Caracteristicas dos pacientes da UTT . . . . . .. ... .. ... .. ...... 31
Caracteristicas dos pacientes da UTI agrupados pelas complicagdes . . . . . . 32

Complicagoes durante a internagao na UTI. O ntmero entre parénteses indica

a fracao de casos com o6bito do paciente. . . . . . . .. .. ... L. 34

Caracteristicas dos pacientes da UTI dos dados de desenvolvimento e validagao 41

Modelos Preditores de Delirium — Performance preditiva com a variacao de

valores de C'. . . . . . . 49
Modelos Preditores de VAP — Performance preditiva com a variagao de valores
de C.. . . e 50
Modelos Preditores de CLABSI — Performance preditiva com a variacao de
valores de C'. . . . . . . 50

Modelos Preditores de Mortalidade — Performance preditiva com a variacao
devaloresde C. . . . . . . . . e 50



Sumario

1 Introdugao

1.1 Motivagao . . . . . . ..o
1.2 Contribuigoes . . . . . . . ..
1.3 Objetivo Geral . . . . . . . . ..

1.3.1 Objetivos Especificos . . . . . . .. ... ... L
1.4 Organizacao . . . . . . . . . ..o e

2 Conceitos e Trabalhos Relacionados

2.1 Conceitos . . . . . .
2.1.1  Aprendizado de Maquina . . . . . . . .. ..o
2.1.2  Aprendizado Supervisionado . . . . . . . ...
2.1.3 Performance e Interpretabilidade . . . . . . ... ... ... ....
2.1.4 LightGBM . . . . . . ...
2.1.5 SHAP - Shapley Additive exPlanations . . . . . .. ... ... ...
2.1.6  AUROC - Area Under the ROC Curve . . . . ... ... ... ...
2.1.7 Testede Mantel . . . . . . . . ... o
2.1.8 Regularizacao . . . . . . .. ..

2.2 Trabalhos Relacionados . . . . . . . . . . .. ... ... ... ... ...

3 Materiais e Métodos

3.1 Dados . . . . . . e
3.1.1 Atributos e Rétulos . . . . . . . . ...
3.2 Desenvolvimento do Modelo . . . . . ... ... .. ... ... ... ... .
3.2.1 Performance do Modelo . . . . ... .. ... ... ... ...
3.2.2 Explicabilidade . . . . ... .. ...

4 Regularizagao baseada na Robustez e Estabilidade da Explicacao

4.1 Robustez das Explicagcoes . . . . . . . . ..o
4.2 Estabilidade das Explicagoes . . . . . . . ... ...
4.3 Amostragem do Espago do Modelo . . . . . ... ... ... ... .. ...

5 Experimentos
5.1 BasedeDados. . . . . . . . . . . ..

5.2 Configuracao dos Experimentos . . . . . . . . . ... ... ... ... ...



5.3 Avaliacao do Modelo . . . . . . . ..o 42

5.4 Resultados e Discussao . . . . . . . . . 42
6 Conclusao e Trabalhos Futuros 52
6.1 Principais Resultados . . . . . . . . . . . . ... 52
6.2 Trabalhos Futuros. . . . . . . . . . . ... 53
6.3 Publicagoes . . . . . . . 53

Referéncias 55



14

Capitulo 1

Introducao

As Unidade de Terapia Intensivas (UTIs) fornecem instalagoes, recursos e pessoal espe-
cializado para o manejo abrangente de pacientes que apresentam ou estao em risco de
desenvolver disfunges organicas com risco de vida [48]. Tratar o disturbio fisiologico
evidente é apenas o primeiro passo no cuidado dos pacientes da UTI, pois eles estao
sujeitos a muitas complicagoes decorrentes da terapia avangada [79]. Complicagoes im-
portantes, como infecc¢oes, delirium, miopatias, neuropatias e distiirbios nutricionais, tém
se mostrado consistentemente associadas a prejuizos na qualidade de vida em longo prazo
[56] e morte [84]. Assim, todos os esforgos devem ser empreendidos para prevenir essas
complicagoes.

Como as UTIs sao ambientes ricos em dados onde varios sinais sao monitorados
continuamente, modelos de aprendizado de maquina j& foram desenvolvidos para identi-
ficar pacientes em risco de complicagoes [4, 31, 34, 38, 39, 49, 71|. Embora esses modelos
geralmente sejam excelentes na captura de relagdes complexas entre sinais |20, 53], eles
sofrem do problema da caixa-preta [22|, ou seja, o mecanismo pelo qual os sinais sdo
combinados a fim de converter as entradas nas saidas é opaco |77]. Modelos complicados
de caixa-preta levantam algumas preocupagoes, pois as decisoes médicas na UTI podem
ter consequéncias de vida ou morte |78]. Assim, o mecanismo de predi¢ao de um modelo
de risco deve estar de acordo com o conhecimento clinico real antes que o modelo seja
colocado em uso [54, 17, 33].

Algoritmos que visam explicar modelos de caixa-preta estao sendo cada vez mais
usados para dar sentido ao mecanismo de previsao [1, 66]. Esses algoritmos fornecem
uma compreensao mecanicista do funcionamento do modelo, revelando como os recursos
estao relacionados em conjunto para formar a previsao final [50]. Um tipo importante de
explicagao é determinar a importancia do recurso para uma predigao particular [45, 62].
No caso da modelagem de dados da UTI, a importancia de um sinal é calculada levando-se
em consideracao muitas formas de interagao envolvendo o sinal. Este tipo de explicacao
pode mitigar o problema com os modelos caixa-preta, uma vez que se pode projetar ou
selecionar um modelo que associe importancias apropriadas aos sinais, fornecendo assim
uma razao confiavel para as previsoes do modelo |2, 77].

Uma vez que o modelo é colocado em uso, no entanto, uma grande preocupagao é
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se ele continuara funcionando como originalmente planejado [59]. Confiar nas explica¢oes
fornecidas significa nao apenas confiar no mecanismo de predigao do modelo, mas também
nos dados que ele foi construido [81]. Os dados da UTI sao razoavelmente complexos
e o modelo resultante pode ter falhas em potencial simplesmente porque os dados de
treinamento estao incompletos, no sentido de que nao esgotaram todas as maneiras pelas
quais os sinais podem interagir. Nesse caso, mesmo pequenas variagoes no conjunto de

treinamento podem levar a explicagoes completamente diferentes.

1.1 Motivacao

Embora alguns modelos possam ser excelentes para a predicao de complicagoes,
muitos deles sao uma verdadeira caixa-preta para os clinicos, que nao entendem o seu
funcionamento, implicando em uma desconfian¢a ou em uma falta de confian¢a no modelo.
Por outro lado, as implicacoes de confiar demais em um modelo de risco de UTI podem
ser desastrosas, pois um modelo falho (mas confiavel) pode tranquilizar falsamente um
clinico, possivelmente levando a uma mudanca sistematica na préatica clinica |5, 61]

Dentro deste contexto, o trabalho pretende investigar se as explica¢oes dadas pe-
los modelos sao robustas e estaveis para diferentes subpopulacoes, afim de verificar se
entradas similares nao geraram explicacoes substancialmente diferentes, como também se
pequenas variagoes nos dados de treinamento nao geram a explicagoes diferentes, para
posteriormente criar um termo de regularizacao para que as explicagoes das predicoes

geradas pelo modelo final sejam robustas e estaveis.

1.2 Contribuicoes

Esta tese visa alcangar as seguintes contribuigoes principais:

e criagao e avaliagdo de um termo de regularizacao com base na estabilidade das

explicagoes do modelo preditor

e criacao e avaliacao de um termo de regularizagao com base na robustez das explica-

¢oes do modelo preditor

e Avaliacao dos modelos de um modelo em um cenéario real
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1.3 Objetivo Geral

O objetivo geral deste trabalho é construir um modelo que realize predigoes preco-
ces de maneira eficaz utilizando uma parcial dos dados. Um exemplo da aplicacao deste
modelo seria em uma UTI onde temos que predizer as complicagoes o mais cedo possivel,
utilizando apenas os dados da primeira hora dos pacientes, onde muitos eventos podem

acontecer apoOs a primeira hora até o momento do desfecho (alta/6bito) do paciente.

1.3.1 Objetivos Especificos

Especificamente, pretende-se:
e Medir como as explicagdes fornecidas variam dadas as diferentes entradas (robustez);

e Medir como as explicagoes fornecidas mudam com modelos construidos a partir de

diferentes subpopulagoes (estabilidade);

e Criar um termo de regularizacao para que o modelo final forneca previsdes com

explicagoes mais robustas e estaveis.

1.4 Organizagao

O trabalho esta organizado da seguinte forma: no Capitulo 2 h4 uma discussao
dos conceitos e trabalhos relacionados com o trabalho afim de prover uma base teorica.
No Capitulo 3 e apresentada a base de dados utilizada no trabalho. O Capitulo 4 aborda
o método proposto para o problema, explicando como foi a sua elaboracgao e o seu fun-
cionamento. O Capitulo 5 apresenta os experimentos realizados e os resultados obtidos.
Por fim, no Capitulo 6 é apresentada a conclusao do trabalho, bem como sao sugeridos

trabalhos futuros.
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Capitulo 2

Conceitos e Trabalhos Relacionados

Esse trabalho foca na constru¢ao modelos de aprendizado de méaquina para prever compli-
cagoes graves usando elementos administrativos e clinicos coletados imediatamente apos
a admissao do paciente na unidade de terapia intensiva (UTI), bem como a medigao da
qualidade da explicabilidade dos modelos gerados através de sua robustez e estabilidade.
Revisaremos os trabalhos relacionados: Aprendizado de Méaquina, Light GBM, SHAP,

Teste de Mantel e trabalhos relacionados que sao componentes chaves deste trabalho.

2.1 Conceitos

2.1.1 Aprendizado de Maquina

Nas tultimas décadas uma area da Inteligéncia Artificial (IA) conhecida como
Aprendizado de Maquina (AM) vem chamado muita atengdo da comunidade cientifica
por sua capacidade de aprendizado de padroes complexos a partir da anélise dos dados,
permitindo assim realizar predi¢coes com alta taxa de precisao.

Com o seu destaque, o Aprendizado de Maquina passou a ser amplamente utilizado
em diversos problemas como Knowledge Discovery in Databases (KDD) [25], sistemas
de recomendagoes |74], reconhecimento de caractere [12], predi¢do de doengas [8], entre
outros.

Afim de categorizar o Aprendizado de Méaquina, as formas de aprendizado po-
dem ser divididas da seguinte maneira: Aprendizado Supervisionado e Aprendizado Nao

Supervisionado.
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2.1.2 Aprendizado Supervisionado

E utilizado em problemas de predicdo ou classificacdo, onde os dados estao clas-
sificados e rotulados. O termo "supervisionado"se da justamente pela necessidade de
conhecimento prévio dos rétulos, para que durante o aprendizado seja avaliado a capaci-
dade de predizer/classificar o valor de saida para novos dados.

Segundo [29] a predigao/classificagao é definido como uma tarefa no qual a partir
da observagoes historicas de casos anteriores, pretende-se prever/classificar o valor para
um novo caso.

Formalmente podemos definir como: Dado um conjunto de treinamento na forma
(X3, Y), no qual Xeqr, Ny = {21,..., 21}, onde X contem N instancias e k atributos, e
Y; € IR. O algoritmo devera ser capaz de aprender a partir dos dados de treinamento
uma correlagao entre os atributos, e ao ser apresentado um novo dado de entrada X, ele

consiga prever o valor de Y.

2.1.3 Performance e Interpretabilidade

Aprendizado de méaquina vem sendo utilizado para resolver problemas de tomada
de decisao, como em hospitais. No entanto, modelos que tem um alto grau de comple-
xidade (baseadas em redes neurais profundas) sao verdadeiras caixas-pretas, tendo uma
alta performance e uma baixa interpretabilidade de como os resultados foram obtidos,
enquanto modelos classicos sao altamente interpretaveis e tem uma baixa performance.
Essa limitacao "performance X interpretabilidade"veem limitando o seu uso, pois em
véarios problemas onde é critico o bem entendimento das contribuig¢oes individuais dos

atributos para o resultado do modelo, nao se pode utilizar modelos de alta performance.

2.1.4 LightGBM

Gradient Boosting Decision Trees (GBDT) é um comité de Decision Trees no qual
é realizado um treinamento sequencial onde em cada iteracao, a arvore sera construida
baseada nos erros das trees anteriormente construidas (Negative Gradients), gerando um

modelo final com uma grande capacidade de predicao.
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O Light Gradient Boosting Decision Trees (Light GBM) é um algoritmo da familia
dos GBDT desenvolvido por [41] que contém duas novas técnicas que sao o Gradient-based
One-Side Sampling e o Ezclusive Feature Bundling. Ainda em seu trabalho, [41] afirma
que um dos maiores problemas do GBDT ¢ a criacao das Decision Trees, pois encontrar
os melhores pontos para a divisao das arvores é a parte que mais demanda tempo, ja que
precisam verificar todas as instancias de dados para estimar o ganho de informacao de
todos os pontos de divisao possiveis, o que consome muito tempo.

Para resolver esse problema foi proposto o Gradient-based One-Side Sampling
(GOSS) que foca em pegar as instancias que contem gradientes altos e pega uma amostra
das instancias com gradientes baixos, assim sao utilizados uma quantidade reduzida de
instancias para a divisao das arvores. O pseudocodigo GOSS pode ser visto em Algorithm
1, o pseudocodigo foi retirado e adaptado de [41].

Algorithm 1: Gradient-based One-Side Sampling

input: I: dados de treinamento

input: d: iteragdes

input: a: taxa de amostragem de dados com gradiente alto
input: b: taxa de amostragem de dados com gradiente baixo
input: loss: fun¢do de perda

input: L: modelo classificador

models < {};

fact < “T“

topN <+ a x len(I);

randN + b x len(I);

for i = 0to ddo
preds + models.predict(I);

g + loss(I, preds);

w <+ {1,1,...};

sorted <— GetSortedIndices(abs(g));

topSet < sorted[1:topN];

randSet <— RandomPick(sorted[topN:len(I)], randN);

usedSet < topSet + randSet;

wlrandSet] x = fact // atribui o peso fact as amostras com gradientes baixos;
newModel + L(I[usedSet|, - glusedSet], w[usedSet]);

models.append (newModel);

end

Outro problema abordado em [41] foi a alta dimensionalidade dos dados, que inter-
fere na diretamente da performance. Para atacar esse problema foi elaborado o método
FEzclusive Feature Bundling (EFB), no qual o método combina muitos atributos em um
novo atributo, assim reduzindo a dimensionalidade dos dados sem que haja grande perda
de informagao.

O método EFB é dividido em duas etapas, a primeira Greedy Bundling no qual é
construido um grafo ponderado onde os pesos das arestas correspondem aos conflitos exis-
tentes entre os atributos, posteriormente os atributos sao ordenados de forma decrescente
com relagao ao seu grau no grafo e por fim verifica cada um dos atributos atribuindo ele
a um bundle com baixo conflito ou criando um novo bundle. O pseudocodigo do Greedy

Bundling pode ser visto em Algorithm 2, retirado e adaptado de [41].



2.1. Conceitos 20

Algorithm 2: Greedy Bundling
Input: F: atributos

Input: K: nimero maximo de conflitos
Construa o grafo G

searchOrder < G.sortByDegree();
bundles + {};

bundlesConflicts + {};

for i in searchOrder do
needNew < True;

for j = 1 to len(bundles) do
cnt < ConflictCnt(bundles(j],F[i])

if ent + bundlesConflict[i] < K then
bundles[j].add (F[i])

needNew < False

break
end

end

if needNew then
| Add F[i] como um novo bundle em bundles

end
Output: bundles

end

A segunda etapa do método EFB, chamado de Merge Exclusive Features, é reduzir
a complexidade do treinamento, para isso é realizado uma juncao de dois ou mais atribu-
tos de um mesmo bundle, onde o ponto principal é garantir que os valores dos atributos
originais possam ser identificados nos bundles. O algoritmo desta etapa pode ser visto em
Algorithm 3, retirado e adaptado de [41].

Algorithm 3: Merge Exclusive Features

Input: numData: nimero de dados

Input: F: um bundle com atributos exclusivos
binRanges < {0};
totalBin <+ 0;

for fin F do
totalBin += f.numBin

binRanges.append(totalBin)
end
newBin < new Bin(numData)
for ¢ = 1 to numData do
newBinli] + 0
for j =1 to len(F) do
if F[jl.binfi] # 0 then
| newBin[i] + FJj].bin[i] + binRanges][j]
end
end
end
Output: newBin
Output: binRanges

Sobre a performance e a eficiéncia do Light GBM, [44], [41] e [9] demonstram a sua
superioridade sobre o algoritmo XGBoost e outros algoritmos de classificagao em varios

aspectos como: maior velocidade de treinamento e maior eficiéncia, maior precisao dos
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resultados, menor consumo de memoria e capacidade de processamento de grandes bases
de dados.

2.1.5 SHAP - Shapley Additive exPlanations

Shapley Additive exPlanations (SHAP) foi proposto por [46], é empregado para
interpretar os resultados de qualquer modelo de aprendizado de méquina e analisar a
importancia individual dos atributos. Ele se baseia na teoria do jogo Valores de Shapley
[69] e em explicagoes locais [63], para que possa oferecer meios para estimar a contribuicao
de cada atributo.

O SHAP esté sendo utilizado nos tltimos anos na area de aprendizado de méquina
para explicar os resultados dos modelos, principalmente daqueles que sao uma caixa preta.
[58] utilizou o SHAP para explicar o modelo de predi¢ao de acidentes de transito, [28]
em seu trabalho sobre predi¢ao precoce de mortalidade de pacientes idosos, utilizou a
ferramenta para evidenciar quais atributos influenciavam mais o modelo gerado.

Em seu livro, [52] define que o objetivo do SHAP ¢é explicar a previsdo de uma
instancia x calculando a contribuicao de cada atributo para a previsao, onde sao calculados
os valores de Shapley a partir da teoria dos jogos de coalizao e, cada valor dos atributos
de uma instancia atuam como jogadores em uma coalizao.

Os valores de Shapley (¢) sdo determinados através do retreinamento do modelo
em todos os subconjuntos de atributos S C N, onde N é o conjunto com n atributos. E
atribuido um valor de importancia a cada atributo que representa o efeito na previsao do

modelo ao incluir esse atributo [46] por meio da equagao 2.1:

o= 3 B =S DN 60 1y — () (2.1)

n!
SCN{i}

Assim, uma funcao linear de caracteristicas binarios g é definido com:

M
g() = o+ Y 7 (2:2)
j=1

onde g é a explicacdo do modelo, 2’ € {0,1}* ¢ o vetor de coalizdo, M o tamanho maximo
da coalizdo e ¢; € R ¢é o valor para um atributo j [46].

A Figura 2.1, retirada do presente trabalho, exemplifica como o SHAP classifica os
atributos pela soma das magnitudes dos valores SHAP de todas amostras, evidenciando
a distribuicao dos impactos de cada atributo na saida do modelo, revelando o atributo
mais influente é a "Highest Creatininelh/Highest Fi O21h".
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Figura 2.1: Classificacao dos atributos de acordo com a soma das magnitudes - SHAP

2.1.6 AUROC - Area Under the ROC Curve

[24] e [43] definem a curva Receiver Operating Characteristics (ROC) como um
gréfico (espago ROC) que mostra a taxa de verdadeiros positivos! no eixo vertical e a taxa
de falsos positivos? no eixo horizontal, a4 medida que o threshold de classificacdo varia.
[43] ainda afirma que a area sob a curva ROC (Area Under the ROC Curve (AUROC))
serd equivalente a estatistica U de Wilcoxon-Mann-Whitney.

Classificadores probabilisticos produzem naturalmente uma pontuagao (score) ou
um valor probabilistico que represente o grau em que uma instancia ¢ membro de uma
classe. Esses valores sao usados pelos classificadores, juntamente com um threshold para
produzir um classificador binario, onde se a saida do classificador estiver acima de um
determinado threshold, o classificador produzird um A, caso contrario um B.

A exemplo, Figura 2.2 demonstra uma curva ROC em um conjunto de teste de 10
instancias. As instancias utilizadas sao demonstradas na Tabela 2.1, que ilustra a classe

da cada instancia e o score obtido por cada uma delas ao ser processada pelo classificador.

Lsensibilidade = TP/(TP + FN)
2FP/(FP +TN)
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Tabela 2.1: Instancias geradas por um classificador probabilistico

Inst # | Classe | Score
1 p 0.95
2 n 0.86
3 p 0.70
4 ) 0.55
5 n 0.51
6 n 0.49
7 p 0.40
8 p 0.35
9 n 0.27
10 n 0.15
Curva ROC
1.0 A 4 L
0.8
2
% 0.6 .
§ 0.4+
Q
2
0.2
0.0 A
OjO 0j2 0j4 0t6 0j8 lTO

False Positive Rate

Figura 2.2: Curva ROC gerada através da Tabela 2.1

Para gerar a curva ROC do exemplo da Figura 2.2 segue os seguintes passos:

1

#InstanciasPositivas’ 0’2 neste exemplo;

1. O passo no sentido para cima é dado pelo valor

1

2. O passo no sentido para direita é dado pelo valor ITmstanciasNegatioas’

0,2 neste exem-

plo;
3. Ordena de forma decrescente pelo score a saida do classificador (Tabela 2.1);

4. Partindo do ponto (0,0) e, para cada instancia da Tabela 2.1, se a classe for p

(positiva) faga o passo para cima, caso contrario faga o passo serd para a direita.

Toda curva ROC é gerada através de um nimero finito de instancia produzindo
um degrau no grafico (espago ROC) e a medida que o nimero de instancias aumenta,

mais continua vai ficando a curva.



2.1. Conceitos 24

Para se calcular a AUROC, basta calcular a area do retangulo formado a cada
passo para a direita, no exemplo acima teremos: ((0,2%0,2)+ (0,2%0,6) 4 (0,2%0,6) +
(0,2%1,0)+)0,2 % 1,0)) totalizando um valor de 0,68.

2.1.7 Teste de Mantel

[47] em seu estudo projetou um método para calcular o coeficiente de correlagao
entre dois agrupamentos de doencas em estudos epidemiologicos, o qual gera uma esti-
mativa de associacao entre uma doenca e um fator de risco. Muito frequentemente, os
dados para pesquisa em satde nao sao obtidos de forma adequada, por meio de amos-
tragem probabilistica de uma populacao-alvo. Embora nao seja um problema calcular o
coeficiente de correlacao entre dois conjuntos, testar sua significAncia nao pode ser feito
usando a abordagem usual, ja que é necessario assumir a independéncia dos dados.

O teste de Mantel consiste em um processo de comparagao entre duas matrizes
simétricas de distancia. O teste pode ser descrito da seguinte forma: seja o conjunto de
dados (xi,yt) com ¢ = 1,...,n elementos. Sao calculas as matrizes simétricas n x n de
distancia Dj; = dist(x;,v;) e Dj; = dist(y;, y;). O teste de Mantel é dado pela soma dos

produtos entre as matrizes de distancias D¥; e DY

i i;» de acordo com a seguinte equagao:

n—1 n
r=> Y DjxDy (2.3)

i=1 j=1+1

em que r é o coeficiente de Mantel. Estendendo o teste de Mantel, em seus estudos
[73| apresenta o teste parcial de Mantel, em que uma terceira matriz de distancia é adicio-
nada. Este teste ¢ baseado no coeficiente de correlagao entre as matrizes de distancias Dy}
e Dj; enquanto controla o efeito da terceira matriz de distancia Dj;. O trabalho de [21]
apresenta uma anéalise do teste de Mantel junto com a anélise de correlagao de Pearson e
quando ambos os métodos sao aplicaveis.

E notével a diversidade de areas com que o teste de Mantel e suas extensoes
sao aplicadas. No trabalho de [19] apresenta uma revisao do uso do teste de Mantel e
suas extensoes, de sua aplicagao associada a modelos teéricos em genética populacional.
Extensoes do teste de Mantel também tem sido usadas na area de aprendizado de méquina,
como no trabalho [75], o qual propée um novo método baseado em rede neural profunda
para a previsao do tempo de sobrevivéncia global de pacientes. Foram analisadas imagens
de ressonancia magnética do celebro feitas no processo pré-operatorio de pacientes que

possuem tumor cerebral para orientar a previsao do tempo de sobrevivéncia.
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2.1.8 Regularizacao

Durante o processo de treinamento, os algoritmos de Aprendizado de Maquina,
principalmente os algoritmos mais complexos, realizam ajustes no modelo que esta sendo
construido seja capaz de realizar a predigao/classificacdo. Neste processo, pode ocorrer o
overfitting ou o underfitting do modelo.|85, 37|

Segundo [37] o underfitting significa que durante o processo de aprendizagem, o
modelo gerado nao conseguiu encontrar nenhuma relagao entre os atributos, resultado em
um classificador que nao consegue realizar a classificagao correta do seu proprio conjunto
de treinamento.

Ja o overfitting, segundo [85], o modelo gerado tem um desempenho excelente em
sua base de treinamento, porém na base de treinamento ele nao consegue ter o mesmo
desempenho. Isso ocorre porque durante o treinamento o modelo aprendeu tao bem as
regras e relagoes existente entre os atributos dos dados de treinamento, que ao receber
novos dados as regras e relagoes aprendidas nao tem validade, sendo assim o modelo nao
tem a capacidade de generalizagao.

Uma alternativa de se evitar o overfitting é aumentar o tamanho da base de dados
para o treinamento do modelo, mas nem sempre é possivel. Uma outra alternativa é o
uso de técnicas de regularizagao ou de reguladores.[67]

A técnica de regularizacao é utilizada para penalizar os coeficientes de valores altos
da funcao objetivo, fazendo com que o modelo fique menos sensivel a ruidos, aumentando a
sua capacidade de generalizagao [60]. Dentre varias técnicas de regularizacao, destacamos
a Ll e L2.

A regularizagao L1 ou Lasso (equagao 2.4) atribui uma penalizagao igual ao valor
absoluto dos coeficientes, em destaque. Note que a funcao Loss pode ter valor 0, fa-
zendo com que a regularizacao L1 realize uma "feature selection” quando h& uma grande

quantidade de atributos.

Loss = Error(Y —Y) +A Z |w;| (2.4)
1
A regularizagdo L2 ou Ridge (equagao 2.5), também atribui uma penalizagao aos

coeficientes, como visto na regularizacao L1, porém a penalizagao é igual ao quadrado da

magnitude dos coeficientes.

Loss = Error(Y —Y) 4+A Z w? (2.5)
1
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2.2 'Trabalhos Relacionados

A identificagao prévia de pacientes com risco de complicacao na UTI ou fora dela
tem sido motivo de preocupagao e vem sendo abordados em varios estudos [68] [35] [23]
[32] [76]. Mais especificamente, alguns estudos que avaliam os riscos de complicagoes nos
pacientes vém obtendo bons resultados quando utilizam as técnicas de Aprendizado de
Méaquina.

[87] descreve o uso de técnicas aprendizado de maquina, especificamente o XGBo-
ost, para a predicao de complicagoes ap0s cirurgia cardiaca pediatrica. Os autores criaram
dois modelos de predi¢cao com o XGBoost, um sem otimizacao e outro otimizado, no qual
ambos tiveram resultados superiores (AUROC de 0,82) quando comparados aos sistemas
de pontuagao RACHS-1, Aristotle, STS-EACTS e STS (AUROC de 0,75).

[30] demonstra que modelos supervisionados de aprendizado de maquina podem
prever melhor as complicagoes pos-operatorias apos artroplastia total do ombro (TSA) do
que os indices de comorbidade. Neste trabalho os autores utilizaram atributos como idade,
indice de massa corporal (IMC), tempo operatorio, tabagismo, comorbidades, diagnoéstico,
hematocrito e albumina pré-operatorios para prever complicagoes como transfusao, longo
periodo de estadia (> 3 dias), infec¢ao de sitio cirtrgico, o retorno a sala de cirurgia,
embolia pulmonar e readmissao.

A pesquisa de [83] faz uso de uma Long Short-Term Memory (LSTM), um tipo de
Deep Neural Networks (DNN), para realizar a predigao da mortalidade de pacientes em
UTTIs. Nos resultados, foi mostrado que o escore SOFA teve uma preditividade moderada
(AUC de 0,72), o modelo utilizando regressao logistica mostrou bom desempenho (AUC
de 0,82), enquanto o modelo desenvolvido por eles teve o melhor desempenho, obtendo
um AUC de 0,88.

[64] criaram, treinaram e avaliaram mais de 100 modelos de XGBoost para prever
se o paciente evoluiria para um estado critico apés ser diagnosticado com o COVID-
19. Os resultados apresentados no trabalho mostram um alto desempenho preditivo dos
modelos criados (AUCROC 0,861), além disso, a analise de interpretabilidade identificou
idade avancada, pneumonia, IMC mais alto, diabetes, sexo masculino, falta de ar, doenca
cardiovascular, auséncia de tosse, etnia nao hispénica e temperatura corporal elevada
como os fatores preditivos mais importantes para estado critico.

Em [51], os autores desenvolveram um algoritmo de aprendizados de méquina
para monitoramento em tempo real, no qual utilizando 5 minutos de dados fisiolégicos, o
algoritmo consegue predizer com 30 minutos de antecedéncia um evento de hipotensao em
pacientes. Nos experimentos foram utilizados dados de 400 pacientes e aproximadamente
181000 horas de dados fisiologicos, onde o algoritmo o algoritmo demonstrou 94% de

precisao, 85% de sensibilidade e 96% de especificidade na previsao de hipotensao dentro
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de 30 minutos que antecedem os eventos.

No trabalho de [3], foi proposto um modelo de rede neural hibrida para predizer o
risco de mortalidade, em UTIs neonatais, com janelas de risco de 3, 7 e 14 dias, usando
apenas os atributos: peso ao nascer, idade gestacional, sexo, frequéncia cardiaca e frequén-
cia respiratoria. O melhor resultado se deu com o modelo que utilizou a janela de risco de
mortalidade em 3 dias, conseguindo superar os estados da arte encontrados na literatura,
obtendo uma AUROC de 0,9336 com desvio padrao de 0,0337 no 5 folds cross validation.
Além disso, o modelo proposto é capaz de atualizar continuamente a avaliacao do risco
de mortalidade, permitindo a analise das tendéncias de satude e respostas ao tratamento.

O foco do estudo realizado por [57] foi a identificagdo precoce de pacientes cri-
ticos que iriam necessitar de ventilagdo mecénica prolongada (VMP) e a realizagao da
traqueostomia. No estudo realizado sobre a base de dados MIMIC II1, foi utilizado o al-
goritmo Gradient-boosted decision tree para realizar a predi¢ao, alcangando uma AUROC
de 0.820 para a predicao da VMP e uma AUROC de 0.830 para a predicao da realizagao
da traqueostomia.

[27] diz que reinternagées de pacientes em unidades de terapia intensiva estao
associados a um aumento da mortalidade, morbidade e também dos custos. Ainda no
trabalho, é afirmado no trabalho que os modelos atuais de predi¢ao de reinternacoes em
UTI tem um valor preditivo moderado e que utilizam de diversos atributos fisiologicos que
podem ser avaliados em momentos distintos da internacao do paciente. Assim, ele propoe
uma abordagem combinando a modelagem fuzzy com a selecao de atributos através de
arvore de busca, mostrando que um é possivel a criagao de um modelo com um maior
valor preditivo pode ser alcancado utilizando menos atributos fisiologicos, nas quais esses
atributos podem ser avaliados nas 24 horas anteriores a alta.

O trabalho de [11] utilizou de aprendizado de méaquina para identificar exames
desnecessarios em pacientes com sangramentos gastrointestinais, visando a reducao de
custos na UTI. Para alcancar o objetivo foi utilizada a técnica de modelagem fuzzy em
uma base de dados reais com 746 pacientes para a criacao de um modelo preditivo. A
acuracia do modelo criado foi superior a 80%, demonstrando que poderia haver uma
reducao média de 50% no total de exames laboratoriais.

Ja em [55] faz uso de Deep Convolutional Neural Networks (DCNN) para o diag-
nostico da doenca de Alzheimer através da analise das imagens de ressonancia magnética.
Para tal, foi desenvolvido pelos autores um método chamado de Swap Test, que produz
mapas de calor que retratam as areas do cérebro que sao indicativos da doenga de Alzhei-
mer, fornecendo interpretabilidade ao modelo desenvolvido, deixando em um formato que
¢ melhor compreensivel para os médicos.

Em um outro trabalho de diagnoéstico da doenga de Alzheimer, [18| treinou um
modelo usando redes neurais profundas utilizando 2109 imagens para treinamento e 40

imagens para teste, conseguindo predizer a doenca com 75 meses de antecedéncia do
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diagnostico final, com uma AUROC de 0,98, uma confianca de 95%, uma taxa de 82% de
especificidade e com 100% de sensibilidade.

As técnicas de aprendizado de maquina também veem sendo usadas para a pre-
dicao da necessidade de um paciente precisar ser internado na UTI. Esse problema ¢é
extremamente importante pois devido as restrigoes de recursos, os profissionais de satude
da linha de frente podem nao conseguir fornecer o monitoramento e a avaliagao frequentes
necessarios para todos os pacientes com alto risco de deterioragao clinica, ocasionando um
maior risco a vida do paciente.|10| atacou o problema utilizando algoritmos de random
forest, conseguindo resultados alcancando valores de 76,2% de acuracia e 79,9% de AUC
para pacientes internados com COVID-19.

[16] afirma que o monitoramento extensivo em unidades de terapia intensiva (UTIs)
gera grandes quantidades de dados que contém intmeras tendéncias que sao dificeis para
os médicos avaliarem sistematicamente, e que as abordagens atuais descartam informacgoes
importantes destes dados. Para resolver esse problema [16] criou um modelo baseado no
aprendizado profundo (Deep Learning) que é capaz de utilizar todos os dados coletados,
sem a necessidade de realizar selecao de atributos ou quaisquer outro tratamento nos
dados, para predizer o risco de morte do paciente. Em seus testes, foram obtidos utilizando
as primeiras 24 horas dos dados de cada paciente, conseguindo um AUC superior a 0.8,
enquanto os modelos SAPS II e OASIS obtiveram AUCs de 0,72 e 0,76 respectivamente.

[42] apresentou um estudo onde técnicas de aprendizado de maquinas como Logistic
Regression, Decision Tree, Random Forest, Support Vector Machine e Adaptive Boosting
foram utilizadas para identificar precocemente ou predizer doencas do coragao, cancer de
mama e diabetes. Os resultados do estudo evidenciaram o quao assertivos as técnicas
sao em predizer essas doencas, obtendo uma acurécia de 87,1% para doencas do coracao
utilizando a regressao logistica, 85,71% para diabetes com o Support Vector Machine
(SVM) e 98,57% utilizando o classificador AdaBoost para a detecgao do céncer de mama.

O aprendizado de maquina foi utilizado por [26] para predizer se pacientes, que
estavam infectados pelo COVID-19, iram evoluir para um estado critico, necessitando de
uma UTI. A base de dados foi fornecida pelo hospital Beneficéncia Portuguesa de Sao
Paulo e continha dados de 1040 pacientes de COVID-19, no qual 53,3% eram homens,
com média de idade de 51,7 anos e 63,8% dos pacientes eram brancos. Todos os modelos
criados por eles tiveram um resultado de AUROC superior a 0,91, com sensibilidade de
0,92 e especificidade de 0,82.

[15] propds um modelo baseada em uma rede neural convolucional para que através
de imagens de raio X pudesse predizer os pacientes que estavam infectados com a COVID-
19. Para o treinamento do modelo foram usadas 1384 imagens de pacientes com idades
de 18 a 63 anos e para teste foram usadas 350 imagens. O modelo nos testes chegou a
obter 89,7% de acurécia e obteve 94,0% de AUC.

[72] em seu estudo afirma que durante a pandemia de COVID-19, a tomografia
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computadorizada (TC) era uma alternativa ao teste RT-PRC para o diagnoéstico da do-
enca, porém a segmentacao de imagens de TC é demorada e apresenta varios desafios,
como as altas disparidades de textura, tamanho e localizacao das infec¢oes. Para atacar
esses problema ele propos um framework baseado em uma DNN para realizar a segmen-
tacao das imagens. Como resultado o método proposto obteve um dice score de 80,3% e
um loU score de 68,77%, sem um resultado superior aos algoritmos em estado da arte.

[65] utiliza técnicas de aprendizado de méaquina para realizar analise de texturas de
imagens de ressonancia magnética para criar um modelo preditivo para o diagnostico de
lesdes adrenais. O modelo preditivo criado obteve uma acuracia de 80%, ja um radiologista
especialista obteve uma acuracia de 73%.

[40] realizou um estudo no qual descreve sobre o futuro e as possibilidades do uso de
aprendizado de maquina no contexto da cirurgia roboética. Ele analisa que o procedimento
cirtirgico pode ser decomposto em episédios, que para cada episédio pode ser aprendido
como uma habilidade e essas habilidade podem ser incorporadas no robo cirtirgico para
que ele possa tomar as decisoes apropriadas no momento apropriado. Em suas conclusoes
ele aponta que ao longo do tempo os robos cirurgioes podem ganhar mais autonomia,
resultando em sistemas semi-auténomos ou até mesmo auténomos.

O gerenciamento de leitos e de recursos é um grande problema na area de satde, ba-
seado nisso [14] utilizando registros médicos eletronicos de pacientes cardiacos do hospital
King Abdulaziz Cardiac Center desenvolveu quatro modelos de aprendizado de maquina
( Random Forest, Redes Bayesianas, SVM e Redes Neurais ). Nos experimentos foram
utilizados dados de 16414 internacoes, onde haviam 12769 pacientes, dentre eles 68,2%
eram homens. Dentre os modelos desenvolvidos, o Random Forest foi o obteve o melhor
resultado com sensibilidade de 0,8, acuracia de 0,8 e AUROC de 0,94.

[86] projetou varios modelos preditores de taquicardia utilizando aprendizado de
méquina, para criar um score de risco de pacientes na UTI. Normalmente pacientes que
tiveram episddios de taquicardia tiveram aumento do suporte vasopressor, houve um
aumento no tempo de permanéncia na UTI e também aumento da mortalidade. Dentre
os modelos projetados, o que obteve o melhor resultado foi o Random Forest com acuracia
de 0,847 e AUROC de 0,921.

Por fim, o problema da caixa preta vem sendo considerado um aspecto importante
quando é utilizado aprendizado de maquina para criacao de modelos de predicao clinica
[13]. A falta de interpretabilidade dos modelos de aprendizado de méaquina esta sendo
cada vez mais associada a confianca clinica insuficiente nos modelos e & pouca aprovagao
dos médicos [80]. [70] empregaram um método de aprendizado profundo que produziu

um modelo interpretavel para uma previsao precoce de sepse.
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Capitulo 3

Materiais e Métodos

Neste capitulo serao apresentados os materiais e métodos utilizados na pesquisa, incluindo

os dados e algoritmos.

3.1 Dados

Para o desenvolvimento do modelo, foram coletados os dados dos prontuérios ele-
tronicos de pacientes internados em trés diferentes UTIs de um hospital localizado na
cidade de Belo Horizonte, entre os periodos de 31 de julho de 2016 a 31 de dezembro
de 2018. Os dados coletados foram anonimizados e abrangem informacoes demograficas,
diagnoésticos, valores laboratoriais, dentre outros valores que sao atualizados frequente-
mente pelos equipamentos de monitoramentos das UTIs. Ao todo, a coorte compreende
6000 admissoes e 5474 pacientes.

Com o intuito de validar do modelo, foram coletados os dados dos prontuéarios ele-
tronicos de pacientes internados nas mesmas trés UTIs, mas do periodo de 01 de janeiro
de 2019 a 30 de abril de 2019. A coorte contém 1086 internag¢oes na UTI e 1069 pacien-
tes distintos. O objetivo principal da validagao é demonstrar que os modelos fornecem
explicagoes com alta robustez e estabilidade.

A Tabela 3.1 mostra as caracteristicas dos pacientes usando os dados de sua
primeira admissao na UTIL.

Ja a Tabela 3.2 mostra as caracteristicas dos pacientes agrupados pelas complica-
coes.

Para a adesao ao modelo SAPS III, tanto as coortes de desenvolvimento quanto
de validacao sao compostas por pacientes maiores de 16 anos com internacao em UTI

superior a 24 horas.
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Tabela 3.1: Caracteristicas dos pacientes da UTI

Idade - anos

Sexo
Feminino
Masculino

Comorbidades
Aids
Hipertensao
Diabetes
Arritmia Cardiaca
Demeéncia
Obesidade Moérbida
Terapia de Cancer

Categoria de admissao
Meédica
Cirurgia programada
Cirurgia nao programada

Tipo de cirurgia
Cardiaca
Trauma
Neuro cirurgia

Tempo de internacao antes da UTT - dias
Tempo de internagao na UTI - dias

Numero de admissoes na UTI

|\/CO[\3}—‘

65 (54 — 80)

3636 (51,32%)
3450 (48,68%)

39 (0,5%)
4075 (58,1%)
1115 (15,9%)

331 (4,7%)
173 (2,4%)
432 (6,1%)
302 (4,3%)

3939 (56,2%)
2430 (34,6%)
656 (9,3%)

54 (0,9%)
45 (0,6%)
25 (0,3%)

2.64 (0 — 1)
3.89 (1 — 4)

5962 (85,0%)
392 (5,5%)
53 (0,7%)
20 (0,2%)

3.1.1 Atributos e Rotulos

Os atributos usados para construir os modelos sao uma mistura de informagoes

estaticas extraidas de dados que incluem dados demograficos e diagndsticos (obtidos an-

tes da admiss@o na UTI), resultados laboratoriais diarios (obtidos antes da admissao na
UTI) e informagoes dindmicas como os sinais vitais coletados de equipamentos da UTI

(durante a primeira hora apos a admissao na UTI). Resumidamente, nossos dados sao

um subconjunto do modelo SAPS III, para que possamos vincular nosso modelo & pra-
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Tabela 3.2: Caracteristicas dos pacientes da UTI agrupados pelas complicagoes

Delirium VAP CLABSI Mortalidade

7## Instancias 236 41 13 477

Idade - Anos 72 (63-86) 66 (58-80) 55 (43-71) 71,82 (63 - 84)

Sexo
Masculino 114 23 5 238
Feminino 122 18 8 239
Alta 213 28 8 -
Obito 23 13 5 -
Tempo de

internacao antes 2,97 (0-1,25) 39 (0-1) 24,38 (0- 14) 7,44 (0 - 8)
da UTI - dias

Tempo de
internacgao na 8 (3-11) 21 (12-27) 24,07 (11-19) 8,91 (2-11)
UTI - dias

Numero de

admissoes
na UTI
1 206 41 13 477
2 15 0 0 0
3 0 0 0 0
>4 0 0 0 0

tica clinica atual. A Figura 3.1 demonstra alguns subconjunto de atributos usados para
aprendizado dos modelos.

A Figura 3.2 mostra a extracgao e rotulagem de recursos. O foco do trabalho foi a
previsao precoce, ou seja, as previsoes sao realizadas durante a primeira hora de admissao
na UTI. Assim, empregamos apenas os sinais vitais medidos durante a primeira hora apés
a admissao na UTI. Esses sinais foram agregados (down-sampling), resultando em valores
minimos e méximos para cada sinal. Ja os desfechos consistem em possiveis complicacoes
ocorridas em qualquer momento da internagao na UTT.

A Tabela 3.3 mostra as complicagoes consideradas neste estudo, que sao explicadas

a seguir.

e Delirium é definida como uma rapida alteracao de consciéncia podendo durar horas

a dias, caracterizada pela diminuicao da consciéncia ambiental, atenc¢ao diminuida
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Figura 3.1: Subconjunto de atributos usados para o aprendizado dos modelos
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Figura 3.2: Configuracao de previsao precoce: os atributos estao disponiveis na primeira
hora apds a admissd@o na UTI, mas os rétulos (complicagoes) podem ocorrer a qualquer
momento durante a permanéncia na UTI. Os dados sao divididos em conjuntos de desen-

volvimento e validagao.

e cognicao alterada [6]. Essas caracteristicas clinicas podem se manifestar como

déficits de memoria, desorientagao, alucinacoes, niveis flutuantes de alerta e anor-

malidades motoras.

e Infecgoes no fluxo sanguineo associadas a insergao de cateteres centrais (CLABSI):
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Tabela 3.3: Complicacoes durante a internacao na UTI. O ntimero entre parénteses indica
a fracao de casos com Obito do paciente.

Desenvolvimento Validacao
(n=6,000) (n=1,086)

Delirium 147 (10%) 89 (11%)
Pneumonia associada a ventilagdo mecéanica (VAP) 39 (31%) 8 (50%)
Infecgoes no fluxo sanguineo associadas a

insergao de cateteres centrais (CLABSI) 11 (27%) 4 (50%)
Mortalidade 414 63

Uma linha central é um cateter que é colocado na veia grande do paciente, geral-
mente no pescogo, torax, bracos ou virilha. O cateter central costuma ser usado
para tirar sangue ou para administrar fluidos e medicamentos com mais facilidade.
A linha pode ser deixada no local por varias semanas ou meses, se necessario. As
vezes, bactérias ou outros germes podem entrar na linha central do paciente e en-
trar em sua corrente sanguinea. Isso pode causar uma infeccao que é chamada de

infeccao da corrente sanguinea associada a linha central.

e Pneumonia associada a ventilagdo mecanica (VAP) é um tipo de infec¢do pulmonar
que ocorre em pacientes que usam maquinas de ventilacao mecanica na UTI. A taxa
de mortalidade por essa pneumonia varia de 24 a 50% e pode chegar a 76% em
alguns casos especificos ou quando a infec¢ao pulmonar é causada por patoégenos de

alto risco [7].

3.2 Desenvolvimento do Modelo

Aplicamos um algoritmo de additive boosting para prever a ocorréncia de compli-
cagoes especificas nas admissoes a UTI. Especificamente, usamos o algoritmo Light GBM
[41], que segue a técnica gradient boosting que se ajusta as boosted decision trees mi-
nimizando o gradient error. As arvores sao adicionadas iterativamente ao conjunto e
sao adequadas para corrigir os erros de previsao feitos por arvores de decisao anteriores.
O conjunto minimiza o cross-entropy loss function usando gradient descent. Light GBM
fornece hiperparametros que devem ser ajustados, incluindo o ntimero de arvores para
compor o conjunto (7'), a taxa de aprendizado () e a profundidade maxima da arvore
(0).

Amostramos o espaco do modelo selecionando aleatoriamente k caracteristicas do

conjunto de atributos disponiveis com 2 < k < 25, e para cada conjunto de atributos
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construimos modelos usando combinagoes de T' (10, 50, 100 ), v (0,05, 0,1, 0,2) e 6 (5,
10). Portanto, cada conjunto de atributos resultou em 18 modelos diferentes. Repetimos a
exploracao aleatoria de conjuntos de atributos de modo que cerca de 1.000.000 de modelos

foram produzidos para cada complicagao.

3.2.1 Performance do Modelo

Avaliamos o desempenho da previsao em termos do AUROC. AUROC mede se o
modelo é capaz de classificar exemplos corretamente. Leva valores entre 0,5 (previsoes
aleatorias) e 1 (todos os casos positivos sao classificados acima dos casos negativos).

Para cada modelo avaliado, realizamos um -fold cross-validation na coorte de
desenvolvimento. Usamos a coorte de validagao como um conjunto de dados independente

no qual avaliamos os modelos construidos a partir da coorte de desenvolvimento.

3.2.2 Explicabilidade

Aplicamos o algoritmo SHAP a cada modelo para obter explicagoes sobre os atri-
butos que conduzem as previsoes especificas do paciente. SHAP é uma representacao
agnostica de modelo de importancia de atributos, onde o impacto de cada atributos em
uma previsao particular é representado usando valores de Shapley. Dado o conjunto atual
de valores de atributos, um valor de Shapley quantifica o quanto um tnico atributo no
contexto de sua interacao com outros atributos contribui para a diferenca entre a previsao
real e a média. Ou seja, a soma dos valores de Shapley para todos os atributos mais a
previsao média é igual a previsao real.

E importante ressaltar que o valor de Shapley para um atributo nao deve ser visto
como seu efeito direto e isolado, mas como seu efeito composto ao interagir também
com os outros atributos. Os valores de Shapley consideram todas as previsoes possiveis
para uma instancia usando todas as combinagoes possiveis de entradas e, por causa dessa
abordagem exaustiva, o SHAP pode garantir propriedades como consisténcia e precisao
local [45]. Em resumo, o SHAP fornece um vetor de valores Shapley (aproximados) para
cada entrada (também conhecido como vetor de explicagao). Os vetores de explicagao
SHAP tém a mesma dimensao das entradas, e cada valor em um vetor de explicacao

indica a importancia do recurso correspondente em uma previsao especifica.
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Capitulo 4

Regularizacao baseada na Robustez e

Estabilidade da Explicacao

Neste capitulo, definiremos os conceitos de robustez e estabilidade da explicacao e apre-
sentaremos abordagens para medi-los. Em seguida, discutiremos como empregar esses

conceitos para regularizacao do modelo.

4.1 Robustez das Explicacoes

Robustez (o) mede até que ponto, entradas semelhantes tém vetores de explica-
¢ao semelhantes. Para medir a robustez das explica¢oes, primeiro criamos uma matriz
de similaridade a partir das entradas (pacientes). Em seguida, criamos uma matriz de
similaridade paralela a partir dos vetores de explicagao correspondentes. Para ambas as
matrizes, a similaridade é dada em termos de distancia euclidiana. Uma vez que as duas
matrizes de similaridade paralelas sdo criadas, empregamos o coeficiente de Mantel r [47],
que fornece a auto correlacao espacial entre duas matrizes de similaridade. O coeficiente
de Mantel ¢ um método nao paramétrico que calcula a significancia da correlagao por
meio de permutagoes das linhas e colunas de uma das matrizes de similaridade. Para o
teste estatistico dentro do coeficiente de Mantel foi selecionado o coeficiente de correlagao
de Pearson, também chamado de coeficiente de correlagao produto momento r. Sendo a
faixa de r entre —1 a +1, onde estar perto de —1 indica uma forte correlagao negativa
(ou seja, as explicagdes nao sao robustas) e +1 indica forte correlagao positiva. Um valor
de r de 0 indica que nao ha correlagao entre entradas e vetores de explicagao. A Figura

4.1 demonstra a teoria da robustez das explicagoes.
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Figura 4.1: Entradas semelhantes (pacientes) sao dadas ao modelo e, se as explicagoes
correspondentes sao semelhantes, a robustez do conjunto de recursos ¢é alta.

4.2 Estabilidade das Explicacoes

A estabilidade (8) mede até que ponto a mesma entrada (pacientes) leva a vetores
de explicagao semelhantes quando é fornecida a modelos construidos a partir de conjuntos
de treinamento com pequenas variagoes. Para medir a estabilidade das explicagoes, reali-
zamos varias rodadas de bootstrap (amostramos os dados de treinamento uniformemente
com substituigdo) e, em cada rodada, criamos uma matriz de similaridade a partir dos
vetores de explicagao obtidos. O processo de bootstrapping resulta em multiplas matrizes
de similaridade (ou seja, uma matriz por rodada), que sdo entao comparadas com a ma-
triz de similaridade dos vetores de explicacao obtidos a partir do conjunto de treinamento
original (baseline). Uma comparagao entre as matrizes bootstrapped e a matriz baseline
é novamente dada em termos do coeficiente de Mantel r. Como temos vérias matrizes,
simplesmente calculamos o valor médio de r. Valores médios altos de r indicam que as ex-
plicacoes sao estaveis com variagoes no conjunto de treinamento, enquanto valores médios
baixos de r indicam que as explicagoes variam muito com pequena varia¢gao no conjunto

de treinamento. A Figura 4.2 demonstra a teoria da estabilidade das explicagoes.
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Figura 4.2: Os modelos A e B empregam o mesmo conjunto de atributos, mas sao treinados
em duas populagoes ligeiramente diferentes A e B. Entao, as mesmas entradas (pacientes)
sao dadas aos modelos A e B, e se as explicagoes correspondentes forem semelhantes,
entao a estabilidade do conjunto de atributos ¢ alta

4.3 Amostragem do Espaco do Modelo

Amostramos o espaco do modelo selecionando os atributos que compéem um mo-
delo. Mais precisamente, comec¢amos enumerando todos os modelos possiveis compostos
de um tnico atributo. Em seguida, selecionamos o atributo dentro do modelo de melhor
desempenho de acordo com um critério de utilidade especifico e, em seguida, enumeramos
todos os modelos possiveis compostos por dois atributos. O processo de enumeracao do
modelo continua incluindo um atributo apoés cada iteragao, até que o modelo comece a
degradar. Garantimos que nenhum atributo apareca mais de uma vez no mesmo modelo.

Durante a amostragem do espago do modelo, queremos desencorajar o aprendizado
de um modelo f para o qual as explicagdoes nao sao robustas nem estaveis, de modo a

evitar o risco de confiar demais no mecanismo de previsao do modelo. Portanto, definimos

a utilidade U,(f) e Us(f) de um modelo f como:

Usf) =P+ C xa,sendo C >0, >0 (4.1)

Us(f)=P+C x f,sendo C > 0,6 >0 (4.2)

em que P é uma medida de desempenho de previsao (AUROC) e C é o coeficiente de

regularizacao. Valores mais baixos de C' encorajarao modelos de amostragem com de-
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sempenho de previsao aparentemente alto, nao importa quao robustas e estaveis sejam
as explicacoes fornecidas. Valores maiores de C, por outro lado, podem levar a modelos
com baixo desempenho de previsao. Valores apropriados de C' podem levar a modelos de
alto desempenho com explicagoes robustas e estaveis e, portanto, esses modelos sao mais
propensos a funcionar como originalmente projetados. Desconsideramos qualquer modelo
com robustez negativa ou estabilidade negativa.

A Figura 4.3 apresenta uma visao geral do processo de regularizagao proposto.
Conforme explicado anteriormente, os atributos obtidos dos dados do paciente, sinais
vitais e resultados laboratoriais estao disponiveis na primeira hora apds a admissao na
UTI. Portanto, as previsoes de rotulos (complicagdes) estao disponiveis na primeira hora
apo6s a admissao na UTI, mas podem ocorrer a qualquer momento durante a permanéncia
na UTI. Em seguida, os atributos sao selecionados iterativamente, maximizando a robustez
ou a estabilidade do modelo até que o modelo de melhor desempenho seja selecionado.
Por fim, o modelo final é utilizado para a identificacao precoce de pacientes com risco de

complicagoes.

Robustez
dados administratives

[—
(demograficos e diagnosticos)

delirio

sinais vitais
(primeira hora apés a admisséo) —

dados laboratoriais
(até 24 horas antes da admisséo)

Estabilidade

selecéo de atributo
(selegéo de atributo interativamente, maximizando
a robustez ou a estabilidade)

Figura 4.3: O processo de regularizacao proposto. Os atributos sao selecionados de forma
iterativa, maximizando a robustez ou a estabilidade do modelo. O modelo final é usado
para prever as complicacoes.
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Capitulo 5

Experimentos

Neste Capitulo serao apresentados os resultados para a identificacao precoce de pacientes
na UTI com riscos de complicacoes. Em particular, os experimentos tém também como

objetivos responder as seguintes perguntas:

1: Existe um trade-off entre a estabilidade, robustez da explicacao e o desempenho da

predigao?

2: Podemos melhorar o desempenho dos modelos usando estabilidade e robustez da ex-

plicagao como termos de regularizagao?

5.1 Base de Dados

A Tabela 5.1 mostra as caracteristicas dos pacientes nos conjuntos de dados de
desenvolvimento e validagao usando os dados de sua primeira admissao na UTI. No con-
junto de dados de desenvolvimento, a idade média dos pacientes é de 65 anos (intervalo

interquartil - IQR 54 — 80) e 3.074 (51,2%) mulheres.

5.2 Configuracao dos Experimentos

Realizamos o cross-validation com cinco folds utilizando todo o conjunto de dados
de desenvolvimento, ou seja, os dados sao organizados em cinco folds (cada uma contendo
1200 instancias), onde em cada execugdo, quatro folds sdo usadas como conjunto de
treinamento (n = 4800), e o folds restante ¢ usado como conjunto de teste (n = 1200). O
resultado apresentado do AUC é a média das cinco execugoes. A robustez e a estabilidade

da explicagao também sao calculadas pelas médias das folds. Todo o processo foi executado
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Tabela 5.1: Caracteristicas dos pacientes da UTI dos dados de desenvolvimento e validagao

Desenvolvimento Validagao
(n=6,000) (n=1,086)
Idade - anos 65 (54 — 80) 65 (53 — 80)
Sexo
Feminino 3,074 (51,2%) 562 (51,7%)
Masculino 2,926 (48,8%) 524 (48,3%)
Comorbidades
Aids 32 (0,005%) 7 (0,007%)
Hipertensao 3543 (59,0%) 532 (52,1%)
Diabetes 919 (15,3%) 196 (19,5%)
Arritmia Cardiaca 304 (5,1%) 27 (2,6%)
Deméncia 528 (8,8%) 145 (14,2%)
Obesidade Morbida 373 (6,2%) 59 (5,6%)
Terapia de Cancer 212 (3,5%) 90 (8,6%)

Categoria de admissao
Médica
Cirurgia programada

3275 (54,6%)
2158 (36,0%)

664 (61,1%)
272 (25,0%)

Cirurgia nao programada 553 (9,4%) 103 (9,5%)
Tipo de cirurgia

Cardiaca 53 (0,9%) 1(0,1%)

Trauma 42 (0,7%) 3 (0,3%)

Neuro cirurgia 24 (0,4%) 1(0,1%)
Tempo de internacao antes da UTI - dias 2,76 (0 — 1) 2,00 (0 —1)
Tempo de internagao na UTI - dias 387 (1 —4) 4,08 (2 —5)
Numero de admissoes na UTI

1 5034 (92,1%) 928 (96,5%)

2 361 (6,6%) 31 (3.2%)

3 51 (0,9%) 2 (0,02%)

> 4 19 (0,4%) 1 (0,01%)

separadamente para cada rotulo: Delirium, Infec¢des no fluxo sanguineo associadas a
inser¢ao de cateteres centrais (CLABSI), Pneumonia associada a ventilagdo mecanica
(VAP) e Mortalidade. Também avaliamos o desempenho dos modelos em um conjunto
de dados de validagao separado (n = 1086) como um conjunto de dados independente
(dados futuros), no qual os modelos s@o construidos usando todo o conjunto de dados de

desenvolvimento (n = 6000).



5.3. Avaliagao do Modelo 42

5.3 Avaliacao do Modelo

Avaliamos a performance dos preditores utilizando a Area Under the Receiver Ope-
rating Characteristic Curve (AUROC). Ela mede se o modelo é capas de classificar as
instancias corretamente, obtendo valores entre 0,5 para predigoes aleatoérias e 1 caso o

preditor tenha uma boa capacidade de separabilidade entre classes.

5.4 Resultados e Discussao

Para responder a primeira pergunta, amostramos o espago do modelo (cerca de um
milhao de modelos para cada complicagao), para que possamos compreender a relagao en-
tre a robustez da explicacao, estabilidade e o desempenho preditivo, a Figura 5.1 mostra
essa relacao entre os modelos treinados para prever delirium. Claramente, o desempenho
preditivo aumenta tanto com a robustez quanto com a estabilidade da explicacao, e os
modelos de melhor desempenho sao aqueles localizados no canto superior direito. Ao
comparar os dois heatmaps, encontramos diferencas nos valores AUROC quando a esta-
bilidade da explicacao varia de 0,3 a 0,5 e a robustez da explicagao varia de 0,8 a 0,9.
Ainda assim, o desempenho da predicao atinge os valores mais altos quando a robustez e
a estabilidade da explicacao sao maiores. Especificamente, os valores AUROC chegam a
0,88 com validagao cruzada usando o conjunto de dados de desenvolvimento e a 0,85 no
conjunto de dados de validacao externa.

Tendéncias semelhantes sao observadas ao analisar modelos treinados para prever
as outras complicagoes direcionadas como VAP (os resultados sdo mostrados na Figura
5.2), CLABSI (os resultados sao mostrados na Figura 5.3), e mortalidade (os resultados
sao mostrados na Figura 5.4). Em todos os casos, o desempenho preditivo aumenta tanto
com a robustez da explicacao quanto com a estabilidade da explicacao. Em resumo, os
modelos que VAP tém valores AUROC de até 0,92 no cross-validation e nos dados de
validagao. Os modelos que preveem a CLABSI tém valores AUROC tao altos quanto 0,88
no cross-validation e 0,85 nos dados de validagao. Finalmente, os modelos de previsao
de mortalidade tém valores AUROC de até 0,84 no cross-validation e 0,83 nos dados de

validagao.
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Figura 5.1: Heatmap dos modelos que preveem Delirium. A cor indica a distribuigao dos
valores AUROC para aos modelos: o azul esta associado a valores baixos do AUROC

enquanto o vermelho esta associado com valores mais altos. Superior — dados de treina-
mento usando o cross-validation. Inferior — dados de validagao.
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Robustez da Explicacgao
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Figura 5.2: Heatmap dos modelos que preveem VAP. A cor indica a distribuigao dos valores
AUROC para aos modelos: o azul esta associado a valores baixos do AUROC enquanto o
vermelho esta associado com valores mais altos. Superior — dados de treinamento usando
o cross-validation. Inferior — dados de validagao.
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Figura 5.3: Heatmap dos modelos que preveem CLABSI. A cor indica a distribui¢ao dos
valores AUROC para aos modelos: o azul esta associado a valores baixos do AUROC
enquanto o vermelho esta associado com valores mais altos. Superior — dados de treina-
mento usando o cross-validation. Inferior — dados de validagao.
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Figura 5.4: Heatmap dos modelos que preveem Mortalidade. A cor indica a distribuicao
dos valores AUROC para aos modelos: o azul esté associado a valores baixos do AUROC

enquanto o vermelho esta associado com valores mais altos. Superior — dados de treina-
mento usando o cross-validation. Inferior — dados de validagao.

Em uma analise mais aprofundada, nota-se que durante o processo de selecao de

atributos (feature selection) para compor o modelo de predi¢do, o algoritmo seleciona
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atributos que o leva a encontrar 6timos locais, nao conseguindo sair destas regioes. Po-
rém quando é utilizado regularizadores baseados na explicacao ou robustez, o algoritmo
consegue selecionar atributos que trazem um maior ganho ao modelo, fazendo que ele
saia dos 6timos locais, buscando melhores solu¢oes para que consiga performar melhor.
Essa anélise é véilida em todos os experimentos que foram realizados, como podem ser
observadas nas Figuras 5.5, 5.6 e 5.7.

A Figura 5.5 demonstra os atributos selecionados, nao utilizando de regularizado-
res, para a criagdo do modelo. Esses atributos foram ordenados pelos seus respectivos

valores de Shapley.

High
Lowest Systolic Blood Pressurelh/Urea -——I—‘H"-
Highest PH1h/Highest Arterial Lactatelh :*—— see
lsMechanicalVentilationlh * S mm—
Lowest Platelets Countlh/Highest Pa CO21h -ﬁ—*ﬂ*— L . o
Highest Pa CO21h/Urea "b" bt [
LengthHospitalStayPriorUnitAdmission -+———- . %
IsCardiovascularSepticShock 4'“_ . &
Highest Pa CO21h/Lowest Pa O2Fi O21h °—"'——+‘
IsAcuteKidneyinjurylh i—-'
IsCardiovascularAnaphylacticMixedUndefinedShock " - S
T T T T T Low
—4 -2 0 2 4

SHAP value (impact on model output)

Figura 5.5: Classificagao dos atributos de acordo com a soma das magnitudes - SHAP
para a predicao da mortalidade

Na figura 5.6 durante o processo de criagao do modelo de predicao, foi feito o uso
da regularizador baseado na explicagao. Pode-se notar que ha alguns atributos que foram
selecionados em ambos os modelos, porém ha diferencas entre os atributos que os modelos

selecionaram.
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SHAP value (impact on model output)

Figura 5.6: Classificacao dos atributos de acordo com a soma das magnitudes - SHAP
para a predicao da mortalidade, utilizando a regularizacao baseada na estabilidade

Por fim, a Figura 5.7 mostra que Highest Pa O21h/Highest Arterial Lactatelh foi
o atributo com o maior valor Shapley para o modelo criado utilizando o regularizador
baseado na robustez e como mostrado nas figuras anteriores, esse modelo tem alguns
atributos que sao compartilhados com o modelo que nao utiliza regularizador e com o

modelo que utiliza o regularizador baseado na estabilidade.

High
Highest Pa 02Fi 021h/Highest Arterial Lactatelh . —---———w—-—-
lsNeurologicalComaStuporObtundedDelirium +‘ N —
IsVasopressorslh " —————
LengthHospitalStayPriorUnitAdmission . *—_—'-' - ®
Lowest Platelets Countlh —*————---—- . o ®
Highest Creatininelh/Highest PH1h *—- - %
Lowest Glasgow Coma Scalelh/Highest Creatininelh —*— . &
Highest Pa 021h - Lowest Pa 021h - "- * .
IsRespiratoryFailurelh +—-'
Highest Fi 021h/Lowest Pa O2Fi O21h -+—- - -
T T T T T T T Low
-3 -2 -1 0 1 2 3

SHAP value (impact on model| output)

Figura 5.7: Classificacao dos atributos de acordo com a soma das magnitudes - SHAP
para a predicao da mortalidade, utilizando a regularizagao baseada na robustez

Para responder a segunda pergunta, amostramos o espaco do modelo conforme des-
crito na Segao 4.3. Especificamente, selecionamos iterativamente os recursos para compor
o modelo. A cada iteracao, o recurso selecionado é aquele que fornece utilidade méxima.
Variando o coeficiente de regularizagao C, controlamos a importancia que os termos de

regularizagao terao no processo de selecao de caracteristicas. Para C' = 0, a utilidade
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¢ dada apenas em termos de uma medida de desempenho preditiva (ou seja, AUROC),
ou seja, 0s recursos sao incorporados ao modelo simplesmente maximizando AUROC. A
medida que C' aumenta, os recursos selecionados tendem a aumentar a estabilidade da
explicacao e a robustez do modelo resultante. Variamos o coeficiente de regularizacao C'
de 0 a 0,5 e relatamos os resultados em termos de AUROC. Além disso, consideramos o
método introduzido por [36] a fim de fornecer uma comparagao de baseline, no qual utiliza
de uma Light GBM para realizar a predicao precoce de falha no sistema circulatoério.

A Tabela 5.2 mostra os numeros de desempenho dos modelos que preveem o
Delirium. Nela, facilmente pode ser observado que a selecao de recursos baseados apenas
em AUROC nao leva aos melhores modelos, mas os termos de regularizagao propostos
desempenham um papel importante na selecao de recursos. Os melhores resultados, foram
obtidos com C' = 0,3. E interessante ressaltar que o desempenho nos conjuntos de dados
de desenvolvimento e validagao se aproximam a medida que C' aumenta, sugerindo que a
estabilidade e a robustez da explicacao sao uteis para a generalizacdo do modelo. Além
disso, o desempenho obtido com C' = 0, 3 supera em muito o desempenho de previsao do

baseline.

Tabela 5.2: Modelos Preditores de Delirium — Performance preditiva com a variacao de
valores de C'.

Estabilidade Robustez
C Desenvolvimento Validagao | Desenvolvimento Validagao
0,0 0,79 | (0,01) 0,77 4 (0,01) 0,79 | (0,01) 0,77 ] (0,01)
0,1 0,82 1 (0,02) 0,821 (0,04) 0,80 7 (0,00) 0,79 1 (0,01)
0,2 0,84 1 (0,04) 0,84 1 (0,06) 0,82 1 (0,02) 0,80 1 (0,02)
0,3 0,86 1 (0,06) 0,85 1 (0,07) 0,84 1 (0,04) 0,821 (0,04)
0,4 0,82 1 (0,02) 0,831 (0,05) 0,83 1 (0,03) 0,81 1 (0,03)
0,5 0,82 1 (0,02) 0,80 1 (0,02) 0,81 1 (0,01) 0,80 1 (0,02)
baseline 0,80 0,78 0,80 0,78

As Tabelas 5.3, 5.4 e 5.5 mostram a mesma anélise para modelos treinados para
prever VAP, CLABSI e Mortalidade, respectivamente. A mesma tendéncia é observada
na previsao dessas complicacoes, onde sao obtidos utilizando valores moderados de C.
Valores mais altos podem selecionar recursos que melhoram a estabilidade e a robustez
da explicacao, mas sao fracos em termos de aumento de AUROC.

Claramente, os termos de regularizagao propostos sao altamente eficazes na sele-
¢ao de recursos que produzem modelos com alta generalizacao para todas as complicacoes
consideradas. Finalmente, é importante notar que a estabilidade e a robustez da explica-
¢ao sao regularizadores altamente eficazes, mesmo quando usados em arvores de aumento
de gradiente, que empregam outros tipos de regularizagao, como L1 e L2.

A fim de compreender melhor o impacto do uso de estabilidade e robustez da

explicacao como regularizadores durante a selecao de recursos, plotamos um heatmap
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Tabela 5.3: Modelos Preditores de VAP — Performance preditiva com a variagao de valores

de C.

Estabilidade Robustez
C Desenvolvimento Validacao | Desenvolvimento Validagao
0,0 0,86 | (0,02) 0,84 { (0,02) 0,86 J (0,02) | 0,84 (0,02)
0,1 0,88 7 (0,00) 0,86 3 (0,00) 0,86 J (0,02) | 0,84 (0,02)
0,2 0,90 1 (0,02) 0,90 1 (0,04) 0,88 7 (0,00) 1 0,87 (0,01)
0,3 0,92 1 (0,04) 0,90 1 (0,04) 0,90 1 (0,02) 1 0,88 (0,02)
0,4 0,90 1 (0,02) 0,90 1 (0,04) 0,89 1 (0,01) 10,88 (0,02)
0,5 0,88 7 (0,00) 0,88 1 (0,02) 0,88 7 (0,00) 7 0,86 (0,00)
baseline 0,88 0,86 0,88 0,86

Tabela 5.4: Modelos Preditores de CLABSI — Performance preditiva com a variagao de
valores de C.

Estabilidade Robustez
C Desenvolvimento Validagao | Desenvolvimento Validagao
0,0 0,82 | (0,02) 0,79 { (3) 0,82 ] (0,02) 0,79 | (0,03)
0,1 0,83 ] (0,01) 0,81 ] (0,01) 0,84 7 (0,00) 0,82 7 (0,00)
0,2 0,86 1 (0,02) 0,84 1 (0,02) 0,86 1 (0,02) 0,84 1 (0,02)
0,3 0,88 1 (0,04) 0,86 1 (0,04) 0,88 1 (0,04) 0,857 (0,03)
0,4 0,87 1 (0,03) 0,851 (0,03) 0,88 1 (0,04) 0,85 71 (0,03)
0,5 0,851 (0,01) 0,851 (0,03) 0,85 71 (0,01) 0,83 1 (0,01)
baseline 0,84 0,82 0,84 0,82

Tabela 5.5: Modelos Preditores de Mortalidade — Performance preditiva com a variacao
de valores de C.

Estabilidade Robustez
C Desenvolvimento Validagao | Desenvolvimento Validagao
0,0 0,81 4 (0,01) 0,77 4 (0,03) 0,81 4 (0,01) 0,77 (0,03)
0,1 0,82 7 (0,00) 0,80 3 (0,00) 0,82 7 (0,00) 0,80 3 (0,00)
0,2 0,83 1 (0,01) 0,821 (0,02) 0,84 1 (0,02) 0,82 71 (0,02)
0,3 0,86 1 (0,04) 0,851 (0,05) 0,86 1 (0,04) 0,84 1 (0,04)
0,4 0,84 1 (0,02) 0,821 (0,02) 0,84 1 (0,02) 0,84 1 (0,04)
0,5 0,81} (0,01) 0,80 3 (0,00) 0,80 J (0,02) 0,78 | (0,02)
baseline 0,82 0,80 0,82 0,80

mostrando os limites de decisao para modelos que preveem mortalidade. Basicamente,
representamos cada ponto (ou seja, um paciente) usando os valores de recursos correspon-
dentes e, em seguida, usamos t-SNE [82] para visualizar os dados em duas dimensoes. A
Figura 5.8 (superior) mostra o limite de decis@o para o melhor modelo obtido com C' = 0,
enquanto a Figura 5.8 (inferior) mostra os melhores modelos obtidos com C' = 0,3. Os
pontos em vermelho correspondem a pacientes que morreram durante a internagao na
UTI. Curiosamente, os recursos selecionados usando C' = 0,3 produziram um modelo

que é muito mais homogéneo no sentido de que melhora a separabilidade dos diferentes
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resultados.

Figura 5.8: Espaco de decisao dos modelos de previsao da mortalidade. Superior — A
utilidade do modelo é fornecida exclusivamente pela AUROC. Inferior — A utilidade do
modelo é dada pela Estabilidade da Explicacao (Equacgao 4.2.)
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Capitulo 6

Conclusao e Trabalhos Futuros

Este trabalho apresentou um algoritmo para predigao de riscos de complicagoes e mortes
na primeira hora apos a admissao na UTI, no qual foram utilizados técnicas de aprendizado
de maquina. Neste capitulo serao resumidos os resultados ja obtidos e apresentar os

trabalhos futuros para a continuacao

6.1 Principais Resultados

Essa tese tem como objetivo o estudo e a criacao de modelos de aprendizado de
méquina capazes de predizer precocemente se complicagoes ocorrerao durante o periodo
em que o paciente estd na UTI, para isso sao utilizados atributos obtidas a partir dos
dados administrativos, resultados laboratoriais e sinais vitais do paciente coletados na
primeira hora da sua admissao.

Vem se tornando comum o uso de modelos de predigao para auxiliar na tomada
de decisao na UTI, um problema comum a alguns preditores é conhecido como problema
da caixa preta, que nao fornecem a informacao da logica envolvida nas predi¢oes dos
pacientes. Atualmente ja existem técnicas como o SHAP, que consegue analisar o modelo,
executando-o com os dados de teste, gerando explica¢des do seu funcionamento.

Um outro problema é que uma vez o modelo gerado, sejamos capazes de garan-
tir o seu funcionamento mantendo a mesma logica de predigao originalmente pretendida.
Assim, para construir modelos que continuem a funcionar como originalmente projeta-
dos, primeiro propomos medir (i) como as explicagoes fornecidas variam para diferentes
entradas (ou seja, robustez) e (ii) como as explicagoes fornecidas mudam com modelos
construidos a partir de diferentes subpopulagoes de pacientes (isto ¢, estabilidade). Pos-
teriormente, empregamos essas medidas como termos de regularizacao que sao acoplados
a um procedimento de sele¢ao de atributos de modo que o modelo final fornega previsoes
com explicacoes mais robustas e estaveis.

Os experimentos foram conduzidos em um conjunto de dados contendo 6.000 in-



6.2. Trabalhos Futuros 53

ternagoes na UTI de 5474 pacientes. Os resultados obtidos em uma coorte de validagao
externa de 1069 pacientes com 1086 internagoes em UTIT mostraram que a selecao de atri-
butos com base na robustez levou a ganhos em termos de poder preditivo que variaram
de 6,8% a 9,4%, enquanto a selecao de atributos com base na estabilidade levou a ganhos
que variaram de 7,2% a 11,5%, dependendo da complicacao.

Nossos resultados sao de importancia pratica, pois nossos modelos preveem com-

plicacoes com grande antecipagao, facilitando intervengoes oportunas e protetoras.

6.2 Trabalhos Futuros

e Sabendo que o tempo de permanéncia no hospital é um dos principais indicadores,
sendo utilizado na geréncia para a obtencao do melhor uso dos recursos hospitala-
res, pretendemos desenvolver um modelo de predicao em tempo real do tempo de

permanéncia de um paciente na UTI e/ou no hospital,

e Pretende-se expandir o trabalho para predizer outras complicacoes durante a estadia

do paciente na UTI.

e Um outro ponto importante que queremos abordar futuramente é a predigao dina-
mica da mortalidade na UTI, assim sera possivel avaliar o risco do paciente a cada

intervengao que for realizada.

e Pretendemos desenvolver modelos que indiquem os recursos que serao necessarios
para o tratamento de grupos especificos de pacientes e ao longo do processo me-
lhorar o desempenho do modelo com base nos métodos de regularizacao, enquanto

incluimos novos recursos provenientes da evolugao dos pacientes na UTI.

6.3 Publicacoes

e AMADOR, T., SATURNINO, S., VELOSO, A., ZIVIANI, N.. Early identification
of ICU patients at risk of complications: Regularization based on robustness and
stability of explanations. ARTIFICIAL INTELLIGENCE IN MEDICINE, v. 128,
p. 102283, 2022.
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e ALBUQUERQUE, A. ; COELHO, T. A. ; FERREIRA, R. ; VELOSO, A. ; ZIVI-
ANI, N. . Learning to Rank with Deep Autoencoder Features. In: IJCNN - IEEE
International Joint Conference on Neural Networks, 2018, Rio de Janeiro. IJCNN -

IEEE International Joint Conference on Neural Networks 2018, 2018.
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