
UNIVERSIDADE FEDERAL DE MINAS GERAIS
Instituto de Ciências Exatas

Programa de Pós-Graduação em Ciência da Computação

Tiago Amador Coelho

Regularização de modelos para predição precoce: Um estudo na predição de
complicações na UTI

Belo Horizonte
2023



Tiago Amador Coelho

Regularização de modelos para predição precoce: Um estudo na predição de
complicações na UTI

Versão Final

Tese apresentada ao Programa de Pós-Graduação em Ciência
da Computação da Universidade Federal de Minas Gerais,
como requisito parcial à obtenção do título de Doutor em
Ciência da Computação.

Orientador: Adriano Alonso Veloso

Belo Horizonte
2023



© 2022,  Tiago Amador Coelho.
   Todos os direitos reservados

                Coelho, Tiago Amador 

C672r            Regularização de modelos para predição precoce: um 
                estudo  na predição de complicações na UTI [recurso  
                eletrônico] :/ Tiago Amador Coelho–2022.
                    1 recurso online  (63 f. il, color.) : pdf.
                     
                    Orientador: Adriano Alonso Veloso.
                    
                    Tese (Doutorado) - Universidade Federal de Minas
               Gerais, Instituto de Ciências Exatas, Departamento de 
               Ciências da Computação.
                    Referências: f.55-63
                                 
                    1. Computação – Teses. 2. Aprendizado de máquina – 
               Teses. 3. Ciência de dados - Medicina  – Teses. 4. Explicação 
               do modelo – Teses. I. Veloso, Adriano Alonso. II. Universidade 
               Federal de Minas Gerais, Instituto de Ciências Exatas, 
               Departamento de Computação. III.Título.

CDU 519.6*82(043)

Ficha catalográfica elaborada pela bibliotecária Belkiz Inez Rezende Costa
CRB 6/1510 Universidade Federal de Minas Gerais - ICEx



UNIVERSIDADE FEDERAL DE MINAS GERAIS
INSTITUTO DE CIÊNCIAS EXATAS

DEPARTAMENTO DE CIÊNCIA DA COMPUTAÇÃO
PROGRAMA DE PÓS‐GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO

FOLHA DE APROVAÇÃO

Tese defendida e aprovada pela banca examinadora consƟtuída pelos Senhores(a):

Prof. Adriano Alonso Veloso ‐ Orientador

Departamento de Ciência da Computação ‐ UFMG

Prof. Renato Vimieiro 

Departamento de Ciência da Computação ‐ UFMG

Prof. Saulo Fernandes Saturnino

Faculdade de Medicina ‐ UFMG

Prof. Wagner Meira Júnior

Departamento de Ciência da Computação ‐ UFMG

Prof. Leandro Balby Marinho

Departamento de Sistemas e Computação ‐ UFCG

Profa. Soraia Raupp Musse

Faculdade de InformáƟca ‐ PUCRS



Belo Horizonte, 14 de junho de 2022.

Documento assinado eletronicamente por Adriano Alonso Veloso, Professor do Magistério
Superior, em 19/10/2022, às 21:44, conforme horário oficial de Brasília, com fundamento no art.
5º do Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Renato Vimieiro, Professor do Magistério Superior,
em 24/10/2022, às 11:28, conforme horário oficial de Brasília, com fundamento no art. 5º do
Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Wagner Meira Junior, Professor do Magistério
Superior, em 01/11/2022, às 10:37, conforme horário oficial de Brasília, com fundamento no art.
5º do Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Leandro Balby Marinho, Usuário Externo, em
03/11/2022, às 09:55, conforme horário oficial de Brasília, com fundamento no art. 5º do Decreto
nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Saulo Fernandes Saturnino, Professor do Magistério
Superior, em 03/11/2022, às 19:13, conforme horário oficial de Brasília, com fundamento no art.
5º do Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Soraia Raupp Musse, Usuária Externa, em
16/11/2022, às 11:03, conforme horário oficial de Brasília, com fundamento no art. 5º do Decreto
nº 10.543, de 13 de novembro de 2020.

A autenƟcidade deste documento pode ser conferida no site hƩps://sei.ufmg.br
/sei/controlador_externo.php?acao=documento_conferir&id_orgao_acesso_externo=0,
informando o código verificador 1843681 e o código CRC B94A9BD2.

Referência: Processo nº 23072.262504/2022‐97 SEI nº 1843681



Dedico este trabalho a todos que diretamente ou indiretamente,
o tornaram possível.



Agradecimentos

Inicialmente agradeço a Deus por sempre estar ao meu lado em todos os momentos.
A minha esposa Patrícia e a minha filha Elisa por estarem ao meu lado todos os

dias me dando carinho e força para não desistir.
Aos meus pais Salustriano e Gilca por todo o ensinamento e suporte que me deram

ao longo da minha vida.
Ao meu irmão Rodrigo pelas conversas e apoio mesmo estando distante.
A minha família que sempre estiveram torcendo.
Aos profs Adriano Veloso, Saulo Saturnino e Nivio Ziviani pelos ensinamentos e

contribuições que fizeram para a construção deste trabalho. Em especial ao prof Adriano,
agradeço sempre por ter me dado o seu voto de confiança para a construção deste trabalho.

Aos amigos e colegas da UEFS que me deram a oportunidade da licença para a
pós-graduação.

Aos amigos que fiz nos laboratórios SPEED e LIA, pelos momentos de descontra-
ção, estudos e trabalhos.

A Sônia, que é uma verdadeira mãe para todos os alunos da PGCC, por sempre
estar disposta a fazer tudo o que é possível para ajudar.

A todos, o meu sincero muito obrigado.



Resumo

Modelos de predição estão se mostrando importantes para a tomada de decisão na UTI,
porém eles geralmente apresentam o problema da caixa preta porque não fornecem a in-
formação da lógica envolvidas nas previsões específicas do paciente. Já existem técnicas
capazes de analisar os modelos e gerar explicações valiosas sobre o seu funcionamento.
Porém, uma vez que o modelo é gerado, é importante garantir que ele continuará a mesma
lógica de predição originalmente pretendida. Sabendo que complicações podem ocorrer
a qualquer momento durante a permanência do paciente na UTI, construímos nossos
modelos de aprendizado de máquina utilizando atributos obtidas a partir dos dados ad-
ministrativos, resultados laboratoriais e sinais vitais do paciente, disponíveis na primeira
hora após a sua admissão na UTI. Para construir modelos que continuem a funcionar como
originalmente projetados, primeiro propomos medir (i) como as explicações fornecidas va-
riam para diferentes entradas (ou seja, robustez) e (ii) como as explicações fornecidas
mudam com modelos construídos a partir de diferentes subpopulações de pacientes (isto
é, estabilidade). Posteriormente, empregamos essas medidas como termos de regulariza-
ção que são acoplados a um procedimento de seleção de atributos de modo que o modelo
final forneça previsões com explicações mais robustas e estáveis. Os experimentos foram
conduzidos em um conjunto de dados contendo 6.000 internações na UTI de 5474 paci-
entes. Os resultados obtidos em uma coorte de validação externa de 1069 pacientes com
1086 internações em UTI mostraram que a seleção de atributos com base na robustez
levou a ganhos em termos de poder preditivo que variaram de 6,8% a 9,4%, enquanto
a seleção de atributos com base na estabilidade levou a ganhos que variaram de 7,2% a
11,5%, dependendo da complicação. Nossos resultados são de importância prática, pois
nossos modelos preveem complicações com grande antecipação, facilitando intervenções
oportunas e protetoras.

Palavras-chave: Aprendizado de máquina. Ciência de Dados Médicos. Explicabilidade
do modelo. Regularização.



Abstract

Predictive models are proving to be important for decision-making in the ICU, but they
often present the black box problem because they do not provide the information from
the logic involved in patient-specific predictions. There are already techniques capable
of analyzing the models and generating valuable explanations about their functioning.
However, once the model is generated, it is important to ensure that it will continue with
the same prediction logic originally intended. Knowing that complications can occur at
any time during a patient’s ICU stay, we built our machine learning models using features
obtained from the patient’s administrative data, laboratory results, and vital signs, avai-
lable within the first hour after admission to the ICU.This enables our models to provide
great anticipation because complications can occur at any moment during ICU stay. To
build models that continue to work as originally designed we first propose to measure (i)
how the provided explanations vary for different inputs (that is, robustness), and (ii) how
the provided explanations change with models built from different patient sub-populations
(that is, stability). Second, we employ these measures as regularization terms that are
coupled with a feature selection procedure such that the final model provides predictions
with more robust and stable explanations. Experiments were conducted on a data set
containing 6000 ICU admissions of 5474 patients. Results obtained on an external vali-
dation cohort of 1069 patients with 1086 ICU admissions showed that selecting features
based on robustness led to gains in terms of predictive power that varied from 6.8% to
9.4%, whereas selecting features based on stability led to gains that varied from 7.2% to
11.5%, depending on the target complication. Our results are of practical importance
as our models predict complications with great anticipation, thus facilitating timely and
protective interventions.

Keywords: Machine Learning. Medical Data Science. Model Explainability. Regulari-
zation
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Capítulo 1

Introdução

As Unidade de Terapia Intensivas (UTIs) fornecem instalações, recursos e pessoal espe-
cializado para o manejo abrangente de pacientes que apresentam ou estão em risco de
desenvolver disfunções orgânicas com risco de vida [48]. Tratar o distúrbio fisiológico
evidente é apenas o primeiro passo no cuidado dos pacientes da UTI, pois eles estão
sujeitos a muitas complicações decorrentes da terapia avançada [79]. Complicações im-
portantes, como infecções, delirium, miopatias, neuropatias e distúrbios nutricionais, têm
se mostrado consistentemente associadas a prejuízos na qualidade de vida em longo prazo
[56] e morte [84]. Assim, todos os esforços devem ser empreendidos para prevenir essas
complicações.

Como as UTIs são ambientes ricos em dados onde vários sinais são monitorados
continuamente, modelos de aprendizado de máquina já foram desenvolvidos para identi-
ficar pacientes em risco de complicações [4, 31, 34, 38, 39, 49, 71]. Embora esses modelos
geralmente sejam excelentes na captura de relações complexas entre sinais [20, 53], eles
sofrem do problema da caixa-preta [22], ou seja, o mecanismo pelo qual os sinais são
combinados a fim de converter as entradas nas saídas é opaco [77]. Modelos complicados
de caixa-preta levantam algumas preocupações, pois as decisões médicas na UTI podem
ter consequências de vida ou morte [78]. Assim, o mecanismo de predição de um modelo
de risco deve estar de acordo com o conhecimento clínico real antes que o modelo seja
colocado em uso [54, 17, 33].

Algoritmos que visam explicar modelos de caixa-preta estão sendo cada vez mais
usados para dar sentido ao mecanismo de previsão [1, 66]. Esses algoritmos fornecem
uma compreensão mecanicista do funcionamento do modelo, revelando como os recursos
estão relacionados em conjunto para formar a previsão final [50]. Um tipo importante de
explicação é determinar a importância do recurso para uma predição particular [45, 62].
No caso da modelagem de dados da UTI, a importância de um sinal é calculada levando-se
em consideração muitas formas de interação envolvendo o sinal. Este tipo de explicação
pode mitigar o problema com os modelos caixa-preta, uma vez que se pode projetar ou
selecionar um modelo que associe importâncias apropriadas aos sinais, fornecendo assim
uma razão confiável para as previsões do modelo [2, 77].

Uma vez que o modelo é colocado em uso, no entanto, uma grande preocupação é
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se ele continuará funcionando como originalmente planejado [59]. Confiar nas explicações
fornecidas significa não apenas confiar no mecanismo de predição do modelo, mas também
nos dados que ele foi construído [81]. Os dados da UTI são razoavelmente complexos
e o modelo resultante pode ter falhas em potencial simplesmente porque os dados de
treinamento estão incompletos, no sentido de que não esgotaram todas as maneiras pelas
quais os sinais podem interagir. Nesse caso, mesmo pequenas variações no conjunto de
treinamento podem levar a explicações completamente diferentes.

1.1 Motivação

Embora alguns modelos possam ser excelentes para a predição de complicações,
muitos deles são uma verdadeira caixa-preta para os clínicos, que não entendem o seu
funcionamento, implicando em uma desconfiança ou em uma falta de confiança no modelo.
Por outro lado, as implicações de confiar demais em um modelo de risco de UTI podem
ser desastrosas, pois um modelo falho (mas confiável) pode tranquilizar falsamente um
clínico, possivelmente levando a uma mudança sistemática na prática clínica [5, 61]

Dentro deste contexto, o trabalho pretende investigar se as explicações dadas pe-
los modelos são robustas e estáveis para diferentes subpopulações, afim de verificar se
entradas similares não geraram explicações substancialmente diferentes, como também se
pequenas variações nos dados de treinamento não geram a explicações diferentes, para
posteriormente criar um termo de regularização para que as explicações das predições
geradas pelo modelo final sejam robustas e estáveis.

1.2 Contribuições

Esta tese visa alcançar as seguintes contribuições principais:

• criação e avaliação de um termo de regularização com base na estabilidade das
explicações do modelo preditor

• criação e avaliação de um termo de regularização com base na robustez das explica-
ções do modelo preditor

• Avaliação dos modelos de um modelo em um cenário real
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1.3 Objetivo Geral

O objetivo geral deste trabalho é construir um modelo que realize predições preco-
ces de maneira eficaz utilizando uma parcial dos dados. Um exemplo da aplicação deste
modelo seria em uma UTI onde temos que predizer as complicações o mais cedo possível,
utilizando apenas os dados da primeira hora dos pacientes, onde muitos eventos podem
acontecer após a primeira hora até o momento do desfecho (alta/óbito) do paciente.

1.3.1 Objetivos Específicos

Especificamente, pretende-se:

• Medir como as explicações fornecidas variam dadas as diferentes entradas (robustez);

• Medir como as explicações fornecidas mudam com modelos construídos a partir de
diferentes subpopulações (estabilidade);

• Criar um termo de regularização para que o modelo final forneça previsões com
explicações mais robustas e estáveis.

1.4 Organização

O trabalho está organizado da seguinte forma: no Capítulo 2 há uma discussão
dos conceitos e trabalhos relacionados com o trabalho afim de prover uma base teórica.
No Capítulo 3 e apresentada a base de dados utilizada no trabalho. O Capítulo 4 aborda
o método proposto para o problema, explicando como foi a sua elaboração e o seu fun-
cionamento. O Capítulo 5 apresenta os experimentos realizados e os resultados obtidos.
Por fim, no Capítulo 6 é apresentada a conclusão do trabalho, bem como são sugeridos
trabalhos futuros.
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Capítulo 2

Conceitos e Trabalhos Relacionados

Esse trabalho foca na construção modelos de aprendizado de máquina para prever compli-
cações graves usando elementos administrativos e clínicos coletados imediatamente após
a admissão do paciente na unidade de terapia intensiva (UTI), bem como a medição da
qualidade da explicabilidade dos modelos gerados através de sua robustez e estabilidade.
Revisaremos os trabalhos relacionados: Aprendizado de Máquina, LightGBM, SHAP,
Teste de Mantel e trabalhos relacionados que são componentes chaves deste trabalho.

2.1 Conceitos

2.1.1 Aprendizado de Máquina

Nas últimas décadas uma área da Inteligência Artificial (IA) conhecida como
Aprendizado de Máquina (AM) vem chamado muita atenção da comunidade científica
por sua capacidade de aprendizado de padrões complexos a partir da análise dos dados,
permitindo assim realizar predições com alta taxa de precisão.

Com o seu destaque, o Aprendizado de Máquina passou a ser amplamente utilizado
em diversos problemas como Knowledge Discovery in Databases (KDD) [25], sistemas
de recomendações [74], reconhecimento de caractere [12], predição de doenças [8], entre
outros.

Afim de categorizar o Aprendizado de Máquina, as formas de aprendizado po-
dem ser divididas da seguinte maneira: Aprendizado Supervisionado e Aprendizado Não
Supervisionado.
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2.1.2 Aprendizado Supervisionado

É utilizado em problemas de predição ou classificação, onde os dados estão clas-
sificados e rotulados. O termo "supervisionado"se dá justamente pela necessidade de
conhecimento prévio dos rótulos, para que durante o aprendizado seja avaliado a capaci-
dade de predizer/classificar o valor de saída para novos dados.

Segundo [29] a predição/classificação é definido como uma tarefa no qual a partir
da observações históricas de casos anteriores, pretende-se prever/classificar o valor para
um novo caso.

Formalmente podemos definir como: Dado um conjunto de treinamento na forma
(Xi, Yi), no qual Xi∈{1,..,N} = {x1, ..., xk}, onde X contem N instâncias e k atributos, e
Yi ∈ IR. O algoritmo deverá ser capaz de aprender a partir dos dados de treinamento
uma correlação entre os atributos, e ao ser apresentado um novo dado de entrada Xa ele
consiga prever o valor de Ya.

2.1.3 Performance e Interpretabilidade

Aprendizado de máquina vem sendo utilizado para resolver problemas de tomada
de decisão, como em hospitais. No entanto, modelos que tem um alto grau de comple-
xidade (baseadas em redes neurais profundas) são verdadeiras caixas-pretas, tendo uma
alta performance e uma baixa interpretabilidade de como os resultados foram obtidos,
enquanto modelos clássicos são altamente interpretáveis e tem uma baixa performance.
Essa limitação "performance X interpretabilidade"veem limitando o seu uso, pois em
vários problemas onde é crítico o bem entendimento das contribuições individuais dos
atributos para o resultado do modelo, não se pode utilizar modelos de alta performance.

2.1.4 LightGBM

Gradient Boosting Decision Trees (GBDT) é um comitê de Decision Trees no qual
é realizado um treinamento sequencial onde em cada iteração, a árvore será construída
baseada nos erros das trees anteriormente construídas (Negative Gradients), gerando um
modelo final com uma grande capacidade de predição.
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O Light Gradient Boosting Decision Trees (LightGBM) é um algoritmo da família
dos GBDT desenvolvido por [41] que contém duas novas técnicas que são o Gradient-based
One-Side Sampling e o Exclusive Feature Bundling. Ainda em seu trabalho, [41] afirma
que um dos maiores problemas do GBDT é a criação das Decision Trees, pois encontrar
os melhores pontos para a divisão das árvores é a parte que mais demanda tempo, já que
precisam verificar todas as instâncias de dados para estimar o ganho de informação de
todos os pontos de divisão possíveis, o que consome muito tempo.

Para resolver esse problema foi proposto o Gradient-based One-Side Sampling
(GOSS) que foca em pegar as instâncias que contem gradientes altos e pega uma amostra
das instâncias com gradientes baixos, assim são utilizados uma quantidade reduzida de
instâncias para a divisão das árvores. O pseudocódigo GOSS pode ser visto em Algorithm
1, o pseudocódigo foi retirado e adaptado de [41].
Algorithm 1: Gradient-based One-Side Sampling

input: I: dados de treinamento
input: d: iterações
input: a: taxa de amostragem de dados com gradiente alto
input: b: taxa de amostragem de dados com gradiente baixo
input: loss: função de perda
input: L: modelo classificador
models ← {};
fact ← 1−a

b

topN ← a × len(I);
randN ← b × len(I);
for i = 0 to d do

preds ← models.predict(I);
g ← loss(I, preds);
w ← {1,1,...};
sorted ← GetSortedIndices(abs(g));
topSet ← sorted[1:topN];
randSet ← RandomPick(sorted[topN:len(I)], randN);
usedSet ← topSet + randSet;
w[randSet] × = fact // atribui o peso fact as amostras com gradientes baixos;
newModel ← L(I[usedSet], - g[usedSet], w[usedSet]);
models.append(newModel);

end

Outro problema abordado em [41] foi a alta dimensionalidade dos dados, que inter-
fere na diretamente da performance. Para atacar esse problema foi elaborado o método
Exclusive Feature Bundling (EFB), no qual o método combina muitos atributos em um
novo atributo, assim reduzindo a dimensionalidade dos dados sem que haja grande perda
de informação.

O método EFB é dividido em duas etapas, a primeira Greedy Bundling no qual é
construído um grafo ponderado onde os pesos das arestas correspondem aos conflitos exis-
tentes entre os atributos, posteriormente os atributos são ordenados de forma decrescente
com relação ao seu grau no grafo e por fim verifica cada um dos atributos atribuindo ele
a um bundle com baixo conflito ou criando um novo bundle. O pseudocódigo do Greedy
Bundling pode ser visto em Algorithm 2, retirado e adaptado de [41].
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Algorithm 2: Greedy Bundling
Input: F: atributos
Input: K: número máximo de conflitos
Construa o grafo G
searchOrder ← G.sortByDegree();
bundles ← {};
bundlesConflicts ← {};
for i in searchOrder do

needNew ← True;
for j = 1 to len(bundles) do

cnt ← ConflictCnt(bundles[j],F[i])
if cnt + bundlesConflict[i] ≤ K then

bundles[j].add(F[i])
needNew ← False
break

end
end
if needNew then

Add F[i] como um novo bundle em bundles
end
Output: bundles

end

A segunda etapa do método EFB, chamado de Merge Exclusive Features, é reduzir
a complexidade do treinamento, para isso é realizado uma junção de dois ou mais atribu-
tos de um mesmo bundle, onde o ponto principal é garantir que os valores dos atributos
originais possam ser identificados nos bundles. O algoritmo desta etapa pode ser visto em
Algorithm 3, retirado e adaptado de [41].

Algorithm 3: Merge Exclusive Features
Input: numData: número de dados
Input: F: um bundle com atributos exclusivos
binRanges ← {0};
totalBin ← 0;
for f in F do

totalBin += f.numBin
binRanges.append(totalBin)

end
newBin ← new Bin(numData)
for i = 1 to numData do

newBin[i] ← 0
for j = 1 to len(F) do

if F[j].bin[i] ̸= 0 then
newBin[i] ← F[j].bin[i] + binRanges[j]

end
end

end
Output: newBin
Output: binRanges

Sobre a performance e a eficiência do LightGBM, [44], [41] e [9] demonstram a sua
superioridade sobre o algoritmo XGBoost e outros algoritmos de classificação em vários
aspectos como: maior velocidade de treinamento e maior eficiência, maior precisão dos
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resultados, menor consumo de memória e capacidade de processamento de grandes bases
de dados.

2.1.5 SHAP - Shapley Additive exPlanations

Shapley Additive exPlanations (SHAP) foi proposto por [46], é empregado para
interpretar os resultados de qualquer modelo de aprendizado de máquina e analisar a
importância individual dos atributos. Ele se baseia na teoria do jogo Valores de Shapley
[69] e em explicações locais [63], para que possa oferecer meios para estimar a contribuição
de cada atributo.

O SHAP está sendo utilizado nos últimos anos na área de aprendizado de máquina
para explicar os resultados dos modelos, principalmente daqueles que são uma caixa preta.
[58] utilizou o SHAP para explicar o modelo de predição de acidentes de trânsito, [28]
em seu trabalho sobre predição precoce de mortalidade de pacientes idosos, utilizou a
ferramenta para evidenciar quais atributos influenciavam mais o modelo gerado.

Em seu livro, [52] define que o objetivo do SHAP é explicar a previsão de uma
instância x calculando a contribuição de cada atributo para a previsão, onde são calculados
os valores de Shapley a partir da teoria dos jogos de coalizão e, cada valor dos atributos
de uma instância atuam como jogadores em uma coalizão.

Os valores de Shapley (ϕ) são determinados através do retreinamento do modelo
em todos os subconjuntos de atributos S ⊆ N , onde N é o conjunto com n atributos. É
atribuído um valor de importância a cada atributo que representa o efeito na previsão do
modelo ao incluir esse atributo [46] por meio da equação 2.1:

ϕi =
∑

S⊆N{i}

|S|!(n− |S| − 1)!

n!
[v(S ∪ {i})− v(S)] (2.1)

Assim, uma função linear de características binários g é definido com:

g (z′) = ϕ0 +
M∑
j=1

ϕjz
′
j (2.2)

onde g é a explicação do modelo, z′ ∈ {0, 1}M é o vetor de coalizão, M o tamanho máximo
da coalizão e ϕj ∈ R é o valor para um atributo j [46].

A Figura 2.1, retirada do presente trabalho, exemplifica como o SHAP classifica os
atributos pela soma das magnitudes dos valores SHAP de todas amostras, evidenciando
a distribuição dos impactos de cada atributo na saída do modelo, revelando o atributo
mais influente é a "Highest Creatinine1h/Highest Fi O21h".
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Figura 2.1: Classificação dos atributos de acordo com a soma das magnitudes - SHAP

2.1.6 AUROC - Area Under the ROC Curve

[24] e [43] definem a curva Receiver Operating Characteristics (ROC) como um
gráfico (espaço ROC) que mostra a taxa de verdadeiros positivos1 no eixo vertical e a taxa
de falsos positivos2 no eixo horizontal, à medida que o threshold de classificação varia.
[43] ainda afirma que a área sob a curva ROC (Area Under the ROC Curve (AUROC))
será equivalente a estatística U de Wilcoxon-Mann-Whitney.

Classificadores probabilísticos produzem naturalmente uma pontuação (score) ou
um valor probabilístico que represente o grau em que uma instância é membro de uma
classe. Esses valores são usados pelos classificadores, juntamente com um threshold para
produzir um classificador binário, onde se a saída do classificador estiver acima de um
determinado threshold, o classificador produzirá um A, caso contrário um B.

A exemplo, Figura 2.2 demonstra uma curva ROC em um conjunto de teste de 10
instâncias. As instâncias utilizadas são demonstradas na Tabela 2.1, que ilustra a classe
da cada instância e o score obtido por cada uma delas ao ser processada pelo classificador.

1sensibilidade = TP/(TP + FN)
2FP/(FP + TN)
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Tabela 2.1: Instâncias geradas por um classificador probabilístico

Inst # Classe Score
1 p 0.95
2 n 0.86
3 p 0.70
4 p 0.55
5 n 0.51
6 n 0.49
7 p 0.40
8 p 0.35
9 n 0.27
10 n 0.15

Figura 2.2: Curva ROC gerada através da Tabela 2.1

Para gerar a curva ROC do exemplo da Figura 2.2 segue os seguintes passos:

1. O passo no sentido para cima é dado pelo valor 1
#InstanciasPositivas

, 0,2 neste exemplo;

2. O passo no sentido para direita é dado pelo valor 1
#InstanciasNegativas

, 0,2 neste exem-
plo;

3. Ordena de forma decrescente pelo score a saída do classificador (Tabela 2.1);

4. Partindo do ponto (0, 0) e, para cada instância da Tabela 2.1, se a classe for p
(positiva) faça o passo para cima, caso contrário faça o passo será para a direita.

Toda curva ROC é gerada através de um número finito de instância produzindo
um degrau no gráfico (espaço ROC) e a medida que o número de instâncias aumenta,
mais contínua vai ficando a curva.
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Para se calcular a AUROC, basta calcular a área do retângulo formado a cada
passo para a direita, no exemplo acima teremos: ((0, 2 ∗ 0, 2) + (0, 2 ∗ 0, 6) + (0, 2 ∗ 0, 6) +
(0, 2 ∗ 1, 0)+)0, 2 ∗ 1, 0)) totalizando um valor de 0,68.

2.1.7 Teste de Mantel

[47] em seu estudo projetou um método para calcular o coeficiente de correlação
entre dois agrupamentos de doenças em estudos epidemiológicos, o qual gera uma esti-
mativa de associação entre uma doença e um fator de risco. Muito frequentemente, os
dados para pesquisa em saúde não são obtidos de forma adequada, por meio de amos-
tragem probabilística de uma população-alvo. Embora não seja um problema calcular o
coeficiente de correlação entre dois conjuntos, testar sua significância não pode ser feito
usando a abordagem usual, já que é necessário assumir a independência dos dados.

O teste de Mantel consiste em um processo de comparação entre duas matrizes
simétricas de distância. O teste pode ser descrito da seguinte forma: seja o conjunto de
dados (xi, yi) com i = 1, ..., n elementos. São calculas as matrizes simétricas n x n de
distância Dx

ij = dist(xi, xj) e Dy
ij = dist(yi, yj). O teste de Mantel é dado pela soma dos

produtos entre as matrizes de distâncias Dx
ij e Dy

ij, de acordo com a seguinte equação:

r =
n−1∑
i=1

n∑
j=1+1

Dx
ij ×Dy

ij (2.3)

em que r é o coeficiente de Mantel. Estendendo o teste de Mantel, em seus estudos
[73] apresenta o teste parcial de Mantel, em que uma terceira matriz de distância é adicio-
nada. Este teste é baseado no coeficiente de correlação entre as matrizes de distâncias Dx

ij

e Dy
ij enquanto controla o efeito da terceira matriz de distância Dz

ij. O trabalho de [21]
apresenta uma análise do teste de Mantel junto com a análise de correlação de Pearson e
quando ambos os métodos são aplicáveis.

É notável a diversidade de áreas com que o teste de Mantel e suas extensões
são aplicadas. No trabalho de [19] apresenta uma revisão do uso do teste de Mantel e
suas extensões, de sua aplicação associada a modelos teóricos em genética populacional.
Extensões do teste de Mantel também tem sido usadas na área de aprendizado de máquina,
como no trabalho [75], o qual propõe um novo método baseado em rede neural profunda
para a previsão do tempo de sobrevivência global de pacientes. Foram analisadas imagens
de ressonância magnética do celebro feitas no processo pré-operatório de pacientes que
possuem tumor cerebral para orientar a previsão do tempo de sobrevivência.
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2.1.8 Regularização

Durante o processo de treinamento, os algoritmos de Aprendizado de Máquina,
principalmente os algoritmos mais complexos, realizam ajustes no modelo que está sendo
construído seja capaz de realizar a predição/classificação. Neste processo, pode ocorrer o
overfitting ou o underfitting do modelo.[85, 37]

Segundo [37] o underfitting significa que durante o processo de aprendizagem, o
modelo gerado não conseguiu encontrar nenhuma relação entre os atributos, resultado em
um classificador que não consegue realizar a classificação correta do seu próprio conjunto
de treinamento.

Já o overfitting, segundo [85], o modelo gerado tem um desempenho excelente em
sua base de treinamento, porém na base de treinamento ele não consegue ter o mesmo
desempenho. Isso ocorre porque durante o treinamento o modelo aprendeu tão bem as
regras e relações existente entre os atributos dos dados de treinamento, que ao receber
novos dados as regras e relações aprendidas não tem validade, sendo assim o modelo não
tem a capacidade de generalização.

Uma alternativa de se evitar o overfitting é aumentar o tamanho da base de dados
para o treinamento do modelo, mas nem sempre é possível. Uma outra alternativa é o
uso de técnicas de regularização ou de reguladores.[67]

A técnica de regularização é utilizada para penalizar os coeficientes de valores altos
da função objetivo, fazendo com que o modelo fique menos sensível a ruídos, aumentando a
sua capacidade de generalização [60]. Dentre várias técnicas de regularização, destacamos
a L1 e L2.

A regularização L1 ou Lasso (equação 2.4) atribui uma penalização igual ao valor
absoluto dos coeficientes, em destaque. Note que a função Loss pode ter valor 0, fa-
zendo com que a regularização L1 realize uma "feature selection" quando há uma grande
quantidade de atributos.

Loss = Error(Y − Ŷ ) +λ

n∑
1

|wi| (2.4)

A regularização L2 ou Ridge (equação 2.5), também atribui uma penalização aos
coeficientes, como visto na regularização L1, porém a penalização é igual ao quadrado da
magnitude dos coeficientes.

Loss = Error(Y − Ŷ ) +λ
n∑
1

w2
i (2.5)
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2.2 Trabalhos Relacionados

A identificação prévia de pacientes com risco de complicação na UTI ou fora dela
tem sido motivo de preocupação e vem sendo abordados em vários estudos [68] [35] [23]
[32] [76]. Mais especificamente, alguns estudos que avaliam os riscos de complicações nos
pacientes vêm obtendo bons resultados quando utilizam as técnicas de Aprendizado de
Máquina.

[87] descreve o uso de técnicas aprendizado de máquina, especificamente o XGBo-
ost, para a predição de complicações após cirurgia cardíaca pediátrica. Os autores criaram
dois modelos de predição com o XGBoost, um sem otimização e outro otimizado, no qual
ambos tiveram resultados superiores (AUROC de 0,82) quando comparados aos sistemas
de pontuação RACHS-1, Aristotle, STS-EACTS e STS (AUROC de 0,75).

[30] demonstra que modelos supervisionados de aprendizado de máquina podem
prever melhor as complicações pós-operatórias após artroplastia total do ombro (TSA) do
que os índices de comorbidade. Neste trabalho os autores utilizaram atributos como idade,
índice de massa corporal (IMC), tempo operatório, tabagismo, comorbidades, diagnóstico,
hematócrito e albumina pré-operatórios para prever complicações como transfusão, longo
período de estadia (> 3 dias), infecção de sítio cirúrgico, o retorno à sala de cirurgia,
embolia pulmonar e readmissão.

A pesquisa de [83] faz uso de uma Long Short-Term Memory (LSTM), um tipo de
Deep Neural Networks (DNN), para realizar a predição da mortalidade de pacientes em
UTIs. Nos resultados, foi mostrado que o escore SOFA teve uma preditividade moderada
(AUC de 0,72), o modelo utilizando regressão logística mostrou bom desempenho (AUC
de 0,82), enquanto o modelo desenvolvido por eles teve o melhor desempenho, obtendo
um AUC de 0,88.

[64] criaram, treinaram e avaliaram mais de 100 modelos de XGBoost para prever
se o paciente evoluiria para um estado crítico após ser diagnosticado com o COVID-
19. Os resultados apresentados no trabalho mostram um alto desempenho preditivo dos
modelos criados (AUCROC 0,861), além disso, a análise de interpretabilidade identificou
idade avançada, pneumonia, IMC mais alto, diabetes, sexo masculino, falta de ar, doença
cardiovascular, ausência de tosse, etnia não hispânica e temperatura corporal elevada
como os fatores preditivos mais importantes para estado crítico.

Em [51], os autores desenvolveram um algoritmo de aprendizados de máquina
para monitoramento em tempo real, no qual utilizando 5 minutos de dados fisiológicos, o
algoritmo consegue predizer com 30 minutos de antecedência um evento de hipotensão em
pacientes. Nos experimentos foram utilizados dados de 400 pacientes e aproximadamente
181000 horas de dados fisiológicos, onde o algoritmo o algoritmo demonstrou 94% de
precisão, 85% de sensibilidade e 96% de especificidade na previsão de hipotensão dentro
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de 30 minutos que antecedem os eventos.
No trabalho de [3], foi proposto um modelo de rede neural híbrida para predizer o

risco de mortalidade, em UTIs neonatais, com janelas de risco de 3, 7 e 14 dias, usando
apenas os atributos: peso ao nascer, idade gestacional, sexo, frequência cardíaca e frequên-
cia respiratória. O melhor resultado se deu com o modelo que utilizou a janela de risco de
mortalidade em 3 dias, conseguindo superar os estados da arte encontrados na literatura,
obtendo uma AUROC de 0,9336 com desvio padrão de 0,0337 no 5 folds cross validation.
Além disso, o modelo proposto é capaz de atualizar continuamente a avaliação do risco
de mortalidade, permitindo a análise das tendências de saúde e respostas ao tratamento.

O foco do estudo realizado por [57] foi a identificação precoce de pacientes crí-
ticos que iriam necessitar de ventilação mecânica prolongada (VMP) e a realização da
traqueostomia. No estudo realizado sobre a base de dados MIMIC III, foi utilizado o al-
goritmo Gradient-boosted decision tree para realizar a predição, alcançando uma AUROC
de 0.820 para a predição da VMP e uma AUROC de 0.830 para a predição da realização
da traqueostomia.

[27] diz que reinternações de pacientes em unidades de terapia intensiva estão
associados a um aumento da mortalidade, morbidade e também dos custos. Ainda no
trabalho, é afirmado no trabalho que os modelos atuais de predição de reinternações em
UTI tem um valor preditivo moderado e que utilizam de diversos atributos fisiológicos que
podem ser avaliados em momentos distintos da internação do paciente. Assim, ele propõe
uma abordagem combinando a modelagem fuzzy com a seleção de atributos através de
árvore de busca, mostrando que um é possível a criação de um modelo com um maior
valor preditivo pode ser alcançado utilizando menos atributos fisiológicos, nas quais esses
atributos podem ser avaliados nas 24 horas anteriores à alta.

O trabalho de [11] utilizou de aprendizado de máquina para identificar exames
desnecessários em pacientes com sangramentos gastrointestinais, visando a redução de
custos na UTI. Para alcançar o objetivo foi utilizada a técnica de modelagem fuzzy em
uma base de dados reais com 746 pacientes para a criação de um modelo preditivo. A
acurácia do modelo criado foi superior a 80%, demonstrando que poderia haver uma
redução média de 50% no total de exames laboratoriais.

Já em [55] faz uso de Deep Convolutional Neural Networks (DCNN) para o diag-
nóstico da doença de Alzheimer através da análise das imagens de ressonância magnética.
Para tal, foi desenvolvido pelos autores um método chamado de Swap Test, que produz
mapas de calor que retratam as áreas do cérebro que são indicativos da doença de Alzhei-
mer, fornecendo interpretabilidade ao modelo desenvolvido, deixando em um formato que
é melhor compreensível para os médicos.

Em um outro trabalho de diagnóstico da doença de Alzheimer, [18] treinou um
modelo usando redes neurais profundas utilizando 2109 imagens para treinamento e 40
imagens para teste, conseguindo predizer a doença com 75 meses de antecedência do
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diagnóstico final, com uma AUROC de 0,98, uma confiança de 95%, uma taxa de 82% de
especificidade e com 100% de sensibilidade.

As técnicas de aprendizado de máquina também veem sendo usadas para a pre-
dição da necessidade de um paciente precisar ser internado na UTI. Esse problema é
extremamente importante pois devido às restrições de recursos, os profissionais de saúde
da linha de frente podem não conseguir fornecer o monitoramento e a avaliação frequentes
necessários para todos os pacientes com alto risco de deterioração clínica, ocasionando um
maior risco a vida do paciente.[10] atacou o problema utilizando algoritmos de random
forest, conseguindo resultados alcançando valores de 76,2% de acurácia e 79,9% de AUC
para pacientes internados com COVID-19.

[16] afirma que o monitoramento extensivo em unidades de terapia intensiva (UTIs)
gera grandes quantidades de dados que contêm inúmeras tendências que são difíceis para
os médicos avaliarem sistematicamente, e que as abordagens atuais descartam informações
importantes destes dados. Para resolver esse problema [16] criou um modelo baseado no
aprendizado profundo (Deep Learning) que é capaz de utilizar todos os dados coletados,
sem a necessidade de realizar seleção de atributos ou quaisquer outro tratamento nos
dados, para predizer o risco de morte do paciente. Em seus testes, foram obtidos utilizando
as primeiras 24 horas dos dados de cada paciente, conseguindo um AUC superior a 0.8,
enquanto os modelos SAPS II e OASIS obtiveram AUCs de 0,72 e 0,76 respectivamente.

[42] apresentou um estudo onde técnicas de aprendizado de máquinas como Logistic
Regression, Decision Tree, Random Forest, Support Vector Machine e Adaptive Boosting
foram utilizadas para identificar precocemente ou predizer doenças do coração, câncer de
mama e diabetes. Os resultados do estudo evidenciaram o quão assertivos as técnicas
são em predizer essas doenças, obtendo uma acurácia de 87,1% para doenças do coração
utilizando a regressão logística, 85,71% para diabetes com o Support Vector Machine
(SVM) e 98,57% utilizando o classificador AdaBoost para a detecção do câncer de mama.

O aprendizado de máquina foi utilizado por [26] para predizer se pacientes, que
estavam infectados pelo COVID-19, iram evoluir para um estado crítico, necessitando de
uma UTI. A base de dados foi fornecida pelo hospital Beneficência Portuguesa de São
Paulo e continha dados de 1040 pacientes de COVID-19, no qual 53,3% eram homens,
com média de idade de 51,7 anos e 63,8% dos pacientes eram brancos. Todos os modelos
criados por eles tiveram um resultado de AUROC superior a 0,91, com sensibilidade de
0,92 e especificidade de 0,82.

[15] propôs um modelo baseada em uma rede neural convolucional para que através
de imagens de raio X pudesse predizer os pacientes que estavam infectados com a COVID-
19. Para o treinamento do modelo foram usadas 1384 imagens de pacientes com idades
de 18 a 63 anos e para teste foram usadas 350 imagens. O modelo nos testes chegou a
obter 89,7% de acurácia e obteve 94,0% de AUC.

[72] em seu estudo afirma que durante a pandemia de COVID-19, a tomografia
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computadorizada (TC) era uma alternativa ao teste RT-PRC para o diagnóstico da do-
ença, porém a segmentação de imagens de TC é demorada e apresenta vários desafios,
como as altas disparidades de textura, tamanho e localização das infecções. Para atacar
esses problema ele propôs um framework baseado em uma DNN para realizar a segmen-
tação das imagens. Como resultado o método proposto obteve um dice score de 80,3% e
um IoU score de 68,77%, sem um resultado superior aos algoritmos em estado da arte.

[65] utiliza técnicas de aprendizado de máquina para realizar análise de texturas de
imagens de ressonância magnética para criar um modelo preditivo para o diagnóstico de
lesões adrenais. O modelo preditivo criado obteve uma acurácia de 80%, já um radiologista
especialista obteve uma acurácia de 73%.

[40] realizou um estudo no qual descreve sobre o futuro e as possibilidades do uso de
aprendizado de máquina no contexto da cirurgia robótica. Ele analisa que o procedimento
cirúrgico pode ser decomposto em episódios, que para cada episódio pode ser aprendido
como uma habilidade e essas habilidade podem ser incorporadas no robô cirúrgico para
que ele possa tomar as decisões apropriadas no momento apropriado. Em suas conclusões
ele aponta que ao longo do tempo os robôs cirurgiões podem ganhar mais autonomia,
resultando em sistemas semi-autônomos ou até mesmo autônomos.

O gerenciamento de leitos e de recursos é um grande problema na área de saúde, ba-
seado nisso [14] utilizando registros médicos eletrônicos de pacientes cardíacos do hospital
King Abdulaziz Cardiac Center desenvolveu quatro modelos de aprendizado de máquina
( Random Forest, Redes Bayesianas, SVM e Redes Neurais ). Nos experimentos foram
utilizados dados de 16414 internações, onde haviam 12769 pacientes, dentre eles 68,2%
eram homens. Dentre os modelos desenvolvidos, o Random Forest foi o obteve o melhor
resultado com sensibilidade de 0,8, acurácia de 0,8 e AUROC de 0,94.

[86] projetou vários modelos preditores de taquicardia utilizando aprendizado de
máquina, para criar um score de risco de pacientes na UTI. Normalmente pacientes que
tiveram episódios de taquicardia tiveram aumento do suporte vasopressor, houve um
aumento no tempo de permanência na UTI e também aumento da mortalidade. Dentre
os modelos projetados, o que obteve o melhor resultado foi o Random Forest com acurácia
de 0,847 e AUROC de 0,921.

Por fim, o problema da caixa preta vem sendo considerado um aspecto importante
quando é utilizado aprendizado de máquina para criação de modelos de predição clínica
[13]. A falta de interpretabilidade dos modelos de aprendizado de máquina está sendo
cada vez mais associada à confiança clínica insuficiente nos modelos e à pouca aprovação
dos médicos [80]. [70] empregaram um método de aprendizado profundo que produziu
um modelo interpretável para uma previsão precoce de sepse.
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Capítulo 3

Materiais e Métodos

Neste capítulo serão apresentados os materiais e métodos utilizados na pesquisa, incluindo
os dados e algoritmos.

3.1 Dados

Para o desenvolvimento do modelo, foram coletados os dados dos prontuários ele-
trônicos de pacientes internados em três diferentes UTIs de um hospital localizado na
cidade de Belo Horizonte, entre os períodos de 31 de julho de 2016 a 31 de dezembro
de 2018. Os dados coletados foram anonimizados e abrangem informações demográficas,
diagnósticos, valores laboratoriais, dentre outros valores que são atualizados frequente-
mente pelos equipamentos de monitoramentos das UTIs. Ao todo, a coorte compreende
6000 admissões e 5474 pacientes.

Com o intuito de validar do modelo, foram coletados os dados dos prontuários ele-
trônicos de pacientes internados nas mesmas três UTIs, mas do período de 01 de janeiro
de 2019 a 30 de abril de 2019. A coorte contém 1086 internações na UTI e 1069 pacien-
tes distintos. O objetivo principal da validação é demonstrar que os modelos fornecem
explicações com alta robustez e estabilidade.

A Tabela 3.1 mostra as características dos pacientes usando os dados de sua
primeira admissão na UTI.

Já a Tabela 3.2 mostra as características dos pacientes agrupados pelas complica-
ções.

Para a adesão ao modelo SAPS III, tanto as coortes de desenvolvimento quanto
de validação são compostas por pacientes maiores de 16 anos com internação em UTI
superior a 24 horas.
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Tabela 3.1: Características dos pacientes da UTI

Idade - anos 65 (54 − 80)
Sexo

Feminino 3636 (51,32%)
Masculino 3450 (48,68%)

Comorbidades
Aids 39 (0,5%)
Hipertensão 4075 (58,1%)
Diabetes 1115 (15,9%)
Arritmia Cardíaca 331 (4,7%)
Demência 173 (2,4%)
Obesidade Mórbida 432 (6,1%)
Terapia de Câncer 302 (4,3%)

Categoria de admissão
Médica 3939 (56,2%)
Cirurgia programada 2430 (34,6%)
Cirurgia não programada 656 (9,3%)

Tipo de cirurgia
Cardíaca 54 (0,9%)
Trauma 45 (0,6%)
Neuro cirurgia 25 (0,3%)

Tempo de internação antes da UTI - dias 2.64 (0 − 1)
Tempo de internação na UTI - dias 3.89 (1 − 4)

Número de admissões na UTI
1 5962 (85,0%)
2 392 (5,5%)
3 53 (0,7%)
≥ 4 20 (0,2%)

3.1.1 Atributos e Rótulos

Os atributos usados para construir os modelos são uma mistura de informações
estáticas extraídas de dados que incluem dados demográficos e diagnósticos (obtidos an-
tes da admissão na UTI), resultados laboratoriais diários (obtidos antes da admissão na
UTI) e informações dinâmicas como os sinais vitais coletados de equipamentos da UTI
(durante a primeira hora após a admissão na UTI). Resumidamente, nossos dados são
um subconjunto do modelo SAPS III, para que possamos vincular nosso modelo à prá-
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Tabela 3.2: Características dos pacientes da UTI agrupados pelas complicações

Delirium VAP CLABSI Mortalidade

# Instâncias 236 41 13 477

Idade - Anos 72 (63 - 86) 66 (58 - 80) 55 (43 - 71) 71,82 (63 - 84)

Sexo
Masculino 114 23 5 238
Feminino 122 18 8 239

Alta 213 28 8 -
Óbito 23 13 5 -

Tempo de
internação antes

da UTI - dias
2,97 (0 - 1,25) 3,9 (0 - 1) 24,38 (0 - 14) 7,44 (0 - 8)

Tempo de
internação na

UTI - dias
8 (3 - 11) 21 (12 - 27) 24,07 (11 - 19) 8,91 (2 - 11)

Número de
admissões

na UTI
1 206 41 13 477
2 15 0 0 0
3 0 0 0 0

≥ 4 0 0 0 0

tica clínica atual. A Figura 3.1 demonstra alguns subconjunto de atributos usados para
aprendizado dos modelos.

A Figura 3.2 mostra a extração e rotulagem de recursos. O foco do trabalho foi a
previsão precoce, ou seja, as previsões são realizadas durante a primeira hora de admissão
na UTI. Assim, empregamos apenas os sinais vitais medidos durante a primeira hora após
a admissão na UTI. Esses sinais foram agregados (down-sampling), resultando em valores
mínimos e máximos para cada sinal. Já os desfechos consistem em possíveis complicações
ocorridas em qualquer momento da internação na UTI.

A Tabela 3.3 mostra as complicações consideradas neste estudo, que são explicadas
a seguir.

• Delirium é definida como uma rápida alteração de consciência podendo durar horas
a dias, caracterizada pela diminuição da consciência ambiental, atenção diminuída
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Figura 3.1: Subconjunto de atributos usados para o aprendizado dos modelos

Figura 3.2: Configuração de previsão precoce: os atributos estão disponíveis na primeira
hora após a admissão na UTI, mas os rótulos (complicações) podem ocorrer a qualquer
momento durante a permanência na UTI. Os dados são divididos em conjuntos de desen-
volvimento e validação.

e cognição alterada [6]. Essas características clínicas podem se manifestar como
déficits de memória, desorientação, alucinações, níveis flutuantes de alerta e anor-
malidades motoras.

• Infecções no fluxo sanguíneo associadas à inserção de cateteres centrais (CLABSI):
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Tabela 3.3: Complicações durante a internação na UTI. O número entre parênteses indica
a fração de casos com óbito do paciente.

Desenvolvimento
(n=6,000)

Validação
(n=1,086)

Delirium 147 (10%) 89 (11%)
Pneumonia associada à ventilação mecânica (VAP) 39 (31%) 8 (50%)
Infecções no fluxo sanguíneo associadas à
inserção de cateteres centrais (CLABSI) 11 (27%) 4 (50%)
Mortalidade 414 63

Uma linha central é um cateter que é colocado na veia grande do paciente, geral-
mente no pescoço, tórax, braços ou virilha. O cateter central costuma ser usado
para tirar sangue ou para administrar fluidos e medicamentos com mais facilidade.
A linha pode ser deixada no local por várias semanas ou meses, se necessário. Às
vezes, bactérias ou outros germes podem entrar na linha central do paciente e en-
trar em sua corrente sanguínea. Isso pode causar uma infecção que é chamada de
infecção da corrente sanguínea associada à linha central.

• Pneumonia associada à ventilação mecânica (VAP) é um tipo de infecção pulmonar
que ocorre em pacientes que usam máquinas de ventilação mecânica na UTI. A taxa
de mortalidade por essa pneumonia varia de 24 a 50% e pode chegar a 76% em
alguns casos específicos ou quando a infecção pulmonar é causada por patógenos de
alto risco [7].

3.2 Desenvolvimento do Modelo

Aplicamos um algoritmo de additive boosting para prever a ocorrência de compli-
cações específicas nas admissões à UTI. Especificamente, usamos o algoritmo LightGBM
[41], que segue a técnica gradient boosting que se ajusta às boosted decision trees mi-
nimizando o gradient error. As árvores são adicionadas iterativamente ao conjunto e
são adequadas para corrigir os erros de previsão feitos por árvores de decisão anteriores.
O conjunto minimiza o cross-entropy loss function usando gradient descent. LightGBM
fornece hiperparâmetros que devem ser ajustados, incluindo o número de árvores para
compor o conjunto (T ), a taxa de aprendizado (γ) e a profundidade máxima da árvore
(θ).

Amostramos o espaço do modelo selecionando aleatoriamente k características do
conjunto de atributos disponíveis com 2 ≤ k ≤ 25, e para cada conjunto de atributos
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construímos modelos usando combinações de T (10, 50, 100 ), γ (0,05, 0,1, 0,2) e θ (5,
10). Portanto, cada conjunto de atributos resultou em 18 modelos diferentes. Repetimos a
exploração aleatória de conjuntos de atributos de modo que cerca de 1.000.000 de modelos
foram produzidos para cada complicação.

3.2.1 Performance do Modelo

Avaliamos o desempenho da previsão em termos do AUROC. AUROC mede se o
modelo é capaz de classificar exemplos corretamente. Leva valores entre 0,5 (previsões
aleatórias) e 1 (todos os casos positivos são classificados acima dos casos negativos).

Para cada modelo avaliado, realizamos um 5-fold cross-validation na coorte de
desenvolvimento. Usamos a coorte de validação como um conjunto de dados independente
no qual avaliamos os modelos construídos a partir da coorte de desenvolvimento.

3.2.2 Explicabilidade

Aplicamos o algoritmo SHAP a cada modelo para obter explicações sobre os atri-
butos que conduzem as previsões específicas do paciente. SHAP é uma representação
agnóstica de modelo de importância de atributos, onde o impacto de cada atributos em
uma previsão particular é representado usando valores de Shapley. Dado o conjunto atual
de valores de atributos, um valor de Shapley quantifica o quanto um único atributo no
contexto de sua interação com outros atributos contribui para a diferença entre a previsão
real e a média. Ou seja, a soma dos valores de Shapley para todos os atributos mais a
previsão média é igual à previsão real.

É importante ressaltar que o valor de Shapley para um atributo não deve ser visto
como seu efeito direto e isolado, mas como seu efeito composto ao interagir também
com os outros atributos. Os valores de Shapley consideram todas as previsões possíveis
para uma instância usando todas as combinações possíveis de entradas e, por causa dessa
abordagem exaustiva, o SHAP pode garantir propriedades como consistência e precisão
local [45]. Em resumo, o SHAP fornece um vetor de valores Shapley (aproximados) para
cada entrada (também conhecido como vetor de explicação). Os vetores de explicação
SHAP têm a mesma dimensão das entradas, e cada valor em um vetor de explicação
indica a importância do recurso correspondente em uma previsão específica.
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Capítulo 4

Regularização baseada na Robustez e
Estabilidade da Explicação

Neste capítulo, definiremos os conceitos de robustez e estabilidade da explicação e apre-
sentaremos abordagens para medi-los. Em seguida, discutiremos como empregar esses
conceitos para regularização do modelo.

4.1 Robustez das Explicações

Robustez (α) mede até que ponto, entradas semelhantes têm vetores de explica-
ção semelhantes. Para medir a robustez das explicações, primeiro criamos uma matriz
de similaridade a partir das entradas (pacientes). Em seguida, criamos uma matriz de
similaridade paralela a partir dos vetores de explicação correspondentes. Para ambas as
matrizes, a similaridade é dada em termos de distância euclidiana. Uma vez que as duas
matrizes de similaridade paralelas são criadas, empregamos o coeficiente de Mantel r [47],
que fornece a auto correlação espacial entre duas matrizes de similaridade. O coeficiente
de Mantel é um método não paramétrico que calcula a significância da correlação por
meio de permutações das linhas e colunas de uma das matrizes de similaridade. Para o
teste estatístico dentro do coeficiente de Mantel foi selecionado o coeficiente de correlação
de Pearson, também chamado de coeficiente de correlação produto momento r. Sendo a
faixa de r entre −1 a +1, onde estar perto de −1 indica uma forte correlação negativa
(ou seja, as explicações não são robustas) e +1 indica forte correlação positiva. Um valor
de r de 0 indica que não há correlação entre entradas e vetores de explicação. A Figura
4.1 demonstra a teoria da robustez das explicações.
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Figura 4.1: Entradas semelhantes (pacientes) são dadas ao modelo e, se as explicações
correspondentes são semelhantes, a robustez do conjunto de recursos é alta.

4.2 Estabilidade das Explicações

A estabilidade (β) mede até que ponto a mesma entrada (pacientes) leva a vetores
de explicação semelhantes quando é fornecida a modelos construídos a partir de conjuntos
de treinamento com pequenas variações. Para medir a estabilidade das explicações, reali-
zamos várias rodadas de bootstrap (amostramos os dados de treinamento uniformemente
com substituição) e, em cada rodada, criamos uma matriz de similaridade a partir dos
vetores de explicação obtidos. O processo de bootstrapping resulta em múltiplas matrizes
de similaridade (ou seja, uma matriz por rodada), que são então comparadas com a ma-
triz de similaridade dos vetores de explicação obtidos a partir do conjunto de treinamento
original (baseline). Uma comparação entre as matrizes bootstrapped e a matriz baseline
é novamente dada em termos do coeficiente de Mantel r. Como temos várias matrizes,
simplesmente calculamos o valor médio de r. Valores médios altos de r indicam que as ex-
plicações são estáveis com variações no conjunto de treinamento, enquanto valores médios
baixos de r indicam que as explicações variam muito com pequena variação no conjunto
de treinamento. A Figura 4.2 demonstra a teoria da estabilidade das explicações.
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Figura 4.2: Os modelos A e B empregam o mesmo conjunto de atributos, mas são treinados
em duas populações ligeiramente diferentes A e B. Então, as mesmas entradas (pacientes)
são dadas aos modelos A e B, e se as explicações correspondentes forem semelhantes,
então a estabilidade do conjunto de atributos é alta

4.3 Amostragem do Espaço do Modelo

Amostramos o espaço do modelo selecionando os atributos que compõem um mo-
delo. Mais precisamente, começamos enumerando todos os modelos possíveis compostos
de um único atributo. Em seguida, selecionamos o atributo dentro do modelo de melhor
desempenho de acordo com um critério de utilidade específico e, em seguida, enumeramos
todos os modelos possíveis compostos por dois atributos. O processo de enumeração do
modelo continua incluindo um atributo após cada iteração, até que o modelo comece a
degradar. Garantimos que nenhum atributo apareça mais de uma vez no mesmo modelo.

Durante a amostragem do espaço do modelo, queremos desencorajar o aprendizado
de um modelo f para o qual as explicações não são robustas nem estáveis, de modo a
evitar o risco de confiar demais no mecanismo de previsão do modelo. Portanto, definimos
a utilidade Uα(f) e Uβ(f) de um modelo f como:

Uα(f) = P + C × α, sendo C ≥ 0, α > 0 (4.1)

Uβ(f) = P + C × β, sendo C ≥ 0, β > 0 (4.2)

em que P é uma medida de desempenho de previsão (AUROC) e C é o coeficiente de
regularização. Valores mais baixos de C encorajarão modelos de amostragem com de-
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sempenho de previsão aparentemente alto, não importa quão robustas e estáveis sejam
as explicações fornecidas. Valores maiores de C, por outro lado, podem levar a modelos
com baixo desempenho de previsão. Valores apropriados de C podem levar a modelos de
alto desempenho com explicações robustas e estáveis e, portanto, esses modelos são mais
propensos a funcionar como originalmente projetados. Desconsideramos qualquer modelo
com robustez negativa ou estabilidade negativa.

A Figura 4.3 apresenta uma visão geral do processo de regularização proposto.
Conforme explicado anteriormente, os atributos obtidos dos dados do paciente, sinais
vitais e resultados laboratoriais estão disponíveis na primeira hora após a admissão na
UTI. Portanto, as previsões de rótulos (complicações) estão disponíveis na primeira hora
após a admissão na UTI, mas podem ocorrer a qualquer momento durante a permanência
na UTI. Em seguida, os atributos são selecionados iterativamente, maximizando a robustez
ou a estabilidade do modelo até que o modelo de melhor desempenho seja selecionado.
Por fim, o modelo final é utilizado para a identificação precoce de pacientes com risco de
complicações.

Figura 4.3: O processo de regularização proposto. Os atributos são selecionados de forma
iterativa, maximizando a robustez ou a estabilidade do modelo. O modelo final é usado
para prever as complicações.
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Capítulo 5

Experimentos

Neste Capítulo serão apresentados os resultados para a identificação precoce de pacientes
na UTI com riscos de complicações. Em particular, os experimentos têm também como
objetivos responder as seguintes perguntas:

1: Existe um trade-off entre a estabilidade, robustez da explicação e o desempenho da
predição?

2: Podemos melhorar o desempenho dos modelos usando estabilidade e robustez da ex-
plicação como termos de regularização?

5.1 Base de Dados

A Tabela 5.1 mostra as características dos pacientes nos conjuntos de dados de
desenvolvimento e validação usando os dados de sua primeira admissão na UTI. No con-
junto de dados de desenvolvimento, a idade média dos pacientes é de 65 anos (intervalo
interquartil - IQR 54 − 80) e 3.074 (51,2%) mulheres.

5.2 Configuração dos Experimentos

Realizamos o cross-validation com cinco folds utilizando todo o conjunto de dados
de desenvolvimento, ou seja, os dados são organizados em cinco folds (cada uma contendo
1200 instâncias), onde em cada execução, quatro folds são usadas como conjunto de
treinamento (n = 4800), e o folds restante é usado como conjunto de teste (n = 1200). O
resultado apresentado do AUC é a média das cinco execuções. A robustez e a estabilidade
da explicação também são calculadas pelas médias das folds. Todo o processo foi executado
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Tabela 5.1: Características dos pacientes da UTI dos dados de desenvolvimento e validação

Desenvolvimento Validação
(n = 6, 000) (n = 1, 086)

Idade - anos 65 (54 − 80) 65 (53 − 80)
Sexo

Feminino 3,074 (51,2%) 562 (51,7%)
Masculino 2,926 (48,8%) 524 (48,3%)

Comorbidades
Aids 32 (0,005%) 7 (0,007%)
Hipertensão 3543 (59,0%) 532 (52,1%)
Diabetes 919 (15,3%) 196 (19,5%)
Arritmia Cardíaca 304 (5,1%) 27 (2,6%)
Demência 528 (8,8%) 145 (14,2%)
Obesidade Mórbida 373 (6,2%) 59 (5,6%)
Terapia de Câncer 212 (3,5%) 90 (8,6%)

Categoria de admissão
Médica 3275 (54,6%) 664 (61,1%)
Cirurgia programada 2158 (36,0%) 272 (25,0%)
Cirurgia não programada 553 (9,4%) 103 (9,5%)

Tipo de cirurgia
Cardíaca 53 (0,9%) 1 (0,1%)
Trauma 42 (0,7%) 3 (0,3%)
Neuro cirurgia 24 (0,4%) 1 (0,1%)

Tempo de internação antes da UTI - dias 2,76 (0 − 1) 2,00 (0 − 1)
Tempo de internação na UTI - dias 3,87 (1 − 4) 4,08 (2 − 5)

Número de admissões na UTI
1 5034 (92,1%) 928 (96,5%)
2 361 (6,6%) 31 (3,2%)
3 51 (0,9%) 2 (0,02%)
≥ 4 19 (0,4%) 1 (0,01%)

separadamente para cada rótulo: Delirium, Infecções no fluxo sanguíneo associadas à
inserção de cateteres centrais (CLABSI), Pneumonia associada à ventilação mecânica
(VAP) e Mortalidade. Também avaliamos o desempenho dos modelos em um conjunto
de dados de validação separado (n = 1086) como um conjunto de dados independente
(dados futuros), no qual os modelos são construídos usando todo o conjunto de dados de
desenvolvimento (n = 6000).



5.3. Avaliação do Modelo 42

5.3 Avaliação do Modelo

Avaliamos a performance dos preditores utilizando a Area Under the Receiver Ope-
rating Characteristic Curve (AUROC). Ela mede se o modelo é capas de classificar as
instâncias corretamente, obtendo valores entre 0, 5 para predições aleatórias e 1 caso o
preditor tenha uma boa capacidade de separabilidade entre classes.

5.4 Resultados e Discussão

Para responder a primeira pergunta, amostramos o espaço do modelo (cerca de um
milhão de modelos para cada complicação), para que possamos compreender a relação en-
tre a robustez da explicação, estabilidade e o desempenho preditivo, a Figura 5.1 mostra
essa relação entre os modelos treinados para prever delirium. Claramente, o desempenho
preditivo aumenta tanto com a robustez quanto com a estabilidade da explicação, e os
modelos de melhor desempenho são aqueles localizados no canto superior direito. Ao
comparar os dois heatmaps, encontramos diferenças nos valores AUROC quando a esta-
bilidade da explicação varia de 0,3 a 0,5 e a robustez da explicação varia de 0,8 a 0,9.
Ainda assim, o desempenho da predição atinge os valores mais altos quando a robustez e
a estabilidade da explicação são maiores. Especificamente, os valores AUROC chegam a
0,88 com validação cruzada usando o conjunto de dados de desenvolvimento e a 0,85 no
conjunto de dados de validação externa.

Tendências semelhantes são observadas ao analisar modelos treinados para prever
as outras complicações direcionadas como VAP (os resultados são mostrados na Figura
5.2), CLABSI (os resultados são mostrados na Figura 5.3), e mortalidade (os resultados
são mostrados na Figura 5.4). Em todos os casos, o desempenho preditivo aumenta tanto
com a robustez da explicação quanto com a estabilidade da explicação. Em resumo, os
modelos que VAP têm valores AUROC de até 0,92 no cross-validation e nos dados de
validação. Os modelos que preveem a CLABSI têm valores AUROC tão altos quanto 0,88
no cross-validation e 0,85 nos dados de validação. Finalmente, os modelos de previsão
de mortalidade têm valores AUROC de até 0,84 no cross-validation e 0,83 nos dados de
validação.
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Figura 5.1: Heatmap dos modelos que preveem Delirium. A cor indica a distribuição dos
valores AUROC para aos modelos: o azul está associado a valores baixos do AUROC
enquanto o vermelho está associado com valores mais altos. Superior − dados de treina-
mento usando o cross-validation. Inferior − dados de validação.
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Figura 5.2: Heatmap dos modelos que preveem VAP. A cor indica a distribuição dos valores
AUROC para aos modelos: o azul está associado a valores baixos do AUROC enquanto o
vermelho está associado com valores mais altos. Superior − dados de treinamento usando
o cross-validation. Inferior − dados de validação.
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Figura 5.3: Heatmap dos modelos que preveem CLABSI. A cor indica a distribuição dos
valores AUROC para aos modelos: o azul está associado a valores baixos do AUROC
enquanto o vermelho está associado com valores mais altos. Superior − dados de treina-
mento usando o cross-validation. Inferior − dados de validação.
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Figura 5.4: Heatmap dos modelos que preveem Mortalidade. A cor indica a distribuição
dos valores AUROC para aos modelos: o azul está associado a valores baixos do AUROC
enquanto o vermelho está associado com valores mais altos. Superior − dados de treina-
mento usando o cross-validation. Inferior − dados de validação.

Em uma analise mais aprofundada, nota-se que durante o processo de seleção de
atributos (feature selection) para compor o modelo de predição, o algoritmo seleciona
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atributos que o leva a encontrar ótimos locais, não conseguindo sair destas regiões. Po-
rém quando é utilizado regularizadores baseados na explicação ou robustez, o algoritmo
consegue selecionar atributos que trazem um maior ganho ao modelo, fazendo que ele
saia dos ótimos locais, buscando melhores soluções para que consiga performar melhor.
Essa análise é válida em todos os experimentos que foram realizados, como podem ser
observadas nas Figuras 5.5, 5.6 e 5.7.

A Figura 5.5 demonstra os atributos selecionados, não utilizando de regularizado-
res, para a criação do modelo. Esses atributos foram ordenados pelos seus respectivos
valores de Shapley.

Figura 5.5: Classificação dos atributos de acordo com a soma das magnitudes - SHAP
para a predição da mortalidade

Na figura 5.6 durante o processo de criação do modelo de predição, foi feito o uso
da regularizador baseado na explicação. Pode-se notar que há alguns atributos que foram
selecionados em ambos os modelos, porém há diferenças entre os atributos que os modelos
selecionaram.
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Figura 5.6: Classificação dos atributos de acordo com a soma das magnitudes - SHAP
para a predição da mortalidade, utilizando a regularização baseada na estabilidade

Por fim, a Figura 5.7 mostra que Highest Pa O21h/Highest Arterial Lactate1h foi
o atributo com o maior valor Shapley para o modelo criado utilizando o regularizador
baseado na robustez e como mostrado nas figuras anteriores, esse modelo tem alguns
atributos que são compartilhados com o modelo que não utiliza regularizador e com o
modelo que utiliza o regularizador baseado na estabilidade.

Figura 5.7: Classificação dos atributos de acordo com a soma das magnitudes - SHAP
para a predição da mortalidade, utilizando a regularização baseada na robustez

Para responder a segunda pergunta, amostramos o espaço do modelo conforme des-
crito na Seção 4.3. Especificamente, selecionamos iterativamente os recursos para compor
o modelo. A cada iteração, o recurso selecionado é aquele que fornece utilidade máxima.
Variando o coeficiente de regularização C, controlamos a importância que os termos de
regularização terão no processo de seleção de características. Para C = 0, a utilidade
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é dada apenas em termos de uma medida de desempenho preditiva (ou seja, AUROC),
ou seja, os recursos são incorporados ao modelo simplesmente maximizando AUROC. À
medida que C aumenta, os recursos selecionados tendem a aumentar a estabilidade da
explicação e a robustez do modelo resultante. Variamos o coeficiente de regularização C

de 0 a 0,5 e relatamos os resultados em termos de AUROC. Além disso, consideramos o
método introduzido por [36] a fim de fornecer uma comparação de baseline, no qual utiliza
de uma LightGBM para realizar a predição precoce de falha no sistema circulatório.

A Tabela 5.2 mostra os números de desempenho dos modelos que preveem o
Delirium. Nela, facilmente pode ser observado que a seleção de recursos baseados apenas
em AUROC não leva aos melhores modelos, mas os termos de regularização propostos
desempenham um papel importante na seleção de recursos. Os melhores resultados, foram
obtidos com C = 0, 3. É interessante ressaltar que o desempenho nos conjuntos de dados
de desenvolvimento e validação se aproximam à medida que C aumenta, sugerindo que a
estabilidade e a robustez da explicação são úteis para a generalização do modelo. Além
disso, o desempenho obtido com C = 0, 3 supera em muito o desempenho de previsão do
baseline.

Tabela 5.2: Modelos Preditores de Delirium − Performance preditiva com a variação de
valores de C.

Estabilidade Robustez
C Desenvolvimento Validação Desenvolvimento Validação
0,0 0,79 ↓ (0,01) 0,77 ↓ (0,01) 0,79 ↓ (0,01) 0,77 ↓ (0,01)
0,1 0,82 ↑ (0,02) 0,82 ↑ (0,04) 0,80 ↕ (0,00) 0,79 ↑ (0,01)
0,2 0,84 ↑ (0,04) 0,84 ↑ (0,06) 0,82 ↑ (0,02) 0,80 ↑ (0,02)
0,3 0,86 ↑ (0,06) 0,85 ↑ (0,07) 0,84 ↑ (0,04) 0,82 ↑ (0,04)
0,4 0,82 ↑ (0,02) 0,83 ↑ (0,05) 0,83 ↑ (0,03) 0,81 ↑ (0,03)
0,5 0,82 ↑ (0,02) 0,80 ↑ (0,02) 0,81 ↑ (0,01) 0,80 ↑ (0,02)
baseline 0,80 0,78 0,80 0,78

As Tabelas 5.3, 5.4 e 5.5 mostram a mesma análise para modelos treinados para
prever VAP, CLABSI e Mortalidade, respectivamente. A mesma tendência é observada
na previsão dessas complicações, onde são obtidos utilizando valores moderados de C.
Valores mais altos podem selecionar recursos que melhoram a estabilidade e a robustez
da explicação, mas são fracos em termos de aumento de AUROC.

Claramente, os termos de regularização propostos são altamente eficazes na sele-
ção de recursos que produzem modelos com alta generalização para todas as complicações
consideradas. Finalmente, é importante notar que a estabilidade e a robustez da explica-
ção são regularizadores altamente eficazes, mesmo quando usados em árvores de aumento
de gradiente, que empregam outros tipos de regularização, como L1 e L2.

A fim de compreender melhor o impacto do uso de estabilidade e robustez da
explicação como regularizadores durante a seleção de recursos, plotamos um heatmap
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Tabela 5.3: Modelos Preditores de VAP − Performance preditiva com a variação de valores
de C.

Estabilidade Robustez
C Desenvolvimento Validação Desenvolvimento Validação
0,0 0,86 ↓ (0,02) 0,84 ↓ (0,02) 0,86 ↓ (0,02) ↓ 0,84 (0,02)
0,1 0,88 ↕ (0,00) 0,86 ↕ (0,00) 0,86 ↓ (0,02) ↓ 0,84 (0,02)
0,2 0,90 ↑ (0,02) 0,90 ↑ (0,04) 0,88 ↕ (0,00) ↑ 0,87 (0,01)
0,3 0,92 ↑ (0,04) 0,90 ↑ (0,04) 0,90 ↑ (0,02) ↑ 0,88 (0,02)
0,4 0,90 ↑ (0,02) 0,90 ↑ (0,04) 0,89 ↑ (0,01) ↑ 0,88 (0,02)
0,5 0,88 ↕ (0,00) 0,88 ↑ (0,02) 0,88 ↕ (0,00) ↕ 0,86 (0,00)
baseline 0,88 0,86 0,88 0,86

Tabela 5.4: Modelos Preditores de CLABSI − Performance preditiva com a variação de
valores de C.

Estabilidade Robustez
C Desenvolvimento Validação Desenvolvimento Validação
0,0 0,82 ↓ (0,02) 0,79 ↓ (3) 0,82 ↓ (0,02) 0,79 ↓ (0,03)
0,1 0,83 ↓ (0,01) 0,81 ↓ (0,01) 0,84 ↕ (0,00) 0,82 ↕ (0,00)
0,2 0,86 ↑ (0,02) 0,84 ↑ (0,02) 0,86 ↑ (0,02) 0,84 ↑ (0,02)
0,3 0,88 ↑ (0,04) 0,86 ↑ (0,04) 0,88 ↑ (0,04) 0,85 ↑ (0,03)
0,4 0,87 ↑ (0,03) 0,85 ↑ (0,03) 0,88 ↑ (0,04) 0,85 ↑ (0,03)
0,5 0,85 ↑ (0,01) 0,85 ↑ (0,03) 0,85 ↑ (0,01) 0,83 ↑ (0,01)
baseline 0,84 0,82 0,84 0,82

Tabela 5.5: Modelos Preditores de Mortalidade − Performance preditiva com a variação
de valores de C.

Estabilidade Robustez
C Desenvolvimento Validação Desenvolvimento Validação
0,0 0,81 ↓ (0,01) 0,77 ↓ (0,03) 0,81 ↓ (0,01) 0,77 ↓ (0,03)
0,1 0,82 ↕ (0,00) 0,80 ↕ (0,00) 0,82 ↕ (0,00) 0,80 ↕ (0,00)
0,2 0,83 ↑ (0,01) 0,82 ↑ (0,02) 0,84 ↑ (0,02) 0,82 ↑ (0,02)
0,3 0,86 ↑ (0,04) 0,85 ↑ (0,05) 0,86 ↑ (0,04) 0,84 ↑ (0,04)
0,4 0,84 ↑ (0,02) 0,82 ↑ (0,02) 0,84 ↑ (0,02) 0,84 ↑ (0,04)
0,5 0,81 ↓ (0,01) 0,80 ↕ (0,00) 0,80 ↓ (0,02) 0,78 ↓ (0,02)
baseline 0,82 0,80 0,82 0,80

mostrando os limites de decisão para modelos que preveem mortalidade. Basicamente,
representamos cada ponto (ou seja, um paciente) usando os valores de recursos correspon-
dentes e, em seguida, usamos t-SNE [82] para visualizar os dados em duas dimensões. A
Figura 5.8 (superior) mostra o limite de decisão para o melhor modelo obtido com C = 0,
enquanto a Figura 5.8 (inferior) mostra os melhores modelos obtidos com C = 0, 3. Os
pontos em vermelho correspondem a pacientes que morreram durante a internação na
UTI. Curiosamente, os recursos selecionados usando C = 0, 3 produziram um modelo
que é muito mais homogêneo no sentido de que melhora a separabilidade dos diferentes
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resultados.

Figura 5.8: Espaço de decisão dos modelos de previsão da mortalidade. Superior − A
utilidade do modelo é fornecida exclusivamente pela AUROC. Inferior − A utilidade do
modelo é dada pela Estabilidade da Explicação (Equação 4.2.)
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Capítulo 6

Conclusão e Trabalhos Futuros

Este trabalho apresentou um algoritmo para predição de riscos de complicações e mortes
na primeira hora após a admissão na UTI, no qual foram utilizados técnicas de aprendizado
de máquina. Neste capítulo serão resumidos os resultados já obtidos e apresentar os
trabalhos futuros para a continuação

6.1 Principais Resultados

Essa tese tem como objetivo o estudo e a criação de modelos de aprendizado de
máquina capazes de predizer precocemente se complicações ocorrerão durante o período
em que o paciente está na UTI, para isso são utilizados atributos obtidas a partir dos
dados administrativos, resultados laboratoriais e sinais vitais do paciente coletados na
primeira hora da sua admissão.

Vem se tornando comum o uso de modelos de predição para auxiliar na tomada
de decisão na UTI, um problema comum a alguns preditores é conhecido como problema
da caixa preta, que não fornecem a informação da lógica envolvida nas predições dos
pacientes. Atualmente já existem técnicas como o SHAP, que consegue analisar o modelo,
executando-o com os dados de teste, gerando explicações do seu funcionamento.

Um outro problema é que uma vez o modelo gerado, sejamos capazes de garan-
tir o seu funcionamento mantendo a mesma lógica de predição originalmente pretendida.
Assim, para construir modelos que continuem a funcionar como originalmente projeta-
dos, primeiro propomos medir (i) como as explicações fornecidas variam para diferentes
entradas (ou seja, robustez) e (ii) como as explicações fornecidas mudam com modelos
construídos a partir de diferentes subpopulações de pacientes (isto é, estabilidade). Pos-
teriormente, empregamos essas medidas como termos de regularização que são acoplados
a um procedimento de seleção de atributos de modo que o modelo final forneça previsões
com explicações mais robustas e estáveis.

Os experimentos foram conduzidos em um conjunto de dados contendo 6.000 in-
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ternações na UTI de 5474 pacientes. Os resultados obtidos em uma coorte de validação
externa de 1069 pacientes com 1086 internações em UTI mostraram que a seleção de atri-
butos com base na robustez levou a ganhos em termos de poder preditivo que variaram
de 6,8% a 9,4%, enquanto a seleção de atributos com base na estabilidade levou a ganhos
que variaram de 7,2% a 11,5%, dependendo da complicação.

Nossos resultados são de importância prática, pois nossos modelos preveem com-
plicações com grande antecipação, facilitando intervenções oportunas e protetoras.

6.2 Trabalhos Futuros

• Sabendo que o tempo de permanência no hospital é um dos principais indicadores,
sendo utilizado na gerência para a obtenção do melhor uso dos recursos hospitala-
res, pretendemos desenvolver um modelo de predição em tempo real do tempo de
permanência de um paciente na UTI e/ou no hospital;

• Pretende-se expandir o trabalho para predizer outras complicações durante a estadia
do paciente na UTI.

• Um outro ponto importante que queremos abordar futuramente é a predição dinâ-
mica da mortalidade na UTI, assim será possível avaliar o risco do paciente a cada
intervenção que for realizada.

• Pretendemos desenvolver modelos que indiquem os recursos que serão necessários
para o tratamento de grupos específicos de pacientes e ao longo do processo me-
lhorar o desempenho do modelo com base nos métodos de regularização, enquanto
incluímos novos recursos provenientes da evolução dos pacientes na UTI.

6.3 Publicações

• AMADOR, T., SATURNINO, S., VELOSO, A., ZIVIANI, N.. Early identification
of ICU patients at risk of complications: Regularization based on robustness and
stability of explanations. ARTIFICIAL INTELLIGENCE IN MEDICINE, v. 128,
p. 102283, 2022.
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