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Revisão

Revisão

Ana Paula Cálculo Numérico



Revisão

Revisão

I Forma de Newton

Pn(x) =f [x0] + (x− x0)f [x0, x1]
+ (x− x0)(x− x1)f [x0, x1, x2] + . . .

+ (x− x0) . . . (x− xn−1)f [x0, . . . , xn]
I onde a diferença dividida de ordem n é dada por

f [x0, x1, . . . , xn] =
f [x1, . . . , xn]− f [x0, . . . , xn−1]

xn − x0

I e
f [xi] = f(xi), i = 0, . . . , n
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Erro na Interpolação

Erro na Interpolação

Ana Paula Cálculo Numérico



Erro na Interpolação

Erro na Interpolação

I É importante estimar o erro cometido quando uma função f(x) é
aproximada por Pn(x)

I Seja z o novo valor a ser calculado
I z ∈ [x0, xn]

deve-se definir uma expressão para o erro En(z) de modo que

En(z) = f(z)− Pn(z)
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Erro na Interpolação

Forma de Newton

I Considerando x0, x1, . . . , xn, tem-se que

f(z) =

Pn(z)︷ ︸︸ ︷
P1(z)︷ ︸︸ ︷

P0(z)︷ ︸︸ ︷
f [x0] +(z − x0)f [x0, x1] + · · ·+ (z − x0) . . . (z − xn−1)f [x0, . . . , xn]
+ (z − x0) . . . (z − xn−1)(z − xn)f [x0, . . . , xn, z]︸ ︷︷ ︸

Rn(z)
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Erro na Interpolação

Erro na Interpolação

En(z) = f(z)− [f(z)− (z − x0) . . . (z − xn)f [x0, . . . , xn, z]]
= (z − x0) . . . (z − xn)f [x0, . . . , xn, z]

I Sabendo que f (n)(c)
n! = f [x0, x1, . . . , xn] então o erro na interpolação

pode ser definido como

En(z) = (z − x0) . . . (z − xn)
f (n+1)(c)

(n+ 1)!

I onde f(x) é n+ 1 vezes continuamente diferenciável e c ∈ [x0, xn]
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Erro na Interpolação

Erro na Interpolação

I Para obter o erro máximo posśıvel:

I Sendo f(x) e suas derivadas até ordem n+ 1 cont́ınuas em [x1, xn],
então

|En(z)| ≤
|z − x0| . . . |z − xn|

(n+ 1)!
max

γ∈[x1,xn]
|f (n+1)|(γ)
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Erro na Interpolação

Exemplo

I Exemplo 1
Seja f(x) = ex + x− 1. Encontre um polinômio interpolador que
passe pelos pontos:

x 0,5 1,0

f(x) 1,1487 2,7183

Calcule P (0,7) e determine um limitante superior para erro ao avaliar
o polinômio em x = 0,7.

I Solução:

P1(x) = 3,1392x− 0,4209

P1(0,7) = 1,7765

|E1(x)| ≤
|0,7− 0,5||0,7− 1,0|

(2)!
max

γ∈[0,5;1,0]
|f (2)(γ)| = 0,03e1 = 0,081548
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Erro de Integração

Análise do Erro – Regra do Trapézio

I Para a Regra do Trapézio: n = 1, x0 = a e x1 = b

I Logo,

ET =

∫ b

a

R1dx

ET ≤
∫ b

a

(x− a)(x− b)f
′′
(γ)

2!
dx

≤ f
′′
(γ)

2

∫ b

a

(x− a)(x− b)dx

≤ f ′′(γ)

2

∫ b

a

(x2 − (a+ b)x+ ab)dx; γ ∈ [a; b]

≤ f ′′(γ)

2

(
x3

3
− (a+ b)

x2

2
+ abx

)∣∣∣∣b
a

≤ f ′′(γ)

2

(
(b)3

3
− (a+ b)

(b)2

2
+ ab(b)− (a)3

3
+ (a+ b)

(a)2

2
− ab(a)

)
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Erro de Integração

Análise do Erro – Regra do Trapézio

I Continuando

ET ≤
f ′′(γ)

2

(
(b)3

3
− (a+ b)

(b)2

2
+ ab(b)− (a)3

3
+ (a+ b)

(a)2

2
− ab(a)

)
≤ f ′′(c)

2

(
−b

3

6
+
ab2

2
+
a3

6
− a2b

2

)
≤ f ′′(γ)

12

(
a3 − 3a2b+ 3ab2 − b3

)
≤ f ′′(γ)

12

(
a3 − 3a2b+ 3ab2 − b3

)
≤ f ′′(γ)

12
(a− b)3

≤ −f
′′(γ)

12
(b− a)3 ou

−f ′′(γ)
12

h3

I Sempre considerar o γ que maximiza o módulo da função f ′′(γ)
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Erro de Integração

Análise do Erro – Regra 1/3 de Simpson

I Seguindo o mesmo racioćınio desenvolvido até aqui, o erro ao aplicar
a Regra 1/3 de Simpson é dado por

E1/3S ≤
−f (4)(γ)

90
h5

I Sempre considerar o γ que maximiza o módulo da função f4(γ)
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Erro de Integração

Análise do Erro – Regra 3/8 de Simpson

I Seguindo o mesmo racioćınio desenvolvido até aqui, o erro ao aplicar
a Regra 3/8 de Simpson é dado por

E3/8S ≤
−3f (4)(γ)

80
h5

I Sempre considerar o γ que maximiza o módulo da função f4(γ)
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Análise dos Erros das Fórmulas Repetidas

Análise dos Erros das Fórmulas
Repetidas
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Análise dos Erros das Fórmulas Repetidas

Análise dos Erros das Fórmulas Repetidas

I Serão considerados que todos os espaçamentos são iguais

I hi = h

I Logo,

h =
b− a
m
⇒ m =

b− a
h
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Análise dos Erros das Fórmulas Repetidas

Análise do Erro – Regra do Trapézio Repetida

I Sabendo que para a Regra do Trapézio

ET ≤
−f ′′(γ)

12
h3

I Portando,

ETR ≤
m∑
i=1

−f ′′(γi)
12

h3 ≤ −f
′′(γ)

12
h3m ≤ −f

′′(γ)

12
h3
b− a
h

≤ −−f
′′(γ)

12
h2(b− a)

I Assim, um limitante para o erro fica como

|ETR| ≤
|b− a|h2

12
max
γ∈[a;b]

∣∣f ′′(γ)∣∣
I γ maximiza |f ′′(γ)|
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Análise do Erro – Regra do Trapézio Repetida
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I Sabendo que para a Regra do Trapézio
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Análise dos Erros das Fórmulas Repetidas

Análise do Erro – Regra 1/3 de Simpson Repetida

I Para a Regra 1/3 de Simpson

E1/3S ≤
−f (4)(γ)

90
h5

I Portando,

E1/3SR ≤
m/2∑
i=1

−f (4)(γi)
90

h5 ≤ −f
(4)(γ)

90
h5
m

2
≤ −f

(4)(γ)

180
h5
b− a
h

≤ −f
(4)(γ)

180
h4(b− a)

I Assim, um limitante para o erro fica como

|E1/3SR| ≤
|b− a|h4

180
max
γ∈[a;b]

∣∣∣f (4)(γ)∣∣∣
I γ maximiza |f (4)|
I O erro na Regra 3/8 de Simpson não será analisado aqui
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Análise dos Erros das Fórmulas Repetidas

Exemplo

I Exemplo 3
Quantos subintervalos são necessários para que o erro ao calcular∫ 1,5
0 cos(x)dx utilizando a Regra do Trapézio Repetida seja menor ou

igual a 10−3.

I Solução:

m ≥ 17
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Análise dos Erros das Fórmulas Repetidas

Exemplo

I Exemplo 5
Quantos subintervalos são necessários para que o erro ao calcular∫ 1,5
0 cos(x)dx utilizando a Regra 1/3 de Simpson Repetida seja menor

ou igual a 10−3.

I Solução:

m ≥ 3⇒ m ≥ 4 (m deve ser par na Regra 1/3 de Simpson)
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