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Introdução

Introdução

I Uma equação é dita linear se cada termo contém não mais que uma
variável e cada variável aparece na primeira potência

I Um sistema de equações lineares é um conjunto finito de equações
lineares nas mesmas variáveis

I Um sistema com m equações e n incógnitas é como
a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

...
am1x1 + am2x2 + · · ·+ amnxn = bm

I onde
I aij ∈ R são os coeficientes
I bi ∈ R são chamadas constantes
I xj ∈ R são as variáveis do problema
I i = 1, . . . ,m e j = 1, . . . , n
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Introdução

Introdução

I O sistema
a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

...
am1x1 + am2x2 + · · ·+ amnxn = bm

I pode ser escrito em notação matricial como Ax = b ou
a11 a12 . . . a1n
a21 a22 . . . a2n

...
...

...
...

am1 am2 . . . amn



x1
x2
...
xn

 =


b1
b2
...
bm


Ana Paula Cálculo Numérico



Introdução

Introdução

I Aplicável a uma vasta gama de problemas

I Análise de estruturas

I Modelagem de circuitos elétricos

I Reações Qúımicas (equilibrar equações)

I Programação linear e não-linear

I Aprendizagem de máquina

I Regressão e classificação

I Métodos numéricos

I Interpolação, ḿınimos quadrados, solução de equações diferenciais
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Introdução

Introdução

I Exemplo
Calcular as tensões dos nós do circuito elétrico que segue
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Introdução

Introdução

I As seguintes teorias serão utilizadas na modelagem

I Lei de Kirchhoff

I A soma das correntes que passam em cada nó é nula

I Lei de Ohm

I A corrente do nó i para o nó j é definida como

Iij =
Vi − Vj
Rij

I onde
I V é a tensão

I R é a resistência
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Introdução

Introdução

I Nó 1

IA1 + I21 + I31 + I41 = 0

VA − V1
RA1

+
V2 − V1
R21

+
V3 − V1
R31

+
V4 − V1
R41

= 0

0− V1
1

+
V2 − V1

1
+
V3 − V1

2
+
V4 − V1

2
= 0

−2V1 + 2V2 − 2V1 + V3 − V 1 + V4 − V1 = 0

−6V1 + 2V2 + V3 + V4 = 0
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Introdução

Introdução

I Nó 2

3V1 − 4V2 + V3 = 0

I Nó 3

3V1 + 2V2 − 13V3 + 6V4 = −254

I Nó 4

V1 + 2V3 − 3V4 = 0
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Introdução

Introdução

I O circuito elétrico

I pode então ser modelado pelo sistema de equações lineares
−6 2 1 1
3 −4 1 0
3 2 −13 6
1 0 2 −3



V1
V2
V3
V4

 =


0
0
−254
0


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Introdução

Introdução

I Resolvendo o sistema obtém-se

V1 = 25,80

V2 = 31,75

V3 = 49,61

V4 = 41,67
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Introdução

Introdução

I Exemplos:
Modelo que representa as forças que atuam numa treliça

I Sendo α = sen(π4 ) = cos(π4 ), então para a junção 2∑
Fx = −αf1 + f4 + αf5 = 0∑
Fy = −αf1 − f3 − αf5 = 0

I Repetindo para os 10 nós, então um sistema linear 17x17 é gerado
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Alguns Conceitos de Álgebra Linear
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Alguns Conceitos de Álgebra Linear

Alguns Conceitos de Álgebra Linear

I Vetores Linearmente Independentes (LI)

I Um conjunto de vetores x1,x2, . . . ,xn é dito ser linearmente
independente se

c1x1 + c2x2 + · · ·+ cnxn = 0

somente se c1 = c2 = · · · = cn = 0

I Caso contrário, diz-se que o conjunto de vetores é linearmente
dependente (LD)
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Alguns Conceitos de Álgebra Linear

Alguns Conceitos de Álgebra Linear

I Exemplo
Os vetores

x1 =

 2
−3
4

 ,x2 =

 1
0
3

 e x3 =

 3
−3
7


são LD pois

x3 = x1 + x2 ⇒ x1 + x2 − x3 = 0
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Alguns Conceitos de Álgebra Linear

Alguns Conceitos de Álgebra Linear

I Posto de uma Matriz

I O posto (ou rank) de uma matriz A ∈ Rm×n é definido como o
número máximo de vetores linhas (ou de vetores colunas) linearmente
independentes de A.

I Nota-se que posto(A) ≤ min(m,n)
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Alguns Conceitos de Álgebra Linear

Alguns Conceitos de Álgebra Linear

I Exemplo
Seja

A =

 1 3 0 1
5 4 2 0
6 7 2 1


I Nota-se que

I linha3 = linha1 + linha2

I linhas 1 e 2 são LI

I Logo, posto(A) = 2

I obs.: o número de colunas LI de uma matriz é igual ao número de
linhas LI dessa matriz
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Alguns Conceitos de Álgebra Linear

Alguns Conceitos de Álgebra Linear

I Determinante

I Determinante é uma função matricial que associa a cada matriz
quadrada um escalar e pode ser obtido como

I n = 1
det(A) = det [a11] = a11

I n > 1
det(A) = a11 det(M11)− a12 det(M12) + · · ·+ (−1)n+1a1n det(M1n)
onde Mij é a matriz resultante da remoção da linha i e coluna j da
matriz A
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Alguns Conceitos de Álgebra Linear

Alguns Conceitos de Álgebra Linear

I Definição: Matriz Singular
Uma matriz A com det(A) = 0 é dita singular.
Quando det(A) 6= 0 então A é dita não-singular.
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Alguns Conceitos de Álgebra Linear

Alguns Conceitos de Álgebra Linear

I Exemplo 1
Calcular o determinante de uma matriz com dimensão n = 3

I Solução:

det(A) = det

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 =
a11(a22a33 − a23a32)
−a12(a21a33 − a23a31)
a13(a21a32 − a22a31)
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Alguns Conceitos de Álgebra Linear

Alguns Conceitos de Álgebra Linear

I Exemplo 1
Calcular o determinante de uma matriz com dimensão n = 3

I Solução:

det(A) = det

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 =
a11(a22a33 − a23a32)
−a12(a21a33 − a23a31)
a13(a21a32 − a22a31)
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Alguns Conceitos de Álgebra Linear

Alguns Conceitos de Álgebra Linear

I Inversa de uma Matriz
A inversa de uma matriz quadrada A ∈ Rn×n é representada por
A−1 e é definida de forma que

AA−1 = A−1A = I

onde I é a matriz identidade de ordem n
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Alguns Conceitos de Álgebra Linear

Alguns Conceitos de Álgebra Linear

I Exemplo

I Sejam

A =

[
1 1
2 3

]

A−1 =

[
3 −1
−2 1

]
I Verifica-se que

AA−1 = A−1A = I =

[
1 0
0 1

]
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Sistemas Lineares
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Sistemas Lineares

Classificação dos Sistemas Lineares

I Considerando um sistema Ax = b, com uma matriz quadrada
A ∈ Rn×n, tem-se as seguintes possibilidades quanto ao número de
soluções:

1. Solução única (consistente e determinado)

2. Infinitas soluções (consistente e indeterminado)

3. Nenhuma solução (inconsistente)
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Sistemas Lineares

Classificação dos Sistemas Lineares

I Caso (1): solução única{
x1 + x2 = 3
x1 − x2 = −1

ou

[
1 1
1 −1

] [
x1
x2

]
=

[
3
−1

]
⇒ x =

[
1
2

]
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Sistemas Lineares

Classificação dos Sistemas Lineares

I Caso (2): infinitas soluções{
x1 + x2 = 1

2x1 + 2x2 = 2
ou

[
1 1
2 2

] [
x1
x2

]
=

[
1
2

]
⇒ x =

[
1− θ
θ

]
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Sistemas Lineares

Classificação dos Sistemas Lineares

I Caso (3): sem solução{
x1 + x2 = 1
x1 + x2 = 4

ou

[
1 1
1 1

] [
x1
x2

]
=

[
1
4

]
⇒ @x tal que Ax = b
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Sistemas Lineares

Existência e Unicidade da Solução

I Teorema: Existência e Unicidade da Solução
Seja A uma matriz quadrada n× n. As seguintes afirmações são
equivalentes:

1. A−1 existe

2. A única solução do sistema homogêneo Ay = 0 é y ser o vetor nulo

3. posto(A) = n

4. det(A) 6= 0

5. dado qualquer vetor b, existe exatamente um vetor x tal que Ax = b
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Sistemas Lineares

Existência e Unicidade da Solução

I Exemplo 2
Verifique se o sistema linear que segue tem solução única (caso 1).{

x1 + x2 = 3
x1 − x2 = −1

I Solução:
Como det(A) = −2 6= 0 então existe solução e ela é única
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Sistemas Lineares

Existência e Unicidade da Solução

I Exemplo 2
Verifique se o sistema linear que segue tem solução única (caso 1).{

x1 + x2 = 3
x1 − x2 = −1

I Solução:
Como det(A) = −2 6= 0 então existe solução e ela é única
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Sistemas Lineares

Existência e Unicidade da Solução

I Exemplo 3
Verifique se o sistema linear que segue tem solução única (caso 2).{

x1 + x2 = 1
2x1 + 2x2 = 2

I Solução:
Como det(A) = 0 então o sistema não tem solução ou a solução não
é única
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Sistemas Lineares

Existência e Unicidade da Solução

I Exemplo 3
Verifique se o sistema linear que segue tem solução única (caso 2).{

x1 + x2 = 1
2x1 + 2x2 = 2

I Solução:
Como det(A) = 0 então o sistema não tem solução ou a solução não
é única
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Sistemas Lineares

Existência e Unicidade da Solução

I Exemplo 4
Verifique se o sistema linear que segue tem solução única (caso 3).{

x1 + x2 = 1
x1 + x2 = 4

I Solução:
Como det(A) = 0 então o sistema não tem solução ou a solução não
é única
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Sistemas Lineares

Existência e Unicidade da Solução

I Exemplo 4
Verifique se o sistema linear que segue tem solução única (caso 3).{

x1 + x2 = 1
x1 + x2 = 4

I Solução:
Como det(A) = 0 então o sistema não tem solução ou a solução não
é única
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Métodos Computacionais
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Métodos Computacionais

Métodos Computacionais

I Serão estudados métodos computacionais para encontrar a solução do
sistema de equações lineares Ax = b

I Considera-se aqui que A é uma matriz quadrada e não-singular

I Os métodos computacionais podem ser divididos em

I Métodos diretos

I Fornecem a solução exata do problema, a menos de erros de
arredondamento, após um número finito de operações

I Métodos iterativos

I Geram uma sequência de vetores a partir de uma aproximação inicial e,
sob certas condições, essa sequência converge para a solução do
problema
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Métodos Computacionais

Métodos Computacionais

I Métodos diretos

I Sistemas triangulares: substituições sucessivas e retroativas

I Eliminação de Gauss
I Estratégias de pivotamento

I Decomposição LU
I Estratégias de pivotamento

I Decomposição de Cholesky e LDLT

I Métodos iterativos

I Método de Jacobi

I Método de Gauss-Seidel

I Métodos de Relaxação
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Métodos Computacionais

Regra de Cramer

I Calcula as variáveis por meio de determinantes

I Exemplo:
Seja o sistema linear[

a11 a12
a21 a22

] [
x1
x2

]
=

[
b1
b2

]
I então a solução pode ser obtida fazendo

x1 =

det

[
b1 a12
b2 a22

]
det

[
a11 a12
a21 a22

] x2 =

det

[
a11 b1
a12 b2

]
det

[
a11 a12
a21 a22

]
I Computacionalmente caro

I Requer que n+ 1 determinantes sejam calculados
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Métodos Computacionais

Inversa de A

I Pode-se utilizar A−1

I Uma vez calculada a inversa da matriz de coeficientes, então

Ax = b

A−1A︸ ︷︷ ︸
I

x = A−1b

x = A−1b

I Sendo o objetivo resolver o sistema então existem alternativas mais
eficientes computacionalmente
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Sistemas Triangulares
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Sistemas Triangulares

Sistemas Triangulares Inferiores

I Seja um sistema Ax = b, onde A é triangular inferior, ou seja,
l11 0 . . . 0
l21 l22 . . . 0
...

...
. . .

...
ln1 ln2 . . . lnn



x1
x2
...
xn

 =


b1
b2
...
bn


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Sistemas Triangulares

Sistemas Triangulares Inferiores

I O sistema pode ser resolvido fazendo

l11x1 = b1 ⇒ x1 =
b1
l11

l21x1 + l22x2 = b2 ⇒ x2 =
b2 − l21x1

l22
...

ln1x1 + ln2x2 + · · ·+ lnnxn = bn ⇒ xn =
b2 − (ln1x1 + ln2x2 + · · ·+ ln,n−1xn−1)

lnn

xi =

bi −
i−1∑
j=1

lijxj

lii
, i = 1, . . . , n

I Método de substituições sucessivas
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Sistemas Triangulares

Sistemas Triangulares Inferiores

Data: n, L, b
1 begin
2 x[1]←− b[1]/L[1][1] ;
3 for i = 2, . . . , n do
4 soma←− 0 ;
5 for j = 1, . . . , i− 1 do
6 soma←− soma+ L[i][j] ∗ x[j] ;

7 x[i]←− (b[i]− soma)/L[i][i] ;

Algoritmo 1: Substituições sucessivas - Complexidade O(n2)
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Sistemas Triangulares

Sistemas Triangulares Inferiores

I Exemplo 5
Resolver o sistema linear que segue.

2 0 0 0
3 5 0 0
1 −6 8 0
−1 4 −3 9



x1
x2
x3
x4

 =


4
1

48
6


I Resolução:

xi =
bi −

∑i−1
j=1 lijxj

lii
, i = 1, . . . , 4

x1 = 2

x2 = −1
x3 = 5

x4 = 3
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Sistemas Triangulares

Sistemas Triangulares Inferiores

I Exemplo 5
Resolver o sistema linear que segue.

2 0 0 0
3 5 0 0
1 −6 8 0
−1 4 −3 9



x1
x2
x3
x4

 =


4
1

48
6


I Resolução:

xi =
bi −

∑i−1
j=1 lijxj

lii
, i = 1, . . . , 4

x1 = 2

x2 = −1
x3 = 5

x4 = 3
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Sistemas Triangulares

Sistemas Triangulares Superiores

I Seja um sistema Ax = b, onde A é triangular superior, ou seja,
u11 u12 . . . u1n
0 u22 . . . u2n
...

...
. . .

...
0 0 . . . unn



x1
x2
...
xn

 =


b1
b2
...
bn


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Sistemas Triangulares

Sistemas Triangulares Superiores

I O sistema pode ser resolvido por substituições retroativas fazendo

unnxn = bn ⇒ xn =
bn
unn

un−1,n−1xn−1 + un−1,nxn = bn−1 ⇒ xn−1 =
bn−1 − un−1,nxn

un−1,n−1

...

u11x1 + · · ·+ u1,n−1xn−1 + u1nxn = b1

⇒ x1 =
b1 − (u12x2 + · · ·+ u1,n−1xn−1 + u1nxn)

u11

xi =

bi −
n∑

j=i+1

uijxj

uii
, i = n, . . . , 1
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Sistemas Triangulares

Sistemas Triangulares Superiores

Data: n, U , b
1 begin
2 x[n]←− b[n]/U [n][n] ;
3 for i = n− 1, . . . , 1 do
4 soma←− 0 ;
5 for j = i+ 1, . . . , n do
6 soma←− soma+ U [i][j] ∗ x[j] ;

7 x[i]←− (b[i]− soma)/U [i][i] ;

Algoritmo 2: Substituições retroativas - Complexidade O(n2)
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Sistemas Triangulares

Sistemas Triangulares Superiores - Exemplo

I Exemplo 6
Resolver o sistema linear que segue.

5 −2 6 1
0 3 7 −4
0 0 4 5
0 0 0 2



x1
x2
x3
x4

 =


1
−2
28
8


I Resolução:

xi =
bi −

∑n
j=i+1 uijxj

uii
, i = 4, . . . , 1

x1 = −3
x2 = 0

x3 = 2

x4 = 4
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Sistemas Triangulares

Sistemas Triangulares Superiores - Exemplo

I Exemplo 6
Resolver o sistema linear que segue.
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Revisão

I Introdução
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Revisão

Revisão

I Sistemas Triangulares

I Substituições Sucessivas

xi =
bi −

∑i−1
j=1 lijxj

lii
, i = 1, . . . , n

I Substituições Retroativas

xi =
bi −

∑n
j=i+1 uijxj

uii
, i = n, . . . , 1
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Revisão
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