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Resolução de Sistemas Lineares

Ana Paula

Ana Paula Cálculo Numérico
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Aula Anterior

Aula Anterior

I Introdução

I Alguns Conceitos de Álgebra Linear

I Sistemas Lineares

I Classificação

I Existência e unicidade de solução

I Métodos Computacionais

I Métodos Diretos

I Métodos Iterativos
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Aula Anterior

Aula Anterior

I Sistemas Triangulares

I Substituições Sucessivas

xi =
bi −

∑i−1
j=1 lijxj

lii
, i = 1, . . . , n

I Substituições Retroativas

xi =
bi −

∑n
j=i+1 uijxj

uii
, i = n, . . . , 1
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Eliminação de Gauss
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Eliminação de Gauss

Eliminação de Gauss

I O sistema é transformado em um sistema equivalente com a matriz
de coeficientes A sendo triangular superior

I Operações elementares são utilizadas para zerar os elementos abaixo da
diagonal principal da matriz de coeficientes A

I Ilustração do procedimento:


a a a a b
a a a a b
a a a a b
a a a a b

 ⇒


a a a a b
0 a a a b
0 a a a b
0 a a a b

 ⇒


a a a a b
0 a a a b
0 0 a a b
0 0 a a b

 ⇒


a a a a b
0 a a a b
0 0 a a b
0 0 0 a b


I Finalmente, o sistema resultante pode ser resolvido por meio de

substituições retroativas
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Eliminação de Gauss

Eliminação de Gauss

I Definição (Sistema Equivalente):
Dois sistemas de equações lineares Ax = b e Âx = b̂ são
equivalentes quando possuem a mesma solução x∗.

I Teorema:
Seja Ax = b um sistema linear. Um sistema Âx = b̂ equivalente
pode ser obtido aplicando as seguintes operações elementares:

I trocar a ordem de duas equações

I multiplicar uma equação por uma constante não nula

I somar uma equação com um múltiplo de outra
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Eliminação de Gauss

Eliminação de Gauss

I Por exemplo {
x1 + x2 = 2
x1 − x2 = 0
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x1 +x2 =2

x1−x2 =0
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Eliminação de Gauss

Eliminação de Gauss

I Fazendo L′2 = L2 − L1, obtém-se o seguinte sistema equivalente{
x1 + x2 = 2
−2x2 = −2
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Eliminação de Gauss

Eliminação de Gauss

I Seja o sistema Ax = b representado por uma matriz estendida na
forma 

a11 a12 a13 . . . a1n b1
a21 a22 a23 . . . a2n b2
a31 a32 a33 . . . a3n b3

...
...

...
. . .

...
...

an1 an2 an3 . . . ann bn


I Os passos que seguem podem ser realizados para obter um sistema

linear equivalente com a matriz de coeficientes triangular superior
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Eliminação de Gauss

Eliminação de Gauss

I Passo 1 (k=1): os elementos abaixo da diagonal principal na
primeira coluna são eliminados fazendo

m21 =
a21
a11

(supõem-se que a11 6= 0)

m31 =
a31
a11

...

mn1 =
an1
a11

,

I ou seja,

mi1 =
ai1
a11

; i = 2, . . . , n

I O elemento utilizado nos denominadores é chamado de pivô
I a11, neste caso
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Eliminação de Gauss

Eliminação de Gauss

I Em seguida faz-se

L
(1)
i = L

(0)
i −mi1L

(0)
1 ; L

(k)
i é a linha i no passo k

I ou seja,

a
(1)
ij = a

(0)
ij −mi1a

(0)
1j ; j = 1, . . . , n

b
(1)
i = b

(0)
i −mi1b

(0)
1

I Assim, após a primeira etapa tem-se
a
(0)
11 a

(0)
12 a

(0)
13 . . . a

(0)
1n b

(0)
1

0 a
(1)
22 a

(1)
23 . . . a

(1)
2n b

(1)
2

0 a
(1)
32 a

(1)
33 . . . a

(1)
3n b

(1)
3

...
...

...
. . . . . .

...

0 a
(1)
n2 a

(1)
n3 . . . a

(1)
nn b

(1)
n


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Eliminação de Gauss

Eliminação de Gauss

I Passo 2 (k=2): os elementos abaixo da diagonal principal na coluna
2 são eliminados fazendo

mi2 =
ai2
a22

; i = 3, . . . , n e assumindo a22 6= 0

I Em seguida faz-se

L
(2)
i = L

(1)
i −mi2L

(1)
2

I ou seja,

a
(2)
ij = a

(1)
ij −mi2a

(1)
2j ; j = 2, . . . , n

b
(2)
i = b

(1)
i −mi2b

(1)
2
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Eliminação de Gauss

Eliminação de Gauss

I Assim, após a segunda etapa tem-se
a
(0)
11 a

(0)
12 a

(0)
13 . . . a

(0)
1n b

(0)
1

0 a
(1)
22 a

(1)
23 . . . a

(1)
2n b

(1)
2

0 0 a
(2)
33 . . . a

(2)
3n b

(2)
3

...
...

...
. . . . . .

...

0 0 a
(2)
n3 . . . a

(2)
nn b

(2)
n


I O procedimento é então repetido até o passo n− 1
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1
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22 a
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23 . . . a
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2n b

(1)
2

0 0 a
(2)
33 . . . a

(2)
3n b

(2)
3

...
...

...
. . . . . .

...

0 0 a
(2)
n3 . . . a

(2)
nn b

(2)
n


I O procedimento é então repetido até o passo n− 1
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Eliminação de Gauss

Eliminação de Gauss

I Passo k (k=1, . . . , n-1):

mik =
aik
akk

; i = k + 1, . . . , n e supondo akk 6= 0

I Em seguida faz-se

L
(k)
i = L

(k−1)
i −mikL

(k−1)
k

I ou seja,

a
(k)
ij = a

(k−1)
ij −mika

(k−1)
kj ; j = k, . . . , n

b
(k)
i = b

(k−1)
i −mikb

(k−1)
k

I Nota-se que as linhas 1, . . . , k não são alteradas

I Por fim, aplica-se o método de substituições retroativas ao sistema
equivalente
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Eliminação de Gauss

Eliminação de Gauss

Entrada: Matriz A, vetor b, n
1 inicio
2 para k = 1, . . . , n− 1 faça /* Para cada passo */

3 para i = k + 1, . . . , n faça /* Linhas abaixo da k-ésima */

4 m←− A[i][k]/A[k][k] ;
5 para j = k, . . . , n faça /* Colunas */

6 A[i][j]←− A[i][j]−m ∗A[k][j] ;

7 b[i]←− b[i]−m ∗ b[k] ;

8 x←− retroSubstituicao(A,b, n) ; /* Resolve o sistema */

9 retorna x

Algoritmo 1: Eliminação de Gauss - Complexidade O(n3)
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Eliminação de Gauss

Exemplo

I Exemplo 1
Resolva o sistema linear que segue utilizando o Método de Eliminação
de Gauss. 2 3 −1

4 4 −3
2 −3 1

 x1x2
x3

 =

 5
3
−1


I Solução:

x =

12
3


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Eliminação de Gauss

Exerćıcio

I Exerćıcio 1
Resolva o sistema linear que segue utilizando o Método de Eliminação
de Gauss.  1 −3 2

−2 8 −1
4 −6 5

 x1x2
x3

 =

 11
−15
29


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Estratégias de Pivotamento

Estratégias de Pivotamento
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Estratégias de Pivotamento

Estratégias de Pivotamento

I O Método de Eliminação de Gauss requer o calculo de mik = aik
akk

I O pivô akk pode ser escolhido adequadamente

I Estratégias de pivotamento ajudam a evitar

I que o pivô seja nulo

I a propagação de erros numéricos

I se akk for um número muito pequeno (em módulo), o multiplicador
mik pode ficar muito grande, ampliando erros de arredondamento ao
multiplicar mik ou gerando erros ao subtrair/somar números pequenos
de grandes

I O pivotamento garante que |mik| ≤ 1

I Existem duas formas de pivotamento

I Pivotamento Parcial

I Pivotamento Total
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I Existem duas formas de pivotamento

I Pivotamento Parcial

I Pivotamento Total
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Pivotamento Parcial

I No ińıcio de cada passo k

procura-se r tal que |ark| = max
i∈[k,n]

|aik|

I Em seguida, as linhas k e r são trocadas e o algoritmo continua

I Ou seja, o pivô é escolhido de modo que seja o elemento de maior
valor absoluto na coluna k

I considerando as linhas (i ≥ k) que ainda podem ser operadas

I Nota-se que se houver apenas candidatos a pivô nulos então

I det(U) = 0⇒ U é singular ⇒ A é singular

U =

a a a
0 0 a
0 0 a


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Exemplo

I Exemplo 2 Resolva esse sistema linear via o Método de Eliminação
de Gauss com Pivotamento Parcial. 1 2 3

−3 2 1
1 −1 1

 x1x2
x3

 =

60
1


I Solução:

x =

11
1


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Estratégias de Pivotamento

Exerćıcio

I Exerćıcio 2
As operações aritméticas devem ser realizadas numa máquina
F (10, 3,−10, 10) com arredondamento e com representação para o
zero. Ao resolver o sistema linear que segue utilizando o Método de
Eliminação de Gauss sem Pivotamento obtém-se xT = [0 2,5]
(verifique). Entretanto, essa solução é inválida. Resolva o sistema
usando o Método de Eliminação de Gauss com Pivotamento Parcial.[

0,0002 2
2 2

] [
x1
x2

]
=

[
5
6

]
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Pivotamento Total

I O pivô é o maior elemento (em módulo) entre os que ainda atuam no
processo de eliminação

I No ińıcio de cada passo k

procura-se a linha r e a coluna s tal que |ars| = max
i∈[k,n],j∈[k,n]

|aij |

I Em seguida, as linhas k e r, e as colunas k e s são trocadas e o
algoritmo continua

I Observações

I a troca das colunas afeta a ordem das variáveis

I o pivotamento total não é muito adotado por causa do alto esforço
computacional requerido na busca pelo pivô

I o pivotamento parcial é geralmente satisfatório
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I No ińıcio de cada passo k

procura-se a linha r e a coluna s tal que |ars| = max
i∈[k,n],j∈[k,n]

|aij |

I Em seguida, as linhas k e r, e as colunas k e s são trocadas e o
algoritmo continua

I Observações

I a troca das colunas afeta a ordem das variáveis
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I o pivotamento parcial é geralmente satisfatório
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Estratégias de Pivotamento

Pivotamento Parcial Pivotamento Total
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Revisão

Revisão

I Eliminação de Gauss

I Transforma o sistema linear num sistema equivalente com matriz de
coeficientes triangular superior

I Resolve o sistema equivalente utilizando substituições retroativas

I Eliminação de Gauss com estratégias de pivotamento

I Evita que o pivô seja nulo e evita efeitos numéricos
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Fontes

I Curso de Cálculo Numérico - UFJF
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Revisão

Dúvidas?
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